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Outline  
 

In this thesis, I have i) investigated the influence of the sleep-wake distribution on the 

expression of a clock gene, period-2 and ii) explored a possible mechanism that accounts for the 

sleep-driven changes in clock gene expression. In Chapter 1, a brief literature overview on sleep 

regulation, function and homeostasis and on circadian rhythms is provided, after which the 

interaction between these two processes with a focus on clock genes is discussed. In Chapter 2, you 

will read that changes in spontaneous sleep-wake state contribute to PER2, as quantified by 

bioluminescence. Furthermore, imposing a sleep deprivation protocol that reduces the circadian 

amplitude of the sleep-wake distribution also affects PER2 bioluminescence levels in the majority 

of the mice measured. Chapter 3 introduces Cold Inducible RNA Binding Protein (CIRBP) and its 

functions. This is to provide extra background information for Chapter 4, where I have investigated 

if this protein conveys the sleep deprivation induced changes in clock gene expression. CIRBPs 

presence was not required to convey all sleep-wake driven changes in clock gene expression, but 

it’s absence modulated three out of the five clock genes quantified. In line with the role of clock 

genes in sleep homeostasis, Cirbp KO mice had impaired REM sleep homeostasis. An unexpected 

finding was that Cirbp KO mice were more active, which was accompanied by changes in neuronal 

oscillations. In Chapter 5, the results and implications of both projects are discussed in a larger 

context on sleep, circadian rhythms and science in general.  
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Abstract  
The sleep-wake distribution (i.e. the duration and timing of sleep across the 24-h day) is 

orchestrated by the interaction of two processes: the sleep homeostat, which keeps track of time 

spent awake and asleep, and the circadian clock, which gates the timing of sleep. The mechanisms 

underlying the clock are well understood: overt rhythmic behavior in mammals is coordinated by 

the suprachiasmatic nucleus and at the molecular level by intertwining transcriptional-

translational feedback loops of so-called clock genes, ensuring a period of ca. 24 hours. The 

substrate underlying the sleep homeostat is unknown, but clock genes appear implicated because: 

i) mutations and deletions of clock genes affect the sleep homeostat); ii) sleep deprivation (SD) 

impairs the binding of clock gene proteins to their target clock genes; iii) SD changes clock gene 

expression. In this thesis, a descriptive and a mechanistic study are presented to inspect more 

closely the sleep-wake distributions’ contribution to clock gene expression. The descriptive study 

made use of a mouse model where bioluminescence is measured as a proxy for period-2 (PER2) 

protein levels, combined with electroencephalogram (EEG) recordings to determine sleep-wake 

state. Under undisturbed conditions, PER2 bioluminescence changed as a function of sleep and 

wake. Twelve 2Hr SDs scheduled across two days reduced the amplitude of PER2 bioluminescence 

in 3 out of 4 mice. Thus, sleep-wake state contributes to PER2 bioluminescence. However, the 

reliability of PER2 bioluminescence as a proxy for PER2 protein levels remains to be verified. In the 

second study, the contribution of Cold Inducible RNA Binding Protein (CIRBP) to SD-incurred 

changes in clock gene expression was investigated, based on the observations that i) daily changes 

in cortical Cirbp appear mainly sleep-wake driven, possibly through cortical temperature; ii) CIRBP 

is necessary for high amplitude clock gene expression in vitro. First, we established that the sleep-

wake distribution drives the changes in cortical temperature of the mouse. Second, we found that 

the SD induced changes in cortical Rev-erbα was attenuated in the absence of CIRBP, whereas the 

expression of Clock and Per2 was amplified. Third, and based on the premise that clock genes 

contribute to sleep regulation, we observed that Cirbp KO mice loose REM sleep after SD compared 

to their WT littermates. Altogether, this thesis i) supports the importance of considering the sleep-

wake distribution when using clock gene expression as a state variable of the clock; ii) demonstrates 

that CIRBP modulates the SD incurred changes in cortical clock gene expression and contributes 

to REM sleep recovery.    
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Résumé 
La distribution sommeil-réveil (la durée et le rythme du sommeil) est orchestrée par l'interaction de deux 

processus : l'homéostat du sommeil, qui garde le temps passé dans l’éveil et sommeil, et l'horloge circadienne 

qui détermine le moment chaque 24 heures à s’endormir. L'horloge biologique est bien étudiée et chez les 

mammifères elle est sous le contrôle des noyaux suprachiasmatiques.  Au niveau moléculaire, des boucles de 

rétroaction transcriptionnelles-traductionnelles des gènes d'horloge donnent une période d'environ 24 

heures. Le substrat sous-jacent à l'homéostat du sommeil reste inconnu, mais les gènes de l'horloge semblent 

impliqués, notamment par i) les modelés knock-out (KO) pour les gènes d'horloge affectent l'homéostat du 

sommeil; ii) la privation de sommeil (SD) peut dégrader la fixation protéique des gènes d'horloge par rapport 

les gènes eux-mêmes; iii) la privation du sommeil peut modifier l'expression des gènes de l'horloge. Cette 

thèse est composée de deux parties, une étude descriptive et une étude mécaniste qui sont mise en place pour 

examiner la relation entre la distribution sommeil-éveil et l'expression des gènes de l'horloge. La première 

étude a utilisé un modèle chez la souris où la bioluminescence était utilisé comme une mesurément pour le 

niveau protéique d’un gène d’horloge, période-2 (PER2), en conjonction avec les enregistrements 

électrophysiologiques du cerveau (EEG) pour déterminer les états de la vigilance (sommeil, éveil). Dans les 

conditions non perturbées, la bioluminescence du PER2 a changé en fonction de la présence du sommeil ou 

l’éveil. Les privations du sommeil de 2-heures ont diminué l’amplitude de la bioluminescence dans 75% des 

souris, qui implique que PER2 est affecté par l’état de la vigilance. Par contre, la fiabilité de la bioluminescence 

comme un mesurément pour l’expression du PER2, reste à vérifier. Dans la deuxième étude, la contribution 

du « Cold Inducible RNA binding protein » (CIRBP) aux changements dans l’expression des gènes d’horloge 

induits par la privation du sommeil été investigué, basée sur les observations suivantes: i) une privation du 

sommeil a fortement réduit l'amplitude circadienne du Cirbp; ii) CIRBP est nécessaire pour l’haute amplitude 

de l’expression des gènes d’horloge dans les cellules entrainées par la température. Principalement, nous 

avons établi que la distribution sommeil-éveil entraîne les changements de la température corticale chez la 

souris. A l'exception du Rev-erbα, les changements dans l’expression des gènes d’horloge après une privation 

du sommeil n’était pas dépendue du CIRBP. Ensuite, nous avons observé que les souris Cirbp-KO sont plus 

actives pendant la phase de l’obscurité qui était en accord avec les changements observé dans la composition 

spectrale de l'EEG pendant l’éveil actif. Par exemple, les souris KO perdent leur sommeil paradoxal (REM) 

après une privation du sommeil, par rapport leurs contrôles (WT). En sommaire, cette thèse i) soutient 

l'importance de la distribution sommeil-éveil lors de l'utilisation de l'expression du gène d'horloge comme 

variable pour l’était d’horloge même ; ii) démontre que CIRBP ne transmet pas les changements généralisés 

de privation de sommeil dans l'expression des gènes de l'horloge, mais contribue à la qualité de l'éveil actif 

pendant la phase de l’obscurité. 
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To Sleep 

 

O soft embalmer of the still midnight, 

      Shutting, with careful fingers and benign, 

Our gloom-pleas'd eyes, embower'd from the light, 

      Enshaded in forgetfulness divine: 

O soothest Sleep! if so it please thee, close 

      In midst of this thine hymn my willing eyes, 

Or wait the "Amen," ere thy poppy throws 

      Around my bed its lulling charities. 

Then save me, or the passed day will shine 

Upon my pillow, breeding many woes,— 

      Save me from curious Conscience, that still lords 

Its strength for darkness, burrowing like a mole; 

      Turn the key deftly in the oiled wards, 

And seal the hushed Casket of my Soul. 

 

John Keats 
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 Circadian and sleep homeostatic processes 

orchestrate the nycthemeral sleep-wake distribution 
 

One of the biggest mysteries in biology concerns the regulation and function of sleep. With the 

development of the two-process model more than thirty years ago, a theoretical framework became 

available to study the mechanisms underlying sleep and waking. In the following chapter, I will 

introduce core concepts of the biology of sleep, circadian rhythms and the interaction between 

these two processes.   

 

On the study, function and regulation of sleep 

Little is known about the exact functions and the underlying mechanisms regulating sleep. In this 

section, an overview is provided explaining how sleep is characterized, its postulated functions and 

quantification of sleep homeostasis.  

 
WHAT IS SLEEP? 

To study sleep, agreement must be made on what this behavioral state entails. Sleep-wake states 

have been observed throughout the animal kingdom, although it greatly varies between species in 

duration and composition (Campbell & Tobler, 1984) which might be due to different evolutionary 

forces (Joiner, 2016). Because this thesis is based on work in the mouse, this chapter is dedicated to 

knowledge obtained of sleep in mammals.  

Five behavioral hallmarks are dominant throughout the literature to characterize sleep, which 

are: 1) stereotypic or species-specific posture, 2) inactivity, 3) increased arousal threshold and 4) 

state reversibility (awakening) by stimulation.  The fifth key hallmark of sleep is that it is 

homeostatically defended (Borbely & Neuhaus, 1979), which is assumed to be one of the key 

characteristics of sleep.  

Despite these well-defined behavioral characteristics, the current widespread methodology to 

determine sleep-wake state is merely based on measures of neuronal activity. In mammals, sleep-

wake states correlate with differences in neuronal activity, as measured by electroencephalogram 

(EEG) recordings (Campbell & Tobler, 1984).  In mice, three distinct behavioral states are identified 

based on changes in the amplitude and frequency of the EEG and EMG: waking, rapid eye 

movement sleep (REM), and non-REM (NREM) sleep (see Figure 1-1, including a description of the 
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differences between states in the legend). NREM and REM sleep cycle in an ultradian (<24 hour) 

rhythm, where under normal conditions NREM is followed by REM and subsequently by waking. 

These NREM-REM-waking cycles of mice are much shorter in length than in humans but occur 

more frequently and both during the light and dark phase. Therefore, mice (and many other rodent 

species) are referred to as polyphasic sleepers, whereas humans who have one consolidated bout of 

sleep of ~8hrs during their rest phase in the dark are called monophasic sleepers. Because of the 

latter characteristic, humans are considered diurnal whereas mice, that are polyphasic but spend 

overall more time asleep during the light phase, are nocturnal under laboratory conditions.   

 

FUNCTIONS OF SLEEP 

Sleep must have an important function to make us spend 1/3 of our life in a state during which 

we cannot mate or forage and are very vulnerable to predators or other enemies. Therefore, perhaps 

one of the most interesting questions in biology attempts to answer the question “why we sleep”. A 

short summary of the most dominant theories is discussed.  

Figure 1-1  Three representative EEG and EMG traces during NREM, REM sleep and waking in a mouse (left), and spectral 
decomposition of the EEG signal (right). NREM sleep is defined by synchronous activity in the delta frequency (~0.5–4 Hz) 
and low and stable muscle tone, whereas REM sleep is characterized by regular theta oscillations (6–9 Hz) and muscle atonia 
with occasional twitches. Wakefulness is indicated by EEG activity of mixed frequency and low amplitude and with muscle 
tone that is present, but variable. Taken from (X. Xie et al., 2005). 
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Brain clearing 

The central nervous system of mice has a 

glymphatic system that facilitates removal of 

metabolic waste products of the brain (Jessen, Munk, 

Lundgaard, & Nedergaard, 2015). The activity of the 

glymphatic system depends on sleep-wake state, with 

increased and decreased clearing during sleep and 

wake, respectively. During sleep, the interstitial fluid 

expands up to 60% due to shrinking of neurons, 

thereby draining the brain from metabolic waste 

products (L. Xie et al., 2013). During wakefulness, 

norepinephrine suppresses the activity of the 

glymphatic system (O'Donnell, Zeppenfeld, 

McConnell, Pena, & Nedergaard, 2012). Questions 

currently under investigation aim to address the 

presence of a glymphatic system in humans and the 

causal involvement of the glymphatic system in 

neurodegenerative diseases (Jessen et al., 2015) – see 

also Figure 1-2. This is exciting because it could provide 

a mechanistic link connecting the association between neurodegenerative diseases and impaired 

sleep.  

 

Thermoregulatory function of sleep 

Changes in brain temperature across the sleep-wake cycle have been observed in many different 

species [the rat: (Alfoldi, Rubicsek, Cserni, & Obal, 1990; Franken, Tobler, & Borbely, 1992b), the 

djungarian hamster (Deboer, Franken, & Tobler, 1994), and sheep (M. A. Baker & Hayward, 1968)] 

and occur independently of the supra-chiasmatic nucleus (F. C. Baker, Angara, Szymusiak, & 

McGinty, 2005; Edgar, Dement, & Fuller, 1993). Modelling cortical temperature based on the sleep-

wake distribution demonstrated that more than 80% of the variance in cortical temperature is 

explained by the sleep-wake distribution (Franken et al., 1992b). The pre-optic area of the 

hypothalamus (POAH) controls temperature (reviewed in (Zhao et al., 2017)). Warming this area, 

thereby mimicking the sustained elevated temperature during prolonged wakefulness, increases 

 

Figure 1-2 Model for young, old and Alzheimers disease 
glymphatic function. In the young, glymphatic flux flows 
freely from arteries to the venes, whereas this is 
impaired in the elderly. In Alzheimers disease, the 
reactivated astrocytes combined with protein aggregates 
(beta-amyloid), impaire the flux further,  thus reducing 
the metabolic waste flow. From Jessen et al., 2015. 
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NREM sleep prevalence (Sakaguchi, Glotzbach, & Heller, 1979) and intensity (McGinty, Szymusiak, 

& Thomson, 1994). These observations contributed to the formation of the thermoregulatory 

function of sleep (McGinty & Szymusiak, 1990), which postulates that sleep functions to cool the 

brain. However, this interpretation has been disputed because upon sleep onset, brain temperature 

decreases much faster than the correlate of NREM sleep pressure, delta power between 0.75-4Hz 

(Franken, Tobler, & Borbely, 1992a). This makes absolute changes in temperature a poor predictor 

of sleep pressure and therefore temperature is unlikely to reflect directly a sleep-homeostatic 

process.  

 

Energy conservation 

A prominent hypothesis on the function of sleep postulates that sleep occurs to save energy 

(Berger & Phillips, 1995) and/or to replenish brain energy (Benington & Heller, 1995). These 

hypotheses are supported by numerous observations, indicating that energy utilization of the brain 

is lower during NREM sleep in comparison to wakefulness, both by indirect measures in humans 

(Madsen & Vorstrup, 1991) (Braun et al., 1997) and animals (reviewed in (DiNuzzo & Nedergaard, 

2017)). Moreover, adenosine, which correlates with neural activity, contributes to sleep homeostasis 

(Porkka-Heiskanen & Kalinchuk, 2011).  

In contrast to these previous hypotheses, where sleep functions to save energy through 

metabolic rate reduction, the energy allocation model postulates that different essential biological 

processes are fulfilled most efficiently during either sleep or wakefulness. Therefore, energy must 

be partitioned between behavioral states to fulfill all the demands (Schmidt, 2014).   
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Memory and synaptic plasticity  

There is little doubt about the importance of sleep in memory consolidation (Rasch & Born, 

2013). Brain plasticity is promoted during sleep and plays an important role in memory formation 

via consolidation (reviewed in (Abel, Havekes, Saletin, & Walker, 2013; Ackermann & Rasch, 2014; 

Groch, Zinke, Wilhelm, & Born, 2015)). What are the underlying mechanisms? Hebbian plasticity 

states that ‘neurons that wire together, fire together’, (Shatz, 1992) meaning that connections 

between synapses strengthen over the course of stimulation (also known as long term potentiation). 

Synaptic scaling occurs to prevent over-excitation (Turrigiano, 2008) (see figure 1.3). The function 

of synaptic scaling is incorporated in the synaptic homeostasis theory (SHY), which postulates that 

during waking global synaptic strength 

is increasing and during sleep 

decreasing (reviewed in (Cirelli, 2017)). 

The decrease in synaptic strength 

occurring over sleep would be directly 

reflected, or maybe even driven by 

delta power during NREM sleep 

(Tononi & Cirelli, 2012), although this 

is not a widely accepted hypothesis 

(Frank & Cantera, 2014). Besides 

NREM sleep, REM sleep is also 

implicated in memory formation 

(Boyce, Williams, & Adamantidis, 

2017) also by mediating changes in 

structural plasticity (W. Li, Ma, Yang, 

& Gan, 2017). Thus, sleep supports memory formation, but the exact underlying mechanisms and 

the respective contribution of the two sleep-states remains unclear.  

 

 

SLEEP HOMEOSTASIS AND ITS QUANTIFICATION  

The sleep homeostat correlates with the time spent awake and asleep, during which sleep 

pressure is increasing and decreasing, respectively. The underlying physiological mechanisms 

regulating sleep homeostasis are unknown. Sleep homeostasis can be studied by applying a sleep 

 

Figure 1-3 Models of synaptic plasticity. (A): run-away scenario where 
more excitation leads to stronger connections (LTP); however this is not 
sustainable on the long run because (B) synapse-specificity will be lost. 
(C) Adaptation of long term potentiation model by synaptic scaling, 
reventing run-away potentiation. From Turrigiano, 2008.  
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deprivation, after which or during different measures can quantify the sleep homeostatic rebound. 

A few of those measures will be discussed here.  

Behavioral measures of sleep pressure are for example: subjective rating of sleepiness 

(Akerstedt, Anund, Axelsson, & Kecklund, 2014), sleep latency onset (Borbely, Achermann, 

Trachsel, & Tobler, 1989) and behavioral performance (Doran, Van Dongen, & Dinges, 2001). 

However, these are influenced by circadian time (e.g. sleep latency onset: (Dijk & Czeisler, 1995)), 

making them less reliable markers of sleep pressure.   

Thus, a true sleep homeostatic marker reflects sleep pressure and is not compromised by other 

factors. In the EEG, delta power during NREM sleep (~ 0.5-4.0 Hz), also known as slow wave 

activity, reflects an intensity component of NREM sleep homeostasis (Borbely & Neuhaus, 1979). 

Sleep depriving mice from different strains reveals that the sleep homeostatic response greatly 

varies between mouse strains, suggesting that sleep homeostasis is controlled by genetic make-up 

(Franken, Chollet, & Tafti, 2001). Besides delta power in NREM sleep, increased theta power during 

quiet waking reflects increased time-spent-awake (Vyazovskiy & Tobler, 2005). However, this 

increase in theta power during an enforced wakefulness protocol shows a circadian modulation in 

humans (Finelli, Baumann, Borbely, & Achermann, 2000), and does thus not only reflect a sleep 

homeostatic process. The amount of NREM sleep that is recovered after a sleep deprivation is also 

thought to reflect a homeostatic process. However, this amount of NREM sleep is under greater 

circadian control than delta power (Dijk & Czeisler, 1995), and its dynamics are much slower than 

delta power. REM sleep, like NREM sleep, is also homeostatically regulated but primarily through 

time spent in this state (Franken, 2002). 

 

Besides behavioral and electrophysiological markers, molecular correlates of sleep need have 

been proposed too. One example of a molecule reflecting sleep need is the cortical expression of 

the transcript Homer1a, which increases with time-spent-awake and can reliably be predicted based 

on the sleep-wake distribution (Maret et al., 2007). However, a knock-out study did not 

demonstrate a functional role for Homer1a in the response to sleep deprivation in terms of NREM 

delta power (Naidoo et al., 2012), although it was found to contribute to sleep-induced synaptic 

plasticity (Diering et al., 2017). Several studies demonstrated that a specific group of genes, called 

clock genes, reflect and are involved in the sleep homeostatic process. The following section 

presents first an introduction to clock genes and circadian rhythms, after which their role in the 

sleep homeostat will be discussed in the last section of this chapter.    
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Circadian rhythms: from molecular to overt behavior 

 
HISTORY OF CIRCADIAN RHYTHMS 

Since the discovery of circadian rhythms, a vast and growing number of studies helped to 

understand the proximate and ultimate mechanisms underlying this behavior. A cherry on the 

science-pie was the awarding of the Noble Price 2017 in Physiology/Medicine to the circadian 

biologist Michael Young, Jeffrey Hall and Michael Rosbash ‘for their discoveries of molecular 

mechanisms controlling the circadian rhythm’ (NobelPrize.org, 2017). Although circadian rhythms 

appear to be present in most life on earth, this chapter focuses on the mammalian biology of 

circadian rhythms.  

The daily changes in environment are prominent and predictable and therefore being able to 

anticipate to those changes is beneficial. Therefore, circadian rhythms have evolved and are present 

in most life on earth (Bhadra, Thakkar, Das, & Pal Bhadra, 2017). For a rhythm to be circadian, it 

should be an endogenous, self-sustainable and entrainable oscillator that is temperature 

compensated (Pittendrigh, 1960). What are the underlying mechanisms that explain such a precise 

clock?  In the 19-seventies, major advances were made to generate our current understanding of the 

substrates underlying the clock. Lesioning of the suprachiasmatic nuclei (SCN-x) was associated 

with a loss of behavioral circadian rhythms (Moore & Eichler, 1972; Stephan & Zucker, 1972). The 

discovery of this ‘central’ mammalian clock coincided with the finding of a genetic determinant on 

eclosion rhythms in Drosophila by a mutagenesis screen (Konopka & Benzer, 1971), pointing to a 

genetic regulation of circadian rhythms. The next break-through was in murine research, by the 

discovery of the Clock gene in the mouse by a genetic screen (Vitaterna et al., 1994). Over the last 

decennia, the neuro-endocrine and the genetic pathways of circadian rhythms have been elucidated 

further. An overview of our current knowledge is presented here.  

 

REGULATION OF OVERT CIRCADIAN RHYTHMS 

How to measure a circadian rhythm in vivo 

Several outputs of the murine clock can be measured to determine its period, phase and 

amplitude. Examples are: locomotor activity (LMA), food and water intake, body temperature and 

the expression of clock genes. A consideration when using running wheels is that this behavior can 

modulate outputs of the clock such as body temperature and gene expression of clock components 

(Yasumoto, Nakao, & Oishi, 2015). Therefore, assessment of activity without running wheel, for 
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example by passive infrared sensors, is preferable when interested in circadian rhythms and using 

behavioral activity as an output of the clock. 

 

Organization of circadian rhythms in mammals 

To keep the internal timing system in pace and phase with the external world, ambient cues like 

light, [reviewed in (LeGates, Fernandez, & Hattar, 2014)] as well as non-photic cues such as arousing 

events [in hamsters (M. H. Hastings et al., 1997) and food (Marchant & Mistlberger, 1997) can 

entrain behavioral rhythms. Light is directly integrated in the SCN which subsequently sends 

information to the periphery to inform about time-of-day and to keep phase coherence between 

organs. How this information is exactly conveyed is not clear, but it appears to rely on both 

molecular signals that are rhythmically expressed within the SCN and by neuronal activity and 

humoral signals [reviewed in (J. D. Li, Hu, & Zhou, 2012)]. Beyond its phase and period, the circadian 

amplitude of core body temperature is controlled by the SCN, partly via the timing of sleep and 

wake (Dijk, Duffy, & Czeisler, 2000). These temperature rhythms are also suggested to inform the 

periphery about time-of-day (Morf & Schibler, 2013).  

The output of the clock can be ‘masked’ or repressed by external variables, without affecting the 

actual period or phase (see Figure 1-4). In this example, LMA is repressed during light exposure in 

nocturnal animals (Jud, Schmutz, Hampp, Oster, & Albrecht, 2005), while its circadian rhythm, as 

 

Figure 1-4 Clock outputs, such as LMA, can be masked by external factors. In these simplified actograms, a 
nocturnal organism is exposed to a light:dark cycle of 6hrs:6hrs. Activity is repressed during the periods 
with light, but circadian rhythms remain intact as there is an evident circadian rhythm in locomotor activity, 
as well in the other clock-output, body temperature. Adapted from Jud et al., 2005. 
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measured by body temperature and phase of the daily activity onset, still follows a circadian rhythm 

(Figure 1-4, right panel).  

 

MOLECULAR ORGANIZATION OF CIRCADIAN CLOCKS 

Genes underlying circadian rhythmicity at the cellular level 

Almost each mammalian cell has an autonomous transcriptional auto-regulatory feedback-loop 

of which the basics are discussed here. A substantial amount of mRNA transcripts are cycling with 

estimations ranging from 3 to 16% in different tissue of mice (Zhang, Lahens, Ballance, Hughes, & 

Hogenesch, 2014), up to 81.7% of protein coding transcript across all tissues of the baboon (Mure et 

al., 2018). This rhythmicity is regulated by intertwining transcriptional-translational feedback 

loops.  

 

Figure 1-5 . Each cell has an autonomous transcriptional-translational autoregulatory feedback loop. The transcription of 
Per and Cry mRNAs is driven by the binding of the heterodimerized proteins BMAL1 and CLOCK, who bind to the E-boxes. Per 
and Cry transcripts are translated into proteins and subsequently inhibit BMAL1 and CLOCK from initiating their own 
transcription. BMAL1 and CLOCK drive as well the expression of REV-ERBα and ROR by binding to their E boxes as well, after 
which REV-ERBα as a protein inhibits and ROR promotes respectively. the transcription of BMAL1. Schematic taken from: 
(Mohawk, Green, & Takahashi, 2012). The most relevant abbreviations for this thesis are mentioned in this chapter. The third 
loop, concerning the transcription factors of the PAR-bZiP family, is not depicted here. 
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The core components of this clock gene network are the activators CLOCK (and its homologue 

in the forebrain, NPAS2) and BMAL1, and the repressors PER1, PER2, PER3 and CRY1, CRY2. 

CLOCK-BMAL1/NPAS2 heterodimerize and bind to E-box elements of their target genes, the 

repressors Per1-3 and Cry1-2 (Gekakis et al., 1998; Reick, Garcia, Dudley, & McKnight, 2001). 

Subsequently, PERs and CRYs form large protein complexes (Aryal et al., 2017; Duong, Robles, 

Knutti, & Weitz, 2011), preventing BMAL1/CLOCK from initiating their own transcription 

(Sangoram et al., 1998). PER1-3 and CRY1,2 are both degraded by ubiquitin kinases pathways, and 

their degradation is controlled by casein kinases (CKIs) and FXBL3, resp. (see Figure 1-5).  

There is a second canonical positive feedback loop where transcription of REV-ERBα and 

retinoic acid related orphan receptorα (RORα) is initiated by BMAL1/CLOCK, after which REV-

ERBα protein inhibits and ROR promotes the transcription of BMAL1 by competing for ROR-

binding elements (Preitner et al., 2002; Sato et al., 2004).   

CLOCK/BMAL1 drive a third loop by initiating transcription of the PAR-bZiP transcription 

factor family members (i.e. DBP, TEF, HLF), which function themselves as transcription factors. 

Once translated, these transcription factors compete with the repressor NFIL3 for the transcription 

of RORs (Mitsui, Yamaguchi, Matsuo, Ishida, & Okamura, 2001) [not incorporated in Figure 1-5]. 

 

With the development of the Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) tool, the 

circadian clock components that function as transcription factors have been further identified 

[reviewed in (Takahashi, 2017)]. After transcription, a poor overlap of only 30% was found between 

rhythmic introns and their corresponding exons (Koike et al., 2012; Menet, Rodriguez, Abruzzi, & 

Rosbash, 2012), supporting the hypothesis that beyond transcription initiation, other post-

transcriptional processes partake in steady-state circadian rhythms of mature transcripts and 

proteins. Several of these post-transcriptional mechanisms have been described, such as mRNA 

stability, translation and alternative splicing [reviewed in (Preussner & Heyd, 2016) ]. An intriguing 

example concerns the gene Cirbp (Cold Inducible RNA Binding Protein). Temperature is considered 

a major output of the clock by circadian biologist. The temperature-driven transcript Cirbp, which 

is constitutively expressed under constant temperature, is more efficiently spliced at lower 

temperatures, thereby giving rise to circadian oscillations in mature Cirbp and CIRBP (Gotic et al., 

2016). Interestingly, the same protein is essential for high amplitude clock gene expression under 

temperature entrainment conditions by controlling the cellular localization of Clock (Morf et al., 
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2012) and/or by affecting transcript stability via regulating alternative polyadenylation (Liu et al., 

2013). CIRBP will be further discussed in Chapter 3. 

Besides post-transcriptional mechanisms, post-translational mechanisms add an additional 

layer of regulation to the clock by controlling phosphorylation, ubiquitination, acetylation and 

SUMOylation [reviewed in (Hirano, Fu, & Ptacek, 2016)], for example by regulating the degradation 

of PER and CRY proteins.  

Studies have investigated the effect of mutations in clock genes to overt circadian behavior. 

From these experiments, we learned that most mutations in one clock gene refine the amplitude 

and period length. However, Bmal1 alone is necessary to keep the overt behavioral and molecular 

clock ticking. However, functional impairment of genes that are closely related, for example Cry1-2 

knock-out, also induced arrhythmicity [summarized in (Lowrey & Takahashi, 2011), table 6.1]. 

 

TEMPERATURE COMPENSATION AND ENTRAINMENT 

Temperature compensation prevents a change in the period of the clock at different 

physiological relevant constant temperatures, whereas temperature entrainment enables the clock 

to entrain to external temperature cycles of ca. 24 hours. Hints of mechanisms underlying these 

two processes start to emerge. I will review here briefly the most important experimental findings.   

The ability to temperature compensate was first shown in the eclosion rhythm of Drosophila at 

an ambient temperature range from 16 to 26°C (Pittendrigh, 1954). From there on, a convincing 

body of evidence appeared, showing that at the molecular level, the period of mammalian cells are 

temperature compensated both in peripheral tissues [e.g. (Izumo, Johnson, & Yamazaki, 2003; 

Reyes, Pendergast, & Yamazaki, 2008)] and in the SCN (Buhr, Yoo, & Takahashi, 2010).  

What biological mechanisms are responsible for temperature compensation? A first effort to 

explain this phenomenon proposed two temperature-dependent but opposing reactions, that 

together prevent the clock from ticking faster when temperature increases (J. W. Hastings & 

Sweeney, 1957). A mechanism underlying this hypothesis was proposed to rely on Period-genes 

(Kurosawa & Iwasa, 2005). This is supported by the finding that in Drosophila, Per transcript is 

temperature-sensitive spliced (Majercak, Sidote, Hardin, & Edery, 1999). Furthermore, mammalian 

PER2 has two temperature-sensitive phosphorylation sites. The phosphorylation of these sites 

determines if PER2 will have a slow or fast degradation rate, thereby slowing the degradation rate 

at higher temperatures (Zhou, Kim, Eng, Forger, & Virshup, 2015). It remains to be determined if 

the above-mentioned mechanisms also contribute to temperature entrainment.  



An introduction to sleep and circadian rhythms  

26 

A recent model proposed an ‘adaptive temperature sensor’ which explains both temperature 

compensation and entrainment. This model, which was experimentally confirmed in Drosophila, 

assumes that sensors feed temperature information to the circadian clock and that the sensors’ 

components scale with the changes in temperature, while keeping the phase relationship between 

different clock components intact. This mechanism was found to operate independent of heat 

shock factors was found (HSF) (Kidd, Young, & Siggia, 2015). This is contrary to mammalian cells, 

where HSF-1 is important in peripheral cells for temperature compensation and entrainment (Buhr 

et al., 2010) and entrainment (Saini, Morf, Stratmann, Gos, & Schibler, 2012). Importantly, the adult 

intact SCN is at most times of the day resistant to rhythmic external temperature cycles in terms of 

entrainment (Buhr et al., 2010). 

 

CIRCADIAN CLOCK PATHOLOGIES  

Aberrant behavior of the clock machinery can give rise to circadian pathologies. The most studied 

example is the Familial Advanced Sleep Phase Syndrome (FASPS). Carriers of this autosomal 

dominant point mutation in Per2 are 4-hours phase advanced; i.e. they go to bed at 7:30 pm and 

wake up at 4:30am. The mutation induces hypo-phosphorylation at the CKIε-site of PER2, thereby 

making PER2 more prone to degradation and shortening the molecular period (Toh et al., 2001). 

This human phenotype, and its underlying mechanism, is somewhat comparable to the tau-mutant 

hamster, which is remarkable for its short period of only ~20hrs and has a defect in PER2 

phosphorylation due to a mutation in CKIε (Lowrey et al., 2000). Opposite to FASPS is the delayed 

sleep phase syndrome (DSPS) which is, amongst others, associated with a mutation in the Per3 gene 

(Archer et al., 2003). 

 
CIRCADIAN OR SLEEP-WAKE DRIVEN? 

The aforementioned studies investigating cyclic transcripts assumed rhythmicity to be of circadian 

origin. However, considering sleep-wake state reveals that most rhythmic transcripts are in fact 

sleep-wake driven. In the cortex of the mouse, more than 80% of the transcripts is driven by sleep-

wake state and not by circadian time (Maret et al., 2007). By applying a forced desynchrony protocol 

in humans, a similar sleep-wake driven contribution to daily rhythmic transcription in the blood 

transcriptome was found (Archer et al., 2014). Transcripts that were merely driven by sleep-wake 

state included those who are part of the clock gene machinery, such as Per2. In the following 

section, the link between the sleep homeostat and circadian rhythms will be further discussed.    
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Process S and Process C: interacting processes 

 
 Our sleep-wake distribution, i.e. the duration and timing of sleep, is the result of two 

interacting processes: the circadian clock and the sleep homeostat. How these two processes give 

rise to the sleep-wake distribution is conceptually approached by the ‘two process model of sleep 

regulation’ (S. Daan, Beersma, & Borbely, 1984). Sleep timing is gated by high sleep pressure and a 

simultaneous decrease in the circadian drive to stay awake (see Figure 1-6). The molecular 

mechanisms underlying the circadian clock are relatively well known, as opposed to our 

understanding of the biology regulating the sleep homeostat. However, it has become evident that 

these two processes interact with each other. For example, enforced wakefulness affects the 

neuronal activity of the master-clock, the SCN (Deboer, Detari, & Meijer, 2007), whereas 

characteristics of NREM sleep slow waves, which correlate with power in the delta band, are 

modulated by the circadian clock depending on the brain region (Lazar, Lazar, & Dijk, 2015). Similar 

interactions between the 

circadian and sleep homeostatic 

processes, have been reported in 

a fMRI study (Muto et al., 2016). 

Also the prevalence of REM sleep 

depends on circadian time and 

time slept (Dijk & Czeisler, 1995). 

The mechanism facilitating this 

cross talk is unknown. Here, a 

possible link through clock 

genes, will be discussed.  

  

 

CLOCK GENES ARE INVOLVED IN SLEEP HOMEOSTASIS 

Besides their role in circadian rhythms, clock genes are also contributing to sleep homeostasis. 

An extensive review of the arguments demonstrating this hypothesis can be found in (Franken, 

2013). The three main arguments advocating for a role of clock genes in sleep homeostasis will be 

provided here.  

 

Figure 1-6 The two-process model predicts the sleep-wake distribution.  Sleep 
pressure, as visualized by S, accumulates during time-spent-awake and 
dissipates during NREM sleep. C estimates the circadian timing of sleep. These 
two components together determine our sleep-wake distribution. Taken from 
http://www.pharma.uzh.ch/static/sleepcd/demo/regulat/chap3/tpm000.htm 
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First, animals with mutations in clock genes exhibit an altered response to sleep deprivation in 

terms of delta power during NREM recovery sleep and/ or in the amount of sleep recovered (see 

Table 1-1 for an overview that includes significant findings in murine studies). 

Secondly, sleep deprivation affects the binding of clock proteins to their circadian target genes. 

Specifically, the binding of the transcription factors BMAL1 and NPAS2 to their circadian target 

genes Dbp and Per2 was decreased after sleep deprivation, suggesting that sleep pressure affects the 

dynamics of the circadian clock loop (Mongrain, La Spada, Curie, & Franken, 2011).  

Third, sleep deprivation affects the expression of clock genes. Controlling for sleep-wake state 

shows that supposedly circadian expressed genes and proteins, such as Per2, are affected by time-

spent awake [ (Archer et al., 2014; Curie, Maret, Emmenegger, & Franken, 2015; Curie et al., 2013; 

Maret et al., 2007) , reviewed in (Archer & Oster, 2015) ], indicating that their expression is not 

solely circadian driven, but also the resultant of sleep-wake state. Importantly, PER2 levels in the 

SCN are insensitive to sleep deprivation (Curie et al., 2015).  

 

MECHANISMS CONVEYING SLEEP-WAKE STATE TO CLOCK GENE EXPRESSION 

 What mechanism is responsible for rendering sleep-wake state information to clock gene 

expression? As discussed above, sleep deprivation reduces the binding of BMAL1, CLOCK and 

 
Gene mutation / 
knock-out 

Homeostatic phenotype (WT versus mutant) 
 

 
Reference 

NREM delta power 
after sleep deprivation 

amount of recovered 
sleep relative to BL 

Bmal1 (KO) Decreased (but did not 
appropriately analyze the data) 

Less NREM sleep (Laposky et al., 2005) 

Clock(Δ19-
mutation) 

No (but summed amount of 
delta power differs like in BL)   

Less REM sleep (Naylor et al., 2000) 

Cry1 /Cry2 (dKO) Increased Less REM and NREM sleep  (Wisor et al., 2002) 

Dbp (KO) Similar as WT 18hrs after SD no significant 
differences   

(Franken, Lopez-Molina, 
Marcacci, Schibler, & 
Tafti, 2000) 

Dec2 (human 
mutation introduced 
in mouse genome) 

Decreased  Less NREM sleep (He et al., 2009) 

Npas2 (KO) Shift to faster frequencies, 
slower build-up process S  

Less NREM sleep (males only) (Franken et al., 2006) 

Per2 (Brdm1) Decreased  More REM sleep (Kopp, Albrecht, Zheng, 
& Tobler, 2002) 

Per3 (KO) Increased  Less REM sleep (Hasan, van der Veen, 
Winsky-Sommerer, Dijk, 
& Archer, 2011) 

Per3 (hPer3 4/4 and 
5/5) 

Increased only Per35/5 No differences  (Hasan et al., 2014) 

Rev-erbα (KO) Decreased  No differences  (Mang et al., 2016) 

Table 1-1 Clock gene mutations can modulate the sleep homeostatic response to sleep deprivation in mice.   
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NPAS2 to Per2 and Dbp, independent of the sleep-deprivation induced changes in transcript levels 

[increases (i.e.. Per2) or decreases (i.e. Dbp)], suggesting that factors other than reduced binding 

also contribute to sleep deprivation induced changes in clock gene expression. One such 

mechanism that has been experimentally established is through corticosterone, because 

adrenalectomy attenuates the sleep deprivation-induced increase in cortical Per2, and even 

abolishes the increase in Per1 and Per3 (Mongrain et al., 2010). Besides glucocorticoids, many other 

elements change with sleep-wake state, such as light exposure, redox state, temperature and 

cytokine levels, which in turn can all affect clock gene expression (Franken, 2013) although this still 

needs to be experimentally proven. Also, oxygen consumption changes with sleep-wake state (Jung 

et al., 2011) and oxygen levels can modulate the expression of clock genes (Adamovich, Ladeuix, 

Golik, Koeners, & Asher, 2017).  

In the second experimental chapter, another sleep-wake driven mechanism will be discussed, 

namely that sleep-wake state information is rendered through changes in cortical temperature, 

which subsequently drives the expression of Cirbp. Because CIRBP is necessary for high amplitude 

clock gene expression in vitro (Liu et al., 2013; Morf et al., 2012), we hypothesized that it also partakes 

in the sleep deprivation-induced changes in clock gene expression. Based on the results of this 

experiments and previous studies, I concluded that the clock in its response to sleep deprivation is 

sensitive to the presence of CIRB. Because the sleep deprivation induced changes in clock gene 

expression were not all modulated by CIRBPs presence, this suggests that other sleep-wake driven 

pathways as well contribute to the sleep deprivation driven changes in clock gene expression.  

 

MEASURING CLOCK GENE EXPRESSION IN VIVO 

With the progress of technology, tools have become available to measure clock gene expression 

in vivo. Markers were engineered, such as bioluminescent or fluorescent reporters, that are under 

the same transcriptional control as the gene of interest. In particular, the PER2::LUCIFERASE 

construct, developed by the Takahashi-lab, has become a widespread tool to monitor PER2 levels. 

With this technique, bioluminescence is measured, that is emitted by the interaction of the reporter 

enzyme luciferase and with its provided substrate, luciferin (Yoo et al., 2004). Initially, this 

construct was applied to study PER2 levels in in vitro studies but later also in vivo by anaesthetizing 

mice and quantifying bioluminescence emission of specific organs (Curie et al., 2015; Tahara et al., 

2012). The big advantages of these in vivo studies are that the number of animals used are 

dramatically reduced compared to conventional experiments, and each animal serves as its own 
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control, thereby improving the experimental design by controlling for interindividual variation. 

However, this method still has the drawback of having to handle and anaesthetize the animals 

before the measurements; factors that are known to affect clock gene expression (Antle & 

Mistlberger, 2000; Cheeseman et al., 2012).   

Recently, devices have been developed to overcome these possible confounding factors by 

measuring bioluminescence in vivo. One of these devices was developed by the Schibler laboratory 

(University of Geneva, Switzerland) and dubbed ‘RT Biolumicorder’ (Saini et al., 2013). A photon 

multiplier tube (PMT) counts the numbers of photons emitted by the mouse as a proxy for gene 

expression (Saini et al., 2013). Mice can be housed in this apparatus for up to two weeks, and food 

intake and light exposure can be controlled remotely. For one of the chapters in this thesis, I 

developed a strategy to simultaneously record EEG and bioluminescence (see ‘Monitoring PER2 

bioluminescence under undisturbed and attenuated sleep-wake rhythms’). 

Besides the RT Biolumicorder, other tools have been developed to monitor (clock) gene 

expression in behaving mice. Several studies have reported on clock gene expression in the SCN by 

measuring bioluminescence through an optic fiber(Ono, Honma, & Honma, 2015; S. Yamaguchi et 

al., 2001 ; Y. Yamaguchi et al., 2016). Other tools have been developed as well.  

The Honma laboratory used two Charge-Coupled Device cameras to track the position of a 

mouse and its tissues by scintillators. The coordinates and intensity of the bioluminescence signal 

are subsequently handled by an algorithm that outputs the intensity of individual tissues (Hamada 

et al., 2016). To overcome the shortcomings of a design that relies on bioluminescence, the Zhang 

laboratory designed a fluorescent marker that is expressed under the control of the Cry1 promotor. 

They recorded successfully fluorescence from the SCN and several other brain areas. An advantage 

of working with this technique is that it can be used while mice are exposed to an LD cycle (Mei et 

al., 2018), which is not possible when using luciferase-reporters because of the low intensity of the 

bioluminescence signal.  

 

WHAT IS SLEEP, WHAT IS CIRCADIAN   

The techniques discussed above have so far only investigated the expression of clock genes 

within a circadian context. However, the signals measured might be the resultant of the interaction 

between the sleep-wake distribution and circadian time, like discussed before for clock gene 

expression. The impact of sleep-wake state on clock gene expression in freely moving mice is 

addressed in the upcoming experimental chapter.  



An introduction to sleep and circadian rhythms  

31 
 

 

 



32 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

‘Never waste any time you can spend sleeping’ 

 

Frank H Knight 
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Summary and contributions  

 

SUMMARY  

In this project, we investigated i) how the sleep-wake distribution contributes to changes in 

PER2 in a freely behaving mouse and ii) if a reduction in the daily amplitude of NREM sleep by 

repeated short sleep deprivations affects the circadian amplitude of PER2. Prior to the biological 

experiments, we determined that luciferin administration via an osmotic mini-pump was the most 

preferable for our experiment, and that the majority of the bioluminescence was emitted by the 

kidneys. Next, we measured simultaneously sleep-wake state and PER2 bioluminescence under 

undisturbed conditions, and found that PER2 bioluminescence varied as a function of sleep-wake 

state. A simple model, assuming a linear increase and decrease during waking and sleep 

respectively, mimicked well the phase but not the amplitude of PER2 bioluminescence. 

Improvements of the model can provide clues on the underlying mechanisms. In the second 

experiment, mice were sleep deprived for two hours every four hours during two days. This protocol 

successfully reduced the NREM sleep amplitude by ca. 50%. In a separate cohort of mice, these 

sleep deprivations reduced the amplitude of PER2 bioluminescence in three out of four mice. 

Altogether, we are the first to show that also in freely behaving conditions, the sleep-wake 

distribution importantly contributes to changes in PER2 bioluminescence, confirming previously 

obtained data from sleep deprivation experiments. Further experiments need to address if 

bioluminescence reflects PER2 protein levels.  

 

CONTRIBUTIONS 

Note that this manuscript is work in progress and therefore some of the results need further 

analysis or experiments to draw reliable conclusions (indicated in the manuscript).  The design of 

the experiments, analyses, statistics, visualization of the results and writing of the manuscript was 

performed by myself under supervision of Paul Franken. Yann Emmenegger, the lab technician, 

was available in case of questions and problems in the mouse facility. He also taught me how to 

perform the surgical interventions.  

First, the favorable route of luciferin was determined. We took advantage of a mouse model that 

expresses constantly luciferase under control of a synthetic promotor (Y. A. Cao et al., 2004). I 

performed the experiments.   
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Next, Yann Emmenegger and I determined the peripheral source of bioluminescence in SKH1 x 

PER2:LUC mice with an IVIS Xenogen apparatus. Florence Morgenthaler-Grand assisted us while 

performing these experiments, and Francis Derouet took care of the administration that came with 

bringing mice from our animal facility to their facility, where the imaging systems were. 

To quantify how PER2 bioluminescence varies with sleep-wake state, we used a knock-in mouse 

model where PER2 is fused with the reporter luciferase (Yoo et al., 2004). I implanted the mice with 

EEG, EMG and an osmotic mini-pump, and initiated the recordings, organized the sleep 

deprivations and collected the data afterwards. For central recordings, Yann Emmenegger and 

myself implanted mice with EEG, EMG, cannula connected to an osmotic mini-pump. All the sleep 

deprivations were performed with the help of fellow lab members. The EEG data was afterwards 

annotated for sleep-wake state by Yann Emmenegger and myself.   

Our last experiment concerned a model where a behaviorally rhythmic mouse was exposed to 

an ‘arrhythmic’ sleep-wake schedule. To determine in retrospect the effciency of our sleep 

deprivation, I implanted SKH1 and Bl6 mice with EEG, EMG and thermistors with the help of Yann 

Emmenegger. The SKH1xPER2::LUC mice were implanted with an osmotic mini-pump to follow 

PER2 bioluminescence. Mice were sleep deprived for 2hrs every 4hrs during two days under 

constant dim red light. I scheduled the experiments and are very thankful for the help I got with 

this this, notably: Lisa Härri, Yann Emmenegger, Charlotte Hor and Jeff Hubbard; and special 

thanks to those who supported me during the grave yard shifts: Maxime Jan, Kostas Kompotis, 

Violeta Castelo-Szekely and Sonia Jimenez. The EEG data of this experiment was annotated by 

Sonia Jimenez and Yann Emmenegger.  
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Abstract  

The expression of the circadian clock gene, period-2 (Per2), is increased after sleep deprivation 

(SD). However, how the association between the sleep-wake distribution and PER2 levels holds 

under baseline conditions, has never been studied. To address this question, we measured Per2 

expression in a freely behaving mouse by measuring bioluminescence as a proxy for PER2 protein 

levels along with EEG recordings. Our results show that PER2 bioluminescence is increasing during 

spontaneous waking and decreasing during spontaneous sleeping. Furthermore, attenuating the 

daily amplitude of the sleep-wake distribution by SDs around the clock, reduced in three out of 

four mice the PER2 bioluminescence amplitude. Further experiments need to address whether the 

sleep-wake evoked changes in bioluminescence mirror changes in PER2 protein levels.  

 

Introduction 

The sleep-wake distribution is coordinated by the interaction of a circadian and a homeostatic 

process (S. Daan et al., 1984). Understanding how these two components give rise to sleep and 

waking remains challenging because manipulation of sleep affects both processes. For example, the 

expression of the gene Period-2, which is also an essential part of the molecular circadian clock 

loop, is increased after sleep deprivation (SD) from ZT0 to ZT6 in cortex and liver (Curie et al., 2013; 

Franken, Thomason, Heller, & O'Hara, 2007; Maret et al., 2007), and also increases PER2 protein in 

the cortex, as well affects the circadian PER2 dynamics in liver and kidney (Curie et al., 2015). 

Furthermore, removal of the circadian amplitude of the sleep-wake distribution by lesions of the 

suprachiasmatic nucleus leads to an attenuation of the circadian amplitude of clock gene 

transcripts and proteins (Akhtar et al., 2002; Curie et al., 2015; Tahara et al., 2012). This underscores 

the sleep-wake dependent expression of clock genes.  

Over the last decennia, technical progress allowed for monitoring of clock gene expression in 

vitro and ex vivo by the development of bioluminescence reporters expressed concomitantly with 

clock gene transcripts or protein (such as (Yoo et al., 2004)). Subsequently, these constructs were 

used to follow clock gene expression in vivo (Curie et al., 2015; Tahara et al., 2012), allowing for a 

within-subject design and reducing tremendously the number of animals used. However, this 

method still required handling and anaesthesizing the animals before measurements; factors 

capable of affecting clock gene expression (Antle & Mistlberger, 2000; Cheeseman et al., 2012). 

Recently, novel devices have been developed, overcoming these possible confounding factors by 

measuring bioluminescence in unanaesthesized, freely moving mice (Hamada et al., 2016; Mei et 
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al., 2018; Saini et al., 2013). In theory, these techniques allow for monitoring of clock gene expression 

in parallel with spontaneous sleep-wake behavior across several days. This is particularly relevant 

because sleep deprivation induces an, albeit mild, increase in corticosterone, which subsequentely 

affects the expression of clock genes such as Per1-3 (Mongrain et al., 2010).  

Therefore, we inspected how PER2 bioluminescence is affected by changes in sleep-wake state 

in mice. We indeed found that under undisturbed conditons, sleep-wake state transitions are 

followed by changes in PER2 bioluminescence. By experimentally reducing the circadian amplitude 

of the sleep-wake distribution, the circadian amplitude of PER2 bioluminescence was also 

attenuated in three out of four mice. Altogether, our data points to an important contribution of 

sleep-wake state to PER2 bioluminescence.  

 

Results 

MEASURING PER2 BIOLUMINESCENCE IN PARALLEL WITH SLEEP-WAKE STATE  

To follow PER2 levels, we measured bioluminescence from a mouse knock-in model where 

luciferase is fused, and thus expressed simultaneously, with PER2 (Yoo et al., 2004). Delivery of 

luciferin is discussed in the next section. To monitor PER2 bioluminescence emitted from the cortex 

(referred to as central PER2 bioluminescence) C57BL/6J (B6) x PER2::LUC mice were used because 

their pelage prevents detection of peripheral photons, thus increasing the signal-to-noise ratio. To 

monitor peripheral PER2 bioluminescence, 

hairless immunocompetent SKH1 mice, 

heterozygous for the PER2::LUC construct, 

were used. During the experiments, mice 

were housed in constant darkness in a light-

enclosed cage that contained a photon 

multiplier tube (PMT), a food hopper, a 

water dispenser, an activity sensor and a 

light source (see Figure 2-1). For an in-depth 

description of this apparatus, consult (Saini 

et al., 2013). For the SD, mice were moved 

from the RT Biolumicorder to a cage outside 

of the RT Biolumicorder in dim red light. We  
Figure 2-1 The RT biolumicorder. Taken from (Saini et al., 2013). 
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monitored sleep-wake state in parallel with PER2 bioluminescence. To achieve this, mice were 

implanted with electroencephalogram (EEG) and electromyogram (EMG) electrodes to record 

brain- and muscle activity, respectively, using the wireless Neurologger system (Neurologger, TSE 

Systems GmbH, Germany). Offline, wakefulness, NREM and REM sleep was annotated per 4-

seconds based on the EEG and EMG traces. A detailed description of the protocols and experimental 

designs can be found in the Material and Methods section at the end of this paper.   

 

DETERMINING THE ROUTE OF LUCIFERIN ADMINISTRATION  

First, the optimal route of luciferin administration was determined. Previous studies made use 

of osmotic mini-pumps implanted subcutaneously or intraperitoneally to deliver luciferin (Curie et 

al., 2015; Saini et al., 2013; Tahara et al., 2012). Providing luciferin via the drinking water was 

suggested as an alternative route (Schibler, 2014) and is preferred because it decreases stress for the 

mouse, caused by the implantation of the pump, and is economically favorable. However, drinking 

behavior has a strong circadian component (Bainier, Mateo, Felder-Schmittbuhl, & Mendoza, 2017) 

and could therefore periodically limit luciferin availability. An experiment performed in the 

Schibler lab addressed this concern by exposing Bmal1-luc and PER2::LUC mice to luciferin 

dissolved in drinking water. Opposite phases of bioluminescence were observed in these two strain 

of mice, thus advocating against a rate-limiting effect imposed by administering luciferin via 

drinking water (Schibler, 2014).  

 We confirmed that providing luciferin in the drinking water of PER2::LUC mice led to 

rhythmic bioluminescence detection (data not shown). However, activity onset was rapidly 

followed by increased bioluminescence, providing ground to doubt the dissociation between PER2 

bioluminescence and drinking behavior. To address these concerns, bioluminescence was 

 
Figure 2-2 Overall bioluminescence during different routes of luciferin administration: via an osmotic mini-pump (A) or in 
the drinking water (B) in CAG mice (n=4) double plotted, mice kept in constant darkness. 
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measured in a mouse that constitutively expresses luciferase under the control of the synthetic CAG 

promoter (Y. A. Cao et al., 2004). Mice received luciferin via the drinking water or via an osmotic 

mini-pump in two separate experiments. Despite an assumed constant delivery of luciferin and/or 

constant production of luciferase, changes in bioluminescence of mice implanted with the pump 

appeared nevertheless rhythmic (Figure 2.2A), with levels increasing during the subjective light 

phase and decreasing during the subjective dark phase. When luciferin was delivered in the 

drinking water, the bioluminescence amplitude was increased compared to luciferin administration 

in the pump. Furthermore, its peak indeed coincided approximately with the expected peak of 

drinking behavior, which is around CT16 (Bainier et al., 2017) (Figure 2.2B). Therefore, we decided 

to adhere to the osmotic mini-pump for the subsequent experiments.  

 

DETERMINING THE SOURCE OF BIOLUMINESCENCE  

Previously, bioluminescence has been quantified separately in cortex, liver and kidney by 

imaging and 3D reconstruction with the IVIS 3D Xenogen apparatus (Curie et al., 2015). In our set-

up, the RT Biolumicorder collects photons emitted from all tissues and can thus not differentiate 

between bioluminescence emitted from different tissues. Therefore, we quantified which peripheral 

organ(s) in mice carrying the PER2::LUC construct was/were the major source of bioluminescence. 

To this end, two male heterozygous PER2::LUC SKH1 mice were implanted with an osmotic mini-

pump (model 1002; 35mg/mL luciferin) and five days later lightly anaesthetized  

 

 
Figure 2-3 The main source of bioluminescence is emitted by tissue located dorsally in the mouse. Note that the scale bar 
of the dorsal view has higher values than the scale bar of the ventral view. The red arrows indicate the location of the flow 
moderator of the osmotic mini-pump.   
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with 2.5% isoflurane and imaged for 60 seconds (Xenogen IVIS Lumina II) around ZT6. The 

main source of dorsal bioluminescence overlapped with the expected location of the kidney (see 

Figure 2.3, Dorsal View), whereas ventrally almost no bioluminescence was detected (Figure 2.3, 

Ventral View). During the experiment in the RT Biolumicorder, most bioluminescence quantified 

is of dorsal origin due to the orientation of the mouse relative to the PMT. Altogether, this suggests 

that the kidneys are the main source of peripheral bioluminescence in PER2::LUCxSKH1 mice.  

 While determining the source of bioluminescence, we observed that the flow moderator of the 

osmotic mini-pump was emitting photons, reminiscent of phosphorescence (indicated by red 

arrows in Figure 2.3). This bioluminescence signal decreased by 85% over 15 minutes (see Figure 2-

11, supplementary data) and is therefore unlikely to interfere with our experiments that take place 

in constant darkness for several days. Nevertheless, a blue flow moderator cap with less 

phosphorescence activity was used for subsequent experiments.  

 

SPONTANEOUS SLEEP-WAKE STATE RELATES TO PERIPHERAL PER2 BIOLUMINESCENCE  

SD affects Per2 gene transcripts and protein levels (Curie et al., 2015; Curie et al., 2013), but there 

is no knowledge on the contribution of sleep-wake state under baseline conditions to PER2 levels. 

Does the sleep-wake distribution also contribute to changes in PER2 under freely behaving 

 
Figure 2-4 Hourly normalized bioluminescence levels emitted by the periphery during the second baseline day and after 
the sleep deprivation throughout the recovery. Sleep deprivation significantly affects the time course of bioluminescence 
(F(17,68)=2.9, P=0.0011). Significant results (p<0.05) of post-hoc paired t-tests are indicated by a red asterisk (*). n=5. 
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conditions? We first addressed this question in the periphery, and obtained sleep-wake state and 

peripheral PER2 bioluminescence recordings during 2.5 days of baseline in constant darkness, a 6h 

SD and two recovery days from five SKH1 heterzogyous PER2::LUC male mice (see Figure 2-12 in 

the Supplementary Data for raw data of the 2.5 days of baseline of each individual mouse). No 

correction for circadian time has been made, thus the hourly values plotted refer to the time under 

LD conditions. First, we assessed if we replicated previously published results concerning the effect 

of SD on renal PER2 bioluminescence. Indeed, SD significantly increased PER2 bioluminescence 

during the recovery, (see Figure 2-4) like the changes observed previously in the  

kidneys (Curie et al., 2015). 

Next, we determined whether sleep-wake state affects PER2 bioluminescence under 

undisturbed baseline conditions. Although the circadian modulation of the bioluminescence trace 

is clearly visible over the 2.5 day of baseline recordings, there are additional changes on the 

bioluminescence trace that occur simultaneously with changes in sleep-wake state (see Figure 2-5). 

 
Figure 2-5 Changes in sleep-wake state are accompanied by changes in bioluminescence. Note the circadian oscillation in 
the bioluminescence trace with additional changes that seem to align with the changes in sleep-wake state.  
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PER2 bioluminescence appears to increase during waking dominated bouts and to decrease during 

sleep dominated bouts. To quantify this observation, transitions from sleep to wake and wake to 

sleep were selected. The sleep-wake and bioluminescence data was averaged over 3-min intervals. 

Selected transition events had to last for at least 15 minutes before and after the transition where 

time spent in sleep or wake dominated bouts should be at least 50% in that designated state. With 

these criteria, we detected on average (mean±SEM, n=5) 14.8±2.3 transitions from sleep to wake and 

19.4±2.3 transitions from wake to sleep during the 2.5 baseline days. The timing of these transitions 

is indicated by the yellow traces in the representative two examples in Figure 2-5.  

 Indeed, a transition from wake to sleep was accompanied with a 22% reduction (relative to t=0 

at transition) in bioluminescence after 40 minutes of sleep dominated bouts [77.8%, SEM: 4.1] 

whereas a transition from sleep to wake correlated with an 34% increase in bioluminescence within 

40 minutes [%, 134.1, SEM:5.3]. The changes in bioluminescence relative to sleep-wake state 

transitions were delayed (mean±SEM [minutes], wake to sleep transition: 2.1±0.6; sleep to wake 

transition: 3.6±0.9, based on the dynamics of the average transition per mouse of data averaged per 

3 minutes). 

The cortical response of Per2 to SD depends on time of day (Curie et al., 2013). Are the sleep-

wake evoked responses in peripheral PER2 bioluminescence also dependent on time of day? A 

sinewave was fit to each individuals’ bioluminescence trace and subsequently divided into rising 

and falling limbs (see Figure 2-6A). We compared the bioluminescence dynamics of transitions 

occurring at the rising limb with those occurring at the falling limb. The number of transitions was 

not different between rising and falling limb (paired t-test, sleep to wake rising: 6.6±1.12; 

falling:8.2±1.5, t(4)=-1.17, p=0.31; wake to sleep: rising:11±1.4, falling: 8.4±1.9, t(4)=1.03, p=0.36). The 

 
Figure 2-6  Time-of-day affects sleep-wake evoked PER2 dynamics. Categorizing of PER2 bioluminescence trace in rising and 
falling limb of the sinewave (A). Changes in bioluminescence when transitioning from sleep to wake and vice versa (B-C). The 
timing of the transition significantly affects the shape of the curve (factor Time from Trans* Rising/Falling, sleep to wake: 
F(16,64)=3.5, p=0.0002; wake to sleep: F(19,76)=2.46, p=0.0030; post-hoc paired t-test, n=5). 
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dynamics in bioluminescence were indeed affected by their timing relative to the circadian 

sinewave. Bioluminescence initially decreased faster during sleep at the transition from sleep to 

wake on the rising limb (Figure 2-6B), whereas sleep occurring on the falling limb after the 

transition from wake to sleep decreased faster (Figure 2-6C). Further analyses, for example 

inspecting subtle changes in sleep-wake structure between the rising and falling limb and 

dependency on the bioluminescence offset value at the transition can provide further clues about 

the origin of these circadian differences in bioluminescence dynamics.  

As a first attempt to understand the contribution of the sleep-wake driven changes in PER2 

bioluminescence, we applied a simple linear model based on the sleep-wake annotation that was 

averaged per 3-min intervals. If an interval had > 50% waking, it was annotated as waking, otherwise 

it was deemed sleep. The change in bioluminescence was estimated based on the average individual 

slope of the bioluminescence changes occurring in the first 40 minutes after the transition. This 

simple approach captured relatively well the phase of the circadian changes in bioluminescence 

(Figure 2-7), but further efforts will be made in improving the model. For example, next steps will 

focus on optimizing the model by using an exponential instead of a linear function to account for 

upper and low levels.  

   

 
Figure 2-7 Modelling PER2 bioluminescence based on the sleep-wake distribution predicts the daily changes in 
bioluminescence in terms of phase. Mouse 3MS113 had excess sleeping, which caused the predicted PER2 bioluminescence 
to be below 0, due to the assumption of a linear relationship between the sleep-wake distribution and PER2 
bioluminescence.  
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QUANTIFYING CENTRAL PER2 BIOLUMINESCENCE AND SLEEP-WAKE STATE  

Next, we aimed to record bioluminescence emitted from the brain in parallel to sleep-wake 

state. For these experiments, homozygous male B6 PER2::LUC mice were implanted with EEG and 

EMG, a cannula to infuse luciferin in the right lateral ventricle and a glass cone that was placed on 

a depression made in the skull bone, allowing photons to pass from the left cortex. The use of the 

glasscone combined with central infusion of luciferin was previously used to measure 

bioluminescence emitted from the cortex with the Xenogen device (Curie et al., 2015). Luciferin had 

to be infused centrally because central PER2 bioluminescence was not detected when administering 

luciferin peripheral (data not shown). 

We successfully recorded uninterrupted sleep-wake state in six mice during the 2.5 days of 

baseline recording, a six-hour SD and two days of recovery. However, we were concerned about the 

quality of the bioluminescence data because of the following reasons.  

First, the amplitude of the circadian dynamics of the bioluminescence recording appeared weak. 

In all but one mouse, the low values of bioluminescence occurring during the rest phase reached a 

floor effect, where the signal-to-noise ratio appeared to be too low to detect biological relevant 

 
Figure 2-8 Hourly relative normalized bioluminescence levels emitted by the cortex during the second baseline day and 
during the recovery. No significant effect of sleep deprivation or sleep deprivation interacting with time was observed (RM 
ANOVA, factor Time and SD: resp.: F(1,5)=1.3, p=0.31; F(17,85)=1.5, p=0.11). 
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levels of bioluminescence. See Figure 2-13 in the Supplementary Data for the six recordings during 

the two-and-a-half baseline days, and note the high amplitude only in the first  

mouse (A9522). Indeed, recordings from mice that are implanted with a ‘sham’ osmotic mini-

pump (infusing a salt solution) still led to a detection of appr. 70 photons / 4sec as background 

bioluminescence. This value is close to the lowest levels detected in the mice implanted for central 

recordings of bioluminescence, as indicated by the stippled line in Figure 2-13, Supplementary Data.   

Secondly, the previously reported increase in PER2 after SD was not significantly increased in 

our study as reported before (Curie et al., 2015) although it was close to reaching the preset 

significance threshold (paired t-test, t(5)=2.2, p=0.078). Altogether, it was decided to perform 

further experiments with peripheral PER2 bioluminescence only.   

 
PER2 BIOLUMINESCENCE UNDER REDUCED CIRCADIAN AMPLITUDE OF SLEEP 

Under undisturbed conditions, it remains challenging to dissect the circadian and sleep-

homeostatic driven contribution to Per2 expression, because sleep is gated by the circadian time.  

Previous studies lesioned the SCN (SCNx) of mice, thereby eliminating this circadian gating of sleep 

and thus the circadian amplitude of sleep. This method attenuated the amplitude of PER2 

bioluminescence (Curie et al., 2015; Tahara et al., 2012), indicating that contribution of the circadian 

process to the sleep-wake distribution exerts an effect on PER2 bioluminescence.  

In rats, a SD method is established where NREM sleep pressure as measured by EEG NREM 

delta power [1-4Hz] is kept relatively constant across the circadian day by applying enforced 

wakefulness for two hours every four hours over two days (Yasenkov & Deboer, 2010), here referred 

to as the 2hOn/Off protocol. This procedure is expected to mimic the sleep-wake distribution of a 

SCNx rodent while keeping the SCN intact. We investigated 1) if also in the mouse this protocol 

attenuated the daily amplitude in NREM sleep distribution and NREM sleep pressure and; 2) if the 

flattened sleep-wake distribution affects the circadian PER2 amplitude.  
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The effect of 2h on/off protocol on sleep-wake characteristics   

Five EEG and EMG implanted and tethered SKH1 and BL6 male mice were kept for 48 hours to 

establish a baseline. At t=48h, mice were sleep deprived by gentle handling every four hours for two 

hours during two consecutive days. Both baseline days and sleep deprivation days were under dim 

red light conditions. One SKH1 mouse was excluded due to excessive sleeping during the SD. SKH1 

mice are an outbred strain that have not been phenotyped for sleep. When we compared the sleep-

wake parameters of B6 with SKH1 mice, it is interesting to point out that the prominent increase in 

waking during the subjective dark phase of B6 mice is unexpectedly attenuated in SKH1 mice 

(Supplementary Data, Figure 2-14). Nevertheless, the focus of the rest of this experiment is on the 

results of the SKH1 mice, because this strain of mice is also used in the peripheral PER2 

bioluminescence experiment.  

The two baseline days in constant darkness were significantly different from each other in terms 

of hourly NREM sleep-wake distribution (1-W RM ANOVA, factor DayxError: F(3,9)=16.3, 

p=0.0005). Because after-effects of entrainment wane over the course of constant darkness (Serge 

Daan & Pittendrigh, 1976), we decided to consider only the results of the second baseline day (BL) 

for further analysis. In comparison to BL, mice spent more time awake during the two sleep 

deprivation days (SD1 and SD2) and thus less time in NREM and REM sleep [% per average day, 

paired t-tests, mean±SEM, awake: BL: 53.2±1.3, SD:65.3±1.9, t(3)=-7.4, p=0.005; NREM BL:39.5±1.1, 

SD:30.2±2.1, t(3)=6.1, p=0.009; REM: BL:7.3±0.3, SD:4.5±0.4, t(3)=5.1, p=0.01 ].   

First, we inspected the distribution of NREM sleep by accumulating this behavioral state per 

4hrs during BL and SD1 and SD2 (Figure 2-9, lower graph). A 4hr time-interval was chosen to ensure 

that also the sleep that was occasionally caught during the the sleep deprivations, was accounted 

for. Indeed, the amplitude of the NREM sleep distribution was reduced across the sleep deprivation 

days in comparison to the baseline day (amplitude of sine fit, fixed period at 24hr, mean±SEM, 

BL:12.75±0.44; SD1:6.05±1.24; SD1:5.74±0.87, paired t-test, BLvsSD1: t(3)=5.3, p=0.0135; BLvsSD2 

t(3)=6.1, p=0.009). This reduction in amplitude was not different between the two sleep deprivation 

days (t(3)=0.24, p=0.82) (Supplementary Data, Figure 2-15). However, the amplitude of NREM sleep 

is still significantly greater than 0 during the 2hOn/Off protocol (one sample t-test, SD1: t(3)=4.9, 

p=0.02, SD2: t(3)=6.6, p=0.007), indicating that the sleep-wake distribution under this SD protocol 

is still modulated by a circadian process. 
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Next, we assessed the effect of our protocol on NREM sleep pressure. To this end, NREM delta 

power was averaged across NREM sleep epochs per four hours (Figure 2-9, upper graph). The 

reduction in NREM delta during baseline conditions from ZT0 to ZT12 (under the former LD 

conditions) was attenuated during the sleep deprivation days (2-way RM ANOVA; Cond: 

F(2,54)=8.9, p=0.0005), likely due to the reduction in NREM sleep.  

These observations, reduced circadian amplitude of NREM distribution and of NREM EEG delta 

power compare, are partly alike the results obtained in the study from Yasenkov and DeBoer 2010. 

They concluded that most, if not all, of their circadian NREM sleep rhythmicity was abolished by 

their 2h sleep deprivation protocol, because it could not fit significantly to a 24-h cosine function 

(Yasenkov & Deboer, 2010). We also find a strong reduction in circadian amplitude of NREM sleep, 

but the amplitude is still >0 (see Figure 2-15) and therefore we concluded that the NREM sleep 

distribution is still circadian, albeit attenuated. Following on this, a significant effect of the sleep 

deprivation on NREM EEG delta power was observed (Figure 2-9), but there still appears to be a 

circadian rhythm (this has not been formally addressed yet).  

We also collected locomotor activity (LMA) data from the EEG implanted mice by monitoring 

movements with passive infrared sensors (PIR). Because the experimenters’ movements during the 

SDs are also captured by the PIR sensors, LMA data obtained during the SD and its corresponding 

 
Figure 2-9 Distribution of NREM sleep and delta power dynamics across the baseline and sleep deprivation days. Data 
averaged per 4hrs, n=4, pink areas indicate timing of sleep deprivation during SD1 and SD2. For delta power, significant 
differences from BL to SD1-2 baseline are indicated by * (paired t-test).   
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baseline values were omitted from analyses. As expected, time-of-day significantly affects hourly 

values of activity (2-W RM ANOVA, Factor Time: F(11,99)=3.4, p=0.0005). Surprisingly, we did not 

detect a significant effect of the 2hOn/Off protocol on LMA (Time x Cond, F(22,99)=1.4, p=0.11) 

(Figure 2-16, Supplementary data), underscoring the importance of using EEG-based measures to 

determine sleep-wake state. These data are in congruence with the observation that food intake 

across the 2hOn/Off protocol in the mice housed in the biolumicorder also shows a strong circadian 

component (Supplementary data, Figure 2-17).  

Thus, sleep depriving SKH1 mice for two hours every 4 hours during two consecutive days 

attenuates the amplitude of the circadian sleep-wake distribution. The NREM delta power’ 

dynamics are flattened accordingly by the intervention. However, a circadian modulation of the 

sleep-wake distribution is nevertheless still present.  

 

The effect of 2hOn/Off protocol on PER2 bioluminescence  

Next, we set out to determine PER2 bioluminescence dynamics under the same 2hOn/Off 

protocol in a separate cohort of mice, that were implanted with an osmotic mini-pump to deliver 

luciferin. After two habituation days in the RT Biolumicorder under LD, mice were kept in constant 

dark for two baseline days after which the 2hOn/Off protocol was initiated at, under previous LD 

conditions, ZT0. During the sleep deprivations, mice were taken from the RT Biolumicorder and 

sleep deprived in a different cage under constant dim red-light conditions. Therefore, 

bioluminescence was only measured during the 2-hours rest opportunities in between the SDs 

when the mice were in the RT Biolumicorder.  

Like in the EEG study, only baseline day 2 (BL) and SD1 and SD2 were further analyzed. The 

bioluminescence dynamics are significantly different across these three days (3-way RM ANOVA, 

F(46,138)=1.7, p=0.0107) (Figure 2-10, upper panel). Is this due to a reduction in amplitude of 

bioluminescence? A sinewave was fit to the 30-min values of bioluminescence during SD1 and SD2 

of the rest periods and the corresponding baseline values (GraphPad Prism, non-linear regression, 

sine wave with non-zero baseline, period>20Hr). A comparison of the amplitudes between BL, SD1 

and SD2 is non-significant (paired t-test: BL versus SD1: t(3)=1.95, p=0.15; BL versus SD2: t(3)=0.93, 

p=0.42; see Figure 2-10) although three out of the four mice had a reduction in amplitude incurred 

by the 2hOn/Off protocol.  



Sleep-wake state and PER2 

49 
 

Thus, by imposing every four hours a two-hour sleep deprivation, we significantly attenuated 

the amplitude of the circadian distribution of NREM sleep. Based on our EEG experiment, we 

concluded that the 2hOn/Off protocol did not suffice in removing completely the circadian 

components of sleep-wake distribution. Although there are indications that the amplitude of 

bioluminescence was affected, this was not significant in our study, which could be due to an 

underpowered design.   

 

 

Discussion  

 
In this study, we demonstrated that peripheral PER2 bioluminescence, mostly emitted by the 

kidneys, is changing as a function of spontaneous sleep-wake state. Reducing the circadian 

amplitude of the sleep-wake distribution by performing multiple short sleep deprivations across 

two days led to a reduction of the nycthemeral amplitude of NREM sleep and reduced the amplitude 

of PER2 bioluminescence in three out of the four mice studied. Altogether, these results support 

the importance of considering both circadian time and sleep-wake state when gauging PER2 levels. 

Here, I will discuss further some biological and technical considerations of this study. Because 

our central recordings of PER2 bioluminescence are deemed not trustworthy, the focus in this 

discussion section will be on the peripheral results.    

 

 

 
Figure 2-10 Bioluminescence during the baseline recording and across the two sleep deprivation days. Normalized 
bioluminescence from four SKH1 mice. Amplitude shows a decrease in 3 out of 4 mice from BL to SD1-2. 
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DIRECT VERSUS INDIRECT EFFECTS OF SLEEP-WAKE STATE ON PER2 BIOLUMINESCENCE  

The three different experiments indicated that sleep-wake state importantly contributes to 

PER2 bioluminescence, but that the dynamics of these sleep-wake modulated changes in PER2 

bioluminescence appear to be different from experiment to experiment. First, sleep deprivation led 

to an increase in PER2 bioluminescence during the first hours of the recovery phase, when mice 

spend more time asleep. This potentially contrasts with the results of the second experiment, where 

under undisturbed conditions, waking evoked increases and sleep decreases in PER2 

bioluminescence within half an hour, pointing a more direct regulation of sleep-wake states to PER2 

bioluminescence. Last, the 2hOn/Off sleep deprivation experiment, incurred a reduction in the 

amplitude of the circadian sleep-wake distribution and subsequently led to a reduction in the 

amplitude of the PER2 bioluminescence signal in three out of the four mice measured. What can 

we conclude from these results? At the mechanistic level, we could differentiate between direct and 

indirect sleep-wake driven changes in PER2 bioluminescence (experiment 2, and experiment 1 and 

3, respectively).  

There are several sleep-wake driven mechanisms that contribute directly to the expression of 

clock genes such as Per2 (reviewed in (Franken, 2013)). An example of such a clock-independent 

mechanism is the glucocorticoid increase during sleep deprivation, which partly drives the sleep 

deprivation incurred increase in Per2 (Mongrain et al., 2010). Furthermore, in a molecular 

arrhythmic liver of a rhythmic-behaving mouse, Per2 is the only transcript that remains rhythmic, 

indicating that its expression can also be driven by rhythmic systemic cues (Kornmann, Schaad, 

Bujard, Takahashi, & Schibler, 2007). The next experimental chapter (Chapter 4), will explore 

further one of these mechanisms. Importantly, the effect of SD on clock gene expression is mostly 

reversed after 4 hours of recovery sleep (Wisor et al., 2002), implying that no clock shifting is 

incurred by the SD.  

However, SD does not only affect PER2 protein levels and Per2 transcripts, but also the 

expression of other clock genes (e.g. Dbp, Per1, Per3, Rev-erbα) (Mang et al., 2016; Maret et al., 2007; 

Mongrain et al., 2010; Wisor et al., 2002; Wisor et al., 2008). Impairment of the clock machinery by 

mutations modulates the SD incurred changes in Per2 expression (Wisor et al., 2008). Furthermore, 

SD decreases the binding of CLOCK and BMAL1 to some of their target genes (Mongrain et al., 2011). 

Together, this suggests that sleep-wake rhythms directly impinge on the clock machinery, thereby 

affecting its output in terms of clock gene expression. 
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Thus, the effect of wakefulness can: i) act on the expression of clock genes directly, as in the 

example of Per2; ii) impinge on the whole molecular clock which subsequently affects expression 

of clock genes, like the DNA-binding experiment showed; iii) act first on clock gene expression after 

which these changes affects the circadian clock machinery (an increase in PER2 will reduce the 

DNA binding of BMAL1 and CLOCK). An important experiment to be able to differentiate between 

these options, could make use of a mouse model where the molecular clock is arrested (Kornmann 

et al., 2007), thus leaving the effect of sleep deprivation on Per2 to be completely attributed to 

mechanisms independent of the clock machinery.    

 

IMPROVING CENTRAL RECORDINGS  

We expected that the signal-to-noise ratio was too low in our central bioluminescence 

experiments. In the previous study, a region of interest was imaged and thus signals other than the 

one of interest were excluded (Curie et al., 2015). Other groups have improved the signal-to-noise 

ratio by implanting mice with optical fibers to quantify central bioluminescence in a specific area 

of the brain (see for example (Ono et al., 2015; Y. Yamaguchi et al., 2016)),  which is a technique that 

could be considered when monitoring central PER2 and sleep-wake state.  

Another improvement worth considering is amplification of the bioluminescence signal. A 

synthetic luciferin has been developed (Cyc-luc) that can travel across the blood-brain-barrier, has 

high intra-cellular uptake and a relatively slow half-life (Evans et al., 2014), which are all 

improvements over our current design. Moreover, the space saved from the cannula by 

administering the Cyc-luciferin peripherally can be used to monitor two cortices simultaneously 

instead of only one, thus further increasing the signal-to-noise ratio.  

 

IS BIOLUMINESCENCE OR PER2 SLEEP-WAKE DRIVEN?  

We assume that bioluminescence levels directly reflect PER2 levels, because luciferase is 

expressed in parallel with PER2. In this assumption, luciferase should be the rate limiting step in 

the conversion of luciferin to oxy-luciferin (Yoo et al., 2004). That this expectation holds under in 

vivo conditions is supported by previous work from our lab, where the SD induced changes in 

bioluminescence levels in cortex and liver were paralleled with changes in PER2 protein levels in 

these organs, as quantified by western blot (Curie et al., 2015). However, there are some concerns 

about the quality of the data presented here, especially with respect to the changes in 
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bioluminescence that are associated with spontaneous changes in sleep-wake state. These concerns 

will be discussed here, and if possible, solutions will be proposed. 

First, there are reasons to doubt that luciferin is in excess, ensuring thereby that luciferase is 

the rate limiting factor. A study thoroughly addressing these concerns found that -for their 

experimental design- luciferin needed to be above a concentration 0.2 μg/μl in blood plasma to be 

at sufficient concentrations (Hamada et al., 2016). We probably have ca. 20 times lower levels of 

luciferin in blood plasma (extrapolated from Hamada et al., 2016), thus the luciferin concentration 

in our experiment might not be in excess and thereby be a rate-limiting step.  

Another consideration is that the supply of luciferin by the osmotic mini-pump is unlikely to be 

completely constant. Temperature changes with sleep-wake state, thereby affecting the release rate 

of the osmotic mini-pump; i.e. an increase of 2°C, which is within the mouse’s range of body 

temperature shifts (Refinetti, 2010), leads to a 10% increased release rate (Alzet, 

http://www.alzet.com/products/guide_to_use/pump_selection.html). Therefore, one may wonder if these possible 

(sleep-wake driven) changes in substrate availability contribute to bioluminescence dynamics. A 

study addressed this concern by quantifying PER2::LUC and Bmal1-eluc bioluminescence in the 

SCN. Because Bmal1’s expression occurs in opposite phase of PER2’s and the same was noted for 

their bioluminescence (Ono et al., 2015), this is interpreted as an argument against an activity-

driven release of luciferin. Also, our data showed that subcutaneous temperature and 

bioluminescence are ca. 4 hrs out of phase (data not shown), supporting that at least the large 

circadian changes in bioluminescence are not driven by changes in luciferin availability due to 

sleep-wake driven changes in temperature. Moreover, the bioluminescence measured from the 

CAG mice increased and decreased when body temperature is expected to be at its lowest and 

highest values, respectively, also arguing against sleep-wake driven luciferin availability.  

Still, concentrations luciferin could be at the level where it acts as a rate limiting factor. 

Experiments can be performed with increasing concentrations of luciferin to test if the spontaneous 

sleep-wake evoked changes in bioluminescence are of similar magnitude at different luciferin 

concentrations. Another consideration for further experiments is the use of a different luciferin, as 

discussed above (Cyc-luciferin, (Evans et al., 2014)).  

Besides substrate availability, changes in body posture could potentially affect the detection of 

bioluminescence signals [see (Saini et al., 2013), supplementary figure 3].However, our transition 

analysis reveals that there is a lag between the change in sleep-wake state and the change in 

bioluminescence; thus, once mice enter sleep, bioluminescence continues to increase during the 
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first minutes after the transition before the signal starts to decrease. This makes it unlikely that 

sleep-wake evoked changes in PER2 bioluminescence are due to body posture.  

Hence, a definitive answer to these concerns can only be provided by quantifying PER2 protein 

levels. Can changes occur in period-proteins over such a short time-scale as we observed during 

spontaneous sleep-wake behavior? Transcription of Period-1 can be induced within 10 minutes in 

the SCN after a light pulse (Shigeyoshi et al., 1997). For Period protein changes, studies have shown 

that these are detectable from 30-minutes in vitro (R. Cao et al., 2015) and within 1-hour in vivo (Al-

Safadi et al., 2014) after exposure to a serum shock and forced swim test, respectively, while making 

use of conservative protein quantification techniques. Thus, the changes in PER2 bioluminescence 

that occur in parallel to changes in sleep-wake state might truly reflect changes in PER2 protein, 

but a sensitive quantification technique needs to be deployed to ensure this.   

 

NEXT STEPS  

In this study, we established a relationship between PER2 bioluminescence and sleep-wake 

state. Despite common believe, this points to an important contribution of sleep-wake state to clock 

gene expression. Modelling studies aim to address further the mechanisms underlying this 

relationship to understand the effect of sleep deprivation and spontaneous wakefulness on the 

expression of PER2. However, the methodological concerns raised should not be ignored. Results 

and conclusions drawn can thus be interpreted at the level of PER2 bioluminescence, until further 

studies have shown that PER2 protein levels are also changing as a function of spontaneous sleep-

wake state.  
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Material and Methods 

The specifics of the following experiments are discussed: i) the preferable route of luciferin 

administration; ii) changes in spontaneous sleep-wake state in parallel to PER2 bioluminescence 

and iii) the 2hOn/Off experiment. Please note that the technical details differ between experiments; 

they are specifically addressed. 

 

MICE AND HOUSING CONDITIONS  

Unless otherwise mentioned in the results section, mice were kept under a 12 h-light/12 h-dark 

cycle and were after surgery singly housed with food and water available ad libitum. Experiments 

that aimed to focus on cortical readings of bioluminescence were performed on C57BL/6J (B6) mice 

homozygous for the Per2::luciferase construct (Yoo et al., 2004). To obtain measurements from the 

periphery, B6 PER2::LUC mice were back-crossed with hairless SKH1 mice for several generations 

until these mice were hairless but still carried the PER2::LUC construct.  

 

SURGICAL PROCEDURES AND EXPERIMENTAL DESIGN  

Route of luciferin administration 

Four male CAG mice were housed for two subsequent experiments in constant darkness in the 

RT Biolumicorder. Each experiment lasted at least six days. During the first experiment, 0.5 mg/mL 

luciferin was dissolved in the drinking water. At the end of this experiment, mice received 

subcutaneously an osmotic mini-pump (Alzet, model 1002) under light anesthesia (isoflurane; 2-

4% mixed with O2) containing 70 mg/mL of luciferin and were allowed to recover for two days 

before bioluminescence and activity was monitored during the second experiment in the RT 

Biolumicorder. The flow moderator on the osmotic mini-pump was conventional.  

Spontaneous changes in sleep-wake state  

To quantify sleep-wake state in parallel to PER2 bioluminescence, mice were implanted with 

electroencephalogram (EEG) and electromyogram (EMG) electrodes under deep ketamine/xylazine 

anaesthesia. Three gold-plated screws (frontal, parietal and cerebellar) were screwed into the skull 

over the right cerebral hemisphere, where the cerebellar screw served as a reference. Two additional 

screws were used as anchor screws. For the EMG, a gold wire was inserted into the neck 

musculature along the back of the skull. The EMG and three EEGs were subsequently soldered to a 

connector and cemented to the skull.  
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Peripheral PER2 bioluminescence 

For the peripheral recordings, heterozygous male SKH1xPER2::LUC mice were implanted with 

an osmotic mini-pump (model 1002, Alzet; luciferin 35mg/mL) under light anaesthesia, two days 

before habituation to the RT Biolumicorder cage. Two of the five mice received the special flow 

moderator that lacks the phosphorescent properties that were observed with the conventional flow 

moderator (Alzet, color flow moderator, Blue, product number 0002609). 

Central PER2 bioluminescence  

For central recordings, homozygous B6 PER2::LUC male mice were implanted with EEG/EMG 

as described above and with a cannula delivering luciferin solution in the lateral ventricle. The 

cannula was implanted with a stereotax (1 mm lateral, ±0.3 mm posterior to bregma and 2.2 mm 

deep) and connected to an osmotic mini-pump (model 1004, Alzet, luciferin: 70mg/mL) that was 

implanted subcutaneously. To detect bioluminescence emitted from the cortex, a depression was 

made in the skull opposite to the area where the cannula was implanted. A glass cylinder was placed 

on top of this depression and fixed with dental cement.  

After the first recovery day, mice were habituated to the weight of the wireless EEG by attaching 

a dummy to their connector. 8-10 days post-surgery, mice were placed in the RT Biolumicorder 

(Lesa Technology SA, Geneva, Switzerland) at the end of the light phase (~ZT10-ZT12) for two days 

in LD to habituate to the novel environment. At the end of the second habituation day, the dummy 

was replaced with a wireless EEG (Neurologger, TSE Systems GmbH). After two-and-a-half days of 

baseline recording in constant darkness, mice were sleep deprived for six hours at a time they were 

expected to rest (ZT0 under LD conditions) by gentle handling. After SD, mice were placed back 

into the RT Biolumicorder for the subsequent two recovery days.  

2HR ON/OFF experiment  

Mice to determine sleep-wake state 

Five male B6 and SKH1 mice were implanted with EEG, EMG and thermistors to record brain and 

muscle activity, and brain temperature, respectively, to determine post-hoc sleep-wake state. The 

surgery took place under deep xylazine/ ketamine anesthesia; for details see (Mang & Franken, 

2012). Briefly, six gold-plated screws (diameter 1.1 mm) were screwed bilaterally into the skull over 

the frontal and parietal cortices. Two screws served as EEG electrodes and the remaining four 

screws anchored the electrode connector assembly. As EMG electrodes, two gold wires were 

inserted into the neck musculature. A thermistor (General Electrics, P20AAA102M) was placed on 

top of the left cortex (2.5 mm lateral to the midline, 2.5 mm posterior to bregma). The EEG and 
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EMG electrodes and thermistor were soldered to a connector and cemented to the skull. Mice 

recovered from surgery during several days before they were connected to the recording cables in 

their home cage for habituation to the cable and their environment, which was at least 6 days prior 

to the experiment. The recovery and habituation was under LD 12:12 conditions.   

During the baseline recording and sleep deprivation days, red light at very low intensity was 

present to allow the experimenters to visually observe the mice (spectral photometer (International 

Light Technologies), white light [PAR#21777]: 0.50 nE/m2/sec; blue light [+BLU#21853]: 0.0 

nE/m2/sec; red light [TRED#22237]: 0.35 nE/m2/sec). Mice were sleep deprived for two hours with 

the ‘gentle handling’ method as described here (Mang & Franken, 2012). Deviations from the 

protocol were that paper tissue was provided at any times the mice appeared to be difficult to keep 

awake.  

Mice for bioluminescence data collection  

Mice were implanted with an osmotic mini-pump (Alzet, 1002, luciferin concentration: 35 

mg/mL; blue flow moderator) two days before the habituation. At the end of the light phase (~ZT10-

ZT12), mice were moved from their cage to the RT Biolumicorder for 2-3 days of habituation in LD. 

They were housed for 2.5 days in DD, after which the sleep deprivation was initiated at, under LD 

conditions, lights on (ZT0). At the start of each SD, mice were moved from the RT Biolumicorder 

and placed into a novel cage that was in the same room as the EEG-implanted mice. Fifteen minutes 

before the end of each SD, mice were brought back to their RT Biolumicorder cage.  

  

DATA COLLECTION OF SLEEP-WAKE STATE  

Spontaneous changes in sleep-wake state  

During the first experiments, we used a version of the Neurologger where the batteries were 

placed outside of the logger (n=3 out of total of 5 mice of the peripheral recordings) and where the 

Neurologger also needed to be replaced after 2.5 days of recording. For technical and user-friendly 

reasons this version of the NeuroLogger was replaced by an updated version where the batteries are 

stored inside a tray, making the recording less prone to disruptions. Moreover, we could record for 

the full 5.5. days of recording with the same Neurologger.  

Batteries (Hearing Aid; Ansmann, 312 PR41, 1.45 V 180 mAh) were inserted into the Neurologger. 

This insertion was timed with the clock of the computer that controlled the RT Biolumicorder to 

post hoc align the EEG/EMG signals with the bioluminescence. Time stamps provided by the 

SyncBox (NeuroLogger, TSE) were used to verify the start and end time of the EEG/EMG recording. 
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The cerebellar electrode was used as a reference for both EMG and EEG.  Data was sampled at 256 

Hz. After the recording, data was loaded in Somnologica (Somnologica 3, MedCare) to determine 

offline the mouses’ behavior as ‘wakefulness’, REM sleep’ or NREM sleep’ per 4-second epochs based 

on the EEG and EMG signals. To visually aid the scoring, the parietal signal was subtracted from 

the frontal signal to enhance the identification of slow waves and theta waves within the same trace. 

Wakefulness was characterized by EEG activity of mixed frequency and low amplitude, and present 

but variable muscle tone. NREM sleep (NREM) was defined by synchronous activity in the delta 

frequency (1–4 Hz) and low and stable muscle tone. REM sleep (REM) was characterized by regular 

theta oscillations (6–9 Hz) and EMG muscle atonia. 

2HR ON/OFF experiment   

EEG and EMG signals, Tcx and locomotor activity were recorded continuously for 96 h. The 

recording started at the beginning of the subjective rest phase, ZT0. The analog EEG and EMG 

signals were amplified (2,000×) and digitized at 2 kHz and subsequently down sampled to 200 Hz 

and stored. Like the EEG and EMG traces obtained with the Neurologger, the data was loaded in 

SomnoLogica and sleep-wake state was determined per 4-second epochs, as preciously. The EEG 

was subjected to a discrete Fourier transformation yielding power spectra (range: 0–100 Hz; 

frequency resolution: 0.25 Hz; time resolution: consecutive 4-sec epochs; window function: 

Hamming). Hardware (EMBLA) and software (Somnologica-3) were purchased from Medcare Flaga 

(EMBLA, Thornton, USA). LMA was monitored with passive infrared activity (ActiMetrics, US, 

Wilmette) and recorded with ClockLab (ActiMetrics, US, Wilmette).  

 

DATA ANALYSIS  

Route of administration 

Data was collected from mice housed for at least four subsequent days in DD in the RT 

Biolumicorder. Circadian time was determined to inspect the circadian changes in bioluminescence 

relative to locomotor activity. To this end, the period length per mouse was determined based on 

activity measurements (1-min resolution) by chi-square analysis in ClockLab. Subsequently, the 

activity and bioluminescence data were folded according to the period. The activity data was 

averaged per 10 minutes and activity onset was visually determined for each mouse and set at CT12. 

The aligned activity and bioluminescence data were subsequently averaged per circadian hour. 

Data is visualized as mean±SEM. The bioluminescence data is expressed relative to the values half 

a day before and half a day later (moving average, window of 1440).  
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Spontaneous sleep wake state and bioluminescence 

Bioluminescence and activity were sampled at a resolution of 4-seconds, which is the same 

resolution of the epochs for sleep-wake state determination. Data processing was subsequently 

performed in MatLab 2017b (The MathWorks, Inc., Natick, Massachusetts, United States). Linear 

trends were removed from the signal by the build in function ‘detrend’. Subsequently, the 

bioluminescence signal was expressed relative to the overall mean per mouse to account for 

interindividual differences. Changes in PER2 would be expected to occur at a slower rate then 4-

seconds. Therefore, sleep-wake and bioluminescence data are averaged per blocks of 3 minutes. 

Transitions were detected on sleep-wake state data that was averaged per 3 minutes. With this 

resolution, we found blocks of wakefulness that visually accompany increases in in 

bioluminescence. By setting the threshold at 50% (at least half of the time had to be spent in the 

designated state), and including transitions that lasted at least 15 minutes on both sides, we reliably 

detected wake- and sleep dominated bouts. A sinewave was fit through the bioluminescence data 

(averaged per 15 min) to determine occurrence of transitions on either the rising or falling limb 

(MatLab, 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑌𝑌0 + 𝑎𝑎 ∗ sin(2∗𝑝𝑝𝑝𝑝
𝑏𝑏

+ 𝑐𝑐)).  

2HR ON/OFF experiment 

Sleep-wake state determination: Per four hours during BL, SD1 and SD2, an average of NREM EEG 

delta power [1-4Hz] is calculated per mouse and was normalized between individuals by expressing 

it relative to the mean delta power reached between ZT8 and ZT12 during the first two baseline 

days.  

Bioluminescence data  

Data obtained five minutes before and ten minutes after the sleep deprivations was excluded 

from analysis. Subsequent data normalization of the bioluminescence data was as above.  

No correction for circadian time was made in either the 2HR ON/OFF experiment, nor in the 

experiment where spontaneous sleep-wake distribution was correlated with PER2 

bioluminescence, implying that each individual mouse was measured at a slightly different 

circadian time.  

 

STATISTICS 
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 Statistics were performed in R (version 3.3.2) and Prism (version 7.0). The threshold of 

significance was set at p=0.05. Deviations from the mean are representing standard error of the 

mean. The specific use of statistical tests is addressed in the results section.  

Supplementary data  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-11 The cap of the osmotic mini-pump emits photons. After the mouse was sacrificed, 
bioluminescence was still detected around the area of the flow moderator cap. The number of photons rapidly 
decreased over time. 
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Bioluminescence recordings from the periphery combined with sleep-wake state 
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Bioluminescence recordings from the periphery combined with sleep-wake state 
2/2 

 
Figure 2-12 Raw data of sleep-wake state and bioluminescence from each individual mouse during the 2.5 days of baseline 
recording.  
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Central Bioluminescence recordings combined with sleep-wake state (1/2)  
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Central Bioluminescence recordings combined with sleep-wake state (2/2) 
 

 

Figure 2-13 Recordings of central bioluminescence combined with sleep-wake state 
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Figure 2-14 SKH1 & BL6 mice, NREM sleep and delta power. NREM delta power (upper panel) and NREM sleep (lower panel) 
in five B6 male mice and four SKH1 male mice across two baseline days and the two sleep deprivation days in constant 
darkness. The sleep deprivations are indicated by the pink areas. Note the attenuated reduction in NREM sleep in SKH1 mice 
during beginning of the subjective dark phase (T12-24, T36-48), correlating with the attenuated increase in NREM delta 
power (upper panel) in SKH1 mice. To understand if these changes in NREM EEG delta power are indeed induced by the 
changes in NREM sleep distribution, the sleep-wake distribution will be used to model the changes in sleep pressure (this is 
scheduled but not presented in this thesis). For subsequent analysis mentioned in the text, only the SKH1 mice are used 
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Figure 2-16 Activity measured in EEG implanted SKH1 mice. The averaged number of movements per hour (movements / 
minute) are not significantly affected by the sleep deprivation protocol compared to baseline movements at the subjective 
same Zeitgeber time.  

 

 
 
  

 
Figure 2-15 . The amplitude of NREM sleep is attenuated across the sleep deprivations days.  
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Figure 2-17 Food intake during the two days of sleep deprivation shows a circadian oscillation.  Food intake was quantified 
every two-hours in the mice (n=4) housed in the biolumicorder during the 2hOnOff experiment. Be aware that baseline food 
intake was not measured and is therefore lacking.   
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Life ... is a relationship between molecules.  

Linus Pauling  
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 Cold Inducible RNA Binding proteins: 

regulations and functions 
 

RNA BINDING PROTEINS 

RNA binding proteins (RBPs) are post-transcriptional regulators that shape the abundance of 

mRNA in time and space by binding and transporting mRNAs in the cell (Glisovic, Bachorik, Yong, 

& Dreyfuss, 2008). Furthermore, RBPs can induce alternative splicing (Fu & Ares, 2014), alternative 

polyadenylation (Erson-Bensan, 2016) and RNA editing. A well-known example of the latter is a 

nucleotide conversion in the transcript of the gene Apob by RBP RBM47, leading to two different 

protein isoforms that are separately expressed in the liver and small intestine (Fossat et al., 2014).  

Malfunctioning of RBPs is associated with different diseases, among which the well-known 

Fragile X syndrome. This disease is caused by multiple CGG repeats in the 5’UTR region of the 

FMRP1-gene, leading to silencing of the gene and a subsequent decrease in levels of FMRP-protein. 

This leads to deregulation of mRNAs and protein synthesis in neurons, thereby giving rise to 

behavioral problems of people carrying the tandem repeat mutation (Bagni & Oostra, 2013). RBPs 

are associated with other neurological disorders, as well as with muscular atrophies, metabolic 

disorders and cancer (Cooper, Wan, & Dreyfuss, 2009; Darnell, 2013; Lukong, Chang, Khandjian, & 

Richard, 2008).  

 

CIRBP AND RBM3 

The Cold Inducible RNA Binding Protein CIRBP was simultaneously discovered in mouse testis 

upon cold shock (Nishiyama et al., 1997) and in human cancer cell lines after UV radiation (Sheikh 

et al., 1997). Soon thereafter, the RNA Binding Motif 3 protein RBM3 was also identified as being 

cold inducible in human cell lines (Danno et al., 1997). Because of their molecular and functional 

similarities, both RBM3 and CIRBP will be discussed in this chapter. CIRBP and RBM3 combined 

will be referred to under the abbreviation CRP, for Cirbp Rbm3 Proteins (CRP)s.  

Gene, transcript, protein and localization  

On the human genome, CIRBP is localized on chromosome 19, p13.3 and RBM3 is found on the 

X chromosome, 11.23 (UCSC Genome Browser). CIRBP and RBM3 proteins possess two RNA 

recognition sites at the N-terminal side to which mRNA can bind. An arginine-glycine rich domain 

is found in the C-terminal. Therefore, CRPs are part of the glycine-rich subfamily class IV of 
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proteins, which are highly conserved with respect to their amino acid sequences and function (Zhu, 

Buhrer, & Wellmann, 2016). Homologs of human Cirbp are conserved in vertebrates, with a high 

similarity in mammals.  

 Isoforms of CRPs are described both at the mRNA and protein level. Rbm3 has at least two 

different alternative splicing events that lead to different mRNA isoforms (summarized in Figure 3-

1). An alternative splicing event between exon 5 and 6 adds an extra arginine residue (Arg+) and 

this correlates with the cellular localization of RBM3 in neuronal rat cultures (Smart et al., 2007). 

These two isoforms exist as well in mice. Data obtained from sleep deprivation studies revealed that 

the second alternative splicing event leads to a long and short 3’UTR of Rbm3. The short isoform 

decreases whereas the long isoform increases after sleep deprivation (see Figure 1 in Wang et al., 

2010) (H. Wang, Liu, Briesemann, & Yan, 2010). The function of this opposite response is not clear, 

neither is the effect of sleep deprivation on the presence of the Arg(+) isoform.  

 

REGULATION OF CRPs BY TEMPERATURE 

What mechanism mediates the effect of temperature on CRPs transcript and protein levels? 

Several studies aimed to answer this question, of which the majority focused on Cirbp. Temperature 

can affect the transcription start site of Cirbp (Al-Fageeh & Smales, 2009), but not via the use of 

different promotors (Al-Fageeh & Smales, 2013). So-called Mild Cold Responsive Elements have 

been detected in the 5’UTR of Cirbp, mediating the effect of low temperature (32°C) on Cirbp levels 

via the transcription factor Sp1. The binding of this transcription factor is temperature dependent 

(Sumitomo et al., 2012). However, these two mechanisms, different transcription start sites and 

temperature-dependent activity of transcription factors, were not reproduced in a recent study. 

Instead, temperature was demonstrated to directly affect the splicing efficiency of pre-CIRBP-

mRNA, thereby determining the amount of mature transcript, with lower temperatures [33°C] 

accompanied by higher splicing efficiency (Gotic et al., 2016). It was suggested that a similar 

 

Figure 3-1 The mouse Rbm3 isoforms. The long isoform only exists with an extra arginine residue, while the short isoform 
exists both and with and without the arginine.  
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mechanism occurs for Rbm3 transcripts (see table S6 of Gotic et al., 2016). Pharmacological blocking 

of the temperature-sensitive TRPV-4 channel protein attenuates the effect of hypothermia on CRPs 

protein levels (Fujita et al., 2017), but this can be compensated for by TRPV3 and TRPV8 channels 

(Fujita et al., 2018). RBM3’s translational temperature dependency is linked to the internal ribosome 

entry site, which exhibits increased translation efficiency at lower (32°C) temperatures (Chappell, 

Owens, & Mauro, 2001). A recent study suggested another mechanism: the increase in RBM3 after 

exposure to 32°C was due to reprogramming of the translatome, thereby favoring the translation of 

cold-inducible proteins (Bastide et al., 2017). 

Further studies need to assess the exact contributions of these temperature sensitive 

mechanisms, and if they differ between for example cell types and organisms.  

 

ASSOCATIONS AND FUNCTION OF CRPs 

Development 

RBM3 levels change throughout development of the brain. The highest expression of RBM3 in the 

rat is found during early development, after which overall RBM3 levels decrease (Chip et al., 2011). 

RBM3 levels remain relatively elevated in zones of high translation rates such as the 

subparaventricular zone and the dentate gyrus in the rat (Pilotte, Cunningham, Edelman, & 

Vanderklish, 2009). Interestingly, these changes in RBM3 levels during the first days (until ca. P10) 

are paralleled by changes in sleep-wake state and EEG spectral composition (Cirelli & Tononi, 2015), 

posing the exciting possibility that RBM3 is also functionally involved in neuronal development.  

Hibernation 

Another phenomenon which is characterized by changes in CRPs, sleep-wake state and EEG 

spectral composition, is hibernation. During hibernation, core body temperature decreases 

dramatically. RBM3 transcript increases upon hibernation in liver, heart, brain [golden mantled 

ground squirrel] (Williams et al., 2005), as well as in skeletal muscle, liver, heart, brown adipose 

tissue and hypothalamus [arctic squirrels] (Yan, Barnes, Kohl, & Marr, 2008). In hibernating black 

bears, Rbm3 increases in liver and heart (Fedorov et al., 2011), but this finding has not been 

confirmed at the protein level (Epperson, Dahl, & Martin, 2004; Shao et al., 2010).  
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Several times during the hibernation season, hibernators undergo synaptic remodeling which 

is characterized by a massive loss of neuronal connectivity that is rewired upon euthermia 

(reviewed in (Arendt & Bullmann, 2013)). During these euthermia bouts, animals enter NREM sleep 

which is accompanied by a spectacular increase in NREM EEG delta power (S. Daan, Barnes, & 

Strijkstra, 1991; Trachsel, Edgar, & Heller, 1991) (Figure 3-2). This observation is contradicting the 

SHY hypothesis (see Chapter 1), because instead of downscaling during sleep, the increased NREM 

EEG delta power correlates here with rewiring of the synaptosome. 

What mechanisms underlie these massive changes in the brain? A study that artificially induced 

hypothermia in mice as a model for hibernation found that the synaptic re-formation depends on 

RBM3 (Peretti et al., 2015), which is downstream regulated by the cold-induced protein RTN3 

(Bastide et al., 2017). As opposed to RBM3, CIRBP is less likely to play a prominent role in 

hibernation, as its expression is not affected by hibernation in the cited studies. However, one study 

found that alternative splicing of Cirbp occurs in the heart of hibernating hamsters, possibly 

facilitating faster CIRBP protein 

synthesis upon entering 

hibernation (Sano, Shiina, Naitou, 

Nakamori, & Shimizu, 2015), 

although no data corroborating 

this suggestion has been 

published so far.  

 

Role of CRPs in the central nervous 

system  

Given RBM3s’ exciting 

function in hypothermia, it would 

be interesting to know if CRPs are 

in other ways contributing to 

neural functioning. RBM3 

enhances local protein synthesis 

in dendrites upon cold exposure 

(Smart et al., 2007), which is 

conveyed through  

Figure 3-2 Brain activity, muscle tone and fur temperature during hibernation. 
EEG and EMG traces of three different sleep-wake states (upper panel; D-F), 
during three different ‘thermic’ states (middle panel; A-C) and delta power 
during NREM sleep (lower graph) of a hibernating ground squirrel (Daan et al., 
1991).  
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downregulation of miRNAs (Dresios et al., 2005; Pilotte, Dupont-Versteegden, & Vanderklish, 2011), 

although another study was unable to confirm this mechanism (Bastide et al., 2017). In contrast, 

they found that the transcription machinery is reprogrammed upon cold exposure thereby favoring 

a relative increase in the translation of CRPs, thereby enabling cold-induced proteins to escape 

global protein synthesis downscaling during hypothermia (Bastide et al., 2017).  

Hypothermia is the most robust neuro-protecting treatment to limit brain damage (Dietrich, 

Atkins, & Bramlett, 2009). In the cascade of changes initiated by hypothermia, is there also a role 

for CRPs? In vitro, both CIRBP and RBM3 inhibit apoptosis during hypothermia (32°C) (Chip et al., 

2011; Saito et al., 2010), CIRBP possibly via acting on the H2O2-induced apoptosis (S. Li, Zhang, Xue, 

Liu, & Zhang, 2012). Moreover, in vivo silencing of CIRBP attenuates the protective effect 

hypothermia has on traumatic brain injury induced apoptosis (G. Wang et al., 2016). 

 

Sleep and circadian rhythms  

To date, no specific study has specifically addressed the role of CRPs in the regulation or function 

of sleep and wake. However, some interesting observations regarding associations between sleep-

The effect of sleep deprivation on CRPs 
Species Tissue Sleep deprivation 

/waking leads to:  
Technique 
used 

SD-specs Miscellaneous Study 

Mouse Cortex Cirbp and Rbm3-short 
decrease, Rbm3-long 
increase 

Micro-array 
(Affymetric 430_2) 

GH Time course 
study 

(Maret et al., 2007; 
H. Wang et al., 2010) 

Mouse Cortex Cirbp and Rbm3-short 
decrease 

Micro-array 
(Affymetrix 
GeneChip Mouse 
Gene 1.0 ST array) 

GH, 6hrs (ZT0-
ZT6) 

Changes are 
observed despite 
adrenalectomy  

(Mongrain et al., 
2010) 

Mouse  Liver  Cirbp and Rbm3-short 
decrease 

Micro-array 
(Affymetric 430_2) 

GH, 6hrs (ZT0-
ZT6) 

x (Maret et al., 2007) 

Mouse Cortex - 
astrocytes 

Cirbp decrease Micro-array 
(Affymetric 430_2) 

3 groups: sleep, 
spontaneous 
wakefulness and 
enforced 
wakefulness (4hrs) 

x (Bellesi, de Vivo, 
Tononi, & Cirelli, 
2015) 

Mouse  Hippo-
campus 

Cirbp and Rbm3-short 
decreased, 
Rbm3_long increased  

Micro-array 
(Affymetrix 430_2) 

GH; 5hrs 
(timing differs 
across experiments) 

x (Vecsey et al., 2012) 

White-
crowned 
sparrow  

Cortex  Cirbp decreases  Micro-array 
(Affymetrix Chicken 
GeneChip) 

Human 
presence for 
6hrs  

x (Jones, Pfister-
Genskow, Benca, & 
Cirelli, 2008) 

Humans Blood 
transcrip-
tome 
(majority of 
RNA from 
leukocytes)  

Decrease in Cirbp 
and Rbm3 

Micro-array 
(G2514F, AMADID 
026817; Agilent + 
customized probes) 

Forced 
desynchrony 
protocol 

x (Archer et al., 2014) 

Mice Cortex Decrease Cirbp & 
Rbm3-short, increase 
Rbm3-long 

RT-qpCR GH; 6hrs starting 
at ZT0 

x (H. Wang et al., 
2010) 

Table 3-1 The effect of sleep deprivation on CRP-transcripts in different studies and species. GH: gentle handling. 
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wake state, circadian time and CRPs have been made and will therefore be further discussed here, 

as well as its implications.  

 After the discovery of CIRBP in cold-shocked testes of mice, the same research group 

investigated if daily rhythms in Cirbp could be observed. Their study revealed a robust rhythm of 

Cirbp in cortex and SCN, but not in testis and, unexpectedly, neither in liver. Moreover, no rhythm 

in Cirbp was detected in brain tissue of mice that were housed in constant darkness (Nishiyama et 

al., 1998). These findings are not confirming recent reports on daily rhythms in Cirbp in different 

tissues, including the liver. One could speculate that the rhythmic expression was present in the 

first studies, but that the assays used were not sensitive enough yet to detect those changes.  

 It was only a decennium later that Cirbp re-appeared in the rhythmic literature, when the 

transcript was identified as one of the few transcripts remaining rhythmic in a molecular 

arrhythmic liver of a behavioral rhythmic mouse (Kornmann et al., 2007). Subsequent experiments 

showed that sleep deprivation decreases the expression of Cirbp and the short isoform of Rbm3 

whereas it increases the expression of the long isoform of Rbm3, in different tissues and species (see 

Table 3-1). Experiments that controlled for sleep-wake state across the nychthemeron showed that 

most of the cortical variance of Cirbp and Rbm3 in the mouse is driven by the sleep-wake 

distribution (see Figure 3-3) (Maret et al., 2007; H. Wang et al., 2010). Because the sleep-wake 

distribution also accounts for >80% of the variance in cortical temperature (Franken et al., 1992b), 

these changes in CRPs are likely to be conveyed through temperature.  

 

Figure 3-3 CRPs are mainly driven by the sleep-wake distribution. The nycthemeral amplitude of CRPs is significantly 
attenuated when controlling for sleep-wake state (mouse, cortex; Maret et al., 2007, based on GSE9442). Graphs by 
courtesy of Paul Franken.  

 



Cold Inducible RNA Binding Proteins 

75 
 

This sleep-wake driven property of CRPs raises several exciting hypotheses. For instance, is RBM3 

also functionally involved in the changes in synaptic connections that occur across waking and 

sleeping? Given that RBM3 (but not CIRBP) plays a crucial role in rewiring neurons after 

hypothermia, this poses the exciting possibility that RBM3 is also functionally involved in the sleep-

wake driven modulations of synaptic connections. Another hypothesis is partly based on results 

from the circadian field, which showed that   CIRBP and RBM3 are functionally implicated in the 

regulation of molecular circadian rhythms by mediating high amplitude clock gene expression in 

temperature synchronized cells in vitro (Liu et al., 2013; Morf et al., 2012); i.e. in the absence of CRPs, 

clock gene expression remains rhythmic albeit with lower amplitude. Two different, but not 

necessarily exclusive mechanisms, were held responsible for this observation. The first study found 

that reducing Cirbp by silencing its mRNA, affects the cellular localization of Clock (Morf et al., 

2012), which in turn reduces the circadian amplitude of other clock genes. The second study 

discovered that both CIRBP and RBM3 are participating in alternative poly-adenylation, thereby 

affecting transcript stability (Liu et al., 2013). However, alternative poly-adenylation of core clock 

genes was not found to be compromised upon silencing of Cirbp and Rbm3, thus CRPs exert their 

effects on the clock via alternative poly-adenylation of other transcripts that in turn affect the 

amplitude of clock gene expression.  

Could the changes in CIRBP during a sleep deprivation, possibly through changes in brain 

temperature, mediate the sleep deprivation-induced changes in clock gene expression? This 

question forms the base for the project discussed in the second experimental chapter.  

 



 

76 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

An experiment is never a failure solely because it fails to achieve predicted 

results. An experiment is a failure only when it also fails adequately to test 

the hypothesis in question, when the data it produces don’t prove  

anything one way or another.  

 

Robert Pirsig  
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Summary and contributions  

 

SUMMARY 

The aim of this project was to investigate a possible mechanism through which the sleep-wake 

distribution contributes to changes in clock gene expression, namely via the cold-induced gene 

Cirbp. If CIRBP indeed conveys the sleep-wake driven changes in clock gene expression, Cirbp KO 

mice would exhibit an altered sleep homeostatic phenotype, based on the premise that clock genes 

function in sleep homeostasis. In this project, we determined i) the contribution of sleep-wake state 

and locomotor activity to cortical temperature in the mouse; ii) if the sleep deprivation induced 

changes in clock gene expression are dependent on CIRBP and iii) whether Cirbp KO mice have a 

different sleep homeostatic phenotype. We found that, like in other rodents, the sleep-wake 

distribution is the major determinant of changes in cortical temperature and that these differences 

are not affected by genotype. The sleep deprivation incurred changes of cortical Rev-erbα were 

attenuated in the absence of CIRBP, whereas the expression of Clock and Per2 was increased. Cirbp 

KO mice did not recover as much REM sleep lost after the sleep deprivation as compared to their 

WT littermates. CIRBP suppresses locomotor activity and modulates spectral composition of the 

EEG during active waking.  

 

CONTRIBUTION TO THE PROJECT:  

For this project, most of the experiments were initiated before I was involved. Therefore, my 

input for the design of the experiments was limited to the EEG recordings that included cortical 

temperature. The design of the other experiments was done by Paul Franken. Yann Emmenegger 

had started with the collection of the data. The analysis and visualization of the results, statistics 

and preparation of the manuscript was done by myself under the supervision of Paul Franken.  

The implantation of mice with EEG and EMG was done by Yann Emmenegger. I contributed to 

the EEG/EMG implantation of mice with a thermistor. The sleep deprivations were performed with 

the help of all colleagues from the lab. Yann Emmenegger annotated the EEG data. The analyses of 

sleep-wake state, its spectral composition and cortical temperature were aided by algorithms in-

house available (written by Paul Franken) and modified by myself wherever necessary. 

Cortices and livers were collected and frozen by Yann Emmenegger. I homogenized the tissue, 

isolated RNA and transformed the latter into cDNA for RT-qPCR. Based on discussions with Paul 

Franken and Charlotte Hor (post-doc in our lab), I selected transcripts of interest. After Charlotte 
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Hor taught me how to design primers and probes, I designed the sequences and tested them for 

amplification efficiency before using them on the biological samples. Hannes Richter (Genomic 

Technologies Facility) provided support where necessary to perform the RT-qPCR and explained 

how to use the qBase software to analyze the results.  
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Abstract  

Sleep depriving mice affects clock gene expression, suggesting that these genes partake in sleep 

homeostasis. The mechanisms linking wakefulness to clock gene expression are, however, not well 

understood. We propose CIRBP because its rhythmic expression is i) sleep-wake driven; ii) necessary for high-

amplitude clock gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit 

attenuated sleep-deprivation (SD) induced changes in clock gene expression, and consequently to differ in 

their sleep homeostatic regulation. Lack of CIRBP indeed blunted the SD-incurred changes in cortical 

expression of the clock gene RevErbα, but amplified the changes in Per2 and Clock. Concerning sleep 

homeostasis, KO mice accrued only half the extra REM sleep WT mice obtained during recovery. 

Unexpectedly, KO mice were more active during the dark phase and differed in neuronal oscillations during 

active waking. Thus, after SD, CIRBP adjusts cortical clock gene expression and expedites REM sleep recovery.  

 

Keywords: mice, sleep, Cirbp, cortical temperature, clock genes, locomotor activity, REM sleep, circadian 

rhythms 

 

Introduction 
 

The sleep-wake distribution is coordinated by the interaction of a circadian and a sleep 

homeostatic process (S. Daan et al., 1984). The molecular basis of the circadian process consists of 

clock genes that interact through transcriptional/translational negative feedback loops. 

CLOCK/NPAS2:BMAL1 heterodimers drive the transcription of many target genes, among which 

Period (Per1-3), Cryptochome (Cry1, -2), Rev-Erbs and RORs. Subsequently, PER:CRY complexes 

inhibit CLOCK:BMAL1 transcriptional activity and thus prevent their own transcription. In a 

secondary loop, REV-ERBα and RORα regulate the transcription of BMAL1, and together with other 

transcriptional feedback loops, a stable period of ca. 24 hours is ensured (Lowrey & Takahashi, 2011).  

The sleep homeostatic process keeps track of time spent awake and time spent asleep, during 

which sleep pressure is increasing and decreasing, respectively. The mechanisms underlying this 

process are to date unknown. However, accumulating evidence implicates clock genes in sleep 

homeostatic processes [reviewed in (Franken, 2013)]. This is supported by studies showing that 

mutations in circadian clock genes induce an altered sleep homeostatic response to sleep 

deprivation (SD) in several species [e.g. (Mang et al., 2016; Shaw, Tononi, Greenspan, & Robinson, 

2002; Viola et al., 2007; Wisor et al., 2002)]. Furthermore, SD affects the expression of clock genes 
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such as Rev-erbα, Per2 and Dbp (Mongrain et al., 2010), but the mechanisms through which SD leads 

to changes in clock gene expression remain unclear.  

In this study, we examined one such mechanism and hypothesized that the SD-induced changes 

in clock gene expression occur through Cold-Inducible RNA Binding Protein (CIRBP) (Mongrain et 

al., 2010). Decreasing temperature in vitro increases CIRBP levels (Nishiyama et al., 1997) and the 

daily changes in body temperature of the mouse are sufficient to drive robust cyclic levels of Cirbp 

and CIRBP in vitro (Morf et al., 2012). Although the daily changes in cortical temperature (Tcx) 

appear circadian, in the rat more than 80% of its variance is explained by the sleep-wake 

distribution (Franken et al., 1992b). Hence, the daily rhythms of cortical Cirbp become strongly 

attenuated when controlling for these sleep-wake driven changes in Tcx by SDs (see SFig1, based on 

Gene Expression Omnibus number GSE9442 from Maret et al., 2007). Furthermore, Cirbp is the top 

down-regulated gene after SD (Mongrain et al., 2010; H. Wang et al., 2010) underscoring again its 

sleep-wake dependent expression. But how does CIRBP relate to SD induced changes in clock gene 

expression? 

We propose CIRBP as mechanism linking sleep-wake state information to clock gene 

expression because of its role in conveying temperature information to clock gene expression. More 

specifically, the temperature-driven changes in CIRBP are required for high amplitude clock gene 

expression in temperature synchronized cells (Morf et al., 2012) (Liu et al., 2013). Therefore, we (and 

others (Archer et al., 2014)) hypothesized that changes in clock gene expression during SD are a 

consequence of the sleep-wake driven changes in CIRBP. We used mice lacking CIRBP (Cirbp KO) 

(Masuda et al., 2012) to test this hypothesis. We first assessed whether also in the mouse the daily 

changes in Tcx are driven by the sleep-wake distribution and what the contribution of locomotor 

 

Supplementary Figure-1 The sleep-wake distribution 
drives daily changes of central Cirbp expression in the 
mouse. At the onset of the baseline rest phase (ZT0), when 
mice spend more time asleep and thus Tcx decreases, Cirbp 
expression increases (blue symbols and lines), whereas at 
ZT12, when mice spent most of their time awake and Tcx 
increases, Cirbp decreases. When controlling for these 
diurnal changes in sleep-wake distribution by performing 
four 6h sleep deprivations starting at either ZT0, -6, -12, 
and -18, the diurnal amplitude of Cirbp is greatly reduced 
(red symbols represent levels of expression reached at the 
end of the sleep deprivations). Nine biological replicates 
per time point and condition from three different inbred 
strains of mice were used, and RNA was extracted from 
whole brain tissue (see Maret et al. 2007 for details). Data 
are accessible under GEO GSE9442.   
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activity (LMA) to these changes was. Because we expected that the SD led to changes in clock gene 

expression in KO mice, a sleep homeostatic phenotype was anticipated as well based on the premise 

that clock genes partake in sleep homeostasis (Franken, 2013). 

Our experiments revealed that also in the mouse the sleep-wake distribution is the major 

determinant of changes in Tcx with a significant albeit small contribution of LMA. The data further 

demonstrated that lack of CIRBP did attenuate the sleep-deprivation (SD) induced changes in the 

cortical expression of Rev-erbα, whereas it unexpectedly augmented the sleep deprivation induced-

response of Per2 and Clock. In line with the role of clock genes in sleep homeostasis, Cirbp KO mice 

accrued only half the extra REM sleep WT mice obtained during recovery sleep, whereas no 

evidence of altered dynamics of NREM EEG delta power [0.75-4.0 Hz] was found. Unexpectedly, we  

noted that Cirbp KO mice were more active during the dark phase without increasing their time 

spent awake. This was accompanied by changes in neuronal activity during active waking. 

Altogether, our data suggests that Cirbp contributes to some of the SD induced changes in clock 

gene expression but also underscore that other sleep-wake driven pathways contribute as well. 

 

Results 
 

THE RELATION BETWEEN CORTICAL TEMPERATURE (TCX), SLEEP-WAKE DISTRIBUTION, 

AND LOCOMOTOR ACTIVITY (LMA) 

The dependence of Tcx on sleep-wake state has been demonstrated in a number of mammals 

(Alfoldi et al., 1990; M. A. Baker & Hayward, 1968; Deboer et al., 1994; Franken et al., 1992b; Hayward 

& Baker, 1968) but not in the mouse. Moreover, no study so far specifically controlled for LMA when 

quantifying the contribution of sleep-wake state to Tcx. We therefore measured Tcx, LMA 

(determined with passive infra-red sensors) and sleep-wake state (derived from 

electroencephalogram (EEG) and electromyogram (EMG) recordings) in wild-type (WT) and Cirbp 

KO mice during two baseline days, a 6hr SD and the subsequent two recovery days. Because the 

relationship between Tcx, LMA, and waking in WT and KO mice was alike, we illustrated the results 

in WT mice only. 

 

Fast changes in Tcx occur at sleep-wake state transitions   

A representative example of a 96h recording of LMA, sleep-wake state and Tcx is depicted in 

Figure 1. Consistent with mice being nocturnal animals, the mouse shows more waking and LMA 
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and overall higher Tcx levels during the dark phase. Sleep depriving mice by gentle handling on the 

third recording day from ZT0-6 led to an almost uninterrupted period of 6hr waking during which 

LMA and Tcx reached values comparable to bouts of spontaneous wakefulness under undisturbed 

baseline conditions (i.e., ZT12-18). A closer inspection of the rapid changes in Tcx suggest that sleep-

wake state transitions underlie these fluctuations. We further quantified these sleep-wake evoked 

changes in Tcx by selecting and aligning transitions between consolidated bouts of NREM and REM 

sleep and wakefulness during the two baseline days (Fig 1B). When entering NREM sleep, Tcx 

consistently decreased, whereas at a transition into wake and REM sleep, Tcx increased. The latter 

transition was characterized by a fast and consistent change in Tcx; within 1.5 minutes, Tcx increased 

by 0.4°C. The subsequent transition from REM sleep into wake leads to an initial decrease in Tcx 

and contrasts with the waking-evoked increase in Tcx when transitioning from NREM sleep to wake. 

Altogether, these results provide evidence that sleep-wake state importantly contributes to changes 

in Tcx. The sleep-wake state evoked changes in Tcx at these transitions did not differ between 

genotypes (2-way RM ANOVA, factors GT and Time; GT: p>0.13, GTxTime: p>0.09).  

 

Daily cycles in Tcx are determined by sleep-wake state  

Can the rapid changes in Tcx, evoked by sleep-wake state transitions, explain the large daily 

amplitude (Fig.2A)? We investigated how waking and LMA relate to diurnal changes in Tcx by 

inspecting these variables per hour. The LMA data was log2 transformed to allow for parametric 

assessment. Tcx, waking and LMA oscillated over the course of the 24h averaged baseline day (BL) 

(2-way RM ANOVA, Factor Time: F(23,207)=70.5; 27.2; 22.5; p<0.0001, respectively, Fig2A,; Factor 

GT x Time (1,24); Tcx: F(23,207)=0.9, p=0.63; waking: 1.7, p=0.03, LMA: 1.21, p=0.24). The amplitude 

in Tcx during baseline (BL), calculated as the averaged differences between the highest and lowest 

hourly value of the two baseline days, did not differ between genotypes (WT: 2.34±0.1, KO: 2.33±0.1; 

t-test: t(9)=-0.02, p=0.98). The time course of waking and LMA both resembled that of Tcx. This 

observation was supported by the strong correlation between Tcx and waking (waking: Fig 2B left; 

WT: R2=0.76; KO: R2=0.81, p<0.0001) and between Tcx and LMA (Fig 2B right: WT: R2=0.60; KO: 

R2=0.72, p<0.0001).  

To assess the influence of waking on Tcx at a time of day when Tcx is normally low and mice 

spend most of their time asleep, mice were sleep deprived between ZT0 and ZT6. The SD 

successfully increased waking by 97% compared to time spent awake during BL at the same time of 

day (ZT0-6, paired t-test: waking [min/hour] BL: 21.7±0.9, SD: 58.6±0.3; t(10)=-38.1, p<0.0001), as  
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Figure 1 Tcx changes with sleep-wake state. (A) A representative four-day recording of one mouse in LD 12:12 (in white:grey) 
during two baseline days (top 2 panels), followed by a 6hr SD (in red; third panel) and two recovery days (bottom 2 panels), 
with within each panel Tcx (top; line graph),  LMA (middle; area plot) and sleep-wake states (bottom; hypnogram). Tcx and 
sleep-wake states are averaged per minute to aid visualization; LMA is collected and plotted per minute (see Methods). (B) 
Tcx, depicted as mean±SEM, relative to Tcx at the sleep-wake transition (as determined by last value before and first value after 
transition). Tcx increases when transitioning from NREM sleep to wake and to REM sleep (F(1,5)=22.6; p<0.005 and F(1,5)=229; 
p<0.0001, respectively), decreases when transitioning from wake to NREM sleep (F(1,5)=42.6; p=0.001). The transition from 
REM sleep to wake did not significantly affect overall Tcx (F(1,5)=1.8, p=0.24). Transition data obtained from baseline 
recordings (see Methods for transition detection). 
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well increased LMA (log2[movements], BL: 2.2±0.3, SD: 6.9±0.1; t(10)=-20.3, p<0.0001). These 

changes led to sustained elevated Tcx ([°C]: BL: 34.7±0.07, SD: 36.6±0.06, t(10)=-44.3, p<0.0001), 

suggesting that wakefulness and/or LMA drives changes in Tcx. Genotype did not contribute or 

interact with these changes (2-way ANOVA, GT*SD/BL: p>0.39). However, factors accompanying 

the SD other than extended waking, such as stress, could have contributed to the SD-induced 

changes in Tcx. To address this issue, we selected within each mouse the longest uninterrupted 

spontaneous waking bout occurring during BL (average bout length: 100±19 minutes). We then 

compared Tcx during the last 10 minutes of this spontaneous waking bout (to reduce any effects of 

differences in Tcx at bout-onset) with Tcx reached in the last 10 minutes of an equivalent time spent 

awake from the start of the SD on. Tcx reached during the SD and spontaneous wakefulness did not 

differ (Fig 2B; also not in KO mice: t(5)=0.84, p=0.44). Thus, factors other than extended 

wakefulness, such as light exposure and circadian time, which differed between the longest waking 

bout under BL from the SD conditions, do not importantly contribute to the changes in Tcx during 

the SD.  

Considering the strong correlation between LMA and Tcx (WT: R2=0.72; p<0.0001; KO: R2=0.78; 

p<0.0001), it could be hypothesized that LMA explains partly the sleep-wake associated changes in 

Tcx. To investigate this further, the respective contribution of waking and LMA to changes in Tcx 

was quantified by a partial correlation analysis. Although LMA did significantly contribute, 

substantially more of the variance in Tcx was explained by waking in both genotypes (paired t-test 

on Fisher Z-transformed R2-values from each mouse’s partial correlation of hourly waking and Tcx, 

and hourly LMA and Tcx: WT: t(5)=5.1, p=0.004; KO: t(5)=10.7, p=0.0001, and see also Fig 2D for R2-

partial correlation coefficients, based on hourly data from all WT mice combined). We then 

determined the variance that could not be explained by the correlation between waking to Tcx (i.e. 

the residuals) by calculating the difference between the observed Tcx in a given hour and the 

predicted Tcx based on the time-spent-awake in that hour. The linear regression overestimated and 

underestimated Tcx during the light phase and dark phase, respectively (Fig 2E,F; BL1 and BL2). 

Fitting a sinewave through the residuals of the two baseline days revealed a circadian distribution, 

reminiscent of the circadian modulation of the residuals of this relationship in the rat (Franken et 

al., 1992b). However, considering also the residuals of the SD and recovery reveals a consistent 

parallel with the distribution of LMA expressed per unit of waking across the whole course of the 

experiment (Fig 2G).  
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Figure 2 : Waking is the 
major determinant of 
Tcx. (A) Time course of 
hourly values of Tcx, 
waking and LMA with 
high Tcx, more waking 
and LMA during the dark 
phase and during SD. (B) 
Left graph: Waking 
correlates with Tcx (n=6; 
96 values per mouse; 
R2=0.76, p<0.0001). Right 
graph: LMA correlates as 
well with Tcx: R2=0.60, 
p<0.0001. (C) Tcx is not 
significantly different 
during SD in comparison 
to long waking bouts 
during BL (t(5)=0.41, 
p=0.70). (D) Waking after 
correcting for LMA is the 
major determinant of Tcx, 

as revealed by partial 
correlation analysis; here 
performed on the 
combined hourly values 
of all WT mice. (E) Two 
representative examples 
[TC03 and TC08], with 
measured Tcx (closed 
circles), and predicted Tcx 
(stippled line) [based on 
the correlation between 
Tcx and waking]. (F) 
Based on the amount of 
waking, higher Tcx is 
expected during the light 
phase, resulting in 
negative residuals, and 
lower Tcx during the dark 
phase and SD, resulting 
in positive residuals  
[residuals: observed Tcx – 
predicted Tcx] (t-test: 
data<>0, p<0.05). The 
sinewave was fitted to 
the residuals during BL. 
(G) LMA per unit of 
waking follows a similar 
pattern as the residuals 
in figure F.   
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To determine whether including LMA, in addition to waking, could predict a larger portion of 

the variance in Tcx, we applied three Mixed Linear Models, where LMA was considered by 

expressing LMA per unit of waking (LMA/Waking). Model1 explained the variance in Tcx based on 

waking alone, Model2 also incorporated LMA/Waking, and Model3 considered additionally the 

interaction between Waking and LMA/Waking. Indeed, Model3 predicted best the variance in Tcx 

although in terms of explaining the variance in Tcx, the improvement is marginal over the two other 

models (Model1: R2
c=0.84; Model2: R2

c=0.85; Model3: R2
c=0.86; chi-squared test: Model1 vs Model2: 

X2(5)=16.2; p<0.0001; Model2 vs Model3: X2(6)=25.0; p<0.0001). Thus, the sleep-wake distribution is 

the most important determinant of Tcx but LMA during waking is modestly contributing as well. 

Nevertheless, also the residuals of this model, depicted in FigS2, still showed a similar pattern like 

the residuals in Fig.2F, pointing towards either the contribution of another unidentified variable 

and/or a non-linearity of the association between the contribution of LMA and sleep-wake states 

to changes in Tcx. 

 
Figure S2. The residuals of the optimized mixed linear model (fit3) still show a pattern alike the residuals in Figure 2-F.   

 

THE INFLUENCE OF SD AND CIRBP ON TRANSCRIPTS IN CORTEX AND LIVER  

Our next and main question concerned whether CIRBP participates in linking the effect of SD 

to clock gene expression. To this end, we quantified 11 transcripts from liver and 15 from cortex 

before and after SD by RT-qPCR. Genes of interest included transcripts affected by SD (Maret et al., 

2007; Mongrain et al., 2010) and/or by the presence of CIRBP (Liu et al., 2013; Morf et al., 2012), with 

an emphasis on clock genes. Mice were sacrificed before SD at ZT0, or 6 hours later after SD (ZT6-



Sleep, Tcx, CIRBP and clock genes 

88 

SD) together with non-sleep deprived control mice that could sleep ad lib (ZT6-NSD). Statistics on 

ZT0 (t-test) and ZT6 (2-way ANOVA) can be found in table S1.  

From ZT0 to ZT6 in BL, Tcx decreased because during this time mice sleep the most (see Fig 2A), 

which was accompanied by the expected increase in the cold-induced transcript Cirbp expression 

in WT mice (cortex: t(8)=3.2, p=0.01; liver: t(8)=2.7, p=0.03 ); Fig 5A and SFig3, compare also with 

SFig 1). In contrast, SD during the same time span, incurred a decrease in cortical and hepatic Cirbp 

relative to non-sleep deprived controls (cortex: Fig 5A; liver: SFig3), consistent with the wake- 

 
Figure 3 Cortical expression of several genes is affected by SD and the lack of CIRBP Mice were sacrificed at ZT0, at ZT6 after sleep 
deprivation (ZT6-SD) or after sleeping ad lib (ZT6-NSD). Statistics are performed separately on ZT0 (factor GT, t-test), and ZT6 
(factor GT and SD; 2-W ANOVA). Significant (p<0.05) GT differences are indicated by a black line and *, the effect of SD in WT 
mice with a grey line and *, and in KO mice with a green line and *. Interaction effects (GTxSD) at ZT6 are indicated by a red *. 
See table S1 in supplementary data for statistics. 
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induced increase in Tcx during SD. No Cirbp mRNA was detected in KO mice. 

RBM3 is another cold-inducible RNA Binding Protein and, like CIRBP, mediates temperature 

into high-amplitude clock gene expression in vitro (Liu et al., 2013). A long and a short isoform of 

Rbm3 (Rbm3-long and –short, resp.) that differ in their 3’UTR length, were discovered in the mouse 

cortex. Although called ‘cold-induced’, these isoforms exhibit opposite responses to SD (H. Wang 

et al., 2010), with a decrease in the short isoform and an increase in the long isoform. We found that 

the short isoform is far more prevalent than the long isoform which could not be detected in liver 

(PCR cycle number for all samples pooled: liver: Rbm3-short: 28.2±0.2, Rbm3-long: >32 (?); i.e., 

beyond reliable detection limit; cortex: Rbm3-short: 25.6±0.2, Rbm3-long: 29.7±0.1, amplification 

efficiency Rbm3-short: 2.11 and Rbm3-long 2.07). We confirmed that after SD, Rbm3-short was 

 
Supplementary Figure-3 Changes in transcripts incurred by the absence of CIRBP and/or SD in the liver. Legend same as in 
Figure 4-5. See Table S1 for statistics. 



Sleep, Tcx, CIRBP and clock genes 

90 

decreased in the cortex (Fig 5A) and liver (SFig3), whereas Rbm3-long was increased in cortex. The 

latter observation reached significance only in the KO mice (Fig-5A). 

As anticipated, cortical expression of the activity (and waking)-induced transcripts Homer1a, 

Dusp4, Hspa5/BiP, Hsp90b, and Hsf1 was increased by SD (SFig4), although post-hoc tests revealed 

that the latter two were significantly increased only in Cirbp KO mice. Furthermore, the effect of 

SD on the transcripts Hsp90b and Hspa5 was significantly amplified in Cirbp KO mice compared to 

WT mice. Unexpectedly, no changes in the expression of heat shock transcripts incurred by SD or 

genotype were detected in the liver (SFig3).  

The presence of CIRBP and RBM3 is associated with longer 3’UTRs in vitro, thereby increasing 

the ratio of the longer (extended or ext) over the shorter (common or com) isoform, also known as 

the ext/com ratio (Liu et al., 2013). We aimed to replicate this finding in vivo in the cortices and 

livers of WT and KO mice, and hypothesized that in both tissues i) SD, by suppressing Cirbp and 

Rbm3, reduces the ext/com ratio and ii) Cirbp KO mice have reduced ext/com ratio under BL 

conditions. We selected the transcript splice-factor proline Q (Sfpq) for further investigation 

because it is known to be sleep-wake driven ((Maret et al., 2007); see its supplementary table 5 and 

GSE9444) and the poly-adenylation site is affected by the presence of CIRBP (((Liu et al., 2013), see 

also FigS4-S5 of Liu et al., 2013). SD indeed increased the overall levels of the transcript Sfpq, 

although this only reached significance in Cirbp KO (Fig3B). As expected, SD significantly decreased 

the ext/com ratio in both genotypes and tissues (Fig 3B; 2-way ANOVA, factor SD: F(1,16)=20.4, 

p=0.003), except for the cortical ext/com ratio of WT mice. More specifically, we observed an 

unexpected non-significant increase of this ratio in the cortex of WT mice, leading to a significant 

GT x SD interaction (F(1,16)=5.25, p=0.036). The lack of CIRBP in Cirbp KO mice under baseline 

conditions was not associated with differences in the ext/com ratio at neither ZT0 nor at ZT6 (ZT0 

(liver: (t(8)=1.55, p=0.16); cortex: t(7)=2.0, p=0.09; ZT6: liver: t(8)=0.19, p=0.85, cortex: t(8)=1.4, 

p=0.20). Thus, although SD generally led to the expected decrease in ext/com ratio, genetic deletion 

of CIRBP did not. Si-Cirbp can, like SD, be considered, as an acute manipulation of Cirbp levels and 

contrasts with the Cirbp KO mouse, where CIRBP was never present. This suggest that only the 

acute presence of the cold-induced proteins CIRBP and RBM3 is critical in adjusting the 3’UTR 

length of Sfpq, whereas chronic absence of CIRBP by genetic deletion does not importantly 

contribute to the ext/com ratio.  

Our main question concerned the contribution of CIRBP to sleep-wake induced changes in 

clock gene expression. Previous studies evaluating the effects of SD on cortical clock transcripts 
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showed a consistent increase in Per2 and a decrease in Dbp and Rev-erbα¸whereas the response of 

Clock and Npas2 varied among studies, but if any, tended to increase after SD (reviewed in (Mang 

& Franken, 2015)). Indeed, in the cortex of WT mice, SD increased cortical Per2, decreased Dbp and 

Rev-erbα, but did not significantly affect Clock and Npas2. In accordance with our hypothesis, 

CIRBP attenuated the SD incurred changes of cortical Rev-erbα, a transcriptional repressor recently 

implicated in the sleep homeostat (Mang et al., 2016). This observation contrasts with the genotype-

dependent changes in Per2. When the lower levels of cortical Per2 in Cirbp KO mice at ZT0 are 

considered, the effect of SD was larger (2-way ANOVA, ZT0-ZT6[SD], interaction effect GT x SD: 

F(1,16)=12.4, p=0.0028). Also, the expression of Clock in the cortex was significantly increased by SD 

in Cirbp KO mice. Compared to the cortex, the clock gene expression in the liver appeared more 

resilient to the effect of SD, as only Dbp and Rev-erbα were significantly affected and not Per2 (SFig 

5). The lack of CIRBP did not interfere with this response, nor did it contribute to genotype 

dependent changes of other (clock) gene transcripts in the liver.   

Taken together, the absence of CIRBP modulated the SD induced changes in the cortical 

expression of the clock genes Rev-erbα, Clock and Per2. Furthermore, the expression of transcripts 

in the heat shock pathway were also affected by CIRBP.   

 

 

  

 
Supplementary Figure-4 Changes in transcripts incurred by the absence of CIRBP and/or SD in the cortex. Legend same as in 
Figure 4-5. See Table S1 for statistics. 
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CIRBP CONTRIBUTES TO SLEEP HOMEOSTASIS   

Because Cirbp KO mice showed a modulation of the response to SD in three out of five cortical 

clock gene transcripts, and clock genes importantly partake in the sleep homeostatic process 

(reviewed in (Franken, 2013)), we hypothesized that Cirbp KO mice have an altered sleep-

homeostatic process. Sleep-wake states were determined based on EEG and EMG signals (see 

Methods) in male KO mice and their WT littermates. We also quantified EEG power in the delta 

band [0.75 – 4.0 Hz] during NREM sleep, which is a proxy of NREM sleep pressure and reflects a 

homeostatically regulated sleep process, Process S (S. Daan et al., 1984). As a second sleep 

homeostatic measure, we calculated the amount of NREM and REM sleep recovered after SD 

relative to baseline sleep.  

 

Baseline characteristics of sleep-wake behavior do not differ between Cirbp KO and WT mice  

During the two baseline days, no significant differences in waking, NREM or REM sleep were 

observed. This was assessed by comparing time spent in these three behavioral states per light and 

dark phases and by inspecting their average time course during baseline (see Fig.3A and Fig4B).  

 

Sleep homeostatic processes under BL and recovery  

The time course of delta power in the two genotypes was overall similar. In the dark phase, when 

mice spent most of their time awake and thus sleep pressure accumulates, delta power during 

NREM sleep was highest. This contrasts with the end of the light phase [ZT8-12], where NREM sleep 

delta power reached its lowest levels of the day due to the high and sustained prevalence of NREM 

sleep in the preceding hours. Despite the overall similarities in daily changes of NREM delta power, 

subtle differences were observed: delta power levels were higher during the dark phase in Cirbp KO 

mice compared to WT, and these differences reached significance during the dark periods of  

recovery (Fig 4A, 2nd graph from top).  

 WT KO Statistics 
(2-W ANOVA) 

Light Dark Light Dark Factor GT x Light, Df : 1,35 

NREM sleep 389±4 189±10 376±4 170±13 F=0.02, p=0.89 

REM sleep 70±2 19±2 66±2 20±2 F=0.83, p=0.37 

Total waking 260±4 512±11 277±5 530±14 F=0.02, p=0.9 

TDW 45±3 179±12 55±5 192±15 F=0.13, p=0.72 

LMA 119±16 817±70 181±26 1370±142 F=7.1, p=0.01 

Table 1. Baseline time spent in sleep-wake states (min) and LMA (movements) per 12 hours per genotype. 2-way ANOVA (Factor 
GT and Light/Dark) on those same 12-hour values. Degrees of freedom for both GT and Light/Dark: Df=1; error term: Df=35.  
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Differences in delta power can be attributed either to changes in the dynamics of the underlying 

homeostatic process (Process S) and/or to changes in the sleep-wake distribution. Evidence 

supporting the latter possibility were observed because Cirbp KO mice tended to spend less time in 

NREM sleep (and more time awake) during the early dark phase compared to WT mice, reaching 

significance during the recovery (Fig 4A; 3rd graph from top). To test if these changes in the sleep-

wake distribution were indeed sufficient to raise NREM delta power above WT levels, we estimated 

the increase (τi) and decrease (τd) rate of delta power by a simulation of the underlying Process S 

based on the sleep-wake distribution. Process S increases exponentially during waking and REM 

sleep with time constant τi and decreases during NREM sleep with τd (see Materials and Methods, 

and (Franken et al., 2001) for more details). This simulation not only captured well the overall  

dynamics but also the genotype differences in delta power (Fig 4A; top graph, mean square of the 

differences measured-predicted delta power, mean ± SEM: WT: 10.1±0.3, KO: 10.4±0.4).No 

differences in the time constants of Process S were detected (see Table 2). Hence, the reduction in 

NREM sleep in Cirbp KO mice in the beginning of the dark period causes the higher NREM EEG 

Figure 4 CIRBP affects sleep distribution during the recovery and the REM sleep homeostat. Cirbp KO (green lines and areas) 
and WT (black line, grey areas) mice during BL, SD and REC (areas span ±1SEM range) (A) From top to bottom: Simulated delta 
power (Process S), measured NREM delta power, NREM sleep and REM sleep. During BL, trends, but no significant effect of 
GT or its interaction with time are detected in the simulation of process S, delta power, NREM sleep or REM sleep. During REC, 
the simulation predicts increased delta power in Cirbp KO mice (GT: F(1,34)=5.56, p=0.024), based on differences in NREM 
distribution (GT: F(1,34)=6.02, p=0.0194) which are also reflected by increased delta power during the dark phase (GT: 
F(1,34)=4.65, p=0.038). Genotype effects in REM sleep are also detected during recovery (factor GT: F(1,34)=5.45, p=0.026). 
Exact timing of GT differences is indicated by infra-posed red lines (post-hoc t-test, p<0.05).  (B) Top: In the second recovery 
day, less NREM sleep is recovered in KO mice than in WT mice (REC1 at 72Hr: WT: 41.9±6.1 KO: 38.6±9.7 min; t-test: t(34)=0.30, 
p=0.76). Bottom: KO mice accumulate less REM sleep during the first recovery day over the baseline day in comparison to WT 
mice relative to baseline (REC1 at 72Hr, WT: 20.9±2.3 KO: 11.2±2.0, t-test: t(35)=3.0, p=0.004).  
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delta power values in subsequent hours, underscoring the notion that small differences in NREM 

sleep time can have large repercussions on delta power when waking prevails and thus Process S  

increases (Franken et al., 2001). 

 

 

A different aspect of NREM sleep homeostasis concerns the regulation of time spent in this 

state. This can be quantified by accumulating relative differences in time spent in NREM sleep from 

corresponding baseline hours over the recovery period. During the first recovery day, both KO and 

WT mice gained ca. 40 minutes of NREM sleep relative to baseline (Fig 4B).  

The amount of REM sleep is also homeostatically defended (Franken, 2002). By the end of REC1, 

both WT and KO mice spent more time in REM sleep compared to corresponding baseline hours. 

However, this increase was significantly attenuated by 46% in Cirbp KO mice (Fig 4B). Because no 

significant differences were detected during baseline in time spent in REM sleep (see also Table 1), 

this attenuated rebound in REM sleep resulted from less REM sleep during recovery, specifically in 

the first hours of the dark phase when the genotypic differences were most prominent (Fig 4A, 

lowest graph).  

Thus, although CIRBP did not affect the processes underlying NREM sleep intensity, it did 

contribute to REM sleep homeostasis by increasing the amount of REM sleep after SD. 

 

An unanticipated waking phenotype in Cirbp KO mice 

While quantifying sleep-wake states, we observed unexpectedly that Cirbp KO mice were more 

active than their WT littermates during the dark phase (t(31)=-2.56, p=0.015, see also Table 1). 

Especially in the first 6hrs of the dark phase, Cirbp KO mice were almost twice as active 

(movements: WT: 463.8±60.7, KO: 801.8±118.4, t(35)=-2.7, p=0.012). Interestingly, this pronounced 

increase was not associated with a significant increase in time spent awake (per 12 hrs: t(35)=1.2, 

 
WT KO t-test, df=34 

S0 [%] 128.2 ± 2.4 132.1 ± 2.6 t=1.10, p=0.29 
τi [h] 13.2 ± 1.2 12.9 ± 1.0 t=-0.16, p=0.87 
τd [h] 3.0 ± 0.2 2.8 ± 0.2 t=-0.74, p=0.46 

LA [%] 45.1 ± 1.4 45.1 ± 1.1 t=-0.02, p=0.98 
UA [%] 288.8 ± 3.0 296.6 ± 3.2 t=1.80, p=0.09 

Table 2 Time constants for Process S do not differ between Cirbp WT and KO mice. Mean time constants (±SEM) obtained 
by the simulation (Process S) with the best fit to the NREM delta power values, where the increase of process S is simulated 
by τi, the decrease by τd and the upper- and lower asymptotes by UA and LA, respectively. No significant genotype 
differences were observed. See material and methods for detailed description of the simulation. 
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p=0.24, and see Table 1), and indeed Cirbp KO mice are more active per unit of waking (average in 

the dark phase, LMA [movements/waking(min)], WT: 1.3±0.13, KO: 2.1±0.28; t(35)=-2.7, p=0.01). 

Note that also Tcx was not significantly increased in Cirbp KO mice during the dark phase (t-test, 

t(10)=1.3, p=0.24; WT: 35.9±0.1, KO: 36.1±0.1) despite the increased LMA at this time of the day, 

further underscoring the minimal contribution of LMA to Tcx.  

 
Figure 5 CIRBP suppresses LMA and affects spectral composition during TDW. (A) LMA (top), waking (middle), and TDW 
(bottom graph) in Cirbp KO (green lines and areas) and WT (black line, grey areas) mice during BL and SD per hour (areas span 
±1SEM range). Cirbp KO mice are more active in the dark periods only (BL: GTxTime: F (47, 1457) = 3.514, P<0.0001; REC: 
GTxTime: F (41, 1271) = 5.241, P<0.001), and spent more time awake and in TDW during REC compared to WT mice (total 
waking: BL: GTxTime: F(47,1457)=1.08, P=0.3316 REC: GTxTime: F (41, 1271) = 1.912, P=0.0005; TDW: BL: GTxTime: F (47, 
1457) = 1.067, P=0.3530; REC: GTxTime: F (41, 1271) = 1.754, P=0.0025). Significant GT differences are marked by red lines 
above the respective graphs (post-hoc t-tests; p<0.05). ∆ and ∇ indicate a significant increase and decrease in REC compared 
to same time in BL, respectively.  (B)  Cirbp KO (green lines and areas) and WT (black line, grey areas) mice (areas span ±1SEM 
range). CIRBP contributes to the spectral composition of TDW in the dark phase (2-way RM ANOVA; GTxFreq: 
F(278,9730)=2.04; p<0.0001, red symbols in lower panel: post-hoc t-tests, p<0.05), and KO mice tend to have a faster theta 
peak frequency (TPF) during TDW in the dark phase (t(35)=2.03; p=0.0506). (C)TPF in the dark phase correlates only in KO mice 
significantly with LMA (WT: R2=0.12, p=0.17, KO: R2=0.71, p<0.0001).  
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CIRBP modulates the spectral composition of the EEG during theta dominated waking 

Theta-dominated waking (TDW) is a sub-state of waking that correlates with activity, prevails 

during the dark phase and SD, and is characterized by the presence of EEG theta-activity (Buzsáki, 

2006). We used a previously designed algorithm to determine TDW (see material and methods and 

(Vassalli & Franken, 2017)). Despite their increased LMA Cirbp KO mice did not spend more time 

in TDW during the dark phase of the BL (see Table 1, t(31)=-1.22, p=0.23). If not time spent in TDW, 

does the increased LMA in Cirbp KO mice relate to changes in brain activity during dark  

phase TDW? 

Although in both genotypes the TDW EEG showed the characteristic theta activity [6.5-12.0 Hz], 

subtle differences between genotypes were detected by spectral decomposition of the EEG signal. 

Slow [32-45Hz] and fast [55-80Hz] gamma power were both reduced during TDW in Cirbp KO mice 

(Fig 3-B) and was present across the whole experiment (Supplementary Figure 5; and see time 

course Supplementary Figure 6), indicating that these spectral genotype differences are robust 

across different light conditions, sleep deprivation, and circadian time. In contrast, the spectral 

composition of the EEG during ‘quiet’ waking (i.e. all waking that is not TDW) was remarkable 

similar between the two genotypes (Supplementary Figure 5), demonstrating that the changes in 

 

Supplementary Figure-5 Changes in the EEG spectra are observed in TDW, but not in quiet waking. Spectral composition of 
Cirbp KO (green lines and areas) and WT (black line, grey areas) mice at different times of the experiment (indicated by the 
title). In each graph, the top panel depicts the spectral composition whereas in the lower panel, the KO spectral composition 
relative to the WT is shown (ratio KO/WT). Red symbols in lower panel indicate significant different for the frequency bins 
(post-hoc t-test, p<0.05). ‘Quiet’ waking baseline dark phase: No effect of GT or an interaction effect (2w RM ANOVA, 
GT*Freq: F(278, 9730)=0.81, P=0.99) on the spectral composition of quit waking in the dark phase during the baseline. Sleep 
deprivation TDW: significant interaction between GT and Freq (F (278, 9730) = 1.722, P<0.0001). TDW REC1: significant 
interaction: F (278, 9730) = 2.984, P<0.0001; TDW REC2: sign interaction F(278, 9730)=3.083, P<0.0001).   
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spectral composition of TDW EEG are not the result of a general effect of CIRBP on the waking 

EEG.  

The non-significant decrease in slow and increase in faster theta activity in the TDW EEG of 

Cirbp KO mice points to an acceleration of theta peak frequency (TPF; lower panel in Fig 5B). TPF 

during TDW in BL was indeed increased in KO mice (Fig 3B; +0.15Hz) although our significance 

threshold was not met (t(35)=2.0, p=0.05o6). No suggestions for accelerated TPF in REM sleep 

during BL, the other sleep-wake state characterized by distinct theta oscillations in the EEG, were 

detected (WT: 7.63±0.05; KO: 7.71±0.05, t(35)=1.21, p=0.23), indicating that the accelerated TPF in 

Cirbp KO mice was state-specific. Increased LMA is associated with increased TPF (Jeewajee, Barry, 

O'Keefe, & Burgess, 2008). In accordance with this observation, mean log2-transformed LMA levels 

per mouse during the dark phase predicted well the mean TPF observed during TDW at the same 

time of day (WT and KO combined; R2=0.52, p<0.0001), although this relationship was significant 

in the KO mice only when assessing the two genotypes separately (Fig3C).  

 

 

 

 

Because the individual LMA levels can offset the group correlation, the individual correlation 

between hourly TPF and LMA was assessed. To test if this association between TPF and LMA was 

light-independent, we analyzed the correlation between TPF and LMA under baseline conditions 

during the dark and light phase separately (i.e. 24 values per mouse). In the dark phase, this 

correlation was in all but one mouse (KO) significant, and both the slope as well the predictive 

power of this correlation did not significantly differ between genotypes (slope: WT: 0.15±0.01, KO: 

0.14±0.01, t(31)=0.37, p=0.72; R2: WT: 0.81±0.03; KO: 0.79±0.04, t-test on the Fisher Z-transformed 

R2-values: t(31)=-0.49, p=0.62). During the light phase, this association is weakened (paired t-test: 

slope: t(32)=7.8, p<0.0001; Fisher Z-transformed R2-values of all genotypes grouped: t(32)=5.9, 

p<0.0001), but not differently between genotypes (WT: 0.07±0.01, KO: 0.09±0.01, t(31)=1.2, p=0.23; 

R2: WT: 0.59±0.04; KO: 0.67±0.05, t-test on the Fisher Z-transformed R2-values: t(31)=1.2, p=0.23), 

whereas the non-significant associations were more prevalent at this time of day when LMA and 

TDW are substantially reduced and estimates of TPF during TDW are less precise (KO: 3/ 16; WT: 

3/ 17 mice). Altogether, these results provide further evidence that LMA drives TPF, and suggests 

also that CIRBP through its effects on LMA, suppresses this correlation. 

TPF during BL WT KO 
Light 7.77±0.03 7.64±0.04 
Dark 8.13±0.04 8.28±0.07 

Table 2: Average TPF during baseline light and dark (mean ± SEM) in TDW 
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The SD induced changes in the distribution of waking during the recovery relative to BL (3-way 

RM ANOVA, factor SD: REC1: F(1,558)=252.51, p<0.0001; REC2: F(1,1514)=543.9, p<0.0001; see 

triangles in REC1 and REC2, Fig3-A). Interestingly and opposite to overall waking, we observed 

several hourly intervals where TDW is increased during the recovery for both genotypes compared 

to its baseline values (3-way RM ANOVA, factor SD: REC1: F(1,558)=13.9, p=0.0002; REC2: 

F(1,1514)=233.8, p<0.0001; Fig3-A, upwards pointing triangles). During the dark phase of the 

recovery, Cirbp KO mice spent more time awake and in TDW than WT mice (Fig3-A; see post-hoc 

tests indicated by red line), as if SD amplified the (non-significant) genotype differences during BL 

(3-way RM ANOVA on hourly values: factor GTxTimexSD: total waking: F(41,1271)=1.4, p=0.04; 

TDW: (F(41,1271)=1.4, p=0.0562), but not in LMA (F(41,1271)=1.0, p=0.48). 

The EEG spectra during TDW in REC1 and REC2 showed similar profiles as during BL (see 

FigureS5), although there are some changes that reach significance such as the increase in the delta 

power band. Along those lines, the suggested increase in TPF in Cirbp KO mice during the dark 

phase under baseline conditions, becomes significantly different in the dark phases of both recovery 

days (REC1: WT: 8.1±0.05, KO: 8.4±0.07, t(35)=2.7, p=0.01; REC2: WT: 8.2±0.05, KO: 8.5±0.08, 

t(35)=2.6, p=0.01). Also, under baseline conditions, the slope between TPF and LMA, based on mean 

log2-transformed LMA and TPF during the dark phase, almost reached significance, (ANCOVA, 

F(1,29)=3.8, p=0.059), whereas after SD, this association becomes significantly different between 

genotypes (F(1,29)=5.8, p=0.02), providing further evidence that the suggestive genotype 

differences under baseline conditions do reach significance levels after a challenge of the sleep 

homeostat.  
Supplementary Figure 6 Slow and fast gamma power 
over the course of the experiment. Cirbp KO (green lines 
and areas) and WT (black line, grey areas) mice (areas 
span ±1SEM range). The accumulated power in both 
slow [32-45Hz] and fast [55-80Hz] gamma is significantly 
reduced over the course of the experiment in Cirbp KO 
mice (2-way ANOVA: factor GT: slow gamma: 
F(1,34)=11.9, p=0.002; fast gamma: F(1,33)=6.6, 
p=0.01). Like the analysis of delta power, power in the 
gamma bands is calculated based on intervals to ensure 
an equal contribution of epochs to each time point: 6 
intervals in the light phase, 12 in the dark periods, 8 in 
the sleep deprivation and 4 during the recovery light 
period.  
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Taken together, we unexpectedly observed that Cirbp KO mice are more active during the dark 

phase, which partly explains the faster TPF. Moreover, KO mice had less power in the gamma band 

of TDW, and the 6-hour SD strengthened genotype differences in the sleep-wake distribution and 

EEG activity. 

 

Discussion 
 

In this study, we showed that, like in other rodents, the sleep-wake distribution is the major 

determinant of Tcx in the mouse. Because of the well-established link between temperature and 

levels of CIRBP, it is therefore likely that the equally well-known sleep-wake driven changes in Cirbp 

expression in the brain (see also FigS1) are driven through the sleep-wake driven changes in brain 

temperature. As predicted, the SD incurred changes in the expression of clock genes, which was 

modulated by the presence of CIRBP. However, only for Rev-Erbα did we observe the anticipated 

attenuated response to SD in Cirbp KO mice, whereas the expression of Per2 and Clock was 

amplified. Although these altered molecular responses to SD in Cirbp KO mice were accompanied 

by changes in the sleep-wake distribution, the dynamics of EEG delta power during NREM sleep 

were unaffected. On the other hand, we did discover evidence of altered dynamics of the process 

regulating time spent in REM sleep. Finally, and unexpectedly, we observed that Cirbp KO mice 

exhibit differences in waking quality during the dark phase with a prominent increase in levels of 

LMA and changes in the spectral composition of the EEG during TDW. 

 
CHANGES IN CORTICAL TEMPERATURE ARE SLEEP-WAKE DRIVEN 

When sleep and waking occur at their expected circadian times, the rhythm of both brain and 

body temperature has a clear 24-hour rhythm and therefore appears as being controlled directly by 

the circadian clock. However, several lines of evidence indicate that sleep-wake cycles contribute 

significantly to both the daily changes in body and brain temperature.  

Regarding core body temperature (CBT), an early study describing spontaneous desynchrony in 

humans under constant conditions, observed two CBT rhythms; one CBT rhythm had a period close 

to the free-running circadian rhythm of 24-hours, whereas the other CBT rhythm was associated 

with that of activity and rest (and presumably, wakefulness and sleep), oscillating with a period 

distinct from 24hrs (Wever, 1979). Subsequent experimental studies in humans took advantage of 

forced desynchrony and constant routine protocols where sleep was controlled for across the 

circadian cycle, thereby leaving all circadian rhythmicity in CBT to be attributed to the clock. The 
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amplitude of the CBT rhythm measured during these protocols is reduced while the phase and 

period is maintained (Refinetti, 2010). It was estimated that ‘masking’ effects of rest-activity and 

sleep-wake cycles contributed between 30% and 50% to the amplitude of the circadian CBT rhythm 

(Hiddinga, Beersma, & Van den Hoofdakker, 1997) (Dijk et al., 2000). This is further supported by 

a study where enforced wakefulness during the night led to a reduction in amplitude of CBT from 

0.31°C to 0.10°C (Barrett, Lack, & Morris, 1993). Not only in humans but also in smaller animals like 

rats, a circadian and rest-activity component contribute to the circadian fluctuations in CBT 

(Cambras et al., 2007). Thus, although the phase of CBT is informative as a phase marker of 

circadian time (Dijk & Czeisler, 1995), the circadian amplitude is amplified when wake and sleep 

occur in phase with the circadian clock. 

On the other hand, brain temperature in the rat is for more than 80% determined by the sleep-

wake distribution (Franken et al., 1992b). Likewise, the sleep-wake driven changes in brain 

temperature are still intact in circadian arrhythmic animals (F. C. Baker et al., 2005; Edgar et al., 

1993), pointing to a more sleep-wake dependency of Tcx in comparison to CBT. Consistent with the 

rat findings, we found that also in the mouse 80% of the variation in Tcx can be explained by the 

sleep-wake distribution alone. This was confirmed at a high time resolution (seconds) by inspecting 

temperature changes at transitions between sleep-wake states, and across the day, by investigating 

hourly dynamics. We also estimated the contribution of LMA to changes in Tcx and found that 

waking with higher LMA is associated with higher Tcx. Although significant, the contribution of 

LMA to the daily changes in Tcx was modest and explained only 2% more of the variance. However, 

important to consider is that these models assumed a linear relationship between the variables and 

Tcx, whereas it is to be expected that these variables have a non-linear association. For example, the 

prediction of Tcx in the rat based on the sleep-wake distribution was performed with a non-linear 

simulation. This model was further optimized by assuming a circadian modulation of the upper 

and lower asymptotes between which Tcx fluctuated  (Franken et al., 1992b). Also in our current 

study, the residuals from the correlation between waking and Tcx appeared to follow a circadian 

distribution, which possibly reflects the circadian modulation of the homeostatic setpoint of Tcx. 

However, this is not reflected in the residuals during the SD, which remain increased, in a similar 

fashion that compares with the residuals during the dark-phase. Optimization of the model by 

assuming non-linearity between waking and Tcx could improve further the prediction of Tcx based 

on waking.  
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The observation that Tcx changed when transitioning between sleep-wake states and that SD 

increased Tcx at a time of day when this normally would be low, argue strongly against a direct 

involvement of the circadian clock in determining Tcx. It is nevertheless important to bear in mind 

that by timing sleep and wake, the circadian clock indirectly contributes to the daily changes in Tcx. 

Moreover, the literature suggests that the contribution of the circadian clock and the sleep-wake 

distribution also differs among species, as well as where temperature is measured (e.g. core body 

temperature versus brain), as discussed above. Lastly, the contribution of LMA to changes in Tcx 

was in our experiment very modest relative to sleep-wake driven changes, but this is likely to be 

affected by the type of activity; e.g. exercise is known to increase both peripheral and (proxies) of 

brain temperature in men (Nybo, Secher, & Nielsen, 2002).  

 

CIRBP ADJUSTS CLOCK GENE EXPRESSION AND REM SLEEP RECOVERY FOLLOWING SD  

CIRBP modulated the response to SD in the expression of some clock genes. As anticipated, the 

SD incurred decrease in cortical Rev-erbα was attenuated in Cirbp KO mice. Rev-erbα (also known 

as Nr1d1) protein acts as a transcriptional repressor of positive clock elements such as BMAL1 

(Preitner et al., 2002). Furthermore, KO of both Rev-erbα and its homolog Rev-erbβ in mice, has 

profound effects on circadian rhythms at the behavioral and metabolic level (Cho et al., 2012). We 

recently established that Rev-erbα also partakes in several aspects of sleep homeostasis: Rev-erbα 

KO mice accumulated at a slower rate NREM sleep need and had reduced efficiency of REM sleep 

recovery in the first hours after SD, making the observation that Cirbp KO had an attenuated 

response of Rev-erbα to SD especially relevant.  

The response to SD of other clock genes was also modulated in the absence of CIRBP. Clock 

expression was only significantly increased after SD in Cirbp KO mice, and the expression of Per2 

was amplified. These findings suggest that parts of the core clock are sensitive to the presence of 

CIRBP in response to SD. Given the role of clock genes in sleep homeostasis (Franken, 2013), the 

affected clock gene expression in response to SD in KO mice could have contributed to the changes 

in sleep-wake distribution during the recovery. 

Because several studies showed that mutations in clock genes incurred a loss in REM sleep 

amount recovered after SD [i.e. CLOCK (Naylor et al., 2000), PER3 (Hasan et al., 2011), or impacted 

the initial efficiency of REM sleep recovery [i.e. DBP (Franken et al., 2000) and REV-ERBα (Mang et 

al., 2016), the changes in clock gene expression in Cirbp KO mice could link to the REM sleep 

homeostat phenotype. Although REM sleep is primarily regulated through its time spent (Franken, 
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2002), its timing is largely dependent on circadian time (Czeisler, Zimmerman, Ronda, Moore-Ede, 

& Weitzman, 1980). Further studies need to address if disturbed clock gene expression in KO mice 

acts through this circadian modulation of REM sleep – although we indeed do not find evidence in 

any such direction. 

 

OTHER MECHANISMS LINKING SLEEP-WAKE STATE TO CLOCK GENE EXPRESSION 

The SD incurred changes in clock gene expression did not depend as much on CIRBP as 

hypothesized a priori. This finding suggests that more than one pathway contributes to the SD-

incurred changes in clock gene expression (reviewed in (Franken, 2013)). A few suggestions for such 

pathways, based on our data and the literature, will be discussed here, starting with temperature 

sensitive mechanisms.  

Rbm3 (RNA Binding Motif Protein 3) is another cold-inducible transcript which is closely related 

to CIRBP and conveys also temperature information into high amplitude clock gene in vitro 

expression (Liu et al., 2013). Thus, RBM3 might be another mechanism through which changes in 

sleep-wake state are linked to changes in clock gene expression. Therefore, we anticipated that 

RBM3 may have acted as a compensatory mechanism in Cirbp KO mice. However, our measures at 

the RNA-level do not convincingly show that Rbm3 expression is upregulated in Cirbp KO mice. It 

therefore appears unlikely that Rbm3 acts as a compensatory mechanism in Cirbp KO mice.  

Not only cold-inducible transcripts but also transcripts of the heat shock pathway are sensitive 

to changes in temperature, of which heat shock factor 1(Hsf1) is capable of resetting the clock in 

response to temperature signals (Buhr et al., 2010). Two of the three cortical heat shock pathway 

transcripts (Hsp90b and Hspa5/BiP) that we have quantified, showed a significant Cirbp KO specific 

SD incurred amplification. Because the SD incurred increase in Hsf1 was significant only in Cirbp 

KO mice, and Hsf1 can bind to heat shock elements upstream of Per2 (Reinke et al., 2008), it is 

tempting to speculate that the amplified expression of Per2 in Cirbp KO mice is due to the increased 

expression of Hsf1. This idea is further supported by the genotype dependent increase in the 

expression of Hsp90b and Hspa5 after SD, which like Per2, have a heat shock element in their 

promotor region and whose expression can therefore be initiated by HSF1 (Reinke et al., 2008). 

Thus, HSF1 might have compensated for the absence of Cirbp, thereby masking the contribution of 

CIRBP to SD incurred changes in clock gene expression. 

Beyond temperature, many other physiological changes occur during prolonged wakefulness 

that can subsequently affect clock gene expression. One of these other mechanisms, the surge in 
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corticosterone during SD, has been experimentally addressed by adrenalectomizing mice. This 

study showed that the SD induced changes in expression of some, but not all, clock genes is 

modulated by corticosterone (Mongrain et al., 2010).  

Further studies will address the contribution of other pathways, such as changes in redox state, 

light exposure and oxygen consumption, to changes in clock gene expression.  

A last factor to be considered is that there might be already aberrant behavior in the core 

molecular clock under baseline conditions in Cirbp KO mice, which modulates the SD incurred 

changes in clock gene transcripts. Although our molecular data cannot test if Cirbp KO mice differ 

in their molecular clock (for this, an around-the-clock quantification would be necessary), it would 

be reasonable to assume decreased clock gene amplitude based on the in vitro data. Hence, a 

parallel can be drawn between Cirbp KO mice and circadian clock gene KO mice. Because clock 

gene KO mice do not only have differential regulation of sleep and wake, but also respond 

differently at the molecular level to sleep deprivation (e.g. Npas2 KO mice have a reduced increase 

in Per2 expression in the forebrain after SD (Franken et al., 2006)), this could also have contributed 

to the observed changes in clock gene expression after SD in Cirbp KO mice. 

 

TISSUE SPECIFICITY AND REPRODUCIBILITY 

In our study, the transcripts we studied where in the cortex more sensitive to SD compared to 

the liver (effect of SD: cortex: 12/15 [80%]; liver: 4/11 [36%]). Mixed reports about differential tissue 

sensitivity to SD have been published. Our previous micro-array study found that after SD the liver 

exhibited three times more transcriptional changes compared to whole brain (Maret et al., 2007), 

whereas one of our recent studies, using RNA-seq, showed that 78% of all expressed genes were 

affected by SD in cortex, but only 60% in liver (Diessler et al., 2018). The discrepancy of the results 

between these two studies could be due to the increased dynamic range in RNA-seq compared to 

micro-array, enabling to capture smaller changes (Z. Wang, Gerstein, & Snyder, 2009).  

Like the study from (Diessler et al., 2018), we also observed that the cortex was more sensitive 

than the liver to SD for the relative few transcripts quantified. However, when comparing the SD 

incurred changes in our transcripts with the same transcripts in the Maret et al., 2007 and Diessler 

et al., 2018 study, we did not corroborate the hepatic increase in the heat shock transcripts that they 

reported on (Hsf1, Hsp90b and Hspa5) and Per2. On the other hand, we did observe the previously 

reported effects of SD on Cirbp, Rbm3-short, Dbp and Rev-erbα.  If this is due to technical differences 

is at this point unknown.  
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FROM IN VITRO TO IN VIVO: A (TOO) BIG LEAP? 

Two studies using different models and techniques (different temperature cycles; different 

mRNA quantification techniques; immortalized mouse embryonic stem cells and immortalized 

NIH3T3 cells, (Liu et al., 2013) and (Morf et al., 2012), resp.) showed that CIRBP (and RBM3) are 

necessary to translate temperature information into high amplitude clock gene expression in vitro. 

Although the expression of clock genes was modulated by in the absence of CIRBP, we did not 

observe the hypothesized widespread CIRBP-dependent SD induced change in clock gene 

expression. Two factors can be considered when explaining the absence of this observation.   

First, a caveat of our experimental design is that the hypothesis emerged from studies performed 

in a relatively simple biological system, immortalized cell lines, where Cirbp was acutely suppressed 

by silencing its RNA. We applied the conclusions of these studies to a far more complex system: 

hepatic and cortical tissue of adult male mice. Already in vitro studies find differences between cell 

lines from different origins and age with respect to circadian characteristics (for examples, see 

(Kaeffer & Pardini, 2005) and Fig6 in (Saini et al., 2012)). Thus, it is likely that other uncontrolled 

factors differed between the in vitro studies on which we based our hypothesis and the in vivo study 

we performed.  

Secondly, our hypothesis is built on the idea that Tcx is changing with waking whereas many 

other variables also change with waking. Some of these waking associated factors interact with 

CIRBP and could potentially show a compensatory response in its absence, as discussed above.  

 

LMA-DEPENDENT AND INDEPENDENT CHANGES IN WAKING CHARACTERISTICS   

Little is known about the role of CIRBP in neuronal and behavioral functioning. It was therefore 

unanticipated that Cirbp KO mice had increased LMA during the dark phase. Neither were the 

changes in neuronal oscillations expected during TDW:  a reduction in low- and high γ power and 

an increase in TPF. The latter observation could partly be explained by the increase in LMA, as 

previously observed (Jeewajee et al., 2008). This is in contrast with the general decrease in γ power 

and its relation to LMA, which is not as well described in the literature. Some studies have found 

that increased speed of LMA relates to increased power in the gamma band (Furth et al., 2017; Niell 

& Stryker, 2010; Vinck, Batista-Brito, Knoblich, & Cardin, 2015), whereas another study found that 

this association depends on the frequency band (Zheng, Bieri, Trettel, & Colgin, 2015). However, a 

direct relationship between the decreased power in the gamma bands of Cirbp KO mice and their 
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increased LMA seems unlikely, because their spectral phenotype was also present during the light 

phase, when LMA did not differ.  

On the other hand, prolonged running wheel activity, referred to as ‘stereotypic behavior’, is 

associated with a reduction in cortical firing rate compared to exploratory behavior (Fisher et al., 

2016), suggesting that Cirbp KO mice may move more, but that this behavior is non-goal directed. 

Moreover, a body of literature suggests coupling of theta-phase and gamma-activity in the 

hippocampus, which have been postulated to function in higher cognitive functions (for review see 

(Colgin, 2015)).  Because of CIRBPs role in slowing down theta peak frequency and increasing power 

in the gamma bands, further analyses and experiments can address if Cirbp KO mice have indeed 

altered phase coherence between these two frequency bands. Together with a possible increase in 

non-goal directed behavior in Cirbp KO mice, it would be interesting to assess if lack of CIRBP is 

related to cognitive consequences.  

Several aspects of waking that appeared to differ between Cirbp KO and WT mice but were non-

significant under baseline conditions, reached significance during the recovery, as if SD amplified 

the genotypic differences. Sleep disturbance, like SD, has been identified as a risk factor for disease 

progression; for example, it can amplify molecular and behavioral phenotypes of Alzheimers’ mouse 

models (for review, see (Musiek, Xiong, & Holtzman, 2015)) as well sensitivity to pain (Sutton & 

Opp, 2014). It would be of interest to see if a similar phenomenon occurs in Cirbp KO mice, where 

a single 6-hr SD can unlock the genotypic differences, and to what extent these changes are 

reversible.  

 

CONCLUSION  

This hypothesis-driven study explored if the SD incurred changes in clock gene expression are 

linked by the cold-induced transcript CIRBP. After SD, the cortical expression of Rev-erbα, which 

we recently identified as a player in the sleep homeostat, was as hypothesized, attenuated in Cirbp 

KO mice. Furthermore, the expression of two other clock genes, Per2 and Clock, was modulated.  

Sleeping at the wrong time of the day and sleeping too little are both associated with disturbed 

metabolism and can subsequently lead to metabolic disorders like type two diabetes mellitus 

(Copinschi, Leproult, & Spiegel, 2014; Panda, 2016). The expression of clock genes, which regulates 

those downstream metabolic pathways (Panda, 2016), is also in humans modulated by sleep-wake 

state (Archer et al., 2014). Furthermore, genetic disruption of clock genes can exacerbate the 

development of metabolic disorders (e.g. (Rudic et al., 2004)). Hence, disturbances in clock gene 
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expression could underly the observation that both sleep curtailment and circadian disturbances 

have metabolic consequences. Because impaired sleep has been suggested to accelerate the 

development of metabolic pathologies,  it is of uttermost importance to understand further via 

which pathways a disturbed sleep-wake distribution, may it by sleeping too little or at the wrong 

time of the day, modulates clock gene expression.  
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Material and Methods  
MICE AND HOUSING CONDITIONS 

Cirbp KO mice, kindly provided by Prof Jun Fujita (Kyoto University, Japan), were maintained 

on a C57BL6/J background. In these mice, exon 1 to 6 were replaced by a TK-neo gene through 

homologous recombination in D3 embryonic stem cells, resulting in the absence of the Cirbp 

transcript and protein (Masuda et al., 2012). Breeding couples or trios consisted of heterozygous 

male and female mice. WT littermates were used as controls. Throughout the experiment, mice 

were individually housed in polycarbonate cages (31×18×18 cm) with food and water ad libitum and 

exposed to a 12 h light/12 h dark cycle (70–90 lux). All experiments were approved by the Ethical 

Committee of the State of Vaud Veterinary Office Switzerland under license VD2743. 

 

EEG/EMG IMPLANTATION 

At the age of 9 to 13 weeks, 17 KO and 20 WT male mice were implanted with 

electroencephalogram (EEG) and electromyogram (EMG) electrodes. The surgery took place under 

deep xylazine/ ketamine anesthesia complemented with isoflurane (1%) when necessary; for details 

see (Mang & Franken, 2012). Briefly, six gold-plated screws (diameter 1.1 mm) were screwed 

bilaterally into the skull, over the frontal and parietal cortices. Two screws served as EEG electrodes 

and the remaining four anchored the electrode connector assembly. As EMG electrodes, two gold 

wires were inserted into the neck musculature. Of all EEG/EMG implanted mice, 8 KO and 9 WT 

mice were additionally implanted with a thermistor (serie P20AAA102M, General Electrics 

(currently Thermometrics), Northridge, California, USA) which was placed on top of the right 
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cortex (2.5 mm lateral to the midline, 2.5 mm posterior to bregma). The EEG and EMG electrodes 

and thermistor were soldered to a connector and cemented to the skull. Mice recovered from 

surgery during 5–7 days before they were connected to the recording cables in their home cage for 

habituation, which was at least 6 days prior to the experiment. In total no less than 11 days were 

scheduled between surgery and start of experiment. 

 

EXPERIMENTAL PROTOCOL AND DATA ACQUISITION 

EEG and EMG signals, Tcx and LMA were recorded continuously for 96 h. The recording started 

at light onset; i.e., Zeitgeber Time (ZT)0. During the first 48 h (days BL1 and BL2), mice were left 

undisturbed to establish a baseline. Starting at ZT0 of day 3, mice were sleep deprived by gentle 

handling for 6 hours (ZT0–6), as described in (Mang & Franken, 2012). The remaining 18 h of day 3 

and the entire day 4 were considered as recovery (days REC1 and REC2, respectively). The analog 

EEG and EMG signals were amplified (2,000×), digitized at 2 kHz and subsequently down sampled 

to 200 Hz and stored. The EEG was subjected to a discrete Fourier transformation yielding power 

spectra (range: 0–100 Hz; frequency resolution: 0.25 Hz; time resolution: consecutive 4-sec epochs; 

window function: Hamming). Thermistors were supplied with a constant measuring current (Iconst 

= 100 microA) and voltage (V) was measured at 10 Hz which was subsequently used to calculate the 

median resistance (Rt) per 4-s epoch as in eq. (1).  

(1) Rt = V
Iconst

 

Each thermistor has an individual material constant, β.  The resistance was measured at 25°C (R25°C) 

and 37°C (R37°C) by the manufacturer, and used to determine β as in eq.(2), with T values in Kelvin 

(°C + 273.15). 

(2) 𝛽𝛽 = 𝑇𝑇25∗𝑇𝑇37
𝑇𝑇25−𝑇𝑇37

∗ ln 𝑅𝑅37°𝐶𝐶
𝑅𝑅25°𝐶𝐶

 

 

Following on eq. (2), the temperature (t) in °C can be calculated as described in eq. (3).  

(3)  𝑡𝑡(℃) = �1
𝛽𝛽 
∗ log � 𝑅𝑅𝑡𝑡

𝑅𝑅25°𝐶𝐶
� + 1

𝑇𝑇25°𝐶𝐶
�
−1
− 273.15 

 

The EEG, EMG, and voltage across the thermistor were recorded with Hardware (EMBLA) and 

software (Somnologica-3) purchased from Medcare Flaga (EMBLA, Thornton, USA). LMA was 

monitored with passive infrared sensors (ClockLab, ActiMetrics, Wilmette, Illinois, USA).  
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DETERMINATION OF BEHAVIORAL STATES 

Offline, the mouse’s behavior was visually classified as ‘Wakefulness’, ‘REM sleep’, or ‘NREM 

sleep’ for consecutive 4-sec epochs based on the EEG and EMG signals as previously described 

(Mang & Franken, 2012). Wakefulness was characterized by EEG activity of mixed frequency and 

low amplitude and variable muscle tone. NREM sleep was defined by synchronous activity in the 

delta frequency (1–4 Hz) and low and stable muscle tone. REM sleep was characterized by regular 

theta oscillations (6–9 Hz) with low EMG activity. Waking was further differentiated into ‘quiet 

waking’ and ‘theta-dominated waking’ (TDW), with TDW determined as described in (Vassalli & 

Franken, 2017) based on the relative importance of power in the 6.5 to 12.0 Hz range to the overall 

power in the EEG during artefact-free 4-sec scored as wakefulness. We refer to waking that is not 

classified as TDW as ‘quiet’ waking. 4-sec epochs containing EEG artefacts were marked according 

to the state in which they occurred and excluded from EEG spectral analysis but included in the 

sleep-wake distribution analyses. During the four day recording, 7.0 ± 0.9%, 2.1 ± 0.3% and 2.5 ± 

0.2% of the epochs was scored as an artefact in waking, NREM, and REM sleep, respectively, and 

this did not differ between genotypes (two sample t-tests, t(35)=1.77, p=0.09; t(35)=0.64, p=0.53; 

t(35)= 0.99, p=0.33). 

 

ANALYSIS OF CORTICAL TEMPERATURE 

The raw Tcx data showed unexpected variation. Therefore, we inspected the inter-individual 

variation in daily amplitude and absolute Tcx levels. The latter was determined in two ways: i) by 

averaging Tcx during the last five hours of SD, thus minimizing the sleep-wake state incurred 

differences in Tcx, and ii) by averaging Tcx during the 12h baseline light phase. These measures were 

highly correlated (R2=0.99; p<0.0001). Variation in the daily amplitude was quantified by averaging 

the difference between the highest and lowest hourly mean of Tcx of each of the two baseline days. 

No effect of genotype on absolute average Tcx or amplitude was detected (t-test, t(12)=0.61, p=0.55; 

t(12)=-0.63, p=0.54, respectively). Two mice (one of each genotype) exhibited a ca. 2-fold reduction 

in amplitude together with 2°C higher values during the SD relative to the other mice 

(Supplementary data, SFig2, pink symbols). Therefore, we excluded these two mice from 

subsequent Tcx analysis. Three other mice (2 WT and 1 KO) showed normal amplitude but overall 

lower absolute values (Supplementary data, SFig2, blue symbols). We corrected for this difference 

by raising their Tcx values by the difference between the Tcx reached in each of these 3 mice during 

the sleep deprivation to the average Tcx reached over the same recording period in the remaining 9 
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mice. Of note, most of our Tcx analysis focuses on its relative sleep-wake dependent changes, which 

are not affected by differences in absolute Tcx values. Finally, the baseline Tcx data was based on 6 

WT and 6 KO mice. In the recovery, one KO mice was excluded due to aberrant high Tcx that could 

not be accounted for by the sleep-wake distribution, leaving 6 WT and 5 KO mice for analyses 

involving REC1 and REC2. 

 

Supplementary Figure-7 Assessment 
of amplitude and absolute values of 
cortical temperatures. Two outliers 
were detected (pink), whereas three 
others were corrected for their low 
values (blue).  

 

To aid visualization of sleep-wake states and Tcx in Figure 1, these variables were averaged per 

minute, thereby visually underrepresenting REM sleep, because this stage occurs less and in shorter 

bouts than waking and NREM sleep.  

We determined the Tcx dynamics before and after a sleep-wake state transition in baseline. 

Selected transitions lasted at least 8 epochs (i.e. ≥32 sec) before and after the transition. In each 

mouse, a minimum of 10 transitions contributed to the mean change in Tcx per sleep-wake state 

transition. Thus, the closer to the sleep-wake state transition, the more epochs contributed to the 

mean individual Tcx. With these criteria, we detected an average of 38 wake to NREM sleep, 101 

NREM sleep to REM sleep, 28 REM sleep to wake and 32 NREM sleep to wake transitions per mouse 

during the two baseline days. 

The residuals of the correlation between waking and Tcx exhibited a circadian pattern under BL 

conditions. We quantified this further by fitting a sinewave through the data (Prism, non-linear 

regression; sine-wave with non-zero baseline; least squares fit).  

 

ANALYSIS OF LMA 

To inspect the time course of LMA corrected for time-spent-awake, raw LMA was expressed per 

unit of waking in percentiles to which an equal amount of time-spent-awake contributed (Figure 
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2G). The number of percentiles per recording period were chosen according to the prevalence of 

wakefulness, where 6 percentiles were used during the light phase and 12 during the dark phase, 

with the exception for 6 sections during the SD and 3 sections during the remaining 6hrs of the 

light phase of REC1. To assess genotype differences in LMA (Figure 3), the absolute number of 

movements were inspected. The LMA recordings of four mice (3 WT, 1 KO) were interrupted due 

to technical problems during the experiment and therefore excluded, leaving data from 17 WT and 

16 KO mice for analyses involving LMA. 

 

GENE EXPRESSION IN LIVER AND BRAIN  

Five mice of each genotype (n=15 per genotype in total) were sacrificed either prior to SD (ZT0), 

at ZT6 without SD (ZT6-NSD), or at ZT6 after 6h SD (ZT6-SD) to quantify the effects of genotype 

on gene expression in cortex and liver. Genes of interest included transcripts affected by SD (Maret 

et al., 2007; Mongrain et al., 2010) and/or by the presence of CIRBP (Liu et al., 2013; Morf et al., 2012) 

with a special interest for clock genes. To quantify mRNA expression, specific forward and reverse 

primers and Taqman probes were designed (see Supplementary data, Table S2). 

Upon sacrifice, both the cerebral cortex and liver were extracted and immediately flash frozen 

in liquid nitrogen. Samples were stored at -80°C. RNA from cortex was extracted and purified using 

the RNeasy Lipid Tissue Mini Kit 50 (QIAGEN, Hombrechtikon, Switzerland); RNA from liver was 

extracted and purified using the RNeasy Plus Mini Kit 50 (QIAGEN, Hombrechtikon, Switzerland), 

according to manufacturer’s instructions. RNA quantity (NanoDrop ND-1000 spectrophotometer; 

Thermo Scientific, Wilmington, NC, USA) and integrity (Fragment Analyzer, Advanced Analytical, 

Ankeny, IA, USA) was measured and verified for each sample. 1000 ng of purified total RNA was 

reverse-transcribed in 20μL using a mix of First-strand buffer, DTT 0.1M, random primers 0.25μg/μl, 

dNTP 10mM, RNAzin Plus RNase Inhibitor and Superscript II reverse transcriptase (Invitrogen, Life 

Technologies, Zug, Switzerland) according to manufacturers’ procedures. The cDNA was diluted 10 

times in Tris 10 mM pH 8.0, and 2μL of the template dilution was amplified in a 10μL TaqMan 

reaction in technical triplicates on an ABI PRISM HT 7900 detection system (Applied Biosystems, 

Life Technologies, Zug, Switzerland). Cycler conditions were: 2 min at 50°C, 10 min at 95°C followed 

by 45 cycles at 95°C for 15 s and 60°C for 1 min. Standard curves were calculated to determine the 

amplification efficiency (E). A sample maximization strategy was used where all biological 

replicates of one tissue were amplified for two genes per plate. Gene expression levels were 

normalized to two reference genes (cortex: Eef1a and Gapdh: M=0.23, CV=0.09 and liver: Gadph and 
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Tbp; M=0.32, CV=0.11) using QbasePLUS software (Biogazelle, Zwijnaarde, Belgium). To correct 

post-hoc a suboptimal primer design, Rbm3 isoforms were in a separate run quantified in liver and 

cortex, again with their housekeeping genes (same as previously; cortex: M=0.22, and CV=0.08; 

liver: M=0.13, CV=0.05). Transcripts with an average Ct-value>30 were omitted from analysis (in KO 

and WT livers: Rbm3, Dusp4, Homer1a, and Npas2; in cortex and liver of KO mice: Cirbp). Results 

are expressed as normalized relative quantity (NRQ) which is indicative of gene expression and 

based on the overall mean expression per gene, which was set at 1.0 (Hellemans, Mortier, De Paepe, 

Speleman, & Vandesompele, 2007).  

CIRBP affects the poly-adenylation sites of several transcripts (Liu et al., 2013). We explored if 

this newly discovered role of CIRBP could be corroborated in our study by focusing on the transcript 

Splicing factor, proline and glutamine rich, Sfpq which exhibits CIRBP-dependent alternative poly-

adenylation (APA) ((Liu et al., 2013), see their Supplemental Fig4-5). We calculated the ratio of the 

prevalence of the distal/external 3’UTR region over the common region according to eq. (6),  

(4) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒 / 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝐸𝐸−𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒
𝐸𝐸−𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

where E is the amplification efficiency and Ctext and Ctcomm the number of cycles for the 

detection of the distal and common isoform, respectively. 

 

ANALYSIS OF EEG BASED ON BEHAVIORAL STATE  

Unless otherwise stated in the methods section, all mice (20 WT and 17 KO) were included in 

the analyses based on the EEG data. Spectral content of the EEG within sleep-wake states was 

calculated as follows. To account for inter-individual differences in overall EEG power, EEG spectra 

were expressed as a percentage of an individual reference value calculated as the total EEG power 

across 0.75-45 Hz and all sleep-wake states in the 48h baseline. This reference value was weighted 

so that for all mice the relative contribution of the three sleep-wake states to this reference value 

was equal. 

Theta peak frequency (TPF) in TDW and in REM sleep was calculated by determining the 

frequency at which power density peaks in the 6.5 to 12.0 Hz band per 4-s epoch and subsequently 

averaged per individual.  

Time course analysis of EEG delta power (i.e., the mean EEG power density in the 0.75–4.0 Hz 

range in NREM sleep) during baseline and after SD was performed as described previously 

(Franken, Malafosse, & Tafti, 1999), similar to the analysis of LMA per unit of waking. The light 

periods of BL1, BL2, and REC2 were divided into 12 percentiles, the REC1 light period (ZT6–12) into 
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8 sections, and all dark periods into 6 sections, and was based on the prevalence of NREM sleep like 

explained for wakefulness above. EEG delta power values in NREM sleep were averaged within each 

percentile and then expressed relative to the mean value reached in the last 4hr of the two main 

rest periods in baseline between ZT8–12. This reference was selected because delta power values 

reach lowest values here, that are least influenced by differences in prior history of sleep and 

wakefulness (see also (Franken et al., 1999)).  

The effect of 6hr SD on subsequent time spent in NREM and REM sleep was assessed by 

calculating the recovery-baseline difference in sleep time per 1hr intervals.  

 

SIMULATING NREM EEG DELTA POWER [PROCESS S] 

We applied a computational method to predict the change in delta power during NREM sleep 

based on the sleep-wake distribution as described before (Franken et al., 2001). Process S is 

exponentially increasing with time constant τi during waking and REM sleep, and exponentially 

decreasing τd during NREM sleep (eq. (4) and (5), respectively).  

(5) 𝑆𝑆𝑡𝑡+1 = 𝑈𝑈𝑈𝑈 − (𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑡𝑡) ∗ 𝑒𝑒
−𝑑𝑑𝑑𝑑𝜏𝜏𝑖𝑖  

(6) 𝑆𝑆𝑡𝑡+1 = 𝐿𝐿𝐿𝐿 + (𝑆𝑆𝑡𝑡 − 𝐿𝐿𝐿𝐿) ∗ 𝑒𝑒
−𝑑𝑑𝑑𝑑𝜏𝜏𝑑𝑑 

 

In these simulations, UA represents the upper asymptote, LA the lower asymptote and dt the 

time step of the iteration (4 seconds). The upper and lower asymptotes were based on the 99% level 

of the relative frequency distribution of delta power reached in all 4s epochs scored as NREM sleep 

in the 4-day recording and the intersection of these values with the relative frequency distribution 

of REM delta power, respectively. At the start of the simulation, an iteration through the first 24-hr 

(BL1) was performed with S0=150 at t=0. The value reached after 24-hrs is independent of S0 at t=0 

and reflects Process S at the start of the baseline.  

The fit was optimized by minimizing the mean squared difference of simulated and observed 

NREM delta power for a range of Ti: 1-25 h, step size 0.125h; Td: 0.1-5.0 h, step size 0.025h; i.e. the 

simulation was run for all 38’021 combinations of Ti and Td for each mouse. The combination of Ti 

and Td giving the best fit was used to assess differences in process S between genotypes.  

We noted a subtle but consistent linear discrepancy in the alignment of simulation process S to 

the measured NREM delta power values at the end of the light phase on BL1, BL2 and REC2 (Pearson 

correlation, slope≠0: 1 sample t-test; t(35)=-4.38, p=0.0001). This change correlated well with the 
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day-to-day changes in total spectral power in the EEG calculated across all sleep-wake states in BL1, 

BL2, and REC2 (Pearson correlation: R2=0.70, p<0.0001; n=36). We attributed these linear changes 

to be of non-biological origin and detrended the measured NREM delta power values before 

optimizing the fit between observed and simulated delta power. There was no effect of genotype 

on slope (Δ delta power %/h; students’ t-test; t(34)=0.62; p=0.54; WT:-0.086±0.027; KO:-

0.065±0.021) or intercept (t(34)=-0.88; p=0.38; WT: 101.5±0.62; KO: 100.7±0.56; WT: n=20, KO: 

n=17).  

 

STATISTICS 

Statistics were performed in R (version 3.3.2) and Prism (version 7.0). The threshold of 

significance was set at p=0.05. Deviations from the mean are representing standard error of the 

mean. The distribution of the LMA data was normalized by a log2 transformation on the hourly 

values, allowing for subsequent parametric analyses on the relationship between Tcx and LMA as in 

Figure 2.  

 Time course data were analyzed by 1- and 2-way repeated measures (RM) analysis of variance 

(ANOVA) with as factors ‘time’ and ‘genotype’ (GT). Upon significance, t-tests were computed. 

Differences between BL and REC values within genotype were computed by paired t-tests. EEG 

spectra were also analyzed by 1- and 2-way RM ANOVA with as factors ‘time’ or ‘frequency’ and 

‘GT’. When GT or its interaction with time or frequency reached significance, post-hoc t-tests were 

computed. The above-mentioned analyses were all performed in Prism. 

In the time course of NREM delta power, one mouse (KO) demonstrated a strong decrease over 

the course of the experiment which could not be attributed to changes in the sleep-wake 

distribution. 9 out of the 12 delta power values during the light phase of REC2 in this mouse were 

outliers (MAD outlier test, consult (Leys, Ley, Klein, Bernard, & Licata, 2013) for details). This mouse 

was excluded from the analysis involving hourly and accumulated time-spent-in NREM sleep, 

resulting in 20 WT mice and 16 KO for these analyses (Fig4-A and Fig4-B).   

Correlation coefficients of linear regression were calculated in Prism over all hourly values of 

LMA, Tcx and waking per genotype (96 per mice). To understand if slopes of regression lines differed 

between genotypes, an ANCOVA was applied based on (Zar, 1984) and run in Prism. To quantify 

the contribution of waking and LMA independent from each other to Tcx, a partial correlation was 

performed (R software; package ‘ppcor’, function pcor.test). Mixed model analysis was performed 

with factors LMA (log2 transformed), waking, and genotype (R packages ‘lme4’, ‘lmer’, ‘lmerTest’, 
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and ’MuMIn’). Model1 quantified the predictive power of waking to Tcx, Model2 of waking and LMA 

per unit of waking (LMA/Waking) and Model3 of waking, LMA/Waking and its interaction to 

predict Tcx. Predictive power of models was compared with Chi-squared tests by assessing the 

statistical significance in the reduction of residual sum of squares between two models ordered by 

complexity; i.e. Model1 was compared to Model2, and upon significance, Model2 was compared to 

Model3. Goodness-of-fit was assessed by the marginal R-squared (R2
m) which explains the effect of 

the fixed factors only, and the conditional R-squared (R2
c), which considers the individual variance 

as well and is therefore more biological relevant. Hence, in the results section only the R2
c values 

are reported.  

For the molecular data, the qPCR NRQ values were log2-transformed to normalize the 

distribution. Genotype differences at ZT0 were tested with a t-test. The effect of SD and genotype 

at ZT6 was assessed by 2-way ANOVA with post-hoc Fisher LSD tests upon significance. One outlier 

(WT, cortex) in the ext/com ratio analyses was detected by the Grubbs outliers test (α < 0.05).  
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Supplementary Table 1: sequences of the forward and reverse primer and probe used for the RT-qPCR  

 
 
(*) 5 =  propynyl-dC ; increases the melting temperature of the probe 

  

GeneName FwdPrimer RevPrimer Probe 
Cirbp  AGGGTTCTCCAGAGGAGGAG CCGGCTGGCATAGTAGTCTC CGCTTTGAGTCCCGGAGTGGG 

Clock  CGAGAAAGATGGACAAGTCTACTG TCCAGTCCTGTCGAATCTCA TGCGCAAACATAAAGAGACCACTGCA 

Dbp CGTGGAGGTGCTTAATGACCTTT CATGGCCTGGAATGCTTGA AACCTGATCCCGCTGATCTCGC 

Dusp4 GTTCATGGAAGCCATCGAGT CCGCTTCTTCATCATCAGGT TCCCGATCAGCCACCATCTGC 

Eef1a CCTGGCAAGCCCATGTGT TCATGTCACGAACAGCAAAGC TGAGAGCTTCTCTGACTACCCTCCACTTGGT 

Gadph TCCATGACAACTTTGGCATTG CAGTCTTCTGGGTGGCAGTGA AAGGGCTCATGACCACAGTCCATGC 

Homer1a GCATTGCCATTTCCACATAGG ATGAACTTCCATATTTATCCACCTTACTT ACA5ATT5AATT5AG5AATCATGA (*) 

Hsf1 CAACAACATGGCTAGCTTCG CTCGGTGTCATCTCTCTCAGG TGAGCAGGGTGGCCTGGTCA 

Hsp90b1 TGTACCCACATCTGCACCTC TTGGGCATCATATCATGGAA CGCCGCGTATTCATCACAGATGA 

Hspa5/Bip CACTTGGAATGACCCTTCG GTTTGCCCACCTCCAATATC TGGCAAGAACTTGATGTCCTGCTGC 

Npas2 AGGAAAGGACGTCTGCTTCA CCAAGCTATGCCTCGAAGTG CCTGGCAACCCCGCAGTTCTTA 

Per2 ATGCTCGCCATCCACAAGA GCGGAATCGAATGGGAGAAT ATCCTACAGGCCGGTGGACAGCC 

Rbm3Long TGATGCTGTCTTCAGGATGC 
 

GGCCCAACACAAGTAAAGGA 
 

TCAAGGATGAGGTAAGTATGCTATCCTTGAGC 
 

Rbm3Short GGCTATGACCGCTACTCAGG 
 

CAGCAATTTGCAAGGACGAT 
 

TGAGATGGGGCATGCACACA 
 

Nr1d1 / 
reverb-α 

AGGGCACAAGCAACATTACC CAGGCGTGCACTCCATAGT AGGCCACGTCCCCACACACC 

Sfpq GCATTTGAAAGATGCAGTGAA CAGGAAGACCATCTTCGTCA TCGCCCAGTCATTGTGGAACCA 

Sfpq_Comm TGGATGTTAGCAGTTTATTGACC GCACAAGGTACACTGCCATT TGTAAATGGCCTGTTTGGGCAGG 

Sfpq_Ext TGCTTTCCTCCCACCATAAG TTGCTCTAACGAAAGGAAATTCA TGGGGATGTTTTGATGATGTCAGTTCA 

Sirt1  TTGTGAAGCTGTTCGTGGAG CTCATCAGCTGGGCACCTA TTTTAATCAGGTAGTTCCTCGGTGCCC 

Tbp TTGACCTAAAGACCATTGCACTTC TTCTCATGATGACTGCAGCAAA TGCAAGAAATGCTGAATATAATCCCAAGCG 
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 Supplementary Table 2: statistics on RT-qPCR results   

 
 
GT:  genotype, SD/NSD: Sleep deprived / non-sleep deprived (control) 
ZT0:  t-test, degrees of freedom: 8  

ZT6:  two-way ANOVA (factors SD and GT), df=1 for both factors SD, GT and its interaction; error df=16   
X: Ct>30 or undetected 
Green:   significant increase 
Red:    significant decrease 
Purple:   significant interaction 
Significance level:  α≤0.05  
 

 
 

 Cortex Liver 
  ZT6  ZT6 
Transcript ZT0 (#) SD/NSD(*) GT (*) Interaction 

(*) 
ZT0 (#)  SD/NSD (*) GT (*) Interaction (*) 

Cirbp  X t(8)=4.9, 
p=0.001 

X X X t(8)=4.0,  
p=0.004 

x X 

Clock  t=0.86; 
p=0.21 

F=2.38 
p=0.14 

F =0.85; 
p=0.37 

F=8.02; 
p=0.01 

t=0.03; 
p=0.98 

F=0.09; 
p=0.77 

F=0.81; 
p=0.38 

F=0.03; 
p=0.87 

Dbp t= 0.13; 
p=0.90 

F=82.0; 
p<0.0001 

F=0.39; 
p=0.54 

F=3.06; 
P=0.10 

t=1.99 
p=0.08 

F= 4.37; 
p=0.05 

F=0.23; 
p=0.64 

F=0.0002; 
p=0.99 

Dusp4 t=1.29;  
p=0.23 

F=97.55; 
p<0.0001 

F=0.50; 
p=0.49 

F=3.24; 
P=0.09 

X x X X 

Homer1a t=0.96; 
p=0.36 

F=228.8; 
p<0.0001 

F=0.005; 
p=0.94 

F=1.08; 
P=0.31 

X x X X 

Hsf1 t=0.67;  
p=0.52 

F=18.22; 
p=0.0006 

F=1.79; 
p=0.20 

F=1.9; 
P=0.18 

t=0.14; 
p=0.89 

F=3.43; 
p=0.08 

F=4.63; 
p=0.05 

F=0.48 
p=0.50 

Hsp90b t=1.29; 
p=0.23 

F=7.18; 
p=0.0164 

F=1.40; 
p=0.25 

F=6.86; 
p=0.02 

t=1.71; 
p=0.12 

F=0.93; 
p=0.35 

F=0.80; 
p=0.38 

F=0.07; 
p=0.80 

Hspa5 t=0.89; 
p=0.40 

F=72.03; 
p<0.0001 

F=0.03; 
p=0.86 

F=5.32; 
p=0.03 

t=2.02; 
p=0.08 

F=0.62; 
p=0.44 

F=0.84; 
p=0.37 

F=0.04; 
p=0.86 

Npas2 t=0.86; 
p=0.41 

F=1.56; 
p=0.2298 

F=0.0008; 
p=0.98 

F=3.99; 
p=0.06 

X X X X 

Per2 t=2.78; 
p=0.02 

F=75.22; 
p<0.0001 

F=4.78; 
p=0.04 

F=0.06; 
p=0.80 

t=0.90; 
p=0.40 

F=0.95; 
p=0.34 

F=0.01; 
p=0.92 

F=0.02; 
p=0.90 

Rbm3-short t=0.05, 
p=0.96 

F=32.04, 
p<0.001 

F=0.31, 
p=0.59 

F=0.13, 
p=0.73 

t=2.23, 
p=0.06 

F=47.6,  
p<0.0001 

F=2.7, 
p=0.12 

F=1.6, 
p=0.22 

Rbm3-long t=0.10, 
p=0.92 

F=9.49, 
p=0.007 

F=0.03, 
p=0.86 

F=0.32, 
p=0.58 

X X X X 

Rev-erbα t=0.91; 
p=0.39 

F=8.95; 
p=0.009 

F=1.09; 
p=0.31 

F=6.80; 
P=0.02 

t=1.59; 
p=0.15 

F=31.13; 
p<0.0001 

F=2.41; 
p=0.14 

F=1.37; 
p=0.26 

Sfpq t=1.51; 
p=0.17 

F=11.61; 
p=0.004 

F=0.017; 
p=0.90 

F=4.44; 
p=0.05 

t=0.93; 
p=0.38 

F=1.26; 
p=0.28 

F=2.78; 
p=0.11 

F<0.001;  
p=0.98 

Sirt1 t=2.56; 
p=0.04 

F=1.61;  
p=0.22 

F=0.14; 
p=0.72 

F=2.07; 
p=0.17 

t=1.75; 
p=0.12 

F=0.94; 
p=0.35 

F=0.03; 
p=0.87 

F=0.12; 
p=0.73 
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“Scientific objectivity is not the absence of initial bias.  

It is attained by frank confession of it.”  

  

Mortimer J. Adler  

 
 
 
 
 
 

https://www.goodreads.com/author/show/22395.Mortimer_J_Adler
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 General Discussion  
 

In this chapter, the results and conclusions of the two projects are discussed in the broader 

context of sleep, circadian rhythms and clock genes. The points raised go beyond the specific 

considerations brought up in the discussion sections of the experimental chapters.  

 

PER2 ENCOMPASSES CIRCADIAN TIME AND SLEEP PRESSURE 

It is known for more than fifteen years that sleep deprivation affects clock gene expression 

(Wisor et al., 2002). However, our study is the first to report on a relationship between sleep-wake 

state and PER2 bioluminescence in a freely behaving mouse. Our read-outs are based on 

undisturbed measurements thereby overcoming potential confounding factors that are associated 

with sleep deprivation. This experimental set up provided two more advantages: i) we did not have 

to sacrifice mice at each time-point, thereby tremendously decreasing the number of animals, and 

ii) mice were functioning as their own control, thereby overcoming inter-individual variation and 

thus strengthening the experimental design. Our most important finding, however, is that also 

under undisturbed conditions, it appears that PER2 bioluminescence functions as an output of the 

sleep-wake distribution, instead of the clock.  

Changes in PER2 bioluminescence were occurring on a relatively short time scale as a function 

of spontaneous sleep-wake state. We assume that these changes reflect differences in PER2 protein, 

but do they? If this is the case, changes at the transcriptional and/or translation level need to occur 

fast as well. There are only a handful experiments that addressed the induction of period-genes at 

a time-scale comparable to ours.  

Experiments supporting rapid changes at the level of transcription revealed that light pulses 

delivered from CT16 to CT16.5 can induce an increase in Per1 in the SCN within ten minutes after 

light onset (Shigeyoshi et al., 1997). A light pulse at CT13.5 and CT20 also elicits increased expression 

of Per1 and Per2 in the SCN within 30 minutes after the light pulse (Moriya, Horikawa, Akiyama, & 

Shibata, 2000).  

At the translational level, the production of PERIOD-proteins can be induced fast too. Exposing 

mouse embryonic fibroblasts to horse serum induces an increase in PER1 and PER2 within 30 

minutes (R. Cao et al., 2015). Moreover, an acute stressor (forced swim test) induced significant 

increases in PER1 levels in several areas of the rat brain within one-hour (Al-Safadi et al., 2014).  
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Thus, the changes in PER2 bioluminescence that we observed around sleep-wake state 

transitions could reflect rapid changes in PER2 protein levels. The aforementioned studies used 

western blot and immunohistochemistry, respectively, to estimate Period-protein levels, even 

though these techniques are considered semi-quantitative. To detect PER2 changes at the time-

scale we are interested in, a sensitive protein quantification method needs to be deployed.  

 

PER2 and delta power: correlates of sleep pressure? 

There is cross-talk occurring between the circadian and sleep homeostatic components of the 

two-process model (Borbely, Daan, Wirz-Justice, & Deboer, 2016).  For example, feelings of 

sleepiness are the result of the interaction between time spent awake and circadian time (Akerstedt 

et al., 2014). Per2, although considered a clock gene, also encompasses both time spent awake and 

circadian time (Curie et al., 2013). Manipulating the core clock in mouse models affects sleep 

deprivation incurred changes in the cortical Per2 response and the NREM sleep homeostatic 

process (i.e. delta power): an amplified increase of delta power correlated with increased levels of 

Per2 (Wisor et al., 2008). Furthermore, a lower build-up rate of NREM sleep pressure, and lower 

NREM delta power after spontaneous wake bouts, was associated with an attenuated increase in 

cortical Per2 ((Franken et al., 2006) and (Vassalli & Franken, 2017), respectively).  

Given Per2‘s correlation with NREM delta power, this gene could be expected to be causally 

involved in the NREM sleep homeostat as well. This was addressed in studies where the function of 

the Per2 gene was impaired or removed by genetic mutations. The first study found that Per2-

mutant mice slept more during the recovery of the 6hr sleep deprivation compared to WT (wild-

type) mice. Moreover, the increase in delta power immediately after sleep deprivation was 

attenuated in Per2-mutant mice (Kopp et al., 2002). The second study, using a different mutation 

on a different genetic background, found that after sleep deprivation Per2 mutant mice also 

recovered more NREM sleep. However, this study did not specifically address genotype differences 

in delta power after sleep deprivation (Shiromani et al., 2004). The third study is work in progress 

from our lab and demonstrated that sleep deprivation did not increase NREM delta power 

differently between WT and Per2 knock-out mice. However, Per2 knock-out mice did recover 

significantly less NREM sleep compared to their WT-littermates (Spada, 2013). All together, these 

results suggest that Per2 is implicated in different aspects of sleep homeostasis, but the differences 

in experimental design and analysis make it challenging to compare the results between studies 

directly.  
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Thus, further studies will need to identify the source of variation and asses if PER2 is 

functionally implicated in the sleep-wake distribution, or merely reflects time-spent-awake and 

circadian time.  

 

Considering sleep-wake state in clock gene expression: the caveat of food   

Like body temperature, clock gene expression is considered a phase marker of circadian 

rhythms. However, the expression of clock genes (e.g. Per1-3, Dbp, Rev-erbα) outside the SCN is 

affected by sleep-wake state and should thus be used with caution when informing about time of 

day. Knowing that sleep-wake state affects clock gene expression can support understanding in 

other circadian-related phenomena’s, such as food anticipatory activity. Offering food to mice at 

restricted times of the day induces food-entrained behavior: mice anticipate the arrival of food, as 

if there was a clock informing them when food is available. This food-entrained behavior is 

associated with phase shifts of clock gene expression in the periphery and functions independently 

of the SCN (reviewed in (Escobar, Cailotto, Angeles-Castellanos, Delgado, & Buijs, 2009)). The 

underlying substrate of this food-entrainable oscillator remains mysterious but has, amongst 

others, shown to be dependent on the presence of functional core clock genes such as Npas2 

(Dudley et al., 2003).   

By extending this ‘circadian’ view on food driven changes in peripheral clock gene expression, 

it could be argued that the effect of sleep deprivation on clock gene expression is mediated by 

increased food intake too. Two studies from our lab addressed the importance of food in the sleep 

deprivation induced changes in clock gene expression (unpublished observations). First, we found 

that mice do not eat significantly more during the sleep deprivation (ZT0-ZT6) in comparison to 

the same time of the day when they can sleep ad lib. This observation is in corroboration with the 

circadian modulation of food intake measured during the 2hOn/Off experiment (this thesis). 

Secondly, we demonstrated that food availability does not modulate the sleep deprivation induced 

changes in cortical clock gene expression (Spada, 2013).  

Therefore, the interpretation that the ‘food entrainable oscillator’ is driving changes in clock 

gene expression might be inaccurate: instead, it could be the consequence of being awake, with all 

the associated wake-driven physiological changes in for example temperature and corticosterone 

(personal communication, P. Franken). However, distinguishing between being awake and food 

intake is not straightforward, as one needs to be awake to eat. Therefore, an experiment should be 

designed where food intake is dissociated from the need to wake up. For example, a technique could 
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be used where food is constantly infused into the stomach (as described here: (Ueno et al., 2012)). 

This constant food supply can then be combined with a daily occurring arousing event thereby 

mimicking the waking that is associated with food anticipatory activity.  

 

How do clock genes contribute to the sleep homeostat? 

To narrow down the question, we could first ask where clock genes contribute to the sleep 

homeostat by quantifying where sleep deprivation affects clock gene expression. This phenomenon 

occurs in varying degrees, but in all organs and fluids quantified (reviewed in (Archer & Oster, 

2015)). Importantly, an exception are the SCN, which are not affected by sleep deprivation in terms 

of PER2 protein levels (Curie et al., 2015), although the electrophysiological properties of the SCN 

are sensitive to changes in sleep-wake state (Deboer, Vansteensel, Detari, & Meijer, 2003). 

Moreover, no intact SCN in terms of tissue (Trachsel, Edgar, Seidel, Heller, & Dement, 1992) or 

molecular clock is necessary for an intact sleep homeostat (P. Franken, personal communication). 

Taking together, this suggests that clock gene expression outside the SCN is participating in the 

sleep homeostatic process.  

Most clock gene mutant studies investigated the importance of clock genes in the sleep 

homeostat by using full body mutant mice models. For example, full body KO Bmal1 mice sleep 

much more than their WT littermates (Laposky et al., 2005). A follow-up study assessed in which 

tissue Bmal1 contributes to this sleep homeostatic phenotype. Surprisingly, the loss of sleep in full 

Bmal1 KO mice could be partly by reinstating Bmal1 rhythmicity in the muscle, but not in the brain 

(Ehlen et al., 2017). To my knowledge, this is the only study so far that experimentally established 

a functional link between peripheral clock gene expression and overt sleep-wake behavior.  

Follow-up questions could address which signals are conveyed from the muscle to induce sleep 

at the level of brain activity. It might be through metabolic pathways that these changes occur, 

because: i) clock gene mutations affect metabolism (reviewed in (Panda, 2016)) and ii) changes in 

metabolic state affect sleep; for example, a high fat diet in rats reduces the time spent awake and 

promotes wake fragmentation (Luppi et al., 2014). To investigate this possible pathway further, mice 

with a specific Bmal1-arrest in the liver (Kornmann et al., 2007; Lamia, Storch, & Weitz, 2008) can 

be sleep phenotyped. If these mice exhibit an Bmal1 KO sleep phenotype at the level of the brain, 

this might be conveyed through changes in metabolism. Overlapping the blood transcriptome and 

metabolome profile of the liver-arrest Bmal1 mouse with the full Bmal1 KO mouse can provide clues 

on sleep signaling molecules, thereby unravelling how clock genes contribute to sleep homeostasis.  
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Conclusions and perspectives  

Sleep deprivation affects clock gene expression. Our results show that PER2 bioluminescence is 

not only driven as a function of the circadian clock but as well by sleep-wake state. These insights 

are of importance. Acknowledging the intimate crosstalk between metabolism, clock genes and its 

link to pathologies (Bass & Takahashi, 2010) while ignoring the importance of the sleep-wake 

distribution hampers the development of treatments aiming to ameliorate circadian (or sleep!)-

associated pathologies.  

 

CIRBPS’ CONTRIBUTION TO WAKE-DRIVEN CHANGES IN CLOCK GENE EXPRESSION 

In the second experimental chapter, a mechanism underlying the sleep-wake induced changes 

in clock gene expression is investigated. The hypothesis of this work was based on the results of 

two in vitro studies showing that the rhythmic expression of CIRBP (Morf et al., 2012), and CIRBP 

and RBM3 independently (Liu et al., 2013) facilitates high amplitude clock gene expression in 

temperature synchronized conditions. Therefore, we hypothesized that the increase in brain 

temperature incurred by sleep deprivation affects CIRBP levels which in turn mediates the changes 

in clock gene expression. However, the sleep-wake dependent changes in clock gene expression 

were only for Rev-erbα attenuated in Cirbp KO mice, whereas the effect of sleep deprivation on the 

clock genes Per2 and Clock was amplified in Cirbp KO mice. Thus, the sleep deprivation incurred 

changes in clock gene expression were not as widespread dependent on CIRBP as hypothesized. In 

hindsight, did we overlook some factors? 

The observation that CIRBP is necessary for high amplitude clock gene expression in vitro 

appears robust because two independent studies using different methods (different temperature 

cycles; different mRNA quantification techniques; immortalized mouse embryonic stem cells and 

immortalized NIH3T3 cells, respectively by (Liu et al., 2013) and (Morf et al., 2012)). However, a 

decrease in clock gene expression amplitude can be due to its reduction in each individual cell, or 

be the resultant of individual cells gradually become desynchronized from each other (Nagoshi et 

al., 2004). Hence, cyclic changes in CIRBP could facilitate synchronization between cells, whereas 

in its complete absence, promote desynchronization of cells, appearing as a reduction in amplitude. 

However, Morf et al. discovered the postulated mechanism at the individual cell level through 

which CIRBP drives high amplitude clock gene expression, advocating against a synchronizing role 
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of CIRBP. Nevertheless, further experiments still need to address if this mechanism still holds at 

the group level.  

Our presented results raise another question: Could RBM3 have compensated for the lack of 

CIRBP? Two arguments can be raised against this suggestion:  i) both above mentioned in vitro 

studies reported that CIRBP alone (Morf et al., 2012) or CIRBP and RBM3 separately (Liu et al., 2013) 

are necessary for high amplitude clock gene expression and ii) no compensatory response in terms 

of Rbm3 transcript levels was observed.  Therefore, it appears unlikely that RBM3 could –

completely- rescue our Cirbp KO phenotype.  

One possible caveat of our experimental design to consider is that the hypothesis emerged from 

studies performed in a relatively simple biological system, immortalized cell lines, where Cirbp was 

acutely suppressed by silencing its RNA. We applied their conclusions to a very complex system: 

hepatic and cortical tissue of adult male mice. Already in vitro studies find discrepancies of 

circadian features between cell lines from different origins and age (for examples, see (Kaeffer & 

Pardini, 2005) and Fig6 in (Saini et al., 2012)). Moreover, our hypothesis is built on the idea that 

cortical temperature changes with waking whereas many other variables also change with waking 

(see for examples (Franken, 2013)). Some of these waking associated factors interact with CIRBP 

and could potentially show a compensatory response in its absence. For example, two of the three 

quantified cortical heat shock pathway transcripts (Hsp90b and Hspa5/BiP) showed a significant 

genotype-dependent sleep deprivation incurred amplification in our study. Interestingly, heat-

shock factor 1 (HSF1) has, like CIRBP, been identified as a component mediating the effect of 

temperature to clock gene expression (Saini et al., 2012). HSF1 drives the expression of other heat 

shock proteins and the circadian expression of Per2 by acting as a transcription factor (Reinke et 

al., 2008). The sleep deprivation incurred increase in Hsf1 was only significant in Cirbp KO mice. 

Therefore, it is tempting to speculate that the amplified expression of Per2 in Cirbp KO mice 

underlies a compensatory effect by HSF1-driven Per2 transcription. This idea is further supported 

by the genotype dependent increase after sleep deprivation of Hsp90b and Hspa5, whose expression 

is also mediated by HSF1. Thus, HSF1 might have compensated for the absence of Cirbp in our study.  

Another argument considering the step from in vitro to in vivo stems from the (absence of) 

reports on a circadian phenotype of overt behavior of Cirbp and Rbm3 mutant mice. Because of the 

absence of those reports, it might be that Cirbp and/or Rbm3 mutant mice have not a clear circadian 

phenotype and therefore the data has not been published (i.e. the ‘file drawer problem’). The results 

of our locomotor activity experiments showed that Cirbp KO mice are more active during the dark 
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(i.e. increased amplitude), which is counterintuitive regarding the in vitro studies where si-Cirbp 

led to reduced amplitude clock gene expression.  

 

Conclusions and perspectives  

Altogether, by taking the results from the in vitro studies to our in vivo experiments, we might 

have oversimplified our model for the questions asked. I would like to discuss briefly how this 

explanation of our results can be tested. The amplitude of clock gene expression can be quantified 

in Cirbp KO mice under baseline conditions to test if it is reduced like in vitro. If the amplitude is 

not reduced in KO mice, this supports the notion that the in vitro work is not directly translatable 

to the in vivo work. We could then reverse the approach and start with the simplest model; i.e. in 

vitro immortalized cell lines. First, we would reproduce that high amplitude clock gene expression 

is impaired in temperature synchronized cells upon si-Cirbp, and then add increasing levels of 

complexity. For example, by taking primary fibroblasts instead of immortalized cell lines, and 

incrementally add in vitro waking-associated agents to mimic more our in vivo system. When the 

effect of si-Cirbp on the amplitude of clock gene expression disappears, this points towards an 

underlying compensatory mechanism.  

 
 
OTHER CONSIDERATIONS 

Throughout the course of my scientific training, I expanded my knowledge on designing and 

conducting scientific experiments. The insights I gained through this learning process provided me 

with tools to better reflect on our work and understand its’ shortcomings. Therefore, I would like 

to spend a few words on this here.  

  

Sleep regulation beyond Process S and C 

A study that motivated me to learn more about neuroscience showed that cage enrichment 

prevents rodents from addiction (Alexander, Beyerstein, Hadaway, & Coambs, 1981). Or, to put it 

the other way around, deprivation from cage enrichment facilitates addiction. Hence, one might 

wonder if such a complex behavior as sleep is affected by housing conditions. For logistic reasons, 

sleep studies in rodents have been performed mainly under environmentally deprived conditions. 

However, recently studies started to investigate the importance of housing conditions and indeed 

found that social housing affects baseline sleep (Febinger, George, Priestley, Toth, & Opp, 2014; 

Kaushal, Nair, Gozal, & Ramesh, 2012), the response to sleep deprivation (Kaushal et al., 2012) and 
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sleep after a stressful event (DaSilva et al., 2017; DaSilva et al., 2011; Meerlo, de Bruin, Strijkstra, & 

Daan, 2001). Also, the type of sleep deprivation (continuous cage change versus gentle handling) 

modulates sleep latency (Suzuki, Sinton, Greene, & Yanagisawa, 2013). Thus, environmental factors 

can modulate sleep. It remains to be determined if this also affects the build-up and decay rate of 

process S. However, there are indications that an aroused state of waking increases sleep pressure 

faster (Vassalli & Franken, 2017).  

These insights should be considered when interpreting the results of the relationship between 

peripheral PER2 bioluminescence and sleep-wake state, because the mice were housed solitary 

deprived of environmental enrichment. Further studies need to address the impact of this 

environmental factor as soon as the technology is available. 

 

Sex differences  

Another example, which I did not specifically address in the two studies of this thesis, concerns 

sex differences. There is a large body of evidence demonstrating a significant contribution of sex in 

both circadian rhythms and sleep-wake behavior (for reviews see (Bailey & Silver, 2014) and (Mong 

& Cusmano, 2016)). In general, female mice spend less time asleep and exhibit higher NREM delta 

power, which is dependent on sex steroids (Mong & Cusmano, 2016). Furthermore, modelling of 

NREM sleep pressure based on the sleep wake distribution demonstrated that sleep pressure 

accumulated at a much slower rate in females than males (Franken et al., 2006). There are only a 

few studies that considered the relationship between clock genes and sleep regulation while 

controlling for sex. First, sex did not affect the increase in PER2 protein levels after sleep deprivation 

(Curie et al., 2015). Knocking out Npas2 from the mouse’s genome leads to a sex dependent 

genotype effect on the sleep-homeostatic process (Franken et al., 2006). Another study mentioned 

that both sexes were investigated but did not report on any specific sex differences afterwards (He 

et al., 2009). Understanding the contribution of sex to sleep-wake regulation could not only expand 

our knowledge further on sex differences in sleep, but can also provide clues towards mechanisms 

underlying sleep regulation in general.  

 

How to implement the perfect design in a world with limited resources  

Thus, sex differences and environmental enrichment are two examples of supposedly 

‘confounding factors’ that, once we understand their mechanisms better, could expand our 

knowledge of sleep. In general, a different research question is posed in the same model under the 
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same conditions, whereas understanding the importance of the above-mentioned factors requires 

addressing the same question in a different model under different conditions. There are many 

logistic reasons why the first approach is dominating in (murine) research: e.g. there are/were many 

more (genetic) tools available in mice compared to any other (rodent) species; the housing 

conditions are required to meet certain standards; and funding is easier to obtain for a novel 

observation in the same model than to replicate a previously obtained finding in a different model.  

Still, incorporating the extra variation can make our conclusions more general, or if not, more 

precise and thereby even providing clues about underlying mechanisms. Embracing this kind of 

change in experimental design needs to emerge from both the scientific communities and the 

funding agencies. Since 2017, the NIH has imposed sex as a biological variable, which hopefully also 

comes with the financial support to pursue these experiments in duplicate. 
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