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Abstract

HIV-1 infects CD4+ T cells and completes its replication cycle in approximately 24 hours. We employed repeated
measurements in a standardized cell system and rigorous mathematical modeling to characterize the emergence of the viral
replication intermediates and their impact on the cellular transcriptional response with high temporal resolution. We
observed 7,991 (73%) of the 10,958 expressed genes to be modulated in concordance with key steps of viral replication.
Fifty-two percent of the overall variability in the host transcriptome was explained by linear regression on the viral life cycle.
This profound perturbation of cellular physiology was investigated in the light of several regulatory mechanisms, including
transcription factors, miRNAs, host-pathogen interaction, and proviral integration. Key features were validated in primary
CD4+ T cells, and with viral constructs using alternative entry strategies. We propose a model of early massive cellular
shutdown and progressive upregulation of the cellular machinery to complete the viral life cycle.
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Introduction

The life cycle of HIV-1 and its interaction with the host cell has

been extensively studied [1]. However, previous analyses did not

assess all relevant steps of viral replication in a longitudinal study

in a single experimental system. Transcriptome (and miRNA)

analyses have used microarray technology, usually in cross-

sectional experiments, generally at the completion of the viral

replication cycle (24–48 hours) [2]. Analyses of viral integration

first evaluated how the transcriptional status of genes contributes

to preferential integration of proviruses [3]; however, there is

limited data on how the viral integration contributes to host

transcription at genome-wide level. Analyses have also been

hampered by the heterogeneity of the infectious system, where the

transcriptome profile reflects contribution by infected and

uninfected cells. Recent studies have approached this problem

by magnetic sorting of cells infected in vitro identified by a marker

recombinant protein that is expressed during the late-phase of viral

replication cycle [4].

Here, we jointly investigated, through repeated measurements in

time, the dynamics of viral products and cellular responses in a

model of universal cell infection (Figure S1 in Text S1). To this

end, we applied high-throughput sequencing technologies for

mRNA, small RNAs, and viral integration site profiling, as well as

detailed quantification of viral replication intermediates. A highly

permissive T cell line (SupT1) was chosen, because it could be

transduced at 100% efficacy with an HIV vector (NL4-3Den-

v::eGFP, VSV.G pseudotyped). This model system allowed effective

synchronization through infection and avoided confounding of

transcriptional profiles by uninfected bystander cells. Transcriptome

changes were shown to be specific to the infectious process, and

representative results were subsequently validated using different

infection rates, primary cells and alternative viral constructs.

The aim of this project was to create a first model of the

productively infected cell by capturing the dynamics of all

expressed host genes, concomitantly with viral replication steps.

Integration of the cellular and viral data was achieved through

rigorous mathematical approaches. The analyses underscored the

features of the successful viral replication occurring despite a

profound perturbation of the cell at the transcriptional level. Data

are provided as a fully interactive web resource to allow reader-

specific queries.

Results/Discussion

Dynamic analysis of viral replication intermediates
Progression of the viral life cycle was characterized through

quantitative measurement of nine species of viral intermediates

(Figure 1A, and Figure S2 in Text S1). To generate a high-

resolution picture of the various steps of the viral life cycle, we

developed a parametric viral progression model based on

ordinary differential equations. We found that initiation of viral

reverse transcription (defined as reaching 1% of its total

progression) occurs as early as 3 hours after infection, with

double-stranded viral cDNA appearing 2 hours later (referred

hereafter as reverse transcription phase). 2-LTR circles began

accumulating as early as 7 hours post-infection, with integration

beginning 1.5 hours later (integration phase). All viral transcripts

emerged by 15 hours and, at the peak of expression, 0.6% of all
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transcripts in the cell were of viral origin, consistent with previous

estimates [5]. Transcription was tightly coupled with translation,

and it was followed by the release of viral particles starting at

18 hours after infection (late phase) (Figure 1B). The temporal

patterns of these features of the viral life cycle were used to

explain the host genome-wide expression dynamics in response to

the invading virus (Figure 2A).

Host transcriptome changes involve a large proportion of
cellular genes in concordance with viral progression

High-throughput RNA sequence analysis identified 10,559

genes and 399 miRNAs expressed in the experimental system.

Fifty-two percent of the overall variability in the transcriptome was

explained by linear regression on the three main phases of the viral

life cycle as identified by the viral progression modeling, namely

reverse transcription, integration, and late phase (Figure 2). 73%

of all expressed genes (n = 7,991) demonstrated significant corre-

spondence of their temporal expression patterns with steps of the

viral life cycle at the 5% false discovery rate. Using the regression

weights as a measure of regulation of a gene in each of the three

viral life phases defined above, we found 18 co-regulated gene

clusters (Figure 2, and Figure S7 and S8 in Text S1). Clusters

were assessed for enrichment in gene ontology terms and

pathways. Detailed inspection of clusters, individual querying of

genes and of gene sets is provided at a dedicated web resource

(www.peachi.labtelenti.org [6]).

Downregulation of cellular genes was generally early (4 hours

post-infection), profound, and persistent throughout the experi-

ment (Figure 2, and Figure S8C in Text S1). The eight

downregulated clusters, including 4,719 (43%) genes, coherently

exhibited enrichment in several functional gene sets. For example,

downregulation concerned 70% (538/751, p,10213) of all

expressed genes encoding nuclear proteins, 70% (338/484,

p,1026) of genes involved in the Reactome expression machinery,

such as those encoding RNA polymerase II components, splicing

factors, ribosomal proteins, tRNA synthetases and translation

initiation factors, and 75% (185/248, p,1027) of genes involved

in protein metabolism. Despite the observed cellular response to

infection, cell viability was similar in mock and infected cells (75%

vs 72% at 24 hours, respectively). The observed pattern of cellular

shutdown is more consistent with a cellular response to viral

invasion than with experimental stress, given that two hours after

infection, the transcriptome of HIV-infected cells is undistinguish-

able from that of mock samples.

In contrast to the downregulated genes, upregulation occurred

progressively and at later time points (Figure 2, and Figure S8A
in Text S1). Six clusters containing a total of 2,161 (20%) genes

were upregulated in response to infection. Overrepresented gene

Figure 1. Modeling of the viral life cycle. (A) Raw data of measured viral replication intermediates (mean [dots] with one standard error) and
curves of fitted progression model (solid lines). The temporal dynamics of each step in the viral life cycle was generated individually by modeling the
net effect of production, decay, initial viral input, and experimental noise of the corresponding marker intermediate (Text S1 and Figure S4 and S5
in Text S1). (B) Activity profile of individual steps of the viral life cycle estimated from the progression model. Each violin spans the 98% quantile of
the viral step with width proportional to activity level at each given point in time. The plus symbol (‘+’) denotes the peak of the activity and the inner
white violin its 95% bootstrap confidence interval. In the shaded area, expected values extrapolated beyond the last observed time point (24 h,
dashed line) are shown.
doi:10.1371/journal.ppat.1003161.g001

Author Summary

Viral pathogens, such as HIV-1, are fully dependent of the
cellular machinery to complete the replication cycle. The
cell offers a permissive environment, and deploys a
number of antiviral defense strategies. The present work
follows the process of infection of the cell with simulta-
neous measurements of viral replication intermediates
together with the concurrent assessment of the host
transcriptional changes. The main observation is that the
cell undergoes a profound modification of its physiology,
with a marked early decrease in expression of several
thousands of genes, followed by a more discrete increase
in the expression of sets of genes that may contribute to
the success of the viral replication program. The cell
system used in this study has limited response of
paradigmatic cellular defense genes. Key features of the
experimental model were validated in primary cells and
with different viral vectors. The data and model generated
here constitute a resource that can be used for the
assessment of single gene responses to HIV-1 infection,
and as comparative reference for the understanding of
other viral and cellular programs, such as those implicated
in successful defense against viral infection or in latency.

24 Hours in the Life of HIV-1
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groups notably identified the Reactome generic transcription

pathway (43%, 47/108, p,1024) that includes components of the

mediator complex and zinc finger proteins. Individual upregulated

clusters showed overrepresentation of several signaling and innate

immune pathways, such as cytokine-cytokine receptor interaction

(p,1023), TLR signaling (p = 0.0016), and activation of NF-kB

(p,1023). Genes involved in antiviral defense and cell death

signaling were also enriched in the four clusters, comprising 1,111

Figure 2. Clusters of host genes correlated with viral progression. Temporal expression patterns of 7,991 genes modulated in concordance
with key steps of viral replication (panel A) were grouped into 18 clusters with differential expression profiles at three phases of the viral life cycle,
namely reverse transcription, integration, and late phase. The cluster code characters ‘+’ and ‘2’ mark significant (p,1022) upregulation and
downregulation, respectively, while ‘o’ indicates no significant deviation from zero. For example, the cluster ‘2+o’ contains 373 genes downregulated
during reverse transcription, upregulated during integration, and unregulated during the late phase. In total, six upregulated clusters (B), four clusters
with mixed patterns of regulation (C), and eight downregulated clusters (D) were found. Details of clusters are available at the dedicated web
resource [6].
doi:10.1371/journal.ppat.1003161.g002

24 Hours in the Life of HIV-1
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(10%) of the genes, that exhibited mixed patterns of upregulation

and downregulation (Figure 2, and Figure S8B in Text S1).

Thus, the early, large-scale, coordinated shutdown of the cell was

followed by upregulation of immune response signals suggesting

the triggering of defense mechanisms by the cell. However,

detailed analysis of selected mechanisms of antiviral defense

portrayed the extent to which the highly permissive cell line used

in the current study may be poorly equipped to respond to the

incoming virus. For example, of 331 interferon stimulated genes

previously tested against HIV-1 [7], less than half (n = 144, 43%)

were expressed in SupT1 cells, and only 61 (18%) were

upregulated in concordance with the viral life cycle. In particular,

among the 6 most active anti-HIV interferon stimulated genes

described before [7], most were not expressed and only IRF1 was

upregulated. Similarly, of the four prototypical lentiviral restriction

factors, TRIM5a, APOBEC3G, BST2/Tetherin, and SAMHD1, only

TRIM5a was expressed and upregulated. The paucity of innate

immunity gene expression may contribute to the high permissive-

ness of SupT1 T cells to infection, and thus, to their frequent use

of in HIV-1 research.

Many transcripts coding for HIV-interacting proteins are
downregulated upon infection

We further examined the pattern of expression of host genes

reported to interact with HIV-1 proteins. We first analyzed the

expression profile of 443 genes previously identified in a screen of

physical interactions of all 18 HIV-1 proteins with human factors

[8]. Of these, 382 were expressed in our experimental system, and

290 (76%) showed modulation associated with viral progression

features; specifically, 55% downregulation, 13% upregulation, and

8% mixed regulation. The enrichment of virus interaction partner

genes was significantly higher in down-regulated clusters as

compared to overall cellular transcripts (43%, 20%, and 10%,

respectively; p,1026). Specific clusters were enriched with genes

encoding interaction partners of the viral proteins Vif, gp41, Vpr,

and Tat. Additional databases of HIV-1 host factors

[9,10,11,12,13], as well as genes present in HIV-related pathways

extracted from Reactome were inspected in a similar fashion [6].

Most of them were downregulated, emphasizing the importance of

assessing interactions between viral and host genes in the context

of the dynamics of the infection process and not as static events.

Transcriptome analysis reveals correlation for
transcription factors and their targets but not for miRNA
and cognate targets

Transcription factors and miRNAs are two key components of

transcriptional regulation. Over two thirds of the 18 co-regulated

gene clusters exhibited significant overrepresentation of the

putative targets of one or more transcription factor or miRNA.

Several major transcription factor genes were downregulated

along with their corresponding targets. For example, 1,080 (23%)

of the downregulated genes were targets of the large-scale

transcriptional regulators SP1, MAZ, and ELK1, that were found

also to be downregulated (Table S1 in Text S1). In contrast,

there was limited agreement between miRNA expression and that

of genes sharing the experimentally verified miRNA targets

(Table S2 in Text S1). Specifically to HIV-1, only miRNAs

that target the viral 39LTR (miRNA-125b, miRNA-150, and

miRNA28-3p) and experimentally shown to inhibit HIV-1 [14],

were found to be upregulated during the infection [6]. These

results underscore the difficulty in interpreting regulator-to-

regulated gene activities in complex settings such as the infected

cell.

Viral integration events in genes do not account for
transcriptome changes at the population-level

Many chromosomal regions were enriched in gene clusters,

suggesting location-specific co-regulation. We investigated the

possibility that such regional gene expression profiles are

influenced by the spatial pattern of HIV-1 integration into the

host genome. We identified 40,430 unique viral integration sites.

Consistent with previous work [15], integration favored genes that

are transcriptionally active prior to infection, and this association

remained at the time of integration, although many genes had, by

then, undergone significant downregulation (Figure 3). At

24 hours there was a negative correlation of 20.26 (p,10264)

between the frequency of integration in a given gene and the

observed change in gene expression. However, given the low

prevalence of integrations in the overall cell population (Figure 3),

even genes with the highest number of integration events were

unlikely to be downregulated by more than 0.008 log2 fold at the

cell population level (Figure S9 in Text S1). Thus, while cellular

gene expression levels influenced integration rates, proviruses did

not contribute significantly to global cellular expression levels. This

observation does, however, not preclude an impact of integration

at the single cell level.

Exposure to non-infectious viral material does not
explain the observed transcriptome changes

One of the difficulties in trying to study HIV infection in

cultured cells, as compared with what may happen in vivo, is the

use of a large multiplicity of infection, and the exposure of the cells

to large concentration of non-infectious particles. To assess the

possibility that the profound transcriptome modifications were due

to exposure to non-infectious viral particles, we compared the

transcriptome of cells that were universally infected, cells exposed

to heat-inactivated virus, cells exposed to a mixture of 1:10

infectious/heat-inactivated virus, and non-infected (mock) cells.

The transcriptome of mock cells and after exposure to heat-

inactivated viruses clustered together across the top principal

components (Figure 4). Infected cells spread away from the mock

space as infection progressed. These data confirm that the

transcriptome changes reflect the viral progression and is not a

mere result of exposure to viral material.

HIV-mediated gene regulation is recapitulated using
different viral and cellular systems

The experimental system consisted of a highly permissive T cell

line (SupT1) and a VSV.G pseudotyped HIV vector to achieve

universal infection. To validate our results, we used primary cells

and natural viral entry. Activated CD4+ T cells from two donors

were transduced with HIV vectors pseudotyped with both VSV.G

and CXCR4-tropic envelopes. As expected, the rate of infection of

primary cells was inferior to that of the T cell line (Figure S10 in
Text S1). We analyzed the expression of 14 genes representative

of various clusters by RT-qPCR. First, we compared the gene

expression findings based on RNA sequencing with RT-qPCR

data. For example, at 24 hours after infection, the correlation

between the two techniques was r2 = 0.77 (p,1024) even though

the dynamic range is larger for RNA sequencing (Figure S11 in
Text S1). Second, we re-assessed the role of exposure to non-

infectious viral material in modifying expression of the marker

genes (Figure 5A).We also applied RT-qPCR to the analysis of

gene expression patterns over the 24-hour viral life cycle in

primary cells (Figure 5B). Finally, we compared transduction of

primary cells by HIV-1 carrying natural (CXCR4) with vectors

pseudotyped with VSV.G envelope (Figure 5C). Overall, genes

24 Hours in the Life of HIV-1
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upregulated in SupT1 cells were generally confirmed as upregu-

lated in primary cells, but the signal was weaker in primary cells

due to dilution by RNA of non-infected bystander cells and

possibly by cell-specific responses to HIV-1. Downregulation was

muted in primary cells despite equal experimental conditions,

including biological stress, indicating that cellular shutdown is a

response to successful infection. In support of this notion, a lower

infection rate (1/10 inoculum, diluted in heat-inactivated virus

preparation) resulted in proportional modulation (up- or down

regulation) of the signal; and cells exposed to 100% heat-

inactivated virus were comparable in expression pattern to

mock-treated cells.

Conclusions
Research on the infected cell generally follows the paradigm of

‘‘single gene, single interaction’’. However, this approach fails at

fully capturing and quantifying the complexity of the system. In

contrast, the non-reductionist study presented here reflects the

intricate cellular response to infection where, at the transcription

level, a large proportion of genes are modulated in concordance

with key steps of viral replication. As such, this work provides a

referential resource on the viral life cycle that can be contrasted

across cellular systems and viral strains, and also across diverse

pathogens. The approach should be extended to study the

establishment of and reactivation from viral latency [16].

Ultimately, it can guide intervention of the viral life cycle at

specific time points through the modulation of selected host genes

and pathways. Progress in single-cell transcriptome analysis should

allow in the future to investigate primary cells infected with

replication-competent virus.

Materials and Methods

Viral life cycle
Virus production. HEK293T cells were co-transfected with

15 mg pNL4-3DEnv-GFP (NIH AIDS Research and Reference

Figure 3. Host gene expression and viral integration. (A) Distribution of observed rates of integration: six gene groups (color coded) were
defined based on the number of integrations per megabasepair (Mbp). Genes with no observed integration are depicted in grey. (B) Average level of
expression of the six gene groups in Mock and HIV-infected cells during the 24-hour experiment. (C) Expected number of integration events in
individual genes based on an empiric integration rate of 5.5 proviruses per haploid genome and on 40,430 observed unique integration sites (approx.
1% of all events).
doi:10.1371/journal.ppat.1003161.g003

24 Hours in the Life of HIV-1
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Reagent program, Cat. #11100) and 5 mg pMD.G, using the

calcium phosphate method (Invitrogen). pNL4-3DEnv/GFP

encodes the HIV vector segment with a 903 bp deletion in the

env ORF in which the gfp ORF was introduced [17]. The second

plasmid pMD.G codes for the vesicular stomatitis virus G envelope

(VSV-G) [18]. Forty-eight hours after transfection, the superna-

tants were collected, centrifuged, and filtered through 0.45-mm

filters. Viral particles were concentrated by filtration on Centricon

units (Centricon Plus-70/100K, Millipore). The concentrated viral

supernatant was treated with 100 units/ml DNase I (Roche) for

1 h at 37uC and stored at 280uC. Viral titers were measured by

p24 ELISA (Abbott Murex).

Cellular infection and sample collection. SupT1 cells

(56106 cells) were either mock treated or infected with 15 mg p24

equivalent of HIV-based vector by spinoculation at 1500 g for

30 min at room temperature, in presence of 5 mg/ml polybrene

(Sigma), in 400 ml final volume – for a total of 72 tubes for mock

and 72 tubes for infected condition (Figure S1 in Text S1). After

three washes with culture medium, cells were pooled, resuspended

at 106 cells/ml in R-10 and further incubated. Every two hours,

cellular samples (,306106 cells in 30 ml) were collected for viral

and cellular measurements. Briefly, 0.5 ml of the cell culture was

used for cell counting and viability assessment by trypan blue

exclusion, using a ViCell Coulter Counter (Beckman Coulter).

Remaining cells were centrifuged at 300 g for 10 min. On one

hand, 950 ml supernatant was collected, mixed with 50 ml NP-40

and stored at 280uC until particle release assessment by p24

ELISA (Abbott Murex). On the other hand, cells were washed

with PBS once, centrifuged again, resuspended in 3 ml PBS (,107

cells/ml) and separated as follows: (i) 50 ml of cell suspension were

resuspended in Cell Fix 16 (Becton Dickinson) for assessment of

GFP expression by FACS analysis (FACSCalibur, Becton Dick-

inson), (ii) 300 ml of cell suspension were centrifuged and stored at

280uC as a dry pellet for subsequent DNA extraction and viral

DNA form analysis, (iii) 1.5 ml of cell suspension were centrifuged,

resuspended in 100 ml PBS, complemented with 1 ml RNALater

(Ambion) and stored at 4uC for further RNA extraction and gene

expression analyses.

Reverse transcription and integration. DNA was extract-

ed using DNeasy Blood and Tissue kit (Qiagen), and quantified

using Nanodrop-1000 spectophotometer (Nanodrop). Viral DNA

forms (early RT, late RT, 2-LTR) were assessed by qPCR as

Figure 4. Transcriptome changes upon exposure to infectious and non-infectious viral particles. Principal component analysis is used to
explore the overall variance structure of the transcriptome datasets. With each point representing a whole transcriptome sample, the figure presents
the transcriptome of cells that were universally infected (HIV), cells exposed to heat-inactivated virus (Heat-inactivated), cells exposed to a mixture of
1:10 infectious/heat-inactivated virus (HIV[1/10]), and non-infected cells (Mock). One mock sample failed and is not plotted. The transcriptome of
mock cells and that of cells exposed to heat-inactivated viruses clustered together across the top principal components. Infected cells, on the other
hand, spread away from the mock space as infection progressed, with the most distant dot corresponding to the latest time point (24 h). The mixture
1/10 infectious/noninfectious material occupies the intermediate space. Clustering of the two hours samples corresponds to end of cell exposure to
the virus or control materials.
doi:10.1371/journal.ppat.1003161.g004
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Figure 5. Core gene validation. RT-qPCR was used to validate key patterns of expression using heat-inactivated virus, primary cells, and natural
viral envelope. (A) Analysis of 14 representative genes using competent or heat-inactivated HIV-based vector. The graphs depict the 24 dynamics of
expression (log2 fold change of VSV.G pseudotyped HIV-infected over mock) of eight upregulated genes (red lines), five downregulated genes (blue),
and one control (RPL31, black line) in SupT1 cells exposed to similar amount of viral particles, only competent HIV (top panel), 1:10 competent
HIV:heat-inactivated HIV (middle panel), and only heat-inactivated HIV (bottom panel). (B) Analysis in primary CD4+ T cells isolated from two healthy
blood donors. Depicted are the 24 dynamics of expression (log2 fold change of VSV.G pseudotyped HIV-infected over mock) of the upregulated (red),
downregulated (blue), and control (black) genes. (C) Correlation analysis of RT-qPCR for the 14 representative genes at all time points in primary cells
(donor 1) infected by VSV.G or CXCR4 pseudotyped HIV. Log2 fold change linear regression yielded r2 = 0.22, p,1024.
doi:10.1371/journal.ppat.1003161.g005

24 Hours in the Life of HIV-1
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described in [10]. Briefly, 20 ng DNA were mixed with 1 mM

forward and reverse primers (Table S3 in Text S1), 0.2 mM

probe, and 16Taqman Gene Expression Master Mix (Applied

Biosystems) in a final volume of 25 ml. qPCR was carried in

triplicate in the StepOnePlus Real-Time PCR system (Applied

Biosystems) using standard cycling conditions, i.e. 29 at 50uC, 109

at 95uC, 40 cycles of 150 at 95uC and 19 at 60uC. HMBS (PBGD)

was used as the endogenous control. The comparative CT method

was used for relative quantification, i.e. to assess fold change

calculations using the 24 h time point as the reference, and

according to the 22DDCT formula (Guide to Performing Relative

Quantitation of Gene Expression Using Real-Time Quantitative

PCR, section VII.3, Applied Biosystems). To quantify the viral

integrated DNA products, a first Alu-gag PCR was carried out

using 20 ng DNA, 0.4 mM primers (Table S3 in Text S1), and

Accuprime Pfx Supermix (Life Technologies) in a 25 ml final

volume reaction. PCR cycling conditions were 59 at 95uC,

followed by 25 cycles of 300 at 95uC, 150 at 55uC, 49 at 68uC,

and finally 109 at 68uC. One tenth of this first PCR was used for

qPCR as described above.

Viral transcription. Cell samples were stored in RNALater

at 4uC until RNA extraction with Trizol Reagent (Life Technol-

ogies). Total RNA was quantified using Nanodrop-1000 spectro-

photometer (Nanodrop) and Total RNA Nanochip (Agilent). Viral

splice variants were assessed by one-step RT-qPCR (Qiagen) in

duplicate using different pairs of primers and probe (Table S3 in
Text S1), essentially as described in [19]. Briefly, a lower-phase

mix containing 10 ml of 16 One-Step RT-PCR buffer, 0.5 mM

MgCl2, 1 mM forward and reverse primers, 0.3 mM probe was

topped with 15 ml Ampliwax (Applied Biosystems) and sealed for

59 at 90uC, and thus separated from the top-phase mix containing

20 ml with 16One-Step RT-PCR buffer, 0.2 mM reverse primer,

0.4 mM each dNTP, one-step RT-PCR enzyme mix and 1 ml of

total RNA. cDNA synthesis was carried out in a real-time IQ5

thermocycler (BioRad) for 309 at 50uC, immediately followed by

qPCR with the following cycling conditions: 159 at 95uC, followed

by 50 cycles of 50 at 95uC and 400 at 60uC. The viral transcripts at

24 h were measured by endpoint dilution. qPCR of the 2 h to

22 h samples was performed by the comparative CT method

relative to the 24 h reference time point. GAPDH was used as

endogenous control [19].

Modeling viral progression. The temporal dynamics of the

measured viral life cycle markers were modeled explicitly using an

ordinary differential equation. We defined the true (noise-free)

abundance of the marker, xt, as the net effect of production, decay,

and initial viral input as

dx

dt
~vt{lxt, xt~0~x0 ð1Þ

where, vt, denotes the production rate of the marker (due to the

activity of the corresponding step in viral life cycle), and l is an

exponential decay rate accounting for potential loss of the marker

over time. The measured marker abundance, yt, was modeled as

the true marker abundance distorted by experimental noise. The

decay term l and initial viral input x0 were assumed to be non-

negative. The marker production rate over time, vt, was assumed

to have the shape of a gamma distribution function, which

describes the distribution of the waiting times until production of

one unit of the marker. The model was fitted to the data using

iterative nonlinear least-squares optimization after accounting for

the structure of variance-mean dependencies in the used

measurement platforms, and the differential equation was solved

numerically at each step of the optimization procedure. A

parametric bootstrapping scheme was applied to derive confidence

intervals of the peak activity at each viral life step. A detailed

description of the model construction and fitting procedure is

available in Text S1.

Host transcriptome
SAGE library preparation and high-throughput

sequencing. Total RNA was extracted using Trizol (Invitro-

gen). Quality was assessed by capillary electrophoresis using a total

RNA NanoChip in the 2100 Bioanalyzer (Agilent). RNA was

quantified using Qubit fluorometer (Invitrogen). Gene expression

profiles were obtained by generating a SAGE library followed by

high-throughput sequencing using SOLiD 3 (Sequencing by

Oligonucleotide Ligation and Detection) system technology

(Applied Biosystems) [5]. Briefly, polyadenylated RNA from total

RNA (3 mg) were captured on oligodT-conjugated magnetic beads

and reverse transcribed with the SuperScriptIII reverse transcrip-

tase. cDNA was subsequently digested with NlaIII and ligated to a

first adapter that is NlaIII-compatible. A second digestion was

performed using Eco15PI that recognizes a sequence in the first

adapter and cuts 25 bases away. A second barcoded adapter

Eco15PI-compatible was ligated, generating a 27 bp tag fragment

surrounded by two adapters, that is transcript- and strand-specific.

After DNA purification, sequencing was performed with a

universal primer complementary to the first adaptor.

Preprocessing of SAGE data. SAGE reads were aligned to

the reference genome using Bowtie version 0.12.7 [20]. The

reference genome was built using human genome assembly HG37

release 60 along with the HIV-1 genome as an additional

chromosome. Three adapter nucleotides were removed from the

39 ends of the reads prior to alignment. The alignment was

performed allowing up to 3 mismatches in a 17 bp-long seed

sequence. Reads with multiple alignment hits were randomly

assigned to one of the sites with the highest alignment score

(Bowtie parameters 2M 100 2k 1 —best —strata). Reads with

alignment hits starting at, or ending in 64 nucleotides from an

NlaIII recognition site, CATG, were retained for further analysis

depending on the chromosomal strand they were aligned to. The

last two CATG sites for each transcript were taken into account

for annotating SAGE tags in a similar fashion as in the mapping

pipeline proposed in [21]. Gene-level expressions were generated

by summing the expression values of all their corresponding

transcripts. A total of 10,569 genes were called expressed based on

at least three reads per one million valid reads in at least two of the

samples. Expressions levels were normalized for library size

differences using the median fold change as suggested in [22].

The median absolute deviation of log2 fold changes in expression

was calculated as a robust statistic assessing the dispersion in the

samples. Mock samples with a dispersion larger than 0.74 (one

median absolute deviation away from the expected dispersion)

were excluded from the downstream analysis (2 hr, 8 hr, 14 hr,

and 24 hr).

Small RNA library preparation and high-throughput

sequencing. Total RNA was extracted using Trizol (Life

Technologies). Quality was assessed by capillary electrophoresis

using a small RNA chip in the 2100 Bioanalyzer (Agilent). Library

preparation was performed using the Total RNA-Seq kit (Life

Technologies) starting with 2 mg of total RNA and according to

manufacturer’s instructions. Briefly, total RNA was ligated to

adapters, reverse transcribed, purified, size selected on gel,

amplified by PCR with barcoded primers, purified and size

selected on gel (110–130 bp) again. Emulsion PCR (ePCR) and

SOLiD sequencing were performed as described for SAGE

samples.
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Preprocessing miRNA data. Low-quality reads (as identi-

fied by the ABI standard protocol) and reads with ambiguous bases

were removed. Using the FASTX-Toolkit (http://hannonlab.cshl.

edu/fastx_toolkit/index.html), the primer sequence was clipped

from the read and identical reads were collapsed. Reads shorter

than 13 nucleotides were discarded. Mapping was performed

using MegaBLAST [23] with the following parameters: wordsize

8, penalty for mismatch 23, reward for match 1, open gap cost

21, and extend gap cost 21. Mapping was performed on mature

human miRNA stored in mirBase release 17 [24]. Mapping results

were filtered for percentage identity and coverage over 90%. As a

final step, miRNA with average counts below 10 across all samples

were discarded.

Modeling of the host transcriptome
Regression analysis. In order to characterize the association

between the sequence of viral events and cellular gene expression

profiles, we examined the linear correspondence of host gene

(including mRNA and miRNAs) expression patterns to the three

main phases of the viral life cycle, namely reverse transcription,

integration, and late phase. Each of the three columns in the

feature matrix, z, is the average of the estimated activity of its

corresponding markers between the measurement time points.

Measurement values from mock and HIV-infected samples were

concatenated together and the viral activity was set to zero in the

mock samples. An expression pattern vector, gi, was constructed

for each gene i in a similar manner by concatenating log2

expression levels of the mock and HIV-1 samples. Each gene was

modeled individually by the linear regression model

gi~zwizmizei ð2Þ

as a function of viral activity, z, constant mean estimator mi, and a

zero-mean Gaussian noise vector ei. We used the log transforma-

tion of gene expression values as a variance stabilizing transfor-

mation that maintains the interpretability of the regression results

as proposed for SAGE data in [21]). Each regression coefficient,

i.e., each entry in wi, can be regarded as a measure of the level of

regulation of gene i by the corresponding HIV-1 life cycle feature.

The significance of the fit was evaluated using the standard F-

statistic for linear regression, and q-values were computed as the

positive false discovery rate (pFDR)-corrected version of the

original p-values as described in [25].

Clustering of gene expression time courses. Gene

expression profiles over the 24 h observation time period were

clustered to identify co-regulated gene sets. For this purpose, we

analyzed all 7,991 genes that were significantly described by the

regression model, i.e., for which at least one regression coefficient

in wi was significantly different from zero, defined by a q-value

below 0.05. Clustering was performed on the regression coefficient

vectors using the cosine distance and the k-means clustering

algorithm [26]. The number of clusters was chosen in a data-

driven fashion based on the Bayesian information criterion [27]. A

detailed description of the cluster analysis and model selection

procedure is available in Text S1.

Enrichment analysis. Enrichment analysis was performed

using Fisher’s exact test based on the hypergeometric distribution

to test for over-representation of specific gene sets in the clusters.

Enrichment tests were performed in two ways, first for the major

regulation groups, namely, upregulated, downregulated, and

mixed, and second for each of the 18 gene clusters individually

(Figure S8 in Text S1). We tested for the presence of the

following types of regulation:

‘‘Location-specific’’: Genes were labeled according to two

separate types of co-localization, one classifying genes by their

physical position on the chromosomal bands, and the other

according to the Gene Ontology (GO) cellular component

classification of the genes. Both annotations are available from

the Molecular Signatures Database (MSigDB ver. 3, www.

broadinstitute.org/gsea/msigdb) [28].

‘‘Sequence-based’’: We checked sequence-based regulations by

analyzing sets of genes that share the same transcription factor

binding motif as defined in the TRANSFAC database (version 7.4,

http://www.gene-regulation.com), and genes sharing experimen-

tally verified miRNA regulation as reported in TarBase 6.0 [29].

‘‘Functional’’: We used canonical pathway classification of

genes according to the Reactome database (ver. 40, http://www.

reactome.org), GO biological process, GO molecular function,

and a selected list of canonical pathways included in MSigDB from

KEGG pathways (www.genome.jp/kegg/pathway.html) and Bio-

Carta (www.biocarta.com/genes/index.asp).

‘‘HIV-1-related’’: We compiled a list of previously reported

HIV-1 related genes. This list included HIV-1 host factors

reported in [9,10,11,12] as well as the genes classified by the viral

protein-protein interaction partner of their corresponding protein

product, reported for each viral protein in [8] and in the

VirusMINT online database (http://mint.bio.uniroma2.it/

virusmint/Welcome.do).

The FDR was controlled according to the procedure in [30], for

each database for all the tested clusters simultaneously, and hits

below 5% FDR are reported. Results and the used databases are

available for download and querying at the online resource [6].

Viral integration
Viral integration site analysis. Identification of viral

integration sites in the 24 h time point sample was performed as

previously described [31,32]. Briefly, DNA was extracted from

infected cells, digested with MseI or NlaIII, and ligated to a

specific compatible linker. The host flanking DNA sequence was

amplified by PCR using specific primers annealing to the 39 LTR

and to the linker sequence respectively. A nested PCR was

performed using primers with tails that contained a specific

barcode and a universal sequence necessary for subsequent high-

throughput sequencing using 454 pyrosequencing technology

(DNA sequencing facility, University of Pennsylvania). Sequences

were analyzed using the InSiPiD program from Frederic Bush-

man’s lab (http://microb215.med.upenn.edu/). Sequences were

trimmed from HIV-1 and linker sequences, and aligned with the

human genome (hg18) using BLAT. Integration sites were

considered to be true if alignment with the human genome

started within the first 3 nucleotides, had a .98% sequence

identity, and had one single best hit for viral integration

positioning.

Quantification of integration events per cell. The abso-

lute quantification of integrated HIV-1 copies was done by qPCR

essentially as described in [33]. Briefly, viral LTR sequences and

PBGD human gene were amplified by PCR using primers MA.pr-

251 to MA.pr-254, respectively (Table S3 in Text S1) and

cloned in TOPO TA plasmids. Dilutions of these plasmids

carrying different ratios of viral LTR copies and PBGD (LTR/

PBGD, 1:1; 1:2; 1:3; 2:1; 0:1 and 1:0) were used to assess the DCT

(CT LTR-CT PBGD) by qPCR allowing generation of a standard

curve and calculation of the number of LTR per PBGD copy in

our samples. As infected cells may carry multiple forms of viral

DNA sequences (linear viral DNA, 1-LTR circles, 2-LTR circles

and integrated viral DNA) that may bias quantification, we first

established a standard cell curve as reference. For this, SupT1 cells
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were transduced with an HIV-based vector containing the

puromycin resistance gene in the env ORF, and selected for two

weeks in presence of 1 mg/ml of puromycin (Invivogen), thereby

allowing the dilution of non-integrated viral DNA forms and thus

removing the bias quantification, i.e. the number of LTR copies

measured reflects the number of proviruses. LTR:PBGD ratios

from TOPO plasmids (log2 transformed) were plotted against DCT

(CT LTR – CT PBGD) allowing to calculate the LTR:PBGD ratio

in the reference cell line by linear regression, which was 2.75

proviruses per PBGD copy. The standard cell curve was generated

by mixing the reference cell line (infected) with uninfected cells at

different ratios (100% inf.-0% uninf.; 70% inf. 230% uninf.; 10%

inf. 290% uninf. and 0% inf. 2100% uninf.). Linear regression of

provirus:PBGD ratios (log2 transformed) and DCT (CT provirus –

CT PBGD) on dilutions of the reference cell line allowed to

calculate that the number of proviruses.

Estimating population frequency of viral integrations and

its impact on expression. Let N be the total number of viral

integrations in the experiment and Qi the number of integrations

observed within the borders of gene i. In general, the intragenic

integrations Qi do not sum up to N, because not all integrations fall

into gene-coding regions. Let k be the average number of viral

integrations per haploid genome in the sample. Then the expected

proportion of cells, ri, hosting proviral integrations in gene i is

r~wi

N

k

� �{1

ð3Þ

where N/k is the effective number of cells measured in the

experiment. Genes were partitioned into 100 quantiles based on

the observed number of viral integrations Qi in them, and the

population frequency was calculated for the median of each

quantile with N = 40,430 and k = 5.5. We employed two extreme

and opposing scenarios in order to obtain estimates of the ability of

viral integration to impact gene expression at the population level.

Given the random nature of proviral integration and the fact that,

in practice, ri,,1 for all genes, we assume that no single cell

hosts more than one viral integration in a specific gene. Suppose

that viral integration affects the transcriptional activity of the gene

by a factor of f irrespective of the exact location or direction. Then

the expected change in the log2 expression level, gi, of gene i due to

integration is

Dgi~log2 1{ri 1{fð Þ½ � ð4Þ

For the first scenario, it is assumed that a single integration event

in a gene completely knocks out its transcription (i.e., f = 0 in Eq.
4). For the second scenario, we consider the case of proviral

integration boosting transcriptional activity. In this case, we set

f = 105 as measured by a luciferase reporter assay upon

transfection of HEK293T cells with an empty luciferase vector

compared to a luciferase driven by the HIV-1 LTR (data not

shown), which can be regarded as an upper bound of f.

Primary cell and natural envelope infection
Cells and viral constructs. CD4+ T cells were isolated from

two healthy blood donor buffy coats and stimulated using anti-

CD3/anti-CD28 and IL-2 as described in [34]. CXCR4-tropic

HIV vectors were produced as described for VSV-G pseudotyped

HIV vectors, with the following differences: the use of a CXCR4

encoding expression vector (pCI-X4-Env; from R.F. Siliciano [34])

instead of the pMD.G plasmid, transfection was carried out using

Lipofectamine 2000 (Life Technologies) and viral particles were

purified on sucrose cushion as described [34]. CD4+ T cell

transduction by CXCR4-pseudotyped HIV was performed as for

HIVeGFP/VSV-G, however with a 3 h spinoculation to improve

transduction efficiency.
Gene expression assays. Total RNA was extracted using

Illustra RNAspin mini isolation kit (GE Healthcare). RNA (2 mg)

was reverse transcribed using High-Capacity cDNA Reverse

Transcription (Life Technologies). After cDNA purification

(Invitek), DNA was quantified using Nanodrop-1000 (Nanodrop)

and diluted at 5 ng/ml. Fourteen representative genes from

upregulated and downregulated clusters were selected and

quantified by qPCR using 10 ng cDNA, and commercially

available Gene Expression Assays (Applied Biosystems, Table
S4 in Text S1). PIGS mRNA was used as endogenous control.

Calculations were DDCT = (CT gene2CT PIGS)HIV2(CT gen-

e2CT PIGS)mock. Log2 fold change of RT-qPCR data of HIV-1

over mock samples corresponds to the 2DDCT. For comparison

with SAGE-Seq data of HIV-1 samples at individual time points,

the read count of each gene was normalized first by PIGS and then

compared to the mean of mock samples.

Supporting Information

Text S1 Includes material and methods for modeling viral

progression, material and methods for clustering of gene

expression time courses, 11 supporting figures and 4 supporting

tables.

(PDF)
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