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SUMMARY 

 

Human telomerase is an "immortalizing" enzyme that enables cells to maintain 

telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. 

Conversely, normal somatic cells that do not express telomerase have a finite replicative 

capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for 

telomerase activity. Between activators and repressors, and the role of DNA methylation and 

histone acetylation, an abundance of hTERT regulatory models have been suggested. The 

discovery of the implication of CTCF in the transcriptional regulation of hTERT in part 

explained the mechanism of silencing of telomerase in most somatic cells and its reactivation 

in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by 

methylation-dependent and -independent mechanisms.  

In most carcinoma cells, hypermethylation of the hTERT 5’ region has been shown to 

block the inhibitory effect of CTCF, while a short hypomethylated region allows a low 

transcription level of the gene. We have demonstrated that MBD2 protein specifically binds 

the methylated 5’ region of hTERT in different cell lines and is therefore involved in the 

partial repression of hTERT transcription in methylated tumor cells. In contrast, we have 

shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. 

The PAX5 factor has been shown to bind to the hTERT 5’region downstream of the ATG 

translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression 

of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT 

transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in 

telomerase-positive B cells. These results reveal differences between the hTERT methylation 

patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The 

potential of hTERT methylation as a cancer biomarker was evaluated and applied to the 

detection of metastasis. We have shown that hTERT methylation correlates with the 

cytological diagnosis in cerebrospinal fluids. 

Our results suggest a model of hTERT gene regulation, which helps us to better 

understand how hTERT transcription is regulated by CTCF in methylation-dependant and 

independent mechanisms. Our data also indicate that hTERT methylation is a promising new 

cancer biomarker. 

 



RESUME 

 

La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de 

maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée 

aux cellules reproductrices et cancéreuses. A l’inverse, les cellules somatiques normales, qui 

n’expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité 

catalytique de la télomérase, hTERT, est définie comme le facteur limitant l’activité 

télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l’ADN et de 

l’acétylation des histones, de nombreux modèles ont été suggérés. La découverte de 

l’implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le 

mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa 

réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l’activité 

inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. 

Dans la plupart des carcinomes, une hyperméthylation de la région 5’ de hTERT 

bloque l’effet inhibiteur de CTCF, alors qu’une petite région hypométhylée permet un faible 

niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie 

spécifiquement sur la région 5’ méthylée de hTERT dans différentes lignées cellulaires et 

qu’elle est impliquée dans la répression partielle de la transcription de hTERT dans les 

cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B 

normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans 

ces cellules, le facteur PAX5 se lie sur la région 5’ de hTERT en aval du site d'initiation de la 

traduction (ATG). L’expression exogène de PAX5 dans les cellules télomérase-négatives 

active la transcription de hTERT, alors que la répression de PAX5 dans les cellules 

lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans 

l’activation de l’expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces 

résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules 

de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en 

tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. 

Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au 

diagnostic cytologique dans les liquides céphalorachidiens.  

Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre 

comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la 

méthylation du gène hTERT. La méthylation de hTERT s’est aussi révélée être un nouveau et 

prometteur biomarqueur de cancer. 
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CHAPTER 1 

 In tissues of a multicellular organism, each cell has a limited lifespan. As cells divide, 

most of them gradually lose terminal DNA sequences of the chromosomes, which are capped 

with specialized DNA-protein structure called telomeres. The telomeres are crucial for 

maintaining the integrity of genetic information but also for the stability of the genome. As 

telomere erosion occurs at each replication round, telomeres will progressively shorten until 

cell death is induced. Nevertheless, some cells, such as stem and germ cells, require a 

mechanism to counteract telomere attrition. These cells possess telomerase, a highly regulated 

specific enzyme that maintains telomere length. This enzyme is not expressed in adult tissues 

but is reactivated in about 85% of cancers. For that reason, inhibition of telomerase in cancer 

cells has become an important point of interest in the anti-cancer strategies. In particular, 

regulation of its catalytic subunit hTERT, which is crucial for the telomerase activity, is a 

subject of intense investigation.  

This study focuses on the hTERT gene regulation in both normal and cancer cells. For 

better understanding of the importance of telomeres and telomerase in the protection of 

genome integrity, we review the telomere structure in general. Then, the composition of the 

telomerase complex and its mechanism of action are discussed. Our interest focuses on new 

knowledge in telomerase regulation, and in particular regulation of hTERT expression is 

developed. As CpG methylation plays an important role in the regulation of hTERT 

expression, we describe how this occurs in normal and pathological situations. Furthermore, 

how transcriptional silencing occurs through DNA methylation is elaborated, and modes of 

detection and clinical implications of DNA methylation are summarized. The final paragraph 

pays particular attention to the B-cell specific PAX5 factor that might be involved in hTERT 

regulation in differentiating lymphocytes. 

 

1. Telomeres and the maintenance of the genome integrity 
 
 

The ends of chromosomes are formed by DNA nucleoprotein complexes termed 

telomeres. The telomere cap structure is essential to stabilize the chromosomes and thereby 

conserve the genetic information and maintain genome stability (Greider, 1996; Blackburn, 

1997). In addition, telomeres anchor the chromosomal extremity to the nuclear matrix and 

assist chromosome alignment, which is essential for accurate segregation during meiosis (De 

Lange, 1992; Kirk et al., 1997; Smith and De Lange, 1997; Smilenov et al., 1999). The 

 10 
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special chromatin structure formed by telomeres allows cells to discriminate chromosome 

ends from intrachromosomal double stranded breaks (DSBs), and therefore prevent 

degradation, recombination, and/or fusion by cellular repair systems such as homologous 

recombination (HR) and non-homologous DNA end-joining (NHEJ) (Lundblad, 2000; Chan 

and Blackburn, 2002; Verdun and Karlseder, 2007). When the telomere extremities are 

damaged, cells can acquire structural chromosomal abnormalities, undergo a permanent cell 

cycle arrest called senescence, or die by apoptosis (Shay and Wright, 2001; Yaswen and 

Stampfer, 2002). Both aging and cancer phenotypes  can be driven by these genomic changes 

(Klapper et al., 2001; Pandita, 2002). 

 

1.1 Telomere structure 
 
 

The telomeric sequences were characterized for the first time in Tetrahymena 

thermophila in 1978 (Blackburn and Gall, 1978). Telomeric sequences and lengths depend on 

chromosomes and species (Baird et al., 2003). In man, telomeres are made up of an average 

of 5 to 15 kb of (TTAGGG)n repeats and telomere-binding proteins. The telomere structure 

involves a lasso-like structure, termed t-loop, with a three-stranded DNA displacement loop, 

called D-loop (Figure 1) (Griffith et al., 1999; Munoz-Jordan and Cross, 2001; Nikitina and 

Woodcock, 2004; de Lange, 2004). Specific proteins associated to telomeres are crucial for 

forming and maintaining the protective cap structure. In addition to protect chromosomal 

integrity, telomeres can also influence the expression of genes. Indeed, telomeres are subject 

to epigenetic regulation that silences expression of nearby genes, which is called telomere 

position effect (TPE) (Baur et al., 2001; Koering et al., 2002; Garcia-Cao et al., 2004; Pedram 

et al., 2006). Neverthess, it was recently shown that mammalian telomeres are not only silent 

genomic regions, but they can transcribe into TElomeric Repeat containing RNA (TERRA) 

molecules (Azzalin et al., 2007; Schoeftner and Blasco, 2008). They constitute a novel class 

of mammalian RNAs present both in the nucleus of telomerase positive and negative cells. 

Mammalian TERRA molecules contain UUAGGG repeat sequences and range in size from 

100 bases up to >9 kb. These RNA molecules have been suggested to have a role in 

organizing telomere architecture. 

 

 11



CHAPTER 1 

 

 

Figure 1. Telomere structure. Telomeres cap mammalian chromosomes and are composed of TTAGGG 
repetitive sequences that terminate in a 3′ single-stranded (ss) overhang. Telomeric DNA is associated with the 
six-protein shelterin complex (TRF1, TRF2, RAP1, TIN2, TPP1 and POT1). The ss overhang can invade the 
double-stranded region of the telomere to form a protective telomere (t) loop with a ss displacement (D) loop at 
the invasion site (cited from Deng et al., 2008). 

 
 

A large number of proteins have been found to be associated with telomeric DNA. 

Three proteins have been identified to bind directly and specifically to telomeric DNA. These 

proteins are TRF1, TRF2 (Telomere Repeat Factor) and POT1 (Protection of Telomere) (Kim 

Sh et al., 2002). TRF1 and TRF2 bind as homodimers to double stranded telomeric repeats 

(Broccoli et al., 1997), where they assemble the six-protein 

(TRF1/TRF2/RAP1/TIN2/TPP1/POT1) shelterin complex (Figure 1) (de Lange, 2005). POT1 

associates with the 3’single stranded overhang through its oligonucleotide binding fold motif 

(Baumann and Cech, 2001; Baumann et al., 2002). All these proteins can be found on 

telomeres at any time. TRF2 has been shown to be essential for the formation of the t-loop 

structure (Stansel et al., 2001; Amiard et al., 2007).  

The three proteins, TRF1, TRF2 and POT1, primarily interact together and then 

cooperate directly or indirectly with other proteins to modulate telomere structure, function 

and length. TRF1 recruits numerous proteins to the telomere. TRF1 is modified by the 

poly(ADP-ribose) polymerase (PARP) Tankyrase 1 and 2 (Kaminker et al., 2001; Cook et al., 
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2002). The ADP-ribosylation of TRF1 inhibits its ability to bind telomeres (Smith et al., 

1998). TRF1 also directly binds TIN2 (TRF1 interacting protein 2), an association that 

appears to protect TRF1 from tankyrase. TIN2 has been proposed to regulate the access of 

telomerase to the telomeres (Kim et al., 1999; Ye et al., 2004b) and appears to bring together 

TRF1 and POT1 through the TPP1 bridge protein (TPP1 was previously called 

PTOP/PIP1/TINT1). A third direct TRF1 interacting factor is PINX1, a protein that binds to 

TERT, the telomerase catalytic subunit (see hTERT part 2.1.2) (Zhou and Lu, 2001). TRF2 

also has numerous interacting factors. For instance, the TRF2 protein makes a complex with 

the RAP1 protein (Li et al., 2000), which interacts with different proteins as the DNA repair 

complex (Zhu et al., 2000) and the nucleotide base excision repair endonuclease (Zhu et al., 

2003). Moreover, TRF2 can interact with PARP2, that will modulate its activity (Dantzer et 

al., 2004).  

Both TRF1 and TRF2 proteins interact with a number of proteins involved in DNA 

repair or checkpoint control as the DNA damage sensing protein ATM, whose kinase activity 

is thought to be inhibited at the telomere locus (Karlseder et al., 2004), but also interact with 

the BLM helicase (Lillard-Wetherell et al., 2004), the protein WRN (Opresko et al., 2002), 

and the NHEJ protein Ku (Hsu et al., 2000; Song et al., 2000). Finally, the TRF1 and TRF2 

complexes are linked through binding of TIN2 factor, thereby stabilizing their levels and 

localization at telomeres and modulating their function (Kim et al., 2004; Ye et al., 2004b). 

Consequently, both telomere length and capping can be influenced by perturbations to either 

TRF1 and TRF2, or their associated proteins POT1, RAP1 or TIN2 (Van Steensel B. and De 

Lange, 1997; Baumann and Cech, 2001; Colgin et al., 2003; Loayza and De Lange, 2003; 

Iwano et al., 2004). 

 

1.2 Mechanisms of telomere dysfunction 
 

Dysfunctional telomeres are unable to exert their chromosome end-protective functions. 

The most common mechanism of telomere disruption is their progressive erosion due to the 

end-replication problem (Figure 2). This problem predicts that each round of DNA replication 

is accompanied by telomere shortening due to the failure of DNA polymerase to fully 

synthesize the extreme terminus of DNA strands. Semi-conservative DNA replication is 

accomplished by a cooperation between leading and lagging strand DNA syntheses. The 

direction of the leading strand DNA synthesis is the same as that of the replication fork 
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movement. Consequently, leading strand synthesis is processive and replicates one strand of 

the original DNA from an RNA primer until the end. On the contrary, the lagging strand DNA 

synthesis, which is in a direction opposite to replication fork movement, requires short pieces 

of newly synthesized DNA fragments from RNA primers, named Okasaki fragments. These 

fragments are then ligated to form a continuous DNA strand. Most RNA primers are replaced 

with DNA from an upstream Okasaki fragment, but the terminal RNA primer is never 

replaced with DNA (Figure 2) (Dhaene et al., 2000). Telomeres are then shortened with 50-

100 bp at each round of replication, for a total lifetime loss of approximately 2-4 kb. This 

shortening of telomeres acts as a mitosis counter that determines the maximum number of cell 

divisions and thus limits the proliferative capacity of any cell type.  
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Figure  The “end-replication problem”. A. As the replication fork opens, lagging strand synthesis proceeds 
from 3’ to 5’ as the overall result of removal of RNA primers and ligation of the individual 5’ to 3’ synthesized 
Okaza  fragments, B. After removal of the terminal RNA primers, gaps remain at the 5’ end of the lagging and 
leading strand which can not be filled (cited from Dhaene et al., 2000). 
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1.3 Consequences of telomere dysfunction 
 

ormal somatic cells in tissues have a limited lifespan and undergo a process called 

replicative senescence, in which cells stop to proliferate (Figure 3) (Harley et al., 1990; 

Wright et al., 1996a; Harley, 1997).  
 

Figure  telomere length evolution. As cells continue to divide, telomere length is lost until cells reach 
the first proliferative block, senescence. Bypass of senescence requires loss of both p53 and RB tumor 
suppressor pa e to divide until they encounter the second 
proliferative  their telomere length through activation of 

lomerase or the ALT mechanism. Germ cells maintain telomere length through telomerase activity (cited from 
Nittis et al.

signaling program (Campisi, 1997; Sedivy, 1998; 

di Fagagna 

ere 

unctional telomeres 

, 2007), which will 

sequently 

ulation of the 

retinoblastom or 

nent cell cycle arrest) 

N

 3. The

thways. After the loss of both pathways, cells continu
block, crisis. Rare cells emerge from crisis and maintain

te
, 2008). 

 

Senescence arises when cells contain some critically short telomeres and this is 

recognized by a DNA damage repair (DDR) 

et al., 2003). Moreover, oxidative DNA damage or alterations in expression or 

function of the shelterin complex or the telomere-associated proteins can also induce telom

dysfunctions and engage DDR pathways (Rubio et al., 2004). Indeed, dysf

can activate kinases, such as ATM (Denchi and de Lange, 2007; Guo et al.

phosphorylate downstream factors, like CHK1 and CHK2, that will con

phosphorylate p53 (Gire et al., 2004). Phosphorylation of p53 results in the stim

expression of the cyclin-dependent kinase inhibitor p21. The p21 protein inhibits cell cycle 

progression by inhibiting cyclin-dependent kinases that phosphorylate and inactivate the 

a protein (RB). In fact, dysfunctional telomeres can lead to two tum

suppressive activities through p53 activation: cellular senescence (perma

but also apoptosis (programmed cell death). When critical cell-cycle checkpoint functions are 
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lost (p53), cultured cells with short telomeres can escape senescence and continue to divide 

until they enter crisis. At this point, telomeres drastically shorten, chromosome end fusions 

and massive cell death occurs (Shay et al., 1991; Wright and Shay, 1992; Hande et al., 1999). 

Rare immortalized cells overcome the crisis after abnormal activation of telomerase or a 

telom echanism (alternative lengthening of telomeres described below) 

(Wrig

erase-independent m

ht et al., 1989; Murnane et al., 1994; Bryan et al., 1997; Duncan and Reddel, 1997). 

These events lead to the cell becoming immortal by maintaining stable telomere lengths (Shay 

and Roninson, 2004). A malignant process can begin when the cells persist to divide. 

A model of cancer development in human breast cancers has been developed by Deng 

and Chang (Figure 4) (Deng and Chang, 2007). Dysfunctional telomeres, like telomere 

shortening, can lead to an increase of genomic instability along with the transition from 

benign hyperplasia to malignant carcinoma (Chin et al., 2004; Meeker and Argani, 2004). 

Moreover, genetic changes can favorize cancer cells with aggressive tumor characteristics, 

such as the ability to induce an angiogenic response, metastasize, and eventually resistance to 

chemotherapeutic drugs (Maser et al., 2007).  

 

 

Figure 4. Speculative model of cancer development in human breast cancers. The model is based on 
available evidence, of how telomere dysfunction initiates genomic changes to promote the development of breast 
cancer. Loss of the p53-dependent DNA damage checkpoint is postulated to be important for tumor progression. 
Transition from normal ductal breast epithelium to invasive carcinoma correlates with the pre
dysfunctional telomeres and loss of p53 (cited from Deng and Chang, 2007). 

sence of 

mas) or tumors derived from the mesenchyme 

(osteosarcomas, liposarcomas and glioblastomas), (Hakin-Smith et al., 2003; Ulaner et al., 

 

1.4 Telomere maintenance 
 

In human cells, one mechanism of telomere maintenance is named Alternative 

Lengthening of Telomeres (ALT). Epithelial tumors rarely activated ALT mechanism, 

contrary to neuroectodermal tumors (astrocyto
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2003; Montgomery et al., 2004; Henson et al., 2005; Costa et al., 2006). However, the ALT 

pathway is not fully understood, it seems to involve telomere recombination (Dunham et al., 

2000) and is characterized by telomere length heterogeneity, ranging in size from 2 to 80 kb 

(Bryan and Reddel, 1997; Reddel, 2003).  

ALT cells are characterized by the presence of ALT-associated promyelocytic leukemia 

bodies (APBs). APBs are nuclear structures containing telomeric DNA, telomeric proteins 

(TRF1, TRF2, TIN2, RAP1), promyelocytic leukemia (PML) protein, as well as proteins 

ccur contrarily to telomere 

recom ination (Fasching et al., 2005; Marciniak et al., 2005). ALT cells are also marked out 

by the presence of extrachromosomal telomeric DNA (ECTRs, extrachromosomal telomeric 

peats), in in et al., 2007). APBs could 

have 

involved in DNA repair proteins (MRE11, RAD50, NBS1, RAD51 and RAD52) (Yeager et 

al., 1999; Henson et al., 2002; Wu et al., 2000; Jiang et al., 2007). However, it has been 

shown that APBs are not always required for ALT to o

b

re clud g t-circles (Cesare and Griffith, 2004; Fasching 

the role to sequester linear DNA away from DNA repair proteins that detect DSBs 

(Fasching et al., 2007).  

However, the mechanism frequently used by human tumor cells as well as several 

normal cells involves a macromolecular complex capable of maintaining telomere length. 

This complex is known as telomerase. 

 

2. The human telomerase 
 

Most cells maintain telomeres using telomerase. Telomerase is expressed in embryonal 

cells and in adult germline cells (Kim et al., 1994a; Wright et al., 1996b), but is undetectable 

in normal somatic tissues except for proliferative cells of renewing tissues such as basal 

epidermal cells, lymphocytes, and other hematopoietic cells (Broccoli et al., 1995; Hiyama et 

al., 1995c; Chiu et al., 1996) (Forsyth et al., 2002; Mason, 2003). In the absence of 

telomerase, normal human cells in culture have a finite life span and undergo cellular 

senescence normally after 40 to 70 population doublings.  Telomerase is reactivated in more 

than 85-90% of all human cancers (Kim et al., 1994a; Avilion et al., 1996; Shay and Gazdar, 

1997; Meeker and Argani, 2004).  

Telomerase elongates critically short telomeres, stabilizes the length of other telomeres, 

and permits continued cell division (Bodnar et al., 1998; Ouellette et al., 2000; Steinert et al., 

2000; Stewart et al., 2003). It also protects telomeres from NHEJ (Zhu et al., 1999; Chan and 
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Black

omotion of cell growth (Smith et al., 2003b; Geserick 

and Blasco, 2006), in stem cell proliferation (Sarin et al., 2005; Choi et al., 2008), and finally 

in inhibition of apoptosis (Fu et al., 2000; Cao et al., 2002; Forsythe et al., 2002; Smith et al., 

et al., 2005; Santos et al., 2006). 

 

 

burn, 2003). However, numerous non-canonical functions of telomerase have been 

revealed. For instance, telomerase has been implicated in DNA damage response (Masutomi 

et al., 2005; Kedde et al., 2006), in pr

2003a; Rahman et al., 2005; Del Bufalo D. 

2.1 Telomerase components 
 

Telomerase is a large nucleoprotein complex, with a mass over 1000 kDa (Schnapp et 

al., 1998). In vitro, two components are essential for its activity: the highly conserved reverse 

transcriptase, TERT, and an associated template RNA, TR (also referred to as TERC or TER) 

(Greider and Blackburn, 1989; Feng et al., 1995; Lingner et al., 1997; Nakamura et al., 1997; 

Tesmer et al., 1999). However, in vivo, a number of other proteins composed the telomerase 

complex. 

2.1.1 hTR : human Telomerase RNA component 
 

hTR RNA is one of the 2 components essential in obtaining telomerase activity in vitro 

(Weinrich et al., 1997). In 1998, the hTR gene was cloned and localized on the human 

chromosome 3q26.3 (Soder et al., 1997; Zhao et al., 1998). This single-copy gene does not 

contain any intron.  

 

hTR structure and protein associations 

 

In ma leotides long without polyadenosine tail 

nd carries a 5  tri-methyl rather than mono-methyl guanosine cap (Feng et al., 1995; Fu and 

Collin

 RNAs (Matera et al., 2007). The H/ACA motif interacts with numerous proteins 

n, the mature hTR transcript is 451 nuc

’a

s, 2006). The template region of hTR that is complementary to the (TTAGGG)n 

telomere sequence comprises 11 nucleotides (5'-CUAACCCUAAC-3').  

hTR possesses a stem-Hinge-stem-ACA (H/ACA) motif (Figure 5), which is required 

for cellular accumulation (Mitchell and Collins, 2000) and for telomerase activity in vivo (Fu 

and Collins, 2003). This motif is also present in small nucleolar (sno) RNAs and small Cajal 

body (sca)
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like dyskerin, NHP2, NOP10, and GAR1 (Mitchell et al., 1999b; Dragon et al., 2000). 

Dyskerin, NHP2 and NOP10 form the H/ACA core proteins as they are crucial for the 

tability of hTR (Ho et al., 2007). 

They inte

 2007). Finally, the CR4-CR5 domain of the 

hairpi  is required for interaction with hTERT and thus for telomerase activity (Mitchell and 

001; Chen et al., 2002).  

areau-Aveilla et al., 2006; Fu and Collins, 2007; Walne s

ract with the chaperone protein NAF1, which is consequently substituted by GAR1 

(Darzacq et al., 2006). Two other motifs identified as biogenesis box (BIO box) and CAB box 

are also needed for in vivo accumulation of hTR in Cajal bodies (Fu and Collins, 2003; Jady 

et al., 2004; Fu and Collins, 2006; Fu and Collins,

n

Collins, 2000; Bachand and Autexier, 2

Figure 5. Motifs and domains of human telomerase RNA. Boxes or brackets indicate the locations of motifs 
involved in telomerase ribonucleoproteins biogenesis (the H/ACA motif and BIO box), hTERT binding or 
intranuclear localization (the CAB box) (cited from Collins, 2008).  

 

Expression and tumorigenesis

CR4-CR5 domain

 

 

RT-PCR analysis showed that hTR RNA is widely expressed in both tumor and non-

tumor tissues such as testis, ovary, brain liver, small intestine, thymus, kidney, and prostate 

(Feng et al., 1995; Yi et al., 2001). Thus, it was concluded that hTR was not crucial for 

telomerase activation, even if the expression was shown to be up-regulated in cancer cells in 

comparison to normal cells (Heine et al., 1998; Soder et al., 1998; Atkinson et al., 2005). In 

the mouse, the silencing of mTR expression leads to progressive telomere attrition over 

numerous generations because of a lack of telomerase activity (Blasco et al., 1997). In 

addition, occurrence of chromosomal abnormalities like end-to-end fusions, and levels of 

apoptosis in highly proliferative tissues was found increased (Lee et al., 1998; Rudolph et al., 
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1999). In later generations, loss of telomere function and fusions occurred preferentially on 

chromosomes with critically short telomeres (Hemann et al., 2001).  

RT-PCR analyses on colon cancer showed that the hTR mRNA expression is correlated 

with telomerase activity (Yan et al., 2001). Thus, this gene might be involved in telomerase-

reactivation. Besides, a recent study showed that overexpression of both hTR and hTERT in 

cancer cells and in lung fibroblasts greatly increased telomerase activity and telomere length 

elongation, while independent overexpression of either hTR or hTERT has the same effect to 

a lesser extent (Wong and Collins, 2006; Cristofari and Lingner, 2006). The exact 

mechanisms by which TR promotes tumor growth remains unclear.  

 

2.1.2 hTERT : human Telomerase Reverse Transcriptase 

subunit of telomerase that harbors the reverse transcriptase 

ctivity. The human cDNA was isolated in 1997 (Kilian et al., 1997; Meyerson et al., 1997). 

The e

ks traditional TATA and 

CAA

otein also 

ossesses a telomerase-specific motif (T). The RT domain, comprising 7 conserved reverse 

transcriptase motifs (1 and 2, A-E) is very important for the reverse transcriptase activity as 

 

hTERT is the catalytic 

a

xpression of hTERT is highly correlated with telomerase activity in vitro and in vivo 

(Meyerson et al., 1997; Nakamura et al., 1997). The hTERT expression is nearly 

imperceptible in the majority of differentiated somatic cells, which leads to inevitable 

telomeric attrition and subsequently cellular senescence. High levels of hTERT are detected in 

proliferative somatic cells like endometrial tissues or activated lymphocytes, but also in most 

immortalized and cancer cells.  

The genomic sequence and the gene organization have been characterized by several 

groups (Cong et al., 1999; Horikawa et al., 1999; Takakura et al., 1999; Wick et al., 1999). 

The single-copy hTERT gene, which is composed of 16 exons and 15 introns spanning more 

than 40 kb, is localized very close to the telomere, on human chromosome 5p15.33 

(Meyerson et al., 1997; Bryce et al., 2000). The hTERT promoter lac

T boxes. A consensus transcription start site has not been defined, however the various 

identified sites are all located 50 to 110 bp upstream of the translational start site of the gene. 

The hTERT gene encodes a 127 kDa nuclear protein of 1132 amino acids (Meyerson et 

al., 1997; Harrington et al., 1997b). Four functional domains compose the hTERT protein: the 

N-terminal regulatory (R) domain, the RNA-binding (RB) domain, the reverse transcription 

(RT) domain, and the C-terminal dimerization domain (C) (Figure 6). hTERT pr

p
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mutations in amino rrington et al., 

997a; Weinrich et al., 1997; Nakayama et al., 1998). These motifs allow hTERT to 

recog

 

 acids in these motifs switch off telomerase activity (Ha

1

nize and subsequently reverse transcribe the hTR RNA template, leading to telomere 

elongation. Finally, substitutions in the C- and N-terminal domain also abrogate telomerase 

activity (Armbruster et al., 2001; Banik et al., 2002). 

Figure 6. Working model for TERT domain architecture. The telomerase reverse transcriptase is divided into 
four major functional regions: the N-terminal regulatory (R) domain, the RNA-binding (RB) domain, reverse 
transcription (RT) domain, and the C-terminal dimerization domain (C) (cited from Dwyer et al., 2007). 

 

2.1.3 Auxiliary proteins 
 

Numerous proteins or protein complexes bind to the telomerase complex and contribute 

to its activation or its stabilization. A

properties (Toogun et al., 2008). Hsp40 and hsp70 also favor the accurate assembly of 

plex 

(Forsythe et al.

and hTERT protein (Le 

lomeres and chromosome end fusions 

uxiliary proteins of human telomerase include chaperone 

proteins, such as hsp90, p23, hsp70, p60, and hsp40. Hsp90 and p23 were found to bind 

hTERT protein, and promote assembly of the telomerase complex and are implicated in the in 

vivo activity of the telomerase complex (Holt et al., 1999). In particular, the yeast hsp90 

homolog has been shown to promote both telomerase DNA binding and nucleotide addition 

location, processing, and telomerase assembly (Le et al., 2000).  

The TEP1 protein was shown to bind hTR and hTERT and is associated with 

telomerase activity (Harrington et al., 1997a; Beattie et al., 2000).  

As described previously, human telomerase interacts with the Dyskerin RNA binding 

protein, which is mutated in dyskeratosis congenita (DC) (Dokal, 2000). Dyskerin mutations 

lead to a decrease in telomerase activity, shorter te

hTERT protein and hTR RNA into telomerase, by providing energy to the hsp90/p23 com

, 2001).  

The L22 and the hStau proteins are RNA-binding proteins associated with hTR RNA 

et al., 2000). These two proteins might be involved in hTR transport, 
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(Dokal et al., 1992; Mitchell et al., 1999b; Kannan et al., 2008). Dyskerin is involved in hTR 

erase 

omplex. HnRNP A1 may help to place telomerase to the telomere extremity. Deficiency of 

hnRNP A1 leads to ereas its restoration allows telomere elongation 

aBranche et al., 1998). The complex hnRNP C1/C2 was found indispensable for telomerase 

activi

ism of telomere maintenance by telomerase 
 

sembly of TR is thought to 

induc

erarchical RNP assembly 

mech

merase function (in yellow) may interact with the complex already formed (cited from 
Collins, 2008). 

processing and stabilization (Chen and Greider, 2004).  

Heterogeneous nuclear ribonucleoproteins (hnRNPs) also interact with the telom

c

 telomere shortening, wh

(L

ty as it directly binds to hTR RNA and co-localizes with telomeric proteins TRF1 and 

TRF2 (Ford et al., 2000). Finally, hnRNP D might also interact with telomerase (Eversole and 

Maizels, 2000).  

Other factors have been found to recruit and activate human telomerase at the 3’ end of 

telomeres, such as homologs of the yeast Est1p protein: EST1A and EST1B. The 

overexpression of EST1A influences telomere length and capping (Snow et al., 2003; 

Reichenbach et al., 2003). 

 

2.2 Mechan

The assembly of active telomerase involves the stabilization of hTR and its functional 

association with hTERT. The initial ribonucleoprotein (RNP) as

e a conformational change of TR that stimulate TERT binding (Prathapam et al., 2005; 

O'Connor and Collins, 2006; Stone et al., 2007). A similar hi

anism is suggested for human telomerase in Figure 7.  
 

Figure 7. An ordered series of RNP assembly steps to product functional telomerase. First, assembly of 
hTR with the H/ACA-motif binding proteins (in green) dyskerin, NHP2, NOP10, and GAR1 is essential. RNP 
assembly on the hTR H/ACA motif would be predicted to influence the relative orientation of the hTR binding 
surfaces for hTERT (in blue), potentially promoting hTR–hTERT interaction. The numerous proteins that 
regulate human telo
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The association of hTR with the Dyskerin protein would control the position of the two 

hTR regions that bind hTERT (Mitchell et al., 1999a; Mitchell et al., 1999b; Vulliamy et al., 

2001; Chen and Greider, 2004). The hTERT association with telomerase RNP could be an 

hsp90-dependant process (Holt et al., 1999; Forsythe et al., 2001; Kim et al., 2005). Finally, 

the hsp90/p23 complex is proposed to adjust and stabilize the telomerase structure in an active 

form (Keppler et al., 2006). The nucleolar protein PinX1 and the two hTERT-interacting 

roteins N  interaction (Lin and 

Black

. Elongation is then performed by 

TERT until the end of the template region. The complex can subsequently translocate and 

reposition on the newly synthesized DNA, in order to continue telomere elongation. The 

lagging strand is then synthetized by the DNA polymerase complex (Figure 8). 

otides, positioning the enzyme for another 
ocess can be interrupted (dotted arrow). The 

exact motions and structures of the single-stranded and heteroduplexed regions of the telomere relative to the 
TERT anchor and active sites are not known (cited from Harley, 2008).  

p AT10 and the GNL3L are suggested to inhibit TERT–TR

burn, 2004) (Fu and Collins, 2007). Moreover, PinX1 could alternatively decrease RNP 

activity (Zhou and Lu, 2001; Banik and Counter, 2004).  

 The association of telomerase complex with telomeres requires either a pre-formed 

active complex or on the independent assembly of hTERT and telomerase RNP on telomeres 

(Holt et al., 1997; Tomlinson et al., 2006; Jady et al., 2006)

h

Figure 8. Mechanism of telomere elongation by telomerase. Two protein structures are schematically 
illustrated: the larger one represents telomerase reverse transcriptase (TERT), with shaded regions depicting the 
telomere substrate anchor site and the catalytic dNTP binding and template alignment site. The smaller protein 
structure represents dyskerin and other members involved in hTR processing and assembly into active 
telomerase. The sequence of the hTR template region is shown. The steps in telomere synthesis are (i) telomere 
binding, (ii) elongation, in which six nucleotides (GGTTAG) are sequentially added to the telomere, and (iii) 
translocation, in which the heteroduplex is shifted back by six nucle
round of elongation, that is, processive addition of GGTTAG. The pr
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The human telomerase enzyme appears to be a dimer with two hTRs and two hTERTs 

subunits (Beattie et al., 2001; Wenz et al., 2001). The telomerase multimerization could 

enhance the processivity of the enzyme (Moriarty et al., 2004). 

 

3. Regulation of telomerase 
 

 

 

mere terminus in the t-loop 

onfo

ative regulators of telomerase: 

these includ TRF1 and TRF2 (Smogorzewska et al., 2000), RAP1 (Li et al., 2000; Li and de 

Lange, 2003; O'Connor et al., 2004), TIN2 (Ye and de Lange, 2004; Houghtaling et al., 

za and De Lange, 2003; Liu et al., 2004; Veldman et al., 2004; 

Ye et al.

hTR and telomeric repeats (Ford et al., 2002; Fu and Collins, 2007).  

As reported previously, telomerase is inactive in most somatic cells. In contrast, several 

normal cells and more than 70 % of immortalized human somatic cell lines or human cancers 

express high levels of telomerase. They also exhibit stable telomere length compared to the

cells from which they originate. Thus, a telomere length maintenance prossess seems to be 

necessary for tumorigenesis or immortalization (Bryan and Reddel, 1997; Shay and Gazdar, 

1997; Saldanha et al., 2003). The regulation of the telomerase complex in expression or 

activation of its components is of particular interest. Telomerase can be regulated at different 

level such as its recruitment to the telomere terminus, accumulation of its components and its 

catalytic activation via correct assembly of the complex in an active conformation 

(Smogorzewska and De Lange, 2004). Most cells that lack telomerase activity also lack 

hTERT expression and, to some extent, hTR expression, whereas the auxiliary components

appear to be widely expressed. In vitro experiments revealed that hTR and hTERT are 

sufficient to reconstitute telomerase activity. The activation of their expression is therefore 

considered as a crucial event (Weinrich et al., 1997).  

 

3.1 Regulation of telomerase at the telomere terminus 
 

The shelterin complex might sequester the telo

c rmation, preventing accessibility of telomerase to telomere ends (Figure 9) (Griffith et 

al., 1999).  

More generally, all the components of shelterin act as neg

e 

2004), and POT1/TPP1 (Loay

, 2004a; Ye and de Lange, 2004). Moreover, the hnRNP proteins, except hnRNP C, 

are thought to connect human telomerase to telomeres, because they can associate with both 
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POT1 could bind to the D-loop of the telomere, stabilizing the t-loop structure and 

thereby preventing telomerase access to the 3’ terminus (Loayza et al., 2004; Lei et al., 2005; 

Kelleher et al., 2005). Telomeres could be switched in an active state by opening the t-loop 

folding. Depletion of POT1 in human cells can result in telomere elongation (Veldman et al., 

2004; Ye et al., 2004a). On the contrary, association of POT1 with TPP1 can increase the 

telomerase activity and its processivity (Figure 9) (Wang et al., 2007; Xin et al., 2007).  

 

Figure 9. Possible mechanisms for Shelterin and POT1-TPP1 mediated regulation of telomerase. In 
mammalian cells, t loops are proposed to be non-permissive for telomerase activity due to sequestration of the 
telomere terminus (top). Opening of the t-loop could be in itself sufficient to allow telomerase to act (bottom) 
(cited from Bianchi and Shore, 2008).  

 

A short telomere recruits less TRF1 factors than long telomere, that raise the chance of 

being elongated by telomerase (Ancelin et al., 2002). In addition, two telomeric enzymes, 

TANK1 and 2, are shown to reduce the binding of TRF1 to telomere terminus (Smith and De 

Lange, 2000; Kaminker et al., 2001; Cook et al., 2002). PINX1, that interacts with TRF1, has 

also been proposed to be involved in the regulation of telomere length (Zhou and Lu, 2001). 

Recently, PARP-1 has been proposed to inhibit telomerase activity as it can alter poly-

ADP-ribosylation of TERT and the expression of TEP1 (Ghosh et al., 2007). Finally, the 

newly discovered TERRAs were shown to be able to inhibit telomerase activity in vitro, 

possibly through matching with the template region of TR (Schoeftner and Blasco, 2008). 
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 and 

repressors (Zhao et al.  localized 272 bp upstream of the 

transcriptional star ition to a 

CCAAT box (Zhao e regulation on 

the prom  of the CCAAT box, appeared to be 

repressive (Zhao et al. n is found to transcriptionally 

repress the Sp1 activity. Activat binding of RB, which is able 

to displace Sp1 from 1). Recently, MDM2 

was also found to directly i R promoter (Zhao et 

al., 2005). Th ptional complex and 

of hTR expression was 

ent (HRE) 

site (Anderson et al.

 

 

 
T

 

3.2 Regulation of the telomerase component: hTR 
 

hTR expression might be regulated through several mechanisms, and the transcriptional 

regulation is emerging as the essential one. The promoter sequences of hTR contain numerous 

transcription factor binding sites that have been shown to be bound by activators

, 1998). A minimal promoter region is

t site. This region encompasses Sp1-Sp3 binding sites in add

et al., 2000) (Figure 10). Only one site conferred a positiv

oter. Three other sites, located downstream

, 2003). Moreover, the MDM2 protei

ion of hTR also occurs through 

 MDM2 (Zhao et al., 2000; Johnson-Pais et al., 200

nhibit transcriptional activity by binding hT

e CCAAT box seems to be recognized by the NF-Y transcri

appears as essential for the hTR transcription. In addition, induction 

observed under hypoxic condition probably throughout the hypoxia response elem

, 2006).  

Figure 10. Transcriptional regulation of the hTR core promoter. Summary of known regulators of hTR 
transcription. The hTR core promoter contains binding sites for a number of transcription factors including Sp1 
and HIF-1, which are positive regulators of hTR transcription and Sp3, which represses hTR transcription. 
Binding of the NF-Y complex to the CAAT box sequence is essential for transcriptional activation of hTR, 
however many regulators mediate their effects through Sp1 or Sp3 binding at the GC boxes (cited from Cairney 
and Keith, 2008).  

he presence of a CpG island has suggested the possibility of hTR regulation by DNA 

methylation (see DNA methylation part 4). However, levels of DNA methylation are 

apparently not linked to hTR expression in both normal and tumor tissues or cell lines (Hoare 

et al., 2001; Guilleret et al., 2002b).  

 26 



Introduction 

 

3.3 Regulation of the catalytic subunit of the telomerase: hTERT 

3.3.1 Regulation at the genetic level

 

hTERT expression is the limiting factor for telomerase activity (Meyerson et al., 1997; 

Ramakrishnan et al., 1998; Liu et al., 2000) and its expression is sufficient to induce in vitro 

telomerase activity and avoid telomere erosion in fibroblasts (Bodnar et al., 1998; Vaziri and 

Benchimol, 1998; Ramirez et al., 2001). Genomic characterization of the hTERT gene has 

revealed that a minimum promoter region is essential for transcriptional activation. This 

includes the proximal 283 bp region upstream of the initiation ATG codon (Cong et al., 1999; 

Horikawa et al., 1999; Takakura et al., 1999; Wick et al., 1999). Several groups have found 

specific sites in the hTERT promoter sequence involved in transcriptional activation and 

repression (Li et al., 1999; Wu et al., 1999; Gunes et al., 2000; Misiti et al., 2000; Xu et al., 

2000; Poole et al., 2001; Xu et al., 2001; Ducrest et al., 2002; Mauro and Foster, 2002). In 

addition, the hTERT promoter presents abundant CpG sites, suggesting a possible role of 

DNA methylation in its transcription regulation. Therefore, in the regulation of hTERT gene 

expression genetic, epigenetic, and post-transcriptional mechanisms are implicated. 

 

 

everal GC boxes for Sp1 transcription factor binding and two E-boxes (CACGTG) were 

ave antagonistic effects, and their expression is usually inverse. c-Myc is 

ore highly expressed in proliferating and neoplastic cells (Luscher, 2001). 

 

 

Identification of transcription factors involved in the control of hTERT transcription 

has been the centre of numerous investigations. The presence of sites for multiple activators 

and repressors suggests a complex system of regulation (Figure 11). Among these sites, 

s

identified within the hTERT promoter. E-boxes are able to bind the basic helix-loop-

helix/leucine zipper transcription factors Myc/Max/Mad. Max can form heterodimers with 

Myc and Mad proteins, resulting in gene activation (Myc/Max) or repression (Mad/Max). 

Myc and Mad h

m
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Figure 11. Regulatory sequences in the hTERT minimal promoter and the exonic proximal region (cited 
from Pendino et al., 2006). 

 

 

Factors downregulating hTERT transcription 
 
 

In normal cells, inhibitors might repress hTERT expression and their action might be 

locked in tumor cells, resulting in telom ucrest et al., 2002). However, the 

inhibiti

 its activation in 

normal cells (Crowe et al., 2001; Won et al., 2002a). The COUP-TIFII transcription factor, 

which plays a major role in development and cell differentiation, was shown to inhibit 

telome ducing hTERT transcription by E-box binding in telomerase-

positiv lls (Wang et al., 2004). The CBFA1 transcription factor was recently shown to 

repress hTERT transcription in human mesenchymal stem cell populations in order to favor 

b erase activation (D

on can be partial and cell-type specific. Correspondingly, Mad is mostly activated in 

differentiating and non-proliferating cells (Luscher, 2001) and does not seem capable of 

totally suppressing hTERT expression (Poole et al., 2001; Ducrest et al., 2002). The WT1 

factor downregulates hTERT transcription, but only in Wilm’s tumor cells (Oh et al., 1999). 

Other factors such as USF1 and USF2 can inhibit hTERT expression through direct binding at 

the E-box sites in oral cancer cells (Chang et al., 2005). Another transcription factor, MZF-2 

significantly limits hTERT transcription but it is suggested to play a minor role in hTERT 

regulation (Fujimoto et al., 2000). Likewise, E2F-1 can bind to the hTERT promoter at two 

sites and inhibit hTERT transcription in cancer cells, whereas it allows

rase activity through re

e ce
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cell dif rentiation (Isenmann et al., 2007). The transcription factor activator protein (AP-1), 

e 

n 

e 

CCTC-binding factor (CTCF) was shown to be a specific repressor of telomerase-negative 

thus blocks transcription, whereas this binding is lacking in telomerase-positive cells (Renaud 

et al., 2005). CTCF, which is ubiquitously expressed, is a methylation-sensitive factor with 

l., 2001). CTCF is able to employ diverse 

ombinations of its 11 zinc fingers to target various DNA sequences (Filippova et al., 1996). 

his fa

restrains cell proliferation and stimulates cell differentiation, represses hTERT transcription in 

fe

which is expressed in both cancer and normal cells and induces cell proliferation, apoptosis, 

differentiation, appears to be a constitutive transcriptional repressor of the hTERT gene 

(Takakura et al., 2005). Viral regulators, such as NFX1-91, were shown to repress hTERT 

expression in high-risk human papillomavirus (HPV) E6 or c-Myc-expressing keratinocytes. 

NFX1-91 interacts with hTERT promoter and with the corepressor Sin3A/Histone deacetylas

to directly repress hTERT transcription (Xu et al., 2008). Moreover, NFX1-91 can be 

degraded by the HPV E6/E6AP complex, upon which a hTERT derepression occurs (Gewin 

et al., 2004). 

However, the repression of hTERT transcription by all these inhibitors cannot explai

the absence of hTERT expression in most telomerase-negative cells. Importantly, th

C

normal cells. CTCF directly binds to a region situated in the first two exons of hTERT and 

versatile regulatory functions (Ohlsson et a

c

T ctor is involved in transcriptional activation of the amyloid beta-protein precursor 

promoter (Vostrov and Quitschke, 1997), silencing of c-myc (Filippova et al., 1996), 

insulation of β-globin gene (Bell and Felsenfeld, 2000; Farrell et al., 2002) and imprinting 

control of the H19 region (Kanduri et al., 2000). The mechanism of CTCF inhibition could 

involve inhibition of either the transcription–initiation complex or the transcription 

elongation. Hypermethylation of the two first exons of the hTERT gene in most telomerase-

positive cells  blocks CTCF binding (Guilleret and Benhattar, 2004). 

 

Repression of hTERT transcription is not always due to a direct effect of inhibitors. A 

more general repressor could be p53. Over-expression of p53 can lead to a rapid decresase of 

hTERT expression in a Sp1-dependent manner (Xu et al., 2000; Kanaya et al., 2000), but 

inhibition of p53 activity did not induce hTERT expression (Lin and Elledge, 2003). It was 

proved that p53 can form a complex with Sp1, which disturbs the transcriptional activity of 

Sp1 and leads to transcriptional repression (Xu et al., 2000; Kanaya et al., 2000). Likewise, 

p16 was shown to repress telomerase activity through transcriptional inhibition of hTERT in 

malignant glioma (Saito et al., 2004). Transforming growth factor beta (TGF-β), which 
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normal and cancer cells (Li et al., 2006b). The mechanisms of hTERT repression are 

controversial: while some studies demonstrated that TGF-β repressed hTERT transcription via 

indirect down-regulation of c-Myc expression (Hu et al., 2006), others reported direct 

interaction of Smad3 and c-Myc disturbing c-Myc activity (Li et al., 2006a; Lacerte et al., 

2008). TNF-α (Tumor necrosis factor alpha) was also found to indirectly inhibit hTERT 

transcription in normal and leukemic human myeloid cells (Beyne-Rauzy et al., 2005). 

 

 

Factors activating the hTERT transcription 
 
 

 al., 2004; Yatabe et al., 

2004). Hormones and growth factors are also involved in regulating gene hTERT expression 

(Bayn

Numerous transcription factors able to activate hTERT transcription have been 

identified, including c-Myc, Sp1, AP-2 and AP-4. In particular, c-Myc binds to the two E-

boxes on the hTERT promoter and activates the transcription in a dose-dependent manner 

(Ducrest et al., 2002; Wang et al., 1998; Zou et al., 2005). However, several studies found 

that Myc and hTERT expression levels are not necessarily tightly correlated in cancer cells. It 

remains unclear whether endogenous binding of c-Myc on the hTERT promoter plays a 

critical role in the regulation of hTERT transcription in vivo. C-Myc and Sp1 could also be 

indirectly activated by Survivin, a member of the inhibitor-of-apoptosis family, inducing up-

regulation of telomerase through hTERT activation (Endoh et al., 2005). AP-2 was identified 

as a transcriptional activator of the hTERT promoter (Cong et al., 1999) and, of particular 

interest, it exhibited tumor-specific binding to the core promoter region (Deng et al., 2007). 

Although this study examined only one tumor type (lung cancer), this may partly explain 

tumor specific hTERT transcription. The involvement of HIF-1 in the activation of hTERT 

expression in tumor hypoxia has been demonstrated in vitro (Nishi et

e and Liu, 2005). Estrogen activates hTERT transcription via binding to the estrogen-

responsive element (ERE) in the hTERT promoter (Kyo et al., 1999; Misiti et al., 2000; 

Nanni et al., 2002). Progesterone is also able to promote hTERT transcription in 

progesterone-receptor-positive breast cancer cells (Wang et al., 2000). Additionally, the 

epidermal growth factor (EGF) is implicated in hTERT activation (Maida et al., 2002). 

Nevertheless, the activation of hTERT by these factors seems to rather indirect, and often 

cell-specific. For instance, the hALP protein (human N-acetyltransferase-like protein) 

modifies the activity of histone acetylation and induces telomerase activity via transactivation 

of the hTERT promoter (Lv et al., 2003). The HER2/Neu, Ras and Raf oncoproteins can also 
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induce hTERT transcription through the ETS transcription factor ER81 and the mitogen-

activated protein (MAP) kinase pathway in normal cells (Goueli and Janknecht, 2004). Bmi-1 

overexpression allowed the escape from cellular growth control mechanisms, such as the p53 

and the RB pathways (Pardal et al., 2003; Valk-Lingbeek et al., 2004), and subsequently 

induces telomerase activation through the activation of hTERT gene transcription (Dimri et 

al., 2002). Moreover, the telomerase transcriptional elements-interacting factor (TEIF) might 

be a transcriptional activator of hTERT (Tang et al., 2004). The binding of USF1/2 

heterod er to the E-boxes in the hTERT promoter always occurs, but it leads to promoter 

ells (Goueli and Janknecht, 2003). As previously 

ported, the HPV E6 protein induces hTERT transcription, which is dependent upon Myc 

bindin

im

activation exclusively in hTERT-positive c

re

g sites (Veldman et al., 2003; Liu et al., 2005). Recently, another splice variant of 

NFX1, NFX1-123, was shown to activate hTERT expression and telomerase activity in HPV 

E6-expressing cells (Katzenellenbogen et al., 2007). Finally, the latent membrane protein 1 

(LMP1) of Eptein-Barr Virus was found to activate the hTERT promoter and increase 

telomerase activity in B lymphocytes (Terrin et al., 2008). 

 

Tollefsbol and Andrews propose that other regulatory elements distant from the 5' 

flanking region of the promoter could also be implicated in hTERT regulation. Thus, the 

expression of hTERT in aging cells and tumorigenesis could be due to a collective effect of 

binding of all these different factors, which may be under methylation control (Tollefsbol and 

Andrews, 2001). 

The numerous factors involved in the hTERT transcriptional regulation are summerized 

Table 1, but how exactly hTERT is activated in telomerase-positive cells and repressed in 

telomerase-negative ones is not yet clear. Moreover, the endogenous-hTERT mRNA levels 

detected in telomerase-positive cell lines are very low (0.2 to 6 copies per cell) (Ducrest et al., 

2001; Yi et al., 2001). In contrast, a high level of transcription is obtained after transfection of 

the hTERT core promoter, which can be as strong as the SV40 promoter, in telomerase-

positive cell lines (Cong et al., 1999).  

 

All these findings suggest a complex system of transcriptional regulation of the 

telomerase catalytic subunit hTERT. Moreover, the hTERT mRNA and protein are also 

subject to other mechanisms of regulation, adding to its complexity. 
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Table 1. Recapitulative table of the transcription factors that bind the hTERT 5’-regulatory region. 

 

nscription Role Number of binding sites Reference Tra
factors 

  in the 5’-regulatory 
region 

in the core promoter 
(-283 to +1)  

p53   Repressor 2 0 (Xu et al., 2000; Kanaya et al., 2000)
Ma
MZ
WT
TG
Me
COUP

E2

US
AP
CB
NF
CTCF 
Sm

E2 (Won et al., 2002a; Alonso et al., 2006)

d1 Repressor 2 2 (Oh et al., 2000) 
F-2 Repressor 4 0 (Fujimoto et al., 2000) 
1 Repressor 1 0 (Oh et al., 1999) 
Fβ Repressor - - (Yang et al., 2001; Li et al., 2006a)  
nin/JunD/NF-κB Repressor 2 - (Lin and Elledge, 2003) 

-TIFII Repressor 3 2 (Wang et al., 2004) 

F-1 Repressor 
in cancer cells 2 2 (Crowe et al., 2001) 

F1/2 Repressor 2 2 (Chang et al., 2005) 
-1 Repressor 2 0 (Takakura et al., 2005) 
FA1 Repressor 2 0 (Isenmann et al., 2007) 
X1-91 Repressor 1 1 (Gewin et al., 2004; Xu et al., 2008) 

Repressor 2 in the exonic region (Renaud et al., 2005)  
ad3 Repressor 1 1 (Hu et al., 2006; Li et al., 2006a) 

F-1 Activator 
in normal cells 2 2 

Estrogen Activator 2 0 (Kyo et al., 1999; Misiti et al., 2000; 
Nanni et al., 2002) 

Sp1 

c-M u 

Bm ; 

US
hA vator Potential binding to +90 to -120 (Lv et al., 2003) 

ER81 0 (+ 2 in the 

HI ; 

TEIF 

AP

AP

CC
c-E

c-M 2 0 (Horikawa et al., 1999; Takakura et al., 
1999; Wick et al., 1999) 

CREB/ATF Activator 1 0 (Cong et al., 1999) 
NFκB/T3R
HPV E6 ) 
NF
LM

Activator 14 9 (+ 1 in the 
exonic region) (Kyo et al., 2000) 

yc Activator 2 2 (Wu et al., 1999; Kyo et al., 2000; Zo
et al., 2005) 

i-1 Activator   (Dimri et al., 2002; Pardal et al., 2003
Valk-Lingbeek et al., 2004) 

F1/2 Activator 2 2 (Goueli and Janknecht, 2003) 
LP Acti

Activator 2 exonic region) (Goueli and Janknecht, 2004) 

F-1 Activator 2 2 (Nishi et al., 2004; Yatabe et al., 2004
Anderson et al., 2006)  

Activator Potential binding to +90 to -120 (Tang et al., 2004) 

2 Activator 17 9 (+ 5 in the 
exonic region) 

(Cong et al., 1999; Horikawa et al., 
1999; Takakura et al., 1999; Wick et 
al., 1999; Deng et al., 2007) 

4 Activator 9 3 (+ 1 in the 
exonic region) (Cong et al., 1999) 

AC Activator 1 0 (Wick et al., 1999) 
ts-2 Activator 2 2 (Horikawa et al., 1999) 

yb Activator 

α Activator 1 0 (Cong et al., 1999) 
Activator 2 2 (Veldman et al., 2003; Liu et al., 2005

X1-123  Activator - - (Katzenellenbogen et al., 2007) 
P1 Activator - - (Terrin et al., 2008) 
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3.3.2 Regulation at the epigenetic level 

DNA methylation

 

 

Several groups have examin status TERT CpG island 

promoter. It was initially expected that methylation of the hTERT promoter induces gene 

ncing. Howe  reports indicated no significant correlation be

ession and m  status as hTERT CpG island was fo d in many 

merase-negat lomerase-positive cell lines and tu

et al., 2000; Lopatina et al., 2003; Shin et al 2003). e observed a 

itive correla  hTERT m ion and hTERT expression. Hypermethylation 

e hTERT p as reported in hTERT-positive can  no 

lation was normal hTERT-negative cells (Guill

 2002) (see D lation alte art 4.3)

Moreover, ell lines with n hTERT hypermethylated prom

the demethylating agent 5-aza-2’-deoxycytidine promoted hTER

to 95%, with a strong decrease of hTERT mRNA  (Guilleret and Benhattar, 2003). 

ethylat  in the  h n akura 

l., 2005). These unusual correlations between DNA methyla ERT expression in 

mal and cancer cells has generated confusion among telomer

The mecha olved yl tive 

ethylation within the core promoter aroun ip n to 

ificantly incr RT transcrip onal activity (Renaud

omerase-positi r cel d  around the 

anscription star pite the pre ce of h ti

(Zinn et al., 2007). ChIP assay revealed that bo d 

ent across the promoter. The active rk cription start 

was strongly d with unmethylated DNA. hese da bsence o

atin m s arou tart site 

e expre hTERT, indicating that th TERT on pattern is 

nt with the classical dynamics of gene express . In ou

 20 7), DNA n exhibits a ual role in hT RT tran ion: hTERT 

methylation prevents the CTCF inhibitor from binding, but the core promoter requires partial 

hypomethylation to allow hTERT transcription (Figure 12). 

 

ed the methylation  of the h

sile ver, some tween hTERT 

expr ethylation und hypomethylate

telo ive and te mors (Devereux et al., 1999; 

Dessain ., Other groups hav

pos tion between ethylat

of th romoter w cer cells or tissues, while

methy  found in eret et al., 2002a; Nomoto et 

al., NA methy rations and cancer p .  

in tumor c  a oter, treatment with 

T promoter demethylation up 

 expression

 regulation ofThis suggests a role of DNA m ion TER pressioT ex (Kum

tion and hTet a

nor ase researchers.  

nisms inv  were clarified using a meth ation cassette assay. Selec

dem d the transcr tion start site was show

sign ease hTE ti  et al., 2007). In parallel, all 

tel ve cance l lines examined exhibite hypomethylation

tr t site des sen ypermethyla on in more upstream regions 

inactive chromatin marks are th active an

chrom in mapres  hTERT at  around the trans

site  associate  T ta suggest that the a f 

nd the transcription smethylation in association with active chrom ark

allows th ssion of e h  DNA methylati

consiste ion r regulation model (Renaud et 

al., 0 methylatio  d E scriptional regulat
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uestion marks 
represe
promo

Figure 12. Proposed model of hTERT transcriptional regulation. In telomerase-negative somatic cells, 
CTCF binds to unmethylated CTCF binding site and inhibits hTERT transcription. Full methylation of the 
hTERT minimal promoter and exon1 in some telomerase-negative tumor cells cannot lead to hTERT 
transcription. A majority of the tumor CTCF sites within the hTERT gene are methylated, thus preventing CTCF 
binding. Partial demethylation of the hTERT promoter region with the formation of an active transcriptional 
complex can lead to hTERT transcription and telomerase activity. CTS stands for CTCF target sites. The hatched 
box represents the region A showed as unmethylated in cancer cell lines and tumor tissues. Q

nt the two regions surrounding the region A, and that might have a strong influence on the hTERT 
ter activity, most probably methylation-sensitive binding sites to transcription factors. Empty squares 

represent unmethylated CpG sites, and solid squares represent methylated CpG sites (cited from Renaud et al., 
2007). 

 

 
The DNA packaging 

 
The chromatin structure of the native hTERT locus was also examined. It is likely that 

histone deacetylation, leading to chromatin condensation, is implicated in hTERT repression 

in telomerase-negative normal cells (Cong and Bacchetti, 2000; Nakamura et al., 2001a; 

Takakura et al., 2001; Hou et al., 2002; Wang and Zhu, 2003; Lopatina et al., 2003). In 

telomerase-negative cells, the inhibition of histone deacetylase by Trichostatine A (TSA) led 

to open chromatin structure and  hTERT transcription (Wang and Zhu, 2003). Interestingly, 

the Sp1 factor, despite its transcriptional activation of hTERT, might also recruit histone 

deacetylase (HDAC) and induce gene silencing of hTERT in normal cells (Won et al., 

2002b).  
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The c-Myc/Max complex was found to be associated with acetylated histones, resulting 

in enhanced hTERT expression in proliferating leukemia cells (Xu et al., 2001). In contrast, 

the Mad1/Max complex was found associated with deacetylated histones and decreased 

hTERT expression. Recently, the presence of trimethylated H3-K4, which is likely due to the 

histone methyltranferase SMYD3, is associated with transcription of the hTERT gene in 

telomerase-proficient tumor cells (Atkinson et al., 2005; Liu et al., 2007). Trimethylated H3-

K4 indeed induced recrutement of HAT, providing access of transcriptional activators, such 

as Sp1 and c-Myc, to the hTERT promoter (Kyo et al., 2008). By contrast, H3K4 can be 

demethylated by lysine-specific demethylase 1 (LSD1) and this can block hTERT 

transcription in normal and cancer cells (Zhu et al., 2008). 

 

3.3.3 Regulation at the post-transcriptional and post-translational level 
 

Telomerase activity has been shown to be regulated by alternative splicing of hTERT 

et al., 1998; Fan et al., 2005). At least 7 alternatively spliced variants (4 insertions 

2000), because of an inactive complex forming between truncated hTERT mRNA and hTR 

(Lai  al., 2001). The γ deletion (189 bp) is also believed to be catalytically inactive 

Hisa ently, other alternative spliced of hTERT forms were detected in 

lung a

e a switch in the hTERT splice pattern in favor of the active isoform (Anderson et 

(Ulaner 

and 3 deletions) can co-exist and their expression level depends on the tissue type (Ulaner et 

al., 1998; Wick et al., 1999; Ulaner et al., 2000). However, the 4 insertions and the β deletion 

(182 bp) result in premature termination and nonfunctional proteins. Only a full length mRNA 

encodes a protein with catalytic activity, which is unexpectedly less present than the β-spliced 

variant (Kilian et al., 1997; Collins and Mitchell, 2002). Interestingly, the α deletion (36 bp) 

has been shown to considerably inhibit telomerase activity (Colgin et al., 2000; Yi et al., 

et

tomi et al., 2003). Rec(

nd colon, and could also regulate telomerase activity (Saeboe-Larssen et al., 2006). 

Furthermore, the expression patterns of hTERT alternative splice variants can be 

different from the corresponding adjacent normal tissues, such as in ovary, kidney, uterine, 

and breast cancer (Ulaner et al., 2000; Yokoyama et al., 2001; Zaffaroni et al., 2002; Fan et 

al., 2005). For instance, malignant thyroid tumors exhibit a high level of full-length hTERT 

transcript (Anderson et al., 2006; Wang et al., 2008). Moreover, the presence of alternative 

splicing of hTERT has been correlated with the deficient telomerase activity (Fujiwara-Akita 

et al., 2005; Ohyashiki et al., 2005; Zaffaroni et al., 2005). Interestingly, hypoxic conditions 

can induc
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al., 2

teraction, suggesting that hTERT 

phosphorylation is necessary for assembly and activation of the telomerase complex (Chang 

et al., 2006; Anderson et al., 2006). Finally, phosphorylation is likely to allow transfer of 

TERT protein from

assem

00). 

Unfor

006). These results support a role for hTERT splice-variants in the regulation of 

telomerase activity. 

 

Post-translational processing of the hTERT protein might also regulate its activity. 

Phosphorylation of hTERT by protein kinase C (PKC),  protein phosphatase 2A (PP2A), Akt 

or c-Abl tyrosine kinase are involved in regulation of telomerase activity (Li et al., 1998; 

Kharbanda et al., 2000; Yu et al., 2001; Jagadeesh and Banerjee, 2006; Anderson et al., 

2006). PKC has been shown to modulate telomerase activity via a phosphorylation of hTERT 

in human breast, head, and neck cancer cells (Li et al., 1998; Chang et al., 2006; Anderson et 

al., 2006). Depletion of PKC affects the hTERT-hsp90 in

h  the cytoplasm to the nucleus, subsequently allowing telomerase 

bly (Aisner et al., 2002). 

Interactions between transcriptional factors and epigenetic regulators need to be further 

explored to better understand regulation of the hTERT transcription. Likewise, transport and 

post-translational modifications of hTERT protein, as well as assembly and recruitment of the 

telomerase complex also require more investigations to completely clarify the telomerase 

activation mechanism. 

 

3.4 Telomerase as a biomarker of cancer 
 

Numerous molecular markers for common cancers have been suggested, such as lung, 

breast, and colon, but telomerase activity is the most universal one since its overall prevalence 

is estimated at 85% tumors (Kim, 1997; Shay and Gazdar, 1997; Dhaene et al., 20

tunately, telomerase activity is also observed in some normal cells, such as proliferative 

progenitor cells in self-renewing tissues and activated lymphocytes (Hiyama et al., 1995c; 

Hiyama et al., 1996b; Wright et al., 1996b), but also in several benign tumors such as 

fibroadenoma of the breast (Hiyama et al., 1996a), hyperplastic nodule/adenoma of the 

thyroid (Matthews et al., 2001), and colon adenoma (Hiyama et al., 1996b). For instance, the 

occurrence of activated lymphocytes in leukemia complicates the identification of telomerase-

positive cells derived from neoplastic clones. However, the telomeres of neoplastic cells from 

acute leukemia are generally shorter than those in the corresponding normal cells because of 
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active cell division. Accordingly, telomere length needs to be determined in addition to the 

measurement of telomerase activity because it reflects the mitotic history of the disease 

(Pendino et al., 2006). In patients with inflammatory diseases, the sensitivity of telomerase 

activi

 cytology (Hiyama et al., 2000). 

, 1999), breast cancer (Clark et al., 1997), and neuroblastoma (Hiyama 

et al., 1995a; Poremba et al., 1999; Streutker et al., 2001). 

In b  RNAs of tumor cells can be present, 

and therefore the detection of hTERT mRNA in the blood could be used as a powerful and 

noninv

ty detection reached only 70% mainly because of activated lymphocyte contamination 

(Hiyama et al., 1998). For the same reason, the detection of telomerase in body fluids such as 

cervical smear, scraping samples or in native urine, is of limited use in spite of its potential as  

a non invasive marker of cancer (Orlando et al., 2001; Jarboe et al., 2002).  

Likely, some normal tissues or precancerous lesions can also exhibit telomerase 

activity and induce telomerase activity without the presence of neoplastic cells. This could be 

the case in organs like lung, esophagus, stomach, colon, liver, bladder, prostate, head, uterus, 

and skin. On the other hand, detection of telomerase activity may be a valuable diagnostic 

marker for breast cancer as it occurs in most invasive breast cancer tissues and carcinoma in 

situ samples. Moreover, the sensitivity and specificity of telomerase activity were 

significantly better than those of

Telomerase could also be a prognostic indicator as telomerase activity levels increased 

along with cancer progression in gastric and colon adenocarcinomas (Hiyama et al., 1995b; 

Chadeneau et al., 1995; Tahara et al., 1999; Tatsumoto et al., 2000). Poor prognosis is 

associated with telomerase activity in patients with gastric cancer (Hiyama et al., 1995b), lung 

cancer (Marchetti et al.

 

lood of cancer patients, circulating DNA or

asive cancer biomarker (Chen et al., 2000; Dasi et al., 2001; Shin et al., 2002). 

However, as previsouly mentioned, hTERT mRNA as well as telomerase activity are known 

to be upregulated in activated lymphocytes, which seriously limits the use of this biomarker in 

the patients with various types of inflammation such as autoimmune disease and infection 

(Hiyama et al., 1995c; Hiyama et al., 1998).  

The in situ detection of telomerase-positive cells could be very usefull, allowing 

morphological identification of telomerase-positive cells and discrimination of cancerous and 

noncancerous cells. For instance, hTERT detection can be performed through in situ 

hybridization or immunohistochemistry. However, technical difficulties have been reported 

because of the low amount of hTERT mRNA or protein per cell or because of the lack of 

specificity of hTERT antibodies (Kumaki et al., 2001; Hiyama et al., 2001; Kumaki et al., 
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2002; Wu et al., 2006; Anderson et al., 2006). Moreover, the stabity of the enzyme, and the 

hTERT mRNA, or the presence of alternate splicing variants can also lead to false negative 

results. 

 

3.5 Telomerase as a target for anti-cancer therapeutics 
 

The main interest of targeting telomerase is that it is ubiquitously and specifically 

express

telomerase expression and 

regulat

 

 

 

ed in cancer cells, including the putative cancer stem cell (Cortez-Gonzalez and 

Zanetti, 2007). The low or transitory level of telomerase in normal tissues, including normal 

stem cells, potentially offers tumor specific features to anti-telomerase drugs and low normal 

tissue toxicity. Different approaches have been explored in order to develop anti-cancer 

therapeutics, which might target either the telomerase positive-cells (immunotherapy, gene 

therapy), the components of telomerase (hTR, hTERT), or directly the telomeres (G-

quadruplex inhibitors). Other strategies consist in targeting 

ion (transcriptional factor inhibitors).   

Both hTERT and hTR promoters are promising in telomerase gene therapy, for which 

suicide gene therapy and oncolytic viral therapy approaches have been developed (Figure 13) 

(Keith et al., 2004; Keith et al., 2007; Cairney and Keith, 2008). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Different telomerase gene therapy approaches (cited from Shay and Keith, 2008). 
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Telomerase-targeting adenoviral suicide gene therapy is based on the deliverery of a 

suicide gene therapy construct (Ad-hTR-NTR). The following steps are the activation of the 

nitroreductase suicide gene by the hTR promoter, and finally the activation the prodrug CB 

into a cytotoxic alkylating agent (Plumb et al., 2001; Bilsland et al., 2003). On the other hand, 

e telomerase-specific oncolytic virus approach

developped properties allowing telo

h hTR component to activate cytotoxic T cells 

and k

ide vaccine named GV1001, 

erived from the hTERT active site. It is indicated for the treatment of pancreas, liver and 

et al., 2006; Bernhardt et al., 2006).  

To target hTERT, nucleoside inhibitors such as AZT or AZGTP were planned to inhibit 

verse transcriptase activity via blocking the incorporation of dNTPs (Fletcher et al., 2001). 

he hTERT antisense oligodesoxynucleotides decrease telomerase activity and limited cell 

r studies confirmed the results (Kraemer et al., 

003). Ribozymes have been successful in endometrial, breast and ovarian carcinoma 

udwig et al., 2001; Saretzki et al., 2001). Dominant negative hTERT proteins, catalytically 

re also shown to inhibit telomerase activity (Hahn et al., 1999; Herbert et al., 

999; Zhang et al., 1999a). 

To target hTR, GRN163L inhibitor is an oligonucleotide complementary to hTR 

plate that competitively inhibits telomerase (Herbert et al., 2005; Dikmen et al., 2005; 

ellert et al., 2006). GRN163L demonstrated anti-tumorigenic properties in hematological 

nd solid tumor models, but also in potential cancer stem cells, which are believed to be 

chemotherapy-resistant. GRN163L is clinically tested in association with usual paclitaxel-

carboplatin chem

th  utilizes manipulated adenoviruses that have 

merase-positive cancer cells to be specifically destroyed 

(Keith et al., 2004; Keith et al., 2007). The hTERT promoter can control the replication of 

adenovirus and allow a selective dissemination of the virus within tumor cells, whereas 

infection of normal somatic cells does not induce toxic effects (Fujiwara et al., 2007). For 

example, Telomelysin is a telomerase-specific replication-competent adenovirus (TRAD), 

which has recently advanced to clinical trials as it induces anti-tumor effects on numerous 

human cancer cells.  

Telomerase (hTERT) immunotherapy is based on two general approaches. The first one 

uses autologous dendritic cells transfected wit

ill telomerase-positive tumor cells. This approach has resulted in a therapeutic cancer 

vaccine called GRNVAC1, which recently entered into a clinical trial on prostate cancer 

patients (Su et al., 2005). The second approach concerns a pept

d

lung cancer (Brunsvig 

re

T

growth in bladder cancer cells, but no othe

2

(L

inactive, we

1

tem

G

a

otherapy (Shay and Keith, 2008). 
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In summary, telomerase-targeting therapies are a promising approach to treat cancer. 

However, telomerase-negative tumors would be refractory to these therapies. As these 

maintain telomerase length through ALT pathway, new anti-cancer therapies should be 

developed to target these tumors (Stewart, 2005). 

 

4. DNA methylation 
 

Epigenetic inheritance rests on gene expression levels and is independent of the DNA 

sequence, in contrast to genetic inheritance. The most common epigenetic event in the 

mammalian genome is DNA methylation. In vertebrates, DNA methylation results in the 

addition of a methyl group (CH3) (Figure 14) on a cytosine preceding a guanosine, the CpG 

dinucleotide, by the  DNA methyltransferase enzyme (DNMT) (Jones, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Schematic representation of the biochemical pathway for cytosine methylation, demethylation 
and mutagenesis of cytosine and 5-methylcytosine (cited from Singal and Ginder, 1999). 
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Distribution of CpGs and CpG islands 

 

About 70-80% of the CpG are methylated and these are randomly dispersed along the 

DNA sequence. These methylated regions are typical of non coding DNA. This highly 

ethylated DNA replicates later than unmethylated DNA (Bestor, 1990). Late replicating 

DNA is characteristic of inactive chromatin (Bird and Wolffe, 1999). This mechanism 

scription inhibition of repeat elements, inserted viral sequences, and 

transpo

e promoters of 

CpG islands are normally unmethylated in all tissues with the exeption of non-transcribed 

genes on the inactive X-chromosome and imprinted autosomal genes, of which one of the 

parental alleles is repressed through methylation (Bird, 2002). CpG islands more rarely are 

located in the core of the gene, or even in the 3’-region, and these are more prone to 

methylation (Nguyen et al., 2001). 

 

4.1  Proteins that mediate DNA methylation  

NA methylation within a gene promoter CpG island correlates with its 

transcriptional silencing (Bird, 2007). Only methylation within and/or around the promoter 

region is associated with gene silencing (Jones, 1999; Singal et al., 2002). DNA methylation 

by itself does not directly repress transcription, but can prevent binding of transcriptional 

activators and can induce formation of inactive chromatin through proteins that specifically 

bind to methylated DNA, leading to transcriptional repression (Kass et al., 1997; Bird and 

Wolffe, 1999).  

 

m

participates to the tran

sons.  

Small regions of DNA (0.5 to 5 kb), termed CpG islands, have precise characteristics. 

They are GC rich (60% to 70%), have a CpG/GpC ratio of at least 0.6, and are generally 

unmethylated (Cross and Bird, 1995). CpG islands characterize the promoter regions of half 

of human genes, including housekeeping genes and tissue-specific genes. Th

 

D

4.1.1 Chromatin structure and histone code 
 

The chromatin in mammalian cells is represented by a series of nucleosomes arranged 

 a compact configuration. The nucleosome consists of 146 bp DNA wrapped around a 

rotein octamer containing two molecules of each histone H2A, H2B, H3, and H4 (Richmond 

in

p
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and Da  takes place, this chromatin structure becomes 

more “open” and accessible to transcription factors. Certain amino acids of histone proteins 

can be 

lization of the DNA into domains, such as silent heterochromatin and active 

euchro

re by disrupting inter-nucleosomal interactions (Shogren-

naak and Peterson, 2006; Shia et al., 2006). The acetylation of lysine residues on N-terminal 

histone tails reduces the positive charge of the histones and subsequently decreases its 

attraction w D  results in decondensation of the 

chroma

es (HMTs) are also recruited to silence 

uchromatin. Condensed heterochromatin is indeed enriched in trimethylation of H3K9, 

H3K27, and H4K20 (Kouzarides, 2007). Methylated H3K9 represents a binding site for the 

heterochromatin pr ress gene transcriptionally. 

terest

vey, 2003). At sites where transcription

chemically modified by acetylation or ubiquitination of lysine, methylation of lysine or 

arginine, and phosphorylation of serine (Bird and Wolffe, 1999; Spotswood and Turner, 2002; 

Peterson and Laniel, 2004).  

The histone code affects chromatin arrangement by modifying contacts between 

different histones and between histones and chromatin. Histone modifications allow the 

compartmenta

matin (Martin and Zhang, 2005). Moreover, the influence of histone code on the 

chromatin structure also allows a regulation of several main mechanisms like replication, 

transcription, DNA repair, and chromosome condensation (Kouzarides, 2007).  

 

Histone acetylation, catalyzed by histone acetyltransferase (HAT), plays a central role 

in the formation of permissive chromatin and is associated with active transcription (Wolffe, 

1996). High level of H3 acetylation is likely to be associated with gene promoters and 

conserved non-coding sequences (Roh et al., 2005; Roh et al., 2006). Acetylation has the 

potential to affect chromatin structu

K

ith NA. Thus, histone H3 and H4 acetylation

tin to permit binding of transcription factors to DNA (Krajewski, 2002). Active 

chromatin marks comprise H3K9 acetylation, H4 acetylation, but also dimethylation at H3K4 

and trimethylation at H3K4, H3K36, or H3K79, which lead to chromatin decondensation 

(Chambeyron and Bickmore, 2004; Barski et al., 2007; Okitsu and Hsieh, 2007).  

Histone deacetylases (HDACs) can remove acetyl groups from lysines of histones, 

which represses transcription by decreasing the accessibility of DNA for transcription factors 

(Strahl and Allis, 2000). Histone methyltransferas

e

otein 1 (HP1), which is known to rep

In ingly, trimethylation of H3K9 has also been involved in the regulation of telomere 

length in mice since HMT null mice seem to have abnormally long telomeres (Garcia-Cao et 

al., 2004). 
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Moreover, histone demethylases, as RBP2 (Christensen et al., 2007) or LSD1 (Shi et 

al., 2004) allow specific H3K4 demethylation, which induces transcriptional silencing.  

 

4.1.2 Methyl binding proteins 

rent ability to 

bind to ethylated DNA. These proteins are ubiquitous: numerous cell types express multiple 

MBD p

of epigenetic silencing by MBD proteins. Red and white circles represent 
methylated and unmethylated CpGs, respectively (cited from Lopez-Serra and Esteller, 2008). 

 
The DNA methylation pattern is believed to be interpreted by a conserved family of 

proteins, the methyl-CpG binding domain (MBD) family (Wade, 2001; Jaenisch and Bird, 

2003). Several proteins, which share a common MBD domain, have been identified including 

MeCP1, MeCP2, MBD1, MBD2, MBD4 and Kaiso (Prokhortchouk and Hendrich, 2002; 

Hendrich and Tweedie, 2003). With exception of the MBD domain, the sequence of MBD 

proteins is quite different, suggesting different functions. They also exhibit diffe

 m

roteins (Hendrich and Bird, 1998). They are known to complex with different proteins 

involved in transcriptional silencing (Figure 15). Downregulation of MBD proteins has been 

shown to allow recovery of transcriptional expression without altering DNA methylation 

status (Lopez-Serra et al., 2008). MBD proteins allow a crosstalk between DNA methylation 

and recruitment of a gene silencing machinery, but can not change DNA methylation patterns 

(Lopez-Serra et al., 2006). 

Figure 15. Mechanisms 
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MeCP2 

The MeCP2 multidomain protein is the first of the member of the family of MBD 

proteins discovered (Lewis et al., 1992; Nan et al., 1993). MBD proteins bind to methylated 

NA through a dom ain (MBD), and repress transcription 

using t

MBD1

D ain called Methylated Binding Dom

he Transcriptional Repression Domain (TRD) (Ballestar et al., 2003; Fraga et al., 

2003). MeCP2 binds a single methylated CpG dinucleotide irrespective of the DNA sequence 

(Lewis et al., 1992; Nan et al., 1993). MeCP2 is able to associate in a complex, comprising of 

HDACs and the Sin3a transcriptional co-repressor, which leads to transcriptional repression 

(Nan et al., 1998; Jones et al., 1998) (Bird and Wolffe, 1999). This discovery allowed to link 

DNA methylation and histone modifications. The TRD domain of MeCP2 is likely to 

associate with preinitiation complex assembly, via binding with TFIIB (Kaludov and Wolffe, 

2000). More recently, MeCP2 has been shown to bind to the histone H3K9 methyltransferase 

(Fuks et al., 2003), which leaves a repressive mark on chromatin (Lachner and Jenuwein, 

2002). MeCP2 null mutant mice are viable and fertile (Chen et al., 2001; Guy et al., 2001), 

and have a phenotype similar to that of the Rett Syndrome, a neurological disorder of women 

caused by mutation of MeCP2 (Amir et al., 1999; Chen et al., 2001; Guy et al., 2001).  

 

 

MBD1 was first shown to be a part of the MeCP1 complex (Cross et al., 1997). MBD1 

comprises the MBD and the TRD domains, but also several zinc-coordinating CXXC 

sequences, such as those discovered in DNA methyltransferase I (Cross et al., 1997). MBD1 

exhibits a high affinity for heavily methylated sequences (Ng et al., 2000; Fujita et al., 2000). 

The transcriptional repression mediated by MBD1 is likely to be HDAC dependent (Ng et al., 

2000). The third CXXC motif binds to DNA irrespective of the methylation and can repress 

transcription from unmethylated DNA (Fujita et al., 2000), but MBD1 can also inhibit 

transcription of a promoter methylated gene through its MBD domain (Jorgensen et al., 

2004). MBD1 has been demonstrated to form a complex with the histone H3K9 methylase 

SETDB1, and CAF-1 (chromatin assembly factor 1) (Sarraf and Stancheva, 2004), allowing 

the preservation of histone methylation patterns during DNA replication. 

 

MBD2  

sequence has been identified (Bird and Wolffe, 1999). MBD2 has a TRD domain, which 

The MBD2 protein can interact with a single methyl CpG dinucleotide, but no specific 
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significantly overlaps with the MBD domain, contrary to the domains of MBD1 and MeCP2 

(Boeke 00). The silencing induced by MBD2 is sensitive to HDAC inhibitors (Ng et 

al., 199

ession 

vel of certain cytokines crucial to T-lymphocyte differentiation (Hutchins et al., 2002), and 

with a decreased incidence of colon tumors promoted by mutation of the APC gene (Sansom 

et al., 2

 et al., 20

9).  

MBD2 was initially observed to be connected with a part of the NuRD complex, and 

this association creates a new complex called MeCP1 (Feng and Zhang, 2001; Fatemi and 

Wade, 2006). MeCP1 was the first complex revealed to bind to methylated DNA and repress 

transcription (Meehan et al., 1989). Interestingly, MeCP1 interacts with at least 10 methylated 

CpGs (Meehan et al., 1989), although MBD2 only requires a single CpG (Hendrich and Bird, 

1998). The density of methyl-CpGs probably allows differential targeting of specific genes. 

Moreover, protein/DNA complexes detected in vitro can be different depending on the cell 

type (Hendrich et al., 2001).  

MBD2 can be fully transcribed (MBD2a), but can also be truncated at its N-terminal 

(MBD2b) because of an alternative start codon. MBD2 can also be expressed as a testis-

specific variant (MBD2t), lacking the C-terminal region (Hendrich and Bird, 1998). 

Contrary to MeCP2, MBD2 null mutant mice have a minimal phenotype (Hendrich et 

al., 2001). They exhibit normal methylation patterns without change in genomic imprinting 

(Hendrich et al., 2001). MBD2 deficiency is correlated with modification in the expr

le

003b).  

 

MBD3 

MBD2 and MBD3 share about 70% of sequence similarity (Hendrich and Bird, 1998). 

Surprisingly, mammalian MBD3, contrarily to Xenopus MBD3 and all other members of this 

family, does not recognize methylated DNA (Hendrich and Bird, 1998). MBD3 is a part of 

the transcriptional repressor Mi-2–NuRD complex, which contains several proteins such as 

HDACs and a chromatin remodelling ATPase (Hendrich and Bird, 1998; Zhang et al., 

1999b). MBD3 is crucial to normal mammalian development as MBD3 knockout mice are not 

viable (Hendrich and Bird, 1998; Hendrich et al., 2001). 

 

MBD4 

recognizes methylated DNA, although its main role is in DNA repair 

mechan

MBD4 

isms because it functions as a mismatch-specific DNA N-glycosylase, which can 

efficiently repair the methyl-CpG/TpG mismatches that can occur by spontaneous 

 45



CHAPTER 1 

deamination (Hendrich and Bird, 1998; Hendrich et al., 1999). This enzyme is likely to 

remove the whole base creating an abasic site, which can be repair through base and 

nucleotide excision repair enzymes (Kress et al., 2006; Barreto et al., 2007). MBD4 is also 

implicated in the transcriptional inhibition of CDKN2A (p16) and MLH1 expression in a 

methylation-dependent manner (Kondo et al., 2005). 

 

 

Redundancy role of the MBDs 

MBD knockout animals do not exhibit dramatic phenotypes, contrarily to DNA 

methyltransferase null mutant mice which fail to survive (Jaenisch and Bird, 2003). Only 

MBD3-null mutants fail to develop (Hendrich et al., 2001). The phenotypes of the MeCP2 

(Chen 

ted with 

MBD2

 can bind to different MBD proteins (Ballestar et al., 2003).  

 

 

et al., 2001) and MBD2 (Hendrich et al., 2001) null mutant mice suggest that the loss 

of MeCP2 or MBD2 is partially compensated by other MBD proteins (Brero et al., 2005). 

About 50% of the sites identified to be linked by MeCP2 were detected associa

 after depletion of MeCP2. On the other hand, other proteins different from MBD 

proteins could interpret DNA methylation. It has been shown that a strong connection exists 

between a single MBD protein and specific methylated regions, suggesting that several genes 

are regulated by the only one MBD proteins (Magdinier and Wolffe, 2001). A genome-wide 

study confirmed that several genes appeared to be linked with a single MBD, while it revealed 

that other genes

MBD and cancers  

In human cancer cell lines, the binding of MBD protein to hypermethylated promoters 

of tumor suppressor genes has been associated with transcriptional silencing (Lopez-Serra and 

Esteller, 2008). The nature of MBD bound to tumor suppressor genes such as CDKN2A or 

DAPK1, seems to be tumor type and gene specific (Lopez-Serra et al., 2006). 

Some of the polymorphisms in the sequence of MBD proteins have been associated 

with cancer risk, as polymorphisms in MBD1 increase the risk of lung cancer (Jang et al., 

005). Downregulation of MeCP2 can stop the development of prostate cancer, while its 

expression promotes the progression of the cancer (Bernard and Eilers, 2006). In breast 

cancer,

2

 MeCP2 is highly expressed and is associated with oestrogen receptor positivity 

(Muller et al., 2003). 
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MBD2 has been shown to repress aberrantly methylated tumor suppressor genes such 

as CDKN2A (p16) in a colon cancer cell line (Sato et al., 2002) or GSTP1 (glutathione S-

transferase P1) in breast cancer cell line (Lin and Nelson, 2003). Depletion of MBD2 was also 

shown to stimulate GSTP1 expression, and to inhibit progression of human lung and 

colorectal cell lines and human cancer xenografts (Campbell et al., 2004). It has been revealed 

at Mbd2-deficient mice are resistant to intestinal tumor growth (Sansom et al., 2003a).  

 

th

4.1.3 DNA methyltransferases (DNMTs) 
 

In normal cells, DNA methylation patterns are dynamic: unmethylated sequences can 

be converted into methylated CpG and methylation can also be lost during development. 

Methylation can be de novo (when CpGs are unmethylated on both DNA strands) or 

maintenance (when CpGs are methylated on one DNA strand). After active demethylation of 

embryonic DNA, de novo methylation begins on most CpG sites except on CpG islands 

(Kafri et al., 1992). After implantation, the majority of the genome is methylated and 

demethylation of tissue-specific genes occurs in the tissues where they are expressed (Razin 

and Cedar, 1991).  

In mammalian cells, the DNA methyltransferases identified are DNMT1, DNMT1b, 

DNMT1o, DNMT1p, DNMT2, DNMT3a, DNMT3b, and DNMT3L (Okano et al., 1999; 

obertson, 2002). DNMT1 is a de novo and maintenance methyltransferase. DNMT3a and 

NMT3b are also de novo methyltransferases that are regulated by DNMT3L, which 

stimulates their ca ity (Suetake et al., 2004). DNMT3L identifies unmethylated 

lysine 

ully methylated 

by ma

R

D

talytic activ

4 on histone H3 and recruits or activates DNMT3a2 leading to de novo DNA 

methylation (Jia et al., 2007). Replication of homo-methylated DNA produces hemi-

methylated DNA in which one strand of the DNA remains methylated and the newly 

synthesized is unmethylated (Figure 16). Hemimethylated DNA can become f

intenance methyltransferase DNMT1. Addition of methyl groups to cytosines by 

DNMT is also involved in transcriptional regulation, genome stability, imprinting, and X-

chromosome inactivation (Riek et al., 2001; Judson et al., 2002). 
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Figure 16. The DNA methylation machinery. In early embryogenesis, DNA is largely devoid of methylation 
(top left). Post implantation, de novo methylation begins, mediated primarily by DNA (cytosine-5-)-
methyltransferases DNMT3a and DNMT3b (top). When methylation affects CpG islands, methyl-binding 
proteins trigger a silencing cascade (bottom right). After DNA replication, newly synthesized DNA (in green) is 
unmethylated. DNMT1 rapidly scans the old DNA strand. This results in faithful replication of methylation 
patterns (bottom left) and the maintenance of silencing. Adult patterns of methylation are erased by epigenetic 
reprogramming in early embryogenesis (cited from Issa, 2004).  

 

The importance of DNMT enzymes has been revealed in null mutant mice which are 

not via

Mutations in methylation related genes are linked to human disease. Mutations in the 

methyltransferase gene DNMT3b are found in patients with the ImmunoDeficiency 

Centromere (ICF) syndrome (Hansen et al., 1999). ICF syndrome is a rare autosomal 

ble (Robertson, 2002). Interestingly, Dicer-deficient mice have low DNMT expression 

and a global DNA methylation failure, which can induce abnormal telomere recombination 

and elongation (Benetti et al., 2008). 

 

The mechanism of demethylation is not entirely clarified yet. DNA demethylation may 

occur through a demethylase activity of a protein such as the MBD2b 5-methylcytosine 

glycosylase, although its role is controversial (Bhattacharya et al., 1999; Patra et al., 2008). 

Otherwise, DNA can passively be demethylated by several rounds of replication in the 

absence of maintenance methyltransferase activity (Szyf, 2003). Indeed, purified MBD2 alone 

is unable to demethylate DNA: only cellular extracts containing MBD2 show demethylase 

activity (Patra et al., 2001; Patra et al., 2002; Patra and Bettuzzi, 2007). 
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recessive disorder, characterized by the presence of variable immunodeficiency, chromosomal 

instability (Chr 1, 9 and 16), and mild facial anomalies.  

The mRNA and the protein level of the three DNMTs were found moderately over-

expressed in several types of tumor cells (De Marzo et al., 1999; Robertson et al., 1999). In 

mice, DNMT1 was found essential for the development of intestinal polyposis (Eads et al., 

2002).  

In cancer cells, DNMT1 seems to be responsible for most of the DNA methylation, in 

particular the maintenance of abnormal promoter methylation. Recently, lack of DNMT1 

activity in human cancer cells was found to induce a mitotic disaster (Chen et al., 2007). 

However, the three active DNMTs are thought to collaborate in order to maintain the 

methylated state and inhibit gene transcription (Liang et al., 2002). DNMTs can also bind to 

different proteins that repress gene expression and thus can coordinate repression (Rountree et 

rget genes (Li et al., 2007). 

 

 have been proposed to explain gene silencing by DNA 

methylation. DNA methylation might hinder the binding of transcription factors such as AP-2, 

c-Myc,

ieh, 2007), leading to 

compaction of the chromatin and subsequent inhibition of transcription. In gene silencing, 

methyl

al., 2000; Robertson et al., 2000; Bachman et al., 2001; Burgers et al., 2002). For instance, 

DNMTs can directly associate with HDAC inducing their binding to gene promoters (Ling et 

al., 2004; Espada et al., 2004). Interestingly, DNMTs and both protein complexes PRC1 and 

PRC2 (Polycomb repressive complex) might coordinately stabilize silencing at polycomb 

ta

4.2  Mechanisms of transcriptional repression by DNA methylation 
 

Different possible mechanisms

 E2F, and NFkB, which bind to sequences containing CpG dinucleotides (Tate and 

Bird, 1993). Alternatively, transcriptional repressors might bind to methylated DNA and 

induce gene silencing. Methyl groups on the major groove of DNA do indeed create new 

functional moieties allowing novel DNA interactions. In this way, DNA methylation can 

affect histone modification and chromatin structure by bringing about a general deacetylation 

of histones H3 and H4 (Irvine et al., 2002; Hashimshony et al., 2003). It can also prevent 

methylation at H3K4 and induce methylation of H3K9 (Okitsu and Hs

ation is thus likely to be dominant over chromatin mechanisms. Indeed, inhibition of 

HDAC by Trichostatin A can induce re-expression of abberantly silenced hypermethylated 
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genes only if demethylating drugs, such as 5-azacytidine, first demethylate their promoters 

(Cameron et al., 1999).  

 

hile gene mutations are very frequent in cancer, it is well established that epigenetic 

alterati

4.3 DNA methylation alterations and cancer 
 

W

ons play an important role in loss of gene expression (Jones and Laird, 1999; Baylin 

and Herman, 2000). Cancers generally show loss of methylation in most regions where CpG 

dinucleotides are usually methylated, and gain of methylation in CpG islands in promoter 

regions (Feinberg and Vogelstein, 1987; Jones, 2002; Feinberg, 2004; Feinberg et al., 2006). 

These losses and gains result in a decrease in overall methylation levels. Moreover, genome 

hypomethylation and CpG island hypermethylation precede malignancy, indicating that they 

are actively involved in the generation of the malignant state. 

 

4.3.1 DNA hypomethylation 
 

Hypomethylation is observed in solid tumors such as metastatic hepatocellular 

a (Lin et al., 2001), cervical cancer (Kim et al., 1994b), prostate cancer (Bedford and 

van Helde atological 

alignancies such as B-cell chronic lymphocytic leukemia (Ehrlich, 2002). Hypomethylation 

contrib

also induced by hypomethylation in breast and ovarian cancer (Gupta et al., 2003). 

carcinom

n, 1987), breast cancer (Jackson et al., 2004) and also in hem

m

utes to carcinogenesis through activation of normally silenced genes, such as imprinted 

genes or genes on the X chromosome, latent retrotransposons, but also through chromosome 

instability (Wilson et al., 2007). Moreover, hypomethylation gradually increases with tumor 

grade (Gama-Sosa et al., 1983; Narayan et al., 1998). A correct level of DNA methylation in 

the pericentromeric regions of the chromosome is essential for stability and accurate 

replication of DNA. On chromosomes 1 and 16, these regions are anormally hypomethylated 

and unstable in several tumors such as breast and ovarian cancers, and sporadic Wilms tumors 

(Narayan et al., 1998; Qu et al., 1999). Moreover, hypomethylation due to DNMT1 depletion 

was found to promote early lesions in the colon, with DNMT3b involved in initial adenoma 

formation (Yamada et al., 2005; Lin et al., 2006). Hypomethylation also induces IGF2 

expression through loss of imprinting in cancers, such as colon cancer (Cui et al., 2002; Liou 

et al., 2007). An abnormal expression of synuclein-γ gene, usually restricted to neurons, is 
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4.3.2 DNA hypermethylation 
 

Wh  the cancer genome, abnormal 

ypermethylation of CpG islands located in cancer-related genes such as tumor suppressor 

genes i

ile global hypomethylation is detectable in

h

s observed, leading to a loss of gene function (Figure 17). Inactivation of both alleles 

of the gene is required to induce phenotypic consequences in a tumor (Knudson et al., 2001).  

 

 
 

(Esteller et al., 1998; Esteller et al., 2000a; Esteller et al., 2001). Many genes have been 

Figure 17. Altered DNA-methylation patterns in tumorigenesis (cited from Esteller, 2007). 

 

Epigenetic gene silencing predisposes to mutational events during tumor progression. 

This was first shown for the mismatch-repair gene MLH1, which is frequently 

hypermethylated in sporadic cases of colorectal, endometrial and gastric cancer withv 

microsatellite instability (Kane et al., 1997; Herman et al., 1998; Esteller et al., 1999a; 

Fleisher et al., 1999), where transcriptional inactivation of MLH1 by promoter 

hypermethylation is the main cause of microsatellite instability. Likewise, promoter 

hypermethylation of the MGMT methyltransferase gene, with as a consequence gene 

silencing, interferes with the removal of promutagenic O6-methylguanine, which is then read 

as an adenine by the DNA polymerases, generating G to A mutations (Esteller et al., 1999b; 

Nakamura et al., 2001b; Park et al., 2001; Wolf et al., 2001). This illustrates how epigenetic 

events can induce genetic lesions that are crucial in the development of cancer. The 

glutathione S-transferase P1 GSTP1 and the familial breast cancer gene BRCA1 can also be 

silenced by promoter hypermethylation in human cancers, leading to potential DNA lesions 

 51



CHAPTER 1 

found to undergo hypermethylation in cancer. These genes can be related to regulation of the 

cell cycle (CDKN2A, CDKN2B, RB), DNA repair (BRCA1, MGMT), apoptosis (DAPK), 

angiogenesis, metastasis, differe transduction, or transcription 

factor, and detoxification (Das

To evaluate the importance of CpG island hypermethylation in cancers,  demethylating 

drugs such as 5-azacytidine can be used to reactivate the silenced genes and restore protein 

expression in cultured cancer cells (Esteller et al., 2000b; Merlo et al., 1995; Herman et al., 

1995; Herman et al., 1998).  

 

In addition, it has been suggested that tumors may acquire a CpG island methylator 

phenotype (CIMP). The CIMP phenotype involves the concerted hypermethylation of 

numerous CpG islands. This was first reported in colorectal cancer (Toyota et al., 1999a), but 

since described in several other types of cancer, including glioblastoma, gastric, liver, 

pancreatic, esophageal and ovarian cancer, as well as acute lymphocytic and myelogenous 

ukemia (Kim et al., 2003; Issa, 2004).  

 

ntiation, drug resistance, signal 

 and Singal, 2004; Teodoridis et al., 2004; Esteller, 2005b). 

Although some genes are methylated in many different cancers, other genes are methylated in 

specific type of cancers. The mechanisms leading to specific DNA methylation in specific 

cancer have yet to be elucidated. 

le

4.3.3 Mechanisms of aberrant CpG island methylation 

Two models have been proposed to explain how CpG islands become methylated in 

cancer (Baylin et al., 1998; Jones, 1999; Tycko, 2000). First, protective factors, which prevent 

CpG island methylation, might be lost. These factors, such as structural proteins (Zardo and 

Caiafa, 1998) or transcription factors (Brandeis et al., 1994) could compete for the binding 

sites of methyltransferase within the CpG island. The second mechanism suggests that 

epigenetic lesions of cancer cells may originate from a deficiency in one of the components of 

the epigenetic machinery. 

Some defects in epigenetic control will target identified putative DNA 

hypermethylation target consensus sequences (Feltus et al., 2003). Furthermore, it has been 

suggested that microRNAs might be involved in epigenetic silencing in cancer cells 

(Kawasaki and Taira, 2004; Morris et al., 2004; Mattick and Makunin, 2005). 
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4.4 Clinical implications of gene silencing in cancer 
 

Contrary to gene silencing through mutation, the epigenetic changes that induce 

transcriptional inhibition are potentially reversible. The molecular modifications associated 

with gene silencing in cancers could be used as markers for risk evaluation, diagnosis, but 

also prognosis. Development of new strategies to reverse gene silencing must be investigated 

for preventing and treating neoplastic diseases.  

 

4.4.1 Epigenetic therapy 
 

Demethylating drugs, such as 5-azacytidine, decitabine (5-aza-2’-deoxycytidine), 1-β-

D-arabinofurasonyl-5-azacytosine or dihydro-5-azacytidine, can reactivate transcription of 

genes d

ic syndrome, a pre-leukemic disease (Mack, 2006). 

he main drawback of DNA demethylating agents is their lack of specificity, as they cause 

global hypomethylation, and it is therefore impossible to reactivate a selected specific gene 

(Villar-Garea and E

d for the treatment of cutaneous T-cell lymphoma (Thompson, 

2006).  

progress in the 

linic. 

ue to promoter methylation (Arnold et al., 2003; Costa et al., 2004; Teodoridis et al., 

2004; Esteller, 2005a). 5-aza-2′-deoxycytidine is integrated into the DNA after 

phosphorylation, whereas 5-azacytidine is preferentially integrated into RNA (Santini et al., 

2001). These DNA demethylating agents have shown significant antitumoral activity, when 

they are given to patients at low doses. Both 5-azacytidine and 5-aza-2′-deoxycytidine are 

elective treatments for the myelodisplast

T

steller, 2003).. 

Promising agents for the epigenetic therapy of cancer also comprise HDAC inhibitors, 

which can reactivate the transcriptional expression of tumor-suppressor genes, such as 

CDKN1A (p21). However, these inhibitors provoke pleiotropic effects such as differentiation, 

cell-cycle arrest and apoptosis, but might also induce undesirable consequences (Teodoridis et 

al., 2004). Nevertheless, clinical trials of HDAC inhibitors were shown to be well tolerated in 

humans. For instance, the deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid, 

SAHA) has been accepte

Furthermore, it has been observed that associations of demethylating agents and 

HDAC inhibitors have synergetic effects that successfully reverse epigenetic gene silencing 

(Keen et al., 2003; Primeau et al., 2003). Combination trials are currently in 

c
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Epig nt perspectives for cancer 

iagnos

enetic alterations in cancer cells also present significa

d is or for response to therapy. 

 

4.4.2 Epigenetic changes as biomarkers of cancer 
 

 

Advantages of DNA methylation as a biomarker 

The chemical stability of DNA makes it a highly attractive biomarker. Indeed, DNA is 

not as prone to degr n and can be isolated from frozen or even from 

rmalin-fixed paraffin-embedded tissues (Bian et al., 2002). DNA methylation patterns are 

quite s

adation as RNA or protei

fo

table and do not vary in response to short-term events, contrary to gene-expression 

profiles. Furthermore, the methylation signal is suitable for detection of low-concentration 

markers. Aberrant promoter hypermethylation in whatever type of cancer is located within the 

same region of a relevant gene, in contrast to genetic markers. The detection of 

hypermethylation is a positive signal that can be perceived in the context of a constellation of 

normal cells. 

 

Cancer detection 

The success of cancer treatments frequently depend on an early diagnosis. As some 

promoter CpG islands are hypermethylated in cancer but not in normal cells, unique CpG 

island methylation profiles can define each neoplasia (Esteller et al., 2001; Paz et al., 2003). 

For ins

, endoscopic brush techniques, punction, as well as urine, saliva, bronchoalveolar 

lavage 

N2A and MGMT is already present in colorectal adenomas. Likewise MLH1 

methylation is detected in atypical endometrial hyperplasia (Esteller, 2005a). Moreover, an 

tance, hypermethylation of the GSTP1 gene is sufficient to be informative in about 

90% of the prostate cancers (Cairns et al., 2001), but generally, a larger panel of markers is 

needed. Methylation-sensitive oligonucleotide microarray can be used to differentiate mantle 

cell lymphoma from grades I/II follicular cell lymphoma (Shi et al., 2003). Abnormal CpG-

island hypermethylation is a promising marker to detect cancer cells in biological fluids and 

biopsy samples, where tumor-derived DNA can also be released (Laird, 2003). The major 

sources of cell-free DNA in studies are serum or plasma, but samples obtained by exfoliative 

cytology

and sputum samples, can also be used (Laird, 2005).  

Another important finding has been that CpG island hypermethylation of tumor-

suppressor genes occurs early in tumorigenesis. For example, CpG-island hypermethylation 

of CDK
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increas

 

Disease prognosis

ed number of methylated genes is observed with tumor progression (Gallagher et al., 

2005). 

 

 

As DNA methylation can be correlated w

determ e its prognostic relevance. A correlation between hypermethylation of CpG islands 

and cli  as gastric, colon, lung, prostate, and 

ovarian

utic agent. The occurrence of MGMT hypermethylation was shown to be linked 

with im ival in glioma patients treated with alkylating agents (Esteller et al., 

2000a) 5), and the same may be true for lymphoma (Esteller et al., 2002). 

MGMT

ith cancer progression, it is worthy to 

in

nical outcome for numerous types of cancer, such

 cancer has been described (Maruyama et al., 2002; Maeda et al., 2003; Graziano et 

al., 2004; Toyooka et al., 2004; Wei et al., 2006). For instance, death-associated protein 

kinase (DAPK), CDKN2A and epithelial membrane protein 3 (EMP-3) hypermethylation 

have been related to tumor aggressivity in lung, colorectal, and brain cancer patients (Esteller, 

2005b). Furthermore, methylation can be a stronger predictor of survival and tumor 

recurrence than age or tumor stage (Brock et al., 2003; Clement et al., 2006). 

 

The methylation profile could also have a predictive role in the response to a 

chemotherape

proved surv

; (Hegi et al., 200

 is known to reverse the addition of alkyl groups to the guanine base, which is the 

target of alkylating chemotherapeutic drugs, such as BCNU (carmustine), ACNU (nimustine), 

procarbazine, streptozotocin, and temozolamide. Hypermethylation of other DNA-repair 

genes has been identified by CpG-island microarrays to predict drug-responsiveness 

(Glasspool et al., 2006). 

 

4.5 Methods for the evaluation of DNA methylation 
 

4.5.1 Analysis of genome-wide methylation content 
 

High-performance liquid chromatography (HPLC) and high-performance capillary 

electrophoresis (HPCE) provide powerful techniques to study global DNA methylation by 

quantification of 5-methylcytosine (Fraga et al., 2002) (Figure 19). Other techniques using the 

SssI DNA methyltransferase or the anti 5-MC antibodies can also be used to analyze the 

genome-wide methylation content. 
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4.5.2 Techniques for gene-specific methylation analysis 
 

The analysis of DNA methylation of precise sequences was initially based on the use 

sites from rest. The main drawbacks of this approach are 

an incom

of methylation-sensitiv triction enzymes that can differentiate methylated recognition e res

 unmethylated sites in regions of inte

plete restriction-enzyme digestion and a restriction in the regions which can be 

analysed. An important progress in cancer epigenetics has been the treatment of DNA with 

sodium bisulfite, which allows the transformation of unmethylated cytosines to uracils but 

leaves methylated cytosines unaffected (Figure 18). However, a complete conversion is 

essential to avoid misinterpretation of the methylation content.  

 

 

Figure 18. Principle of sodium bisulfite conversion. Standard molecular biology techniques erase DNA 
methylation information. The solution is to modify DNA in a methylation-dependent way before amplification. 
By treating the genomic DNA with sodium bisulfite, unmethylated cytosines convert to uracil residues. The 
converted DNA is no longer self-complementary, and amplification of either the top or the bottom DNA strand 
requires different primers (cited from Patra et al., 2008). 

 

Bisulfite genome sequencing (Frommer et al., 1992) is considered as the gold standard 

for gene-specific methylation analysis because it provides the methylation status of every 

cytosine residue within the target sequence. However, the experimental approach is laborious 

nd time-consuming and not quantitative. More recently, the pyrosequencing method allows 

to analyse methylation in real tim

 

Methylation- an et al., 1996) that 

mploys two pairs of primers in separate reactions to specifically amplify methylated and 

unmeth

sceptibility to false positives, and the limited number of 

a

e (Uhlmann et al., 2003). 

specific PCR (MSP) is a widely used technique (Herm

e

ylated molecules, after modification of the DNA by sodium bisulfite. The sensitivity 

of MSP is very high, methylated molecules can be detected down to a level of 0.1% in the 

total population. MSP is rapid and easy to execute. Nevertheless, the information obtained by 

MSP is only qualitative and this method may not be appropriate for all types of tissue. The 

major drawbacks of MSP are its su
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CpG examined as t y to the primers 

sed (R

 TaqMan probes specific for 

detect unconverted DNA and therefore prevents overestimation of DNA methylation (Rand et 

al., 2002). Alternatively, HeavyMethyl analysis avoids binding of primers to unmethylated 

DNA by a blocker oligo (Cottrell et al., 2004). 

 

High resolution melting analysis (HRM) has been shown to be a sensitive and specific 

technique for the analysis of methylation (Wojdacz and Dobrovic, 2007). One primer set and 

function of the temperature. A comparaison between the melting profiles of unknown samples 

and the

ter the non-discriminative PCR 

amplification of the modified DNA. Methylation-sensitive single-strand conformation 

analysi

he analysis is restricted to CpG residues complementar

u and et al., 2002). 

MSP has been made quantitative by the addition of fluorescent TaqMan probes, which 

allows to detect MSP products in real time, such as in the MethyLight approach (Eads et al., 

2000). MethyLight is sensitive and does not suffer from signal from non-specific 

amplification. The quantitative analysis of methylated alleles (QAMA) is an additional 

sensitive technique derived from MSP (Zeschnigk et al., 2004). In QAMA analysis, the same 

primer set is used to amplify both methylated and unmethylated alleles after bisulfite reaction. 

The methylation status is evaluated by two different fluorescent

methylated and unmethylated DNA. Likewise, ConLight-MSP uses a fluorescent probe to 

a fluorescent intercalating dye are used to amplify both methylated and unmethylated 

templates after bisulfite modification. The principle of the methylation-sensitive HRM 

analysis (MS-HRM) is the accurate monitoring of the fluorescence of the DNA duplex as a 

 profiles of standards allows to evaluate the amount of methylation. Another method 

named SMART-MSP, for Sensitive Melting Analysis after Real Time-MSP, relies upon a 

combination of a real-time MSP analysis and an HRM analysis (Kristensen et al., 2008).  

 

Many other techniques require specific steps af

s (MS-SSCA) resolves the differences between methylated and unmethylated alleles 

by denaturation of the PCR product followed by electrophoresis in a non-denaturing 

polyacrylamide gel (Bianco et al., 1999). This technique is easy to handle, semi-quantitative 

and can be applied even on DNA from microdissected formalin-fixed paraffin-embedded 

tissues (Bian et al., 2001).  
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The methylation sensitive dot blot assay (MS-DBA) utilizes dot blot analysis with two 

probes specific for methylated and unmethylated DNA. MS-DBA is a sensitive, specific, and 

quantit

997). COBRA relies on a full digestion to 

correctly detect methylation, and is limited to restriction sites containing CpG within the 

sequenc

ative method applicable to frozen or fixed tissues (Clement and Benhattar, 2005).  

 

After non-discriminatory amplification of sequences, methylation-specific denaturing 

gradient gel electrophoresis (MS-DGGE) differentially detects methylated DNA molecules on the 

basis of differences in thermal stability caused by differences in base sequence after bisulfite 

treatment (Aggerholm et al., 1999). However, a cautious design of the primers is essential to 

guarantee optimal melting behavior of the amplified product. 

 

Finally, combined bisulfite restriction analysis (COBRA) utilizes divergences in the 

sequences of recognition sites of restriction enzymes after bisulfite treatment of methylated 

and unmethylated DNA (Xiong and Laird, 1

e of interest. 

 

4.5.3 Global CpG island methylation analysis 
 

Restriction landmark genomic scanning (RLGS) allows the examination of thousands 

of unselected CpG islands in the genome within a single gel (Costello et al., 2000). Genomic 

DNA digested with methylation-sensitive restriction enzymes is radioactively labeled and 

then run in a two-dimensional gel, resulting in a complex pattern of spots. When an enzymatic 

site is methylated, it is not cleaved and a spot will be missing (Figure 19). The limitation of 

LGS comes from the occurrence of digestion sites within CpG islands, which is not 

system

regions are favored (Frigola et al., 2002). However, validation of 

the results by bisulfite genomic sequencing is necessary and these should be carefully 

interpretated because of the PCR background coming from repetitive sequences. 

 

R

atic. 

Other important methods for detecting abnormal DNA methylation include 

methylation-sensitive arbitrary primed PCR (Gonzalgo and Jones, 1997), methylated CpG-

island amplification (MCA) (Toyota et al., 1999b) and amplification of intermethylated sites 

(AIMS) (Frigola et al., 2002). No sequence information is required before amplification and 

DNA templates are first enriched for methylated sequences. Therefore, the amplification of 

CpG islands and gene-rich 
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New technologies employing CpG-island and promoter microarrays allow to 

efficiently analyze CpG-island methylation at a genome-wide scale. A recent method, related 

to the differential methylation hybridization (DMH) (Huang et al., 1999), is the HELP assay 

(HpaII tiny fragment enrichment by ligation-mediated PCR). This method requires the cutting 

of the

rich unmethylated DNA by using 

McrBC enzyme that predominantly cuts methylated DNA. This method is used to identify 

densely

nes (Figure 19) (Lopez-Serra et al., 2006).  

terns across 

 DNA samples with a methylation-sensitive restriction enzyme (MspI) or its 

methylation-insensitive isoschizomer (HpaII) and subsequent hybridization to a genomic 

DNA microarray (Khulan et al., 2006). This assay is a simple method that has revealed 

numerous tissue-specific and differentially methylated sequences (Khulan et al., 2006).  

Interestingly, McrBC digestion is a new tool to en

 methylated regions at genomic level but has moderate resolution (Lippman et al., 

2005; Irizarry et al., 2008). 

Techniques using the ChIP-on-chip approach as MBD affinity purification relies on 

immunoprecipitated DNA using antibodies against MBD proteins, which have a high affinity 

for methylated cytosi

 

 

Figure 19. Techniques for studying epigenetic changes in cancer. The overall DNA 5-methylcytosine content 
can be determined using high-performance capillary electrophoresis (HPCE) or high-performance liquid 
chromatography (HPLC), or the DNA methylation of specific candidate genes can be detected with methylation-
sensitive methods. Recently, several genome-wide approaches to detecting DNA methylation have been 
developed as RLGS, restriction landmark genomic scanning; MCA, methylated CpG-island amplification; 
AIMS, amplification of intermethylated sites; DMH, differential methylation hybridization. For global profiling, 
chromatin immunoprecipitation (ChIP) is combined with DNA arrays (ChIP-on-chip) to detect pat
the genome (cited from Sawan et al., 2008).  
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Recently, a direct method to immunoprecipitate unmethylated DNA has been 

developed using a CXXC-domain column (CXXC affinity purification CAP) (Illingworth et 

al., 2008). On the other hand, in the MedIP assay (methylated DNA immunoprecipitation), 

DNA immunoprecipitated with anti 5-MC antibody can be used as a probe for hybridization 

to genomic microarrays, allowing a rapid analysis of numerous CpG sites (Weber et al., 2005; 

Keshet et al., 2006). One needs to be aware of PCR biases because of the whole-genome 

amplification step after immunoprecipitation.  

An alternative approach is the analysis of CpG methylation in specific subsets of 

genomic regions through the use of the Illumina technology (Golden Gate), originally 

elaborated for SNP detection (Fan et al., 2006). The ratio of the methylated and unmethylated 

PCR products is determined at single CpG sites.  

 

5. Lymphoid system  
 

Adaptive immunity allows the development of specific antigens throughout the 

humoral response mediated by B-lymphocytes and cell-mediated immunity. Additionally, 

differents cells are implicated in the cellular immunity such as cytotoxic T-lymphocytes, 

activated macrophages, activated natural killer (NK) cells. 

  

5.1 Lineage commitment 
 

5.1.1 Differentiation of hematopoietic stem cells 
 

Lymphocytes originate from hematopoietic stem cells (HSCs), which have the 

properties of self-renewal and multilineage differentiation. HSCs are characterized by high 

amounts of the c-kit receptor (CD117), and the lack of cell-surface proteins expressed on 

differentiated cells. HSC give rise to either the lymphoid or erythro-myeloid lineages, leading 

involved in the control of early hematopoiesis. Environmental factors such as secreted growth 

to the emergence of common lymphoid progenitors (CLPs) or common myeloid (CMP) 

progenitors in the bone marrow (Kondo et al., 1997; Akashi et al., 2000; Traver et al., 2000). 

CLPs express Flt3, that is important for multilineage potency (Sitnicka et al., 2002), and can 

only differentiate to B, T, NK, and dendritic cells (DC) because they lack self-renewal 

capacity (Traver et al., 2000; Akashi et al., 2000). Intrinsic as well as extrinsic factors are 
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factors (cytokines), hormones, and the other cell-cell interaction (Martinez-Agosto et al., 

2007) and sequence-specific DNA binding proteins like transcription factors are able to both 

promote and suppress lineage-specific genes, blocking of the cell destiny to one lineage (Nutt 

and Kee, 2007; Rothenberg, 2007; Iwasaki and Akashi, 2007). 

 

5.1.2 Differentiation of T-lymphocytes  

ll receptor because of defective gene 

arrangement.The TCR requires both CD8 and CD4 co-receptors to guarantee the specificity 

of the TCR for an antigen. The earliest T cells express neither CD4 nor CD8, but at this stage 

coming double positive cells. Then a negative 

selectio

thogens. CD4 T cells promote the 

develop into effector cells (Spits, 2002). After elimination of the antigen, few cells 

differentiat T cells to induce a faster immune response, upon 

newed contact with the same antigen.  

 

 
T cell differentation can lead to formation of CD4 (helper) and CD8 (cytotoxic) T cells 

in the thymus. The ability of T cells to recognize foreign antigens is mediated by the T cell 

receptor (TCR), which requires rearrangement of its beta chain. A step called beta-selection 

eliminates T cells with a defective T ce

re

thymocytes upregulate both CD4 and CD8, be

n occurs to eliminate autoreactive thymocytes and finally mature to single-positive 

(CD4+CD8- or CD4-CD8+). 

CD8 T cells kill cells infected with pathogens, while B cells are able to generate 

specific antibodies to facilitate the elimination of these pa

roles of CD8 T cells and B cells. Upon contact with an antigen, naive T cells are activated and 

e into long-lived memory 

re

5.1.3 Differentiation of B-lymphocytes  
 

When B lymphocytes differentiate they acquire a functional membrane-bound Ig 

through sequential rearrangement of the immunoglobulin (Ig) genes and expression of B-cell-

specific proteins. The primary differentiation step engages DNA rearrangements joining the 

diversity (D) region segments and joining (J) region segments of the Ig heavy chain genes. 

This is followed by DNA recombination of the variable (V) region with the DJ segment, 

leading to the formation of the pre-B-cell receptor (pre-BCR), which is an important 

checkpoint of the transition from the pro-B to the pre-B cells (Figure 20).  
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Figure 20. Simplified model of the stage of B-cell development (cited from Holmes et al., 2008). 

lls. In the GC, the activated B-cells first give rise to B-

lymphoblasts (Heyzer-W

IgE antibodies, creating a rapid secondary 

response.  

 

 

 

Successful light-chain gene rearrangement leads to competent BCR complexes that 

induce positive selection of immature IgM+ B cells. These immature B cells migrate to the 

peripheral lymphoid organs (Meffre et al., 2000), where they will become mature B cells that 

circulate through blood and lymphoid organs (Peschon et al., 1994). After antigen contact, 

mature B-cell differentiation can occur through stimulation with T-cell independent antigens, 

inducing a rapid development of the plasma cell (Weber et al., 2005). In contrast, the 

response to T-cell dependent antigens results in the formation of germinal centre (GC), where 

B cells are co-stimulated by T-ce

illiams and Heyzer-Williams, 2005). Moreover, in the GC, somatic 

hypermutation of the variable domains of Ig genes (Pascual et al., 1994; Neuberger and 

Milstein, 1995; Kelsoe, 1996) allows a selection of B cells with the best affinity for further 

expansion and differentiation to become plasma cells and memory B cells. Secondary DNA 

rearrangement of B-cells can take place via a class switch mechanism and thus induce 

production of large amounts of IgG, IgA or 

5.2 The PAX5 factor in the B cell development 

5.2.1 PAX5 and control of B-lineage 
 

The PAX5 transcription factor, also known as B-cell-specific activator protein 

(BSAP), is the esssential B-lineage commitment factor that locks the fate of early progenitors 

to the B cell pathway. PAX5 allow to start and maintain the B-cell transcription program 

et al., 2002). The other B-cell transcription factors, E2A and EBF, can induce the 

activation of B-cell-specific genes and V(D)J recombination, but in the absence of PAX5 

(Mikkola 
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cannot constrain B cell progenitors to develop into B cells. Moreover, the PAX5-/- pro-B cells, 

as well as HSC, were shown to exhibit self-renewal capacity and multilineage potential 

(Schaniel et al., 2002a; Schaniel et al., 2002b). They can give rise in vitro to functional NK 

cells, DC, macrophages, osteoclasts, and granulocytes (Figure 21) (Nutt et al., 1999). 

However, exogenous expression of PAX5 can rescue the development to the mature B cell 

stage, while its inactivation induces the loss of B-cell identity and function (Horcher et al.

2001). Moreover, the PA ment 

(Mikkola et al., 2002).  

 

, 

X5 inactivation in pro-B cells can induce in vivo T cell develop

 

Figure 21. PAX5 is essential for commitment to the B cell lineage (cited from Carotta and Nutt, 2008). 

PAX5 exhibits a dual function that allows to control the B-lineage commitment. PAX5 

promotes B ion from the pre-BCR and BCR 

nd at the same time suppresses other lineage-specific genes (Nutt et al., 1999) (see PAX5 

target genes part 5.2

In the terminal differentiation of B cells, the plasma cell regulators, such as Blimp1 (B 

lympho

 

-cell-specific genes by facilitating signal transduct

a

.4). 

cyte induced maturation protein) and Xbp1 (X-box binding protein1) are expressed, 

allowing the control of the plasma cell transcriptional program. PAX5 keeps Blimp1 under 

control in mature B cells (Delogu et al., 2006), while Blimp binds to and represses the PAX5 

gene in plasma cells (Shaffer et al., 2002).  
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5.2.2 PAX5 regulation 
 

The Paired box (PAX) family comprises of 9 members that have in common a 

conserved 128 amino acid DNA-binding domain called the paired domain, which contains 

two conserved helix-turn-helix motifs connected by a linker (Czerny et al., 1993; Xu et al., 

1995; Xu et al., 1999). PAX proteins, which associate with degenerate DNA consensus 

sequences, can play the role of transcriptional activators and repressors (Kozmik et al., 1992; 

Busslinger et al., 1996; Dorfler and Busslinger, 1996; Nutt et al., 1998). This suggests that 

other interacting proteins are likely to be necessary to target the PAX proteins to specific 

known as essential regulators in tissue- and differentiation 

stage-specific transcription (Underhill, 2000).  

 

The PAX5 gene contains two distinct promoters. The TATA-containing upstream 

promoter allows to transcribe the exon 1A, while the TATA-less downstream promoter is 

associated with exon 1B.  Both splice variants are identical from exon 2 to 10. In the mouse, 

the TATA-promoter of PAX5 is predominantly inactivated by DNA methylation. PAX5A 

mRNA is expressed in pro-B, pre-B, or mature B cells, but not in terminally differentiated 

plasma cells nor in adult testis. Weak activity of the TATA-promoter was also found in the 

developing central nervous system. The TATA-less promoter on the other hand, is mainly 

inactivated by histone deacetylation in the terminally differentiated B cell lines. PAX5B 

transcripts are present in embryos, adult testis, spleen, and B cell lines, suggesting that the 

TATA-less promoter is active in all PAX5 postive cells. 

 

5.2.3 PAX5 expression

binding sites. PAX proteins are 

 
 

In normal and neoplastic B cells 

The PAX5 gene is normally detected during B cell development, from pro-B cells up 

to the mature B cell stage, but not in plasma cells (Figure 21) (Barberis et al., 1990; Nutt et 

al., 1997).  PAX5 expression can be used for the 

 in 85.7% Hodgkin lymphomas (HL), but nor in 

diagnosis purposes as a pan-B cell marker 

(Torlakovic et al., 2002).  

PAX5 can also be a lineage-specific marker in B-cells neoplasms (Zhang et al., 1996; 

Torlakovic et al., 2002). Recently, a large study revealed that PAX5 is expressed in 91.5% B-

cell non-Hodgkin lymphomas (B-NHL) and
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of T cell lymphoma , 2007). This result was confirmed an earlier 

rge st

s (Mhawech-Fauceglia et al.

la udy (Torlakovic et al., 2002). It is also expressed in a subset of myeloid and acute 

myeloid leukemias (Tiacci et al., 2004). PAX5 can also be helpful as an immunohistologic 

marker to discriminate undifferentiated neoplasms (Jensen et al., 2007). 

 

In other normal and neoplastic tissues 

PAX5 was furthermore shown to be expressed in adult brain tissue, in the embryonic 

midbrain and in adult testis of the mouse (Adams et al., 1992). In contrast, another study 

showed no expression of PAX5 in the adult testis, but a focal expression of PAX5 in normal 

adult brain tissue (Torlakovic et al., 2006). Moreover, PAX5 was highly expressed in 

euroendocrine carcinomas such as Merkel cell carcinoma (MCC) and small cell carcinoma 

(SCC) 

5.2.4 PAX5 target genes

n

(Dong et al., 2005; Torlakovic et al., 2006; Mhawech-Fauceglia et al., 2007), but not 

in medulloblastoma, neuroblastoma and astrocytomas, (Jensen et al., 2007; Mhawech-

Fauceglia et al., 2007), contrary to previous results (Kozmik et al., 1995; Stuart et al., 1995; 

Baumann Kubetzko et al., 2004). PAX5 is also expressed in some T-cell acute lymphocytic 

leukemias, but not in T cell lymphomas (Zhang et al., 1996). In addition, PAX5 has been 

detected in a small number of breast carcinomas, endometrial adenocarcinomas, urothelial 

carcinomas of the bladder (Mhawech-Fauceglia et al., 2007), and in superficial transitional 

cell carcinoma of the bladder (Babjuk et al., 2002). 

 

 
 

PAX5 is required for the production of normal antibody-producing B-cells (Urbanek 

t al., 1994; Nutt et al., 1997). Accordingly, activated PAX5 target genes code for crucial 

components of the (pre)BCR signaling cascade, such as the receptor signaling chain Igα, also 

called 

codes the transmembrane molecule Ig α which, together with the 

Ig β (B

e

CD79a and mb-1 (Fitzsimmons et al., 1996; Nutt et al., 1997), the stimulatory 

coreceptor CD19 (Kozmik et al., 1992; Nutt et al., 1998), and the central adaptor protein 

BLNK (Schebesta et al., 2002).  

The CD79a gene en

29) protein, forms a heterodimer mediating signal transduction through the pre-B- and 

B-cell receptors (Borst et al., 1996). Likely, the CD19 gene codes for a protein with two 

extracellular immunoglobulin-like domains (Stamenkovic and Seed, 1988; Tedder and Isaacs, 

 65



CHAPTER 1 

1989), which is implicated in the activation or inhibition of proliferation, depending on the 

stage of B-cell differentiation. CD19 mRNA is weakly expressed in B-lymphoid cells, and 

follows PAX5 expression. The BLNK gene is a direct PAX5 target, which encodes a 

cytoplasmic linker protein that allows progression from pro-B to pre-B cells. The pre-B cell 

ceptor signaling lies on the bridge BLNK protein (SLP-65) for associating the Syk kinase to 

its downstream effector pathways, such as intracellular calcium signaling, protein kinase C, 

and dif 998; Ishiai et al., 1999). In agreement with a 

central role in pre-BCR signaling, BLNK

r (Holmes et al., 2006), but also the 

macrophage colony-stimulating factor (M-CSF) receptor (Tagoh et al., 2006) and the Notch1 

receptor, which is essen ent (Souabni et al., 2002).  

 

re

ferent MAPK pathways (Fu et al., 1

 gene mutations arrest B cell development at the pro-

B to pre-B cell transition in humans (Minegishi et al., 1999). 

PAX5 also facilitates expression of the Ig chain by promoting the second VH-DJH 

recombination step of the IgH gene (Nutt et al., 1997; Fuxa et al., 2004). PAX5 is able to 

change the chromatin structure by removing the H3-K9 methylation in the VH locus, inducing 

accessibility of VH genes for the recombinase machinery VH-to-DJH recombination (Urbanek 

et al., 1994; Nutt et al., 1997).  

PAX5 also contributes to the regulatory network by activating the transcription factor 

gene Lef1 and N-myc in pro-B cells (Kozmik et al., 1992) and by preserving Ebf1 expression 

in committed B lymphocytes (Fuxa et al., 2004; Roessler et al., 2007).  

 

On the other hand, PAX5 is known to suppress expression of several receptors 

essential for multipotency such as Flt3 recepto

tial for T cell developm

Identification of new targets 

Recently, cDNA microarray technology was used to identify PAX5 target genes 

(Delogu et al., 2006; Schebesta et al., 2007; Pridans et al., 2008). One hundred seventy 

PAX5-activated genes were identified by gene-expression profiling of wild-type and PAX5-

deficient pro-B cells. These studies confirmed that many genes repressed by PAX5 are 

expressed in non-B cell lineages, or during plasma cell differentiation. Actuality, 110 genes 

were id

 

entified as PAX5-repressed genes coding for high number of proteins implicated in 

cell-cell communication, adhesion, migration, nuclear processes, and cell metabolism. PAX5 

seems to have the role to activate secondary transcription factors that further strengthen the B 

cell program, by promoting the downstream transcriptional cascade.  
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5.2.5 PAX5 interactions 
 

PAX5 is able to bind DNA through its N-terminal domain (Czerny et al., 1993) and to 

regulate gene transcription via a C-terminal domain (Dorfler and Busslinger, 1996). The 

transcriptional activity of PAX5 is directed by interactions with different active proteins 

(Figure 22).  

 

Figure 22. Functional domains and interacting proteins of PAX5 (cited from Cobaleda et al., 2007). 

ger, 1999), while the 

transactivation domain (TAD) can link to histone acetyltransferases (HAT) such as the 

coactiv

istone deacetylase 

(HDAC) complexes, can bind to the octapeptide motif of PAX5 (OP), inducing a repression 

functio

 

The PAX5 homeodomain (HD) can bind the TATA-binding protein (TBP) of the basal 

transcription machinery but also the RB protein (Eberhard and Busslin

ator CREB-binding protein, CBP (Emelyanov et al., 2002) or Spt–Ada–Gcn5 

acetyltransferase (SAGA) chromatin remodeling complex (Barlev et al., 2003). In fact, a 

ternary complex composed of PAX5, Daxx, and CBP was detected (Emelyanov et al., 2002).  

On the contrary, Groucho corepressors, which interact with larger h

n of PAX5.  

 

PAX5 regulatory function is also affected by interactions with other transcription 

factors such as Ets proteins, Runx1, c-Myb and Id proteins (Holmes et al., 2008). For 

instance, PAX5 regulates the B cell-specific CD79a promoter through the cooperative binding 

with different Ets family members like Ets-1, Fli-1, and GABPα (Fitzsimmons et al., 1996). 

Therefore, the interactions with PAX5 allows Ets-1 to form better interactions with its low-

affinity DNA Ets-binding site (Garvie et al., 2001). Moreover, activation of CD79a gene by 

PAX5 is dependent on the demethylation of the Ets binding site (Maier et al., 2003) 
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The binding  promoter is restrained by Id proteins (Id1-3) 

oberts et al., 2001). Likely, Id2 antagonizes PAX5 binding to the activation-induced 

cytidin

ity on the Igk locus (Maitra and Atchison, 2000), while it cooperates to engage 

Groucho proteins and repress the Igh locus (Linderson et al., 2004). 

 

PAX5 plays a complex and pleiotropic role in B-cell transcriptional regulation. PAX5 

can operate as an activator, repressor but also a docking protein, depending on the target gene 

sequence. PAX5 appears to require both acetylation and chromatin remodeling activities to 

promote transcription. It is possible that the main function of PAX5 is not to recruit the basal 

transcription machinery to the promoter but rather to transform the structure of local 

chr

 

 of PAX5 to the CD79a

(R

e deaminase (Aicda or AID) promoter (Gonda et al., 2003).  On the contrary, PAX5 

interactions with Runx1 or c-Myb are shown to promote gene expression through cooperative 

DNA binding (Kishi et al., 2002). PAX5 also associates with the PU.1 protein and has 

opposite activ

omatin, enabling other sequence-specific factors to promote transcription. 

5.2.6 Oncogenic action of PAX5 
 

B-cell non-Hodgkin’s lymphomas exhibit various abnormalities including numerous 

different translocations. For instance, the t(9;14) translocation brings the entire PAX5 gene 

under the control of strong promoters from the IGH locus, inducing an overexpression of 

PAX5 (Lida et al., 1996; Morrison et al., 1998). Both over and downregulation of PAX5 

expression can lead to cancer (Cobaleda et al., 2007). High levels of PAX5 mRNA were 

observed in some NHL, supporting the notion that deregulated PAX5 gene expression may 

contribute to B cell oncogenesis (Busslinger et al., 1996; Krenacs et al., 1998; Morrison et al., 

1998).  

 life. For 

is expansion, they need telomerase in order to escape the side effects of telomere attrition. 

 

 

5.3 Telomeres and telomerase in lymphocyte differentiation  
 

The adaptive immune response initiates the selection of the best antigen-binding naïve 

T and B lymphocyte(s) and finishs with a huge expansion of these selected lymphocytes, 

inducing an extensive number of cell divisions of these lymphocytes during the entire

th
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5.3.1 Telomeres in HSCs and T cell functions 
 

HSCs are quiescent cells that display low levels of telomerase activity. The length of 

the HSC telomeres decreases, probably because of insufficient levels of telomerase activity to 

fully prevent telomere erosion. However, bone marrow stem cell population seems to have 

stronger telomerase activity whereas in peripheral blood, weak telomerase activity has been 

detected (Hiyama et al., 1995c; Broccoli et al., 1995). 

 

Telomerase activity has been shown to be particularly regulated during T cell 

differentiation (Weng, 2002). In the thymus, high levels of telomerase activity are revealed in 

all subsets of T cells. However, the telomerase activity of immature CD4-CD8- and 

CD4+CD8+ cells is higher than single positive mature CD4 and CD8 T cells (Weng et al., 

1998). In the periphery, low telomerase activity is detected in mature naïve T cells, while 

rapid activation occurs upon stimulation of T cells (Weng et al., 1996). 

Clonal expansion of T cells results in telomere loss during the differentiation of naïve 

to memory T cells. A large study has shown that ere 

ngth than memory T cells in et al., 1999).  

 

naïve T cells have longer average telom

both CD4 and CD8 T cells (Rufer le

5.3.2 Telomeres in B cell functions 
 

B cells exhibit notably longer telomeres than all other blood cell populations, such as 

T-cells, natural killer cells and monocytes (Martens et al., 2002). 

Contrary to T lymphocytes, no significant loss of telomere length is detected between 

naïve B cells and memory B cells (Son et al., 2003), while B cells in the germinal centre of 

tonsils have longer telomeres compared to naïve and memory B cells (Weng et al., 1997a).  

Like T cells, telomerase is highly activated after antigen stimulation (Hiyama et al., 

1995c; Weng observed in naïve 

nd memory B cells, in contras ity (Norrback 

et al., 

et al., 1997a). Likely, low levels of telomerase activity are 

t to GC B cells that exhibit high telomerase activa

1996; Hu et al., 1997; Igarashi and Sakaguchi, 1997; Weng et al., 1997b). The 

correlation between telomere length and telomerase activity levels in GC B cells support the 

hypothesis that telomerase compensates in GC B cells for the ensueing telomere shortening in 

memory B cells. 
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Expression l vity levels in GC B cells 

orrback et al., 2001; Hu and Insel, 1999). Moreover, the expression of hTR is correlated 

with ov

evels of TERT RNA parallel telomerase acti

(N

erall telomerase activity at various stages during lineage development, differentiation, 

and activation (Igarashi and Sakaguchi, 1997; Weng et al., 1997b).  

B cells demonstrate a slower rate of telomere erosion than T lymphocytes, suggesting 

the use of more efficient mechanisms of telomere protection than in T cells during the 

lymphocytes differentiation (Son et al., 2000).  

 

5.3.3 Telomere and telomerase in B cell disorder 
 

Significant telomerase activity is detected in most lymphomas (Norrback et al., 1996; 

Trentin et al., 1999; Ely et al., 2000). However, the level of activity is relatively difficult to 

determine, since normal GC B-cells are likely to have higher telomerase activity than 

lymphomas and follicular hyperplasias display telomerase levels similar to those of 

lympho

al zone B-cell 

mphomas (Ely et al., 2000). Accordingly, telomerase activity has been detected in about 

93% of high-grade amara et al., 2001). Moreover, GC 

erived lymphomas had the longest telomere length and the highest telomerase activity 

(Ladett

., 2003), and to the clinical 

aggress

s 

been s

002). The hTERT mRNA transcription has been highly associated in acute 

mas (Norrback et al., 1996). 

A large study of telomerase activity in various types of B-NHLs revealed that all B-

NHLs contained telomerase activity, with the exception of low grade margin

ly

 non-Hodgkin’s lymphomas (MacN

d

o et al., 2004). The telomerase activity was also shown to be positively correlated to 

the proliferation of the lymphoma (Ely et al., 2000; Chiu et al

iveness of the B-NHLs. Patients with more aggressive tumors such as Burkitts 

lymphoma show longer telomeres and higher telomerase activity than the more indolent 

tumors (Remes et al., 2000; Ohyashiki et al., 2001; Kubuki et al., 2005). Interestingly, it ha

uggested that in Hodgkin's disease the telomeres can be preserved by a telomerase-

independent mechanism (Brousset et al., 1997; Brousset et al., 1998). 

 

In addition, a high level of telomerase activity was detected both in acute myeloblastic 

leukemia (AML) and acute lymphoblastic leukemia (ALL) (Broccoli et al., 1995; Counter et 

al., 1995; Zhang et al., 1996; Ohyashiki et al., 1997; Engelhardt et al., 2000; Li et al., 2000; 

Baumann et al., 2
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leukemia with telomerase activity (Xu et al., 1998; Ohyashiki et al., 2001), which is also 

correlated with the prognosis in acute leukemias (Ohyashiki et al., 1997). 

 

 

6. Outline of the present investigation 
 

The goal of our studies was to better understand the molecular mechanisms of the 

anscriptional regulation of the hTERT gene. CTCF has been identified as a key factor that 

blocks transcription ms regulating hTERT 

anscription comprise methylation dependent and methylation-independent mechanisms. We 

decided

 island has been shown to block the inhibitory effect of 

CTCF.

tes of a B cell-specific 

anscription factor PAX5 were identified downstream of the ATG translational start site. We 

explore

methylation pattern between most carcinoma cells and normal telomerase-positive B cells. 

tr

 in telomerase-negative normal cells. Mechanis

tr

 to explore both mechanisms through identification of proteins involved in hTERT 

regulation, and to investigate the potential of hTERT methylation as a cancer biomarker. 

 

In most telomerase-positive carcinoma cells from bladder, breast, colon and cervix, 

hypermethylation of the hTERT CpG

 The methylation highly inhibits the transcription of the gene, although a short 

hypomethylated region allows a low transcription level of the gene. Our working hypothese 

was that MBD proteins could be involved in the partial repression of hTERT, when the gene 

is hypermethylated. In chapter 2, we described the identification of proteins that mediate 

hTERT repression in methylated telomerase-positive cells. To this end, we performed 

chromatin immunoprecipitation assays and depletion by transient or constitutive RNA 

interference. 

However, small subset of telomerase-positive cells, such as ovarian or lymphoid, 

exhibit unmethylated hTERT promoter. In chapter 3, we aimed to identify the methylation-

independent mechanism of hTERT transcriptional regulation in lymphoid cells. We 

particularly investigated potential tissue-specific factor(s), which allow hTERT transcription 

in non-neoplastic lymphoid tissues and B cell lymphomas. Binding si

tr

 the implication of this factor in the regulation of hTERT in normal and tumoral 

telomerase-positive B cells by ectopic expression of PAX5 in telomerase-negative cells, 

siRNA knockdown of PAX5 expression and ChIP assays.  

The results found in the two first chapters underline the difference of the hTERT 
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Telomerase activity or hTERT expression, thought as universal biomarker, have been shown 

to be not specific enough for cancer detection due to lymphocyte infiltrations in tumors. 

Therefore, we aimed to investigate the hTERT methylation as a potential cancer biomarker. In 

the hapter 4, the hTERT methylation was evaluated in the context of metastasis detection in 

cerebrospinal fluids as an adjunction of the cytological diagnosis. In this purpose a new 

In the 

c

method of methylation analysis was developed. 

Chapter 5, concluding remarks about our findings and perspectives for future 

works are discussed. 
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ABSTRACT 

 

 

Human telomerase reverse transcriptase (hTERT) is expressed in most cancer cells. 

Paradoxically, its promoter is embedded in a hypermethylated CpG island. A short region 

escapes to this alteration, allowing a basal level of transcription. However, the methylation of 

adjacent regions may play a role in the maintenance of low hTERT expression. It is now well 

established that Methyl-CpG Binding Domain proteins mediate the transcriptional silencing 

of hypermethylated genes. The potential involvement of these proteins in the control of 

hTERT expression was firstly investigated in HeLa cells. Chromatin immunoprecipitation 

assays showed that only MBD2 associated the hypermethylated hTERT promoter. In MBD2 

knockdown HeLa cells, constitutively depleted in MBD2, neither MeCP2 nor MBD1 acted as 

substitutes for MBD2. MBD2 depletion by transient or constitutive RNA interference led to 

an upregulation of hTERT transcription that can be down-regulated by expressing mouse 

Mbd2 protein. Our results indicate that MBD2 is specifically and directly involved in the 

transcriptional repression of hTERT in HeLa cells. This specific transcriptional repression was 

also observed in breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a 

general repressor of hTERT in hTERT-methylated telomerase-positive cells.  

 

 

 

 

Key words: DNA methylation/ MBD2/ hTERT/ transcriptional regulation/ chromatin 

immunoprecipitation/ ChIP on chip 
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INTRODUCTION 

 

An increasing body of evidences indicates that the alterations of DNA methylation 

patterns are a characteristic of cancer cells (1). Generally, global reduction of DNA 

methylation level is associated with localized hypermethylation (1). Specifically, an aberrant 

hypermethylation of CpG islands at the 5’ end of tumor-suppressor genes, leading to 

transcriptional repression, has been described both in cancer cell lines and tumor tissues (2,3). 

In human epithelial and fibroblast cells, telomere shortening is a key event in 

replicative senescence. In more than 85% of cancer cells, telomere length is maintained 

through telomerase holoenzyme activity (4,5). Although germ cells and stem cells also exhibit 

high telomerase activity (4), in normal somatic cells, the catalytic subunit of the telomerase 

(hTERT) is silenced, leading to a limited life span (6). The regulation of hTERT transcription 

has been extensively investigated and several inductors and repressors have been identified, 

including c-Myc, Sp1, hALP, Hif-1, Mbi-1, USF1/2, estrogen response element, p53, Mad1, 

myeloid-specific zinc finger protein 2 (MZF-2), TGF-β, Wilms’ Tumor 1 (WT1) and CTCF 

(7-9). In addition, the hTERT promoter region is embedded in a large CpG island spanning 

nucleotides –1100 to +1500 from the transcription start site, suggesting that transcription of 

the gene might be regulated by DNA methylation.  

The first studies examining the methylation status of the hTERT CpG island had led to 

a paradox. In normal somatic cells, this CpG island was found unmethylated while the gene 

was transcriptionnally silent. However, in most of cancer cells this region was aberrantly 

methylated whereas telomerase activities and hTERT mRNAs were unambiguously detected 

(10-13). This paradox was recently solved. hTERT methylation prevents the binding of 

negatively-acting transcription factors such as CTCF inhibitor (9), and a partial 

hypomethylation of the hTERT promoter region can result in some level of transcriptional 

activity (14). In several cancer cell lines and tumor tissues, careful analysis of hTERT 

methylation patterns has shown that a short region of the CpG island (positions nucleotide (nt) 

-165 to nt -80) is unmethylated or slightly methylated despite highly methylated border 

regions (14). This unmethylated region is located in the hTERT core promoter (positions nt -

279 to nt +5) (15), and chromatin immunoprecipitation (ChIP) assays have shown that active 

chromatin marks are associated with this unmethylated region (16). Moreover, studies using 

plasmid expression vectors and patch methylation techniques indicate that the hTERT core 

promoter does not show any activity when all CpG sites are methylated (17). In contrast, the 

selective demethylation of a small region upstream the transcription start site significantly 
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activates the hTERT promoter in a reporter plasmid. Nevertheless, the activity of the promoter 

under these conditions is significantly lower than when using the unmethylated core 

promoter. In this condition, hTERT does not provide a real exception to the general model of 

gene silencing by promoter methylation and the hypermethylation around the unmethylated 

region seems to play a major role in the reduction of hTERT transcriptional activity. Indeed, 

in telomerase-positive cancer cells only 0.2 to 6 mRNA molecules per cell can be detected 

(18,19), suggesting that the transcriptional activity of the hTERT promoter is limited by 

cellular factor(s), since high transcription rates are induced when the unmethylated promoter 

is used in plasmid expression vectors (14). 

Transcriptional repression mediated by CpG methylation often involves methyl-CpG 

binding domain (MDB) proteins. The five MBD proteins identified to date, MeCP2, MBD1, 

MBD2, MBD3 and MBD4 share a highly conserved MBD. With the exception of MBD4, 

which is primarily a thymine glycosylase involved in DNA repair (20), all MBD proteins are 

involved in the transcriptional repression mediated by DNA methylation. It has now been well 

established that MeCP2, MBD1 and MBD2 bind to methylated DNA and recruit different 

histone deacetylase complexes (HDAC) and histone methyl transferases (HMT), belonging to 

the chromatin remodelling complexes that control chromatin compaction and induce gene 

silencing (21-23). MBD3 lacks a functional MBD but is an integral subunit of the Mi2/NuRD 

complex which is recruited through MBD2 (24,25). 

These data have prompted us to investigate whether MBD proteins are involved in the 

repression of hTERT expression when hypermethylated in telomerase-positive cells.  
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MATERIALS AND METHODS 

 

Cell culture  

Five human tumor cell lines, HeLa (cervical adenocarcinoma), MCF7 (breast 

adenocarcinoma), HepG2 (hepatocellular carcinoma), LAN-1 (neuroblastoma) and NCCIT 

(teratocarcinoma), and a normal human embryonic lung fibroblast cell line, MRC5, were used 

in this study. Cells were obtained from the American Type Culture Collection (ATCC, 

Rockville, MD), except for LAN-1, and grown in the medium recommended at 37°C in a 

humidified 5% CO2 atmosphere. 

 

Chromatin immunoprecipitation (ChIP) assays 

ChIP was done as previously described (26). Cross-linked chromatin was immunoprecipitated 

using 15 µl of two different polyclonal anti-MBD2 antibodies (kindly provided by Dr. P. 

Wade and Dr. E. Ballestar) or 20 µl of polyclonal anti-MeCP2 (Upstate Biotechnology, Lake 

Placid, NY), anti-MBD1 (Abcam) antibodies or anti-mouse IgG (Dakocytomation, Trappes, 

France).  

Purified DNA obtained from the input, unbound and bound fractions were quantified 

by densitometry using the VersaFluorTM Fluorometer (Biorad, Ivry, France) and RiboGreen 

reagent (Molecular Probes, Interchim, Montluçon, France).  

PCR analysis were then performed to asses the binding of MBD proteins to the hTERT 

core promoter. An equal quantity (0.4 ng) of each DNA fraction was amplified by dose-

dependent PCR (Supplementary Fig. S1) using HotStar Taq polymerase Kit (Qiagen, 

Courtaboeuf, France), 5 % of DMSO and 0.5 µM of primers spanning a region from nt -296 

to nt -84 of hTERT (hTERT ChIP, see Supplementary Table S1). The thermal cycler program 

was 37 cycles of 94°C for 30 s, 65°C for 60 s and 72°C for 75 s. PCR products were analyzed 

on a 2% agarose gel containing 1 µg/ml ethidium bromide and were quantified by 

densitometry using a Fluor’s fluorimeter and Quantity One software (Biorad). 

Table S1. Primers used in the PCR and RT-PCR reactions 
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ChIP-on-chip 

For ChIP-on-Chip analysis, the specific protein-DNA complexes were obtained from 

independent immunoprecipitations using two different polyclonal anti-MBD2 antibodies 

(kindly provided by Dr. P. Wade and Dr. E. Ballestar). The ChIP DNAs from the input and 

bound fractions were amplified, labelled and hybridized on microarrays by ProfileXpert 

service according to AffymetrixTM protocols. Briefly, the ChIP DNA was amplified by 

ligation-mediated (LM)-PCR. To test for enrichment of MBD2-bound sites, PCR 

amplification of NBR2 (26) and pS2 promoters (27) was performed on each ChIP samples 

before and after amplification. The amplified DNAs were then labelled using the GeneChip® 

WT Double - Stranded DNA Terminal Labelling Kit and hybridized to the human tiling 

arrays (Human Promoter 1.0R Arrays), which were then washed and scanned. Raw data from 

the scans were analyzed using Affymetrix® Tiling Analysis Software (TAS) and the results 

were viewed in Affymetrix’ Integrated Genome Browser (IGB) Software.  

  

DNA methylation analysis  

Bisulfite sequencing used to determined the CpG methylation pattern of hTERT promoter and 

proximal exonic region was performed as described previously (12,14). Briefly bisulfite-

modified genomic DNA was amplified by two primer sets (P1, positions nt -442 to nt -219 

(12); and P2, positions nt -206 to nt +108 (14)) to analyse a region from nt -442 to nt +108 

from the transcription start site of hTERT. PCR amplifications were accomplished using the 

master mix (Promega, Madison, WI), with the following conditions: 40 cycles of 94°C for 30 

s, 54°C (P1) or 57°C (P2) for 45 s and 72°C for 50 s. DNA methylation status was then 

established by a direct sequencing of PCR products or by a sequencing of cloned PCR 

products. For the last procedure PCR products were cloned into the pGEM-T vector using the 

pGEM-T vector system II (Promega). After transformation of JM109 E. Coli competent cells 

(Promega), plasmid DNA was extracted from clones with the QIAprep Spin Miniprep Kit 

(Qiagen). Each clone was sequenced with the M13 forward primer (5’-

GTAAAACGACGGCCAG-3’), using a Big Dye Terminator Cycle Sequencing Kit, and an 

ABI Prism 3100 sequencer (Applied Biosystems, Foster City, CA).  

 

Transient transfection  

siRNA duplexes for MBD2 (sense: 5’-GGAGGAAGUGUACCGAAAATT-3’, antisense: 5’-

UUUUCGGAUCACUUCCUCCTT-3’; Eurogentec, Seraing, Belgium); non-specific siRNA 

control (Eurogenetec); pRev-Mbd2 (kindly provided by Dr A. Bird) (Auriol et al., 2005), and 
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pGL3 basic (Promega) were transfected in cell lines using lipofectamine 2000 (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s recommendations. Briefly, cells were seeded 

at 2 x 105 cells per well in six-well plates, and grown to 50-60% confluence on the day of 

transfection. All transfections were done in Opti-MEM medium (Invitrogen) with 625nM of 

MBD2 siRNA or 1µg of Mbd2 expression plasmid. Lipofectamine 2000 complexes were 

incubated for 4-5 hours. The medium was then removed and replaced with fresh medium. 

Cells were grown and harvested at various time after the transfection. 

 

RNA extraction and reverse transcription (RT)–PCR analysis 

Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen). After extraction, 

the integrity of total RNA was examined on a 1.2% agarose gel containing 1 µg/ml ethidium 

bromide and quantified by densitometry using a Fluor’s fluorimeter and Quantity One 

software (Biorad) by comparison with serial dilutions of a standard RNA (Roche, Molecular 

Biochemicals, Maylan, France).  

MBD2 mRNA was quantified by competitive quantitative RT-PCR as previously 

described (28). hTERT mRNA levels were monitored by relative RT-PCR using One Step 

RT-PCR kit (Qiagen), and 0.1 µg of total RNA. Cycling parameters were 50°C for 30 min 

followed by 95°C for 15 min, and then 32 cycles of 94°C for 30 s, 55°C for 60 s, and 72°C for 

90 s. hTERT transcripts were co-amplified with PBGD transcripts used as internal controls 

(for primers hTERT RT-PCR and PBGD RT-PCR, see Supplementary Table S1). PCR 

products were analyzed on a 2% agarose gel containing 1 µg/ml ethidium bromide and 

quantified by densitometry. The ratio between hTERT and PBGD signals was determined. To 

quantify more precisely hTERT mRNA, real-time RT-PCR were also carried out on a 

Rotorgene 6000 cycler (Corbett Research, Sydney, Australia) using C. therm. Polymerase 

One-Step RT-PCR System (Roche). Each reaction mixture included 50 ng of template RNA, 

250 nM of FAM-labeled probe (see Supplementary Table S1), and 500 nM of primers 

specific for hTERT (hTERT RT-PCR Q, see Supplementary Table S1). Cycling parameters 

were 60°C for 30 min followed by 95°C for 5 min, and then 45 cycles at 95°C for 15 s and 

60°C for 60 s. β-actin mRNA levels were used to normalize hTERT expression. The relative 

level of each mRNA was calculated on the basis of two standard curves using the relative 

quantification method. 
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RESULTS 

 

hTERT hypermethylated CpG island is selectively associated with MBD2 in HeLa cells 

To explore the potential involvement of MBD proteins in hTERT regulation, we have chosen 

cervical cancer cell line HeLa, as a first model. In these telomerase-positive tumor cells, as 

was shown in our earlier studies, the hTERT core promoter is also regionally hypermethylated 

(17) and might be a target of MBD proteins.  

To address this issue, ChIP assays were performed using antibodies directed against 

MeCP2, MBD1 and MBD2. As a control, the fractions immunoprecipitated with a non-MBD 

protein-specific antibody (anti-mouse IgG) were also analyzed. The relative amounts of 

hTERT core promoter were determined by a dose-dependent PCR assay (Supplementary 

Figure 1S) using a constant amount of DNA from each fractionation process: input, unbound 

and bound fractions.  
 

 

Figure S1. Dose dependent PCR assay of the hTERT promoter DNA in ChIP fractions. Increasing amounts 
of DNA from the “input fraction” of ChIP assays were amplified. Data are obtained from 3 independent ChIP 
assays. The intensity of the PCR products were analyzed on a 2% agarose gel containing 1 µg/ml ethidium 
bromide and were quantified by densitometry (see materials and methods). A linear relationship between the 
amount of DNA amplified and the intensity of the signals corresponding to the PCR products was observed over 
a wide range of “input DNA” (0.1 ng to 1 ng). 

 

Representative data from at least three independent experiments are shown in Figure 

1A. A strong enrichment in hTERT promoter was observed in the fraction 

immunoprecipitated by anti-MBD2 antibodies when compared with input or non-retained 

fractions (Figure 1A “input”, “unbound” and “IgG”). Since dose-dependent PCR assays were 

performed with a constant amount of DNA, these data strongly suggest that MBD2 is 

associated with the methylated region of the hTERT promoter. In contrast, analysis of the 

fractions immunoprecipitated by anti-MeCP2 or anti-MBD1 antibodies showed that these 

fractions were depleted in hTERT DNA (Figure 1A), indicating that these two proteins are not 
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bound to hTERT promoter in HeLa cells. Furthermore, the depletion in hTERT DNA observed 

in the fractions bound by anti-MeCP2 and anti-MBD1 antibodies suggests that these two 

proteins are probably linked to other chromatin domains in HeLa cells. Taken together these 

data strongly suggest that the methylated regions adjacent to the unmethylated region of the 

hTERT core promoter are selectively associated with MBD2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

) 
hIP analysis of MBD proteins binding to the hypermethylated region of the hTERT promoter (positions nt -296 

 

Figure 1. MB
C

D2 specifically binds the hypermethylated region of the hTERT promoter in HeLa cells. (A

to nt -84 from the ATG translational start site) in HeLa cells. Cross-linked chromatin was immunoprecipitated 
using anti-MeCP2, anti-MBD1, and anti-MBD2 antibodies or anti-mouse IgG. The relative amounts of hTERT 
core promoter were determined by a dose-dependent PCR assay using a constant amount of DNA from each step 
of the fractionation process: input, unbound and bound fractions. The intensities of the bands corresponding to 
representative PCR products amplified from the input, unbound and bound fractions are shown. (B) Genomic 
bisulfite sequencing profiles of hTERT promoter and proximal exonic region in wild-type HeLa and MBD2 KD 
HeLa cells. A 550 bp region (positions nt -442 to nt +108) of the hTERT CpG island is presented on a schematic 
map. White dotted box, core promoter; black arrows, transcription start sites. Bisulfite-sequencing status of 
hTERT promoter and proximal exonic region are shown (number of analyzed clones for each cell line, n=10). 
Each line represents a single DNA template molecule. Black and open squares respectively represent methylated 
and unmethylated CpGs. Sequencing was performed from two different regions which do not overlap (see 
materials and methods section), leading to unanalyzed CpGs, barred squares. The slightly methylated region 
(positions nt -165 to nt -80) is framed. (C) MeCP2 and MBD1 do not compensate for MBD2 depletion at the 
hTERT promoter in MBD2 knockdown (KD) HeLa cells. Representative examples of ChIP assays performed in 
MBD2 KD HeLa cells are presented. 
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Recently, we have developed high-throughput analyses of MBD2 binding pattern using a 

ChIP on chip approach (Chatagnon et al., manuscript in preparation). DNAs obtained from 

the

ERT promoter remains free of MBD proteins in MBD2 depleted cells 

 HeLa cells, among the MBD transcripts, MBD2 mRNAs are the most abundant (28), 

 

 KD HeLa cells. This 

low lev

terns. Therefore, the DNA methylation patterns of the 

hTERT

 chromatin immunoprecipitated by anti-MBD2 antibodies were hybridized to Affymetrix 

Human Promoter 1.0R Array. On this chip, 25,500 human promoter regions tiled at 35bp 

resolution are representing. Each promoter region covers approximately 7.5 kb upstream 

through 2.45 kb downstream of 5' transcription start site and for 1,300 cancer-associated 

genes, additional 2.45 kb are also represented. Data obtained from two independent 

experiments performed with two different anti-MBD2 antibodies indicated that MBD2 not 

only bound the hypermethylated region of the hTERT core promoter but also covered all the 

hypermethylated hTERT CpG island (Figure 2A). As a control, results obtained for a 

previously identified MBD2 free hypermethylated promoter (29), PARVG, are also shown on 

Figure 2B. As expected, no MBD2 positive signal was observed along this hypermethylated 

promoter (Figure 2B). 

 

The hypermethylated hT

In

suggesting that the selective binding of MBD2 to hTERT promoter might be due to its

prominent expression. Thus, we investigated hTERT promoter occupancy in a HeLa clone cell 

line (MBD2 knockdown (KD) HeLa cells) constitutively depleted in MBD2 by a transgene 

expressing a siRNA targeting the mRNA coding for this protein (26).  

Quantitative competitive RT-PCR assays indicated that 89% to 96% MBD2 mRNA 

depletion was obtained and maintained over many passages in MBD2

el of MBD2 transcripts was correlated with a very low level of MBD2 protein, which 

was almost undetectable in western blot experiments (26). In addition, neither the amounts of 

MeCP2 and MBD1 transcripts nor the amounts of the corresponding proteins were altered by 

MBD2 depletion (data not shown). 

As MBD2 belongs to the DNA methylation machinery, a prolonged MBD2 depletion 

might alter DNA methylation pat

 promoter were determined in MBD2 KD HeLa cells. DNA extracted from the cell 

lines was modified and amplified by PCR with primers specifically designed to amplify 

bisulfite-modified DNA sequence of the hTERT promoter and proximal exonic region. PCR 

fragments were cloned and sequenced. The analysis of 10 clones from wild-type HeLa cells 

and MBD2 KD HeLa cells indicated that over the hypermethylated hTERT promoter and 

proximal exonic region, a small sequence (positions nt –165 to nt –80), corresponding to a 
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part of the hTERT core promoter, was hypomethylated in the two cell lines analyzed (Figure 

1B). Indeed, this region exhibit a low level of methylation (about 30%) but no significant 

difference was observed between wild-type HeLa cells and HeLa cells depleted in MBD2. 

Thus, the methylation patterns of the hTERT promoter in MBD2 KD HeLa cells were not 

altered by the absence of MBD2.  

 

 
 
Figure 2. ChIP on chip analysis of MBD2-binding sites on hTERT promoter. (A) Array peaks on hTER
promoter of MBD2 log2 signal ratio (MBD2 / Input) values are shown below the Affymetrix’ Integrated 

enome Browser (IGB) window. Gene is transcribed from right to left. hTERT CpG island is shown by a red 

T 

G
box. DNA fragment analyzed by PCR following MBD2 ChIP is represented by a white box. (B) PARVG 5’ end 
viewed as a MBD2 free control. Gene is transcribed from left to right. 
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As expected, in HeLa cells depleted in MBD2 proteins, ChIP assays indicated that 

MBD2 was no longer detected at the hypermethylated region of the hTERT core promoter 

(Figure

 was observed 

at this h

T gene transcription in HeLa cells 

MBD2 is a member of the MBD protein family and their methylation-dependent repressive 

the potential involvement 

sfection, RNA 

was ex

 1C). Furthermore, this region seemed to remain free of MBD proteins since the 

immunoprecipitated fractions are depleted in the methylated hTERT promoter when anti-

MeCP2 or anti-MBD1 antibodies were used in ChIP experiments (Figure 1C).  

Thus, the hypermethylated region of the hTERT promoter is specifically targeted by 

MBD2 in HeLa cells and no redundancy between MBD2 and MeCP2 or MBD1

ypermethylated region.  

 

MBD2 depletion enhances hTER

activities are now well established (30). Therefore, we investigated 

of MBD2 in the repression of the endogenous hTERT promoter in HeLa cells.  

First, we determined the consequence of a transient MBD2 depletion on the expression 

of hTERT in HeLa cells. At 24 hours intervals after MBD2-specific siRNA tran

tracted and the levels of hTERT and MBD2 transcripts determined by RT-PCR assays 

were compared with their levels in HeLa cells transfected with a non-specific siRNA. 

Quantitative competitive RT-PCR assays (28) indicated that a reduction of ~ 90 % in MBD2 

mRNA level was reached 24 hours after transfection with MBD2 siRNA and maintained over 

96 hours after transfection (Figure 3A). Western blot analysis also showed a dramatic 

decrease in MBD2 proteins in these cells (data not shown). In HeLa cells, 48h after the 

MBD2 siRNA transfection, an elevation of 1.2-fold of hTERT mRNA level was observed 

when compared with HeLa cells transfected with a non-specific siRNA. This stimulation 

increased to a maximum of 1.9 at 96h after MBD2 siRNA treatment. The expression level of 

hTERT was determined using relative RT-PCR (Figure 3A) and identical results were 

obtained with real-time RT-PCR for critical points (Figure 3B). It should be noted that neither 

the level of MBD2 transcripts nor the level of hTERT transcripts were altered by non-specific 

siRNA transfection when compared with untreated wild-type HeLa cells (data not shown). 

These data suggest that MBD2 actually represses hTERT expression in HeLa cells. 
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Figure 3. Transient depletion of MBD2 proteins by MBD2-specific siRNA induces time-dependent 
stimulation of hTERT expression in HeLa cells. (A) HeLa cells were transiently transfected, with either 
MBD2 siRNA or a negative control scrambled siRNA. After 24, 48, 72 or 96h following the transfection, RNA 
was extracted and the efficiency of the MBD2 siRNA treatment was determined by quantification of MBD2 
mRNA as previously described (28). hTERT mRNA levels were monitored by relative RT-PCR. The fold 
induction of hTERT expression was calculated from the ratio hTERT mRNA / PBGD mRNA in MBD2 siRNA 
transfected cells, versus scrambled siRNA transfected cells. Mean values (± standard deviation) obtained from at 
least three independent transfection experiments are shown. Black squares, MBD2 mRNA level; black circles, 
fold induction of hTERT mRNA. (B) Quantitative RT-PCR expression analysis of hTERT in HeLa cells 96h after 
transfection with either a negative control siRNA or MBD2 siRNA. Real time RT-PCR was done on cells lines, 
and hTERT expression was normalized to β-actin. The relative level of each mRNA was calculated on the basis 
of the two standard curves using the relative quantification method. At least three independent determinations of 
fold differences were used to calculate the average fold difference values and associated standard deviation (∗P  
= 0.0027; t-test). 

 

Stimulation of hTERT transcription in MBD2 KD HeLa cells is reversed by ectopic 

expression of Mbd2 

The MBD2 KD HeLa cell line offers the opportunity to investigate the functional control of 

the specific repression of hTERT by MBD2. In this cell line, MBD2 expression can be 

rescued using pRev-Mbd2, a vector coding for a mouse Mbd2 RNA containing five silent 

point mutations and, therefore, refractory to siRNA-mediated decay (26). We also observed a 

2-fold stimulation of hTERT expression in the MBD2 KD HeLa cells as compared to wild-

type HeLa cells (Figure 4). In these cells, the ectopic expression of Mbd2 reduced hTERT 

transcription to a level similar to the level observed in wild-type HeLa cells (Figure 4), 

suggesting that MBD2 directly represses hTERT expression in HeLa cells. In wild-type HeLa 

cells, the abundance of MBD2 does not seem to be a limiting factor since the overexpression 
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of MBD2 mediated by pRev-Mbd2 transfection did not modify hTERT expression level in 

cells containing normal amounts of MBD2 (Figure 4). 

Our results demonstrate that MBD2 specifically binds to hTERT and represses its 

expression in HeLa cells.  

 
Figure 4. Mbd2 expression rescues the reduction of hTERT transcript in MBD2 knockdown HeLa cells. 
The transcriptional expression of hTERT was analyzed by quantitative RT-PCR 48h after lipofectamine 
transfection of HeLa and MBD2 knockdown HeLa cells using pRev-Mbd2, an Mbd2 vector expressing a 
transcript resistant to RNAi, or an empty pGL3 basic vector. The relative hTERT mRNA in pRev-Mbd2 
transfected cells or in pGL3 transfected cells or in KD HeLa cells was calculated using the same reference: the 
hTERT mRNA level in untransfected HeLa cells. Mean values obtained from at least three independent 
transfection experiments are shown (∗P = 0.0035, t-test).  
 

 

MBD2 hTERT repression is specifically observed in hTERT-methylated telomerase-positive 

cancer cell lines and independent of the cellular types 

Data obtained suggest that MBD2 might be general repressor of hTERT transcription in 

hTERT-methylated telomerase-positive cells. In order to address this point, we tested whether 

the above-mentioned MBD2 knockdown-mediated hTERT stimulation in HeLa cells could be 

recapitulated in other hTERT-methylated cell lines. A functional study was undertaken in 

different cell lines exhibiting characteristic hTERT DNA methylation patterns: (i) MCF-7, 

LAN-1 and HepG2 cells, three telomerase-positive cancer cell lines showing an hTERT core 

promoter unmethylated or slightly methylated despite an hypermethylated CpG island (ii) 

NCCIT cells, an hTERT-unmethylated telomerase-positive teratocarcinoma cell line, and (iii) 
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MRC5 cells, an hTERT-unmethylated telomerase-negative normal embryonic cell line. The 

hTERT core promoter methylation status of these cell lines and the corresponding transcript 

levels are shown in Figure 5. Control experiments indicated that these cell lines exhibited 

approximatively the same level of MBD2 transcripts (4.8 ± 2,7 x 106 mRNA molecules/µg of 

total RNA), with the exception of NCCIT (7 x 104 mRNA molecules/µg of total RNA). 

 
Figure 5. DNA methylation patterns of hTERT and the corresponding transcript levels in different cell 
lines. (A) Bisulfite sequencing of five telomerase-positive cancer cell lines (HeLa, MCF7, HepG2, LAN-1 and 
NCCIT) and one normal telomerase-negative fibroblast cell line (MRC5). Bisulfite-treated DNA was PCR 
amplified using a primer set spanning the end of the promoter and the proximal exonic region of hTERT. PCR 
products were then directly sequenced. The analyzed 314 bp region (-206 to +108) is presented on a schematic 
map and results are shown for each cell lines. Black and open squares respectively represent complete 
methylated and unmethylated CpG sites, whereas grey squares correspond to partial methylated CpG sites. (B) 
Quantitative expression of hTERT in MRC5, NCCIT, HepG2, LAN-1, MCF7 and HeLa cells. Real time RT-
PCR was done on cell lines, and β-actin was used as a reference. 
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As observed in HeLa cells, a significant decrease of MBD2 transcripts (60-79%) was 

observed in the different cell lines 96h after MBD2 siRNA transfection. Relative to the 

transfection with a non-specific siRNA, a ~2-fold increased in hTERT mRNA was observed 

in all hTERT-methylated cell lines, LAN-1, MCF7, and HepG2 cells. In contrast, MBD2 

depletion did not affect hTERT expression in hTERT-unmethylated cell lines, NCCIT, and 

MRC5 cells (Figure 6). Since MBD2 does no bind to unmethylated DNA (24,25), these data 

indicate that hTERT induction due to MBD2 depletion is not mediated by an indirect effect.  

 

 
 
Figure 6. Depletion of MBD2 by siRNA results in transcriptional activation of hTERT in hTERT-
methylated telomerase-positive cancer cell lines. Fold change of hTERT expression between MBD2 depleted 
cells (MBD2 siRNA transfected cells) and control cells (scrambled siRNA transfected cells). hTERT expression 
was monitored by quantitative RT-PCR 96h after transfection. Mean values (± standard deviation) obtained from 
at least three independent transfection experiments are shown.  
 

 

Taken together, the specific transcriptional repression of hTERT by MBD2 does not 

seem to be restricted to a particular cancer cell line since this effect was observed in cervix, 

breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a general repressor 

of hTERT in hTERT-methylated telomerase-positive cells.  
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DISCUSSION 

 

Most (about 96%) of the CpG islands are unmethylated in normal cells (31), while 

hypermethylation of these sequences is a characteristic of cancer cells (1). These aberrant 

DNA methylation patterns have been correlated with the transcriptional silencing of genes 

undergoing such alterations at their 5’ end CpG islands. The hTERT gene has provided an 

interesting exception, since a bimodal alteration of the DNA methylation status of its 5’ end 

CpG island is associated with its expression in about 85% of cancer cells and tumors tissues 

(4,5). The large CpG island, 2.6 kb in length, lying from nucleotide nt –1102 to nt +1519 from 

the hTERT transcription, is hypermethylated at the exception of a short region (positions nt -

165 to nt -80) which is unmethylated or slightly methylated despite highly methylated border 

regions (16,17). This particular pattern of methylation seems crucial for establishing hTERT 

expression at a basal level. Indeed, hypermethylation of CpG islands seem to be a crucial 

event in carcinogenesis. Thus, the methylation free region in hTERT promoter may result 

from antagonistic pressure between the mechanisms leading to aberrant methylation and the 

need to keep hTERT expressed for unlimited life-span of cancer cells. 

A body of evidence has been accumulated concerning association between 

hypermethylation of CpG islands, transcriptional silencing and MBD proteins binding (21). 

ChIP experiments and ChIP on chip analysis indicate that MBD2 associated the 

hypermethylated CpG island of hTERT. In this context, MBD2 seems to be a limiting factor 

rather than a transcriptionnal silencer. 

Recently, a large screening of tumor suppressor gene promoters in ten cell lines 

showed that human cancer cell lines tend to use a particular MBD protein (32). Furthermore, 

in MRC5 cells, ChIP experiments have indicated that MeCP2 and MBD2 proteins have non-

overlapping binding specificities in vivo (23). These data, as well as our data are in favour of 

the “one gene-one MBD” hypothesis, at least for some genes. Indeed, MBD2 was specifically 

associated with the methylated region of the hTERT CpG island, while MeCP2 and MBD1 

were not detected at this locus. Moreover, MBD2 depletion did not induce MeCP2 or MBD1 

binding at this methylated area in HeLa cells. Thus, the specificity of MBD proteins does not 

seem to be driven by their relative concentrations in a cell line, as it was suggested in an other 

study (32): a strong expression of a particular MBD is not necessarily associated with its 

preferential use in promoters.  
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Several studies have shown that transcriptional activation could be realized upon 

depletion of MBD proteins by RNAi (26,29). A large scale microarray analysis indicated that 

15% of 6386 genes analyzed exhibit an increased expression change between untreated and 

triple MBD-depleted cells (29). It should be noted that for single MBD interference, MBD2 

depletion was the protein most commonly involved in the observed release of gene silencing 

by far (29). These data suggest that MBD2 plays an important role in methylation dependent 

gene silencing. MBD2 depletion mediated by RNAi stimulates hTERT expression, either in 

stable knockdown HeLa clones or in transiently transfected HeLa cells. A 2-fold stimulation 

of hTERT expression upon MBD2 depletion was observed, suggesting that MBD2 plays an 

important role in the regulation of this gene. Indeed, in human cell lines fold changes induced 

by MBD2 depletion is also of the same range, 2-fold for NBR2 induced by MBD2 siRNA 

(26) and microarray analysis of MBD2 depleted cells exhibited a mean fold change of 7 (29). 

Furthermore, the fold change observed in Mbd2-deficient mouse cells is not very different 

from our own data. For example, it has been shown (33) that Mbd2-/- fibroblasts had 3-fold 

higher levels of Xist than wild type cells. Moreover, elevated hTERT transcription upon 

MBD2 depletion is not limited to cervix (HeLa cells), since this effect was observed in breast, 

liver and neuroblastoma cancer cell lines. MBD2 RNAi experiments in cell lines exhibiting 

unmethylated hTERT CpG island (MRC5, NCCIT) did not affect hTERT transcription 

indicating that MBD2 specifically and directly represses hTERT expression in methylation 

dependent manner. Collectively these data strongly suggest that MBD2 is a general repressor 

of hTERT expression in cancer cells. 

A considerable number of transcription factors have been proposed as negative 

regulators of hTERT transcription. Nevertheless direct evidence indicating that hTERT gene 

transcription is down-regulated remains to be firmly established. Thus MBD2 may represent a 

new factor directly involved in the negative regulation of hTERT expression. In cancer cells 

MBD2 seems to play a specific role since its binding to the hypermethylated part of the 

hTERT promoter establishes a direct link between a common DNA alteration of tumor cells, 

CpG hypermethylation, and a reduced level of hTERT transcription. The binding of MBD2 

represents an additional layer for the control of hTERT expression, thereby underlying the 

importance of hTERT regulation in immortalized and cancers cells.  
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ABSTRACT 

 

 

Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. 

Its activity is not detectable in most somatic cells, but it is reactivated during tumorigenesis. 

In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short 

promoter region is permissive for low-level hTERT transcription. Activated and malignant 

lymphocytes express high telomerase activity, through a mechanism that seems methylation 

independent. The aim of this study was to determine which mechanism is involved in the 

enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T 

cell lymphomas, and in non-neoplastic lymph nodes, the hTERT promoter is unmethylated. 

Binding sites for the B cell-specific transcription factor PAX5 were identified downstream the 

ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that 

the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF 

binding. In a B-cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression 

repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-

negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. 

These data show that activation of hTERT in telomerase-positive B cells is due to a 

methylation-independent mechanism in which PAX5 plays a crucial role. 

 

 

 

 

 

Key words: hTERT, PAX5, CTCF, B cells, telomerase, DNA methylation 
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INTRODUCTION 

 

The telomerase enzyme allows germ cells, stems cells and cancer cells to divide 

indefinitely (1). Human telomerase possesses a highly regulated subunit called hTERT, for 

telomerase reverse transcriptase, which is the limiting factor for its activity (2,3). The hTERT 

expression is nearly imperceptible in the majority of differentiated somatic cells, which lead 

to inevitable telomeric attrition and subsequently cellular senescence. High levels of hTERT 

are detected in proliferative somatic cells like endometrial tissues or activated lymphocytes, 

but also in most immortalized and cancer cells.  

The hTERT transcription has been shown to be influenced by numerous activators and 

inhibitors, such as c-Myc, Sp1, Hif-1, Mbi-1, USF1/2, estrogen response element, p53, Mad1, 

myeloid-specific zinc finger protein 2 (MZF-2), TGF-β, Wilms’ Tumor 1 (WT1) and CTCF 

(4-6). In addition, a possible role of DNA methylation in hTERT transcription regulation can 

be expected, as the hTERT promoter is situated within a dense CG-rich CpG island. In normal 

somatic cells, the hTERT promoter is unmethylated although the transcription of the gene is 

repressed. However, in most cancer cells, hypermethylation of this region correlates with 

expression of the gene and with perceptible telomerase activity (7-10). This apparent 

contradiction with the classical mechanism of transcriptional repression by DNA methylation 

was recently clarified. DNA methylation exhibits a dual role in hTERT transcriptional 

regulation by interfering with the binding of inhibitors, such as the CTCF transcription factor, 

and by partial hypomethylation of the core promoter, which allows the hTERT gene to be 

permissive for transcription (11).  

In a small subset of telomerase-positive tumors, hTERT expression appears to be 

regulated by a methylation-independent mechanism (12-14). For example, the hTERT 

promoter is methylated in only 30% of ovarian cancers, almost all of which are telomerase 

positive (13). Cells of the lymphoid system also seem to escape methylation-dependant 

mechanism of hTERT regulation. Lymphocytes express telomerase during development, and 

turn off its activity after maturation in response to a specific antigen (15). Leukemias and 

lymphomas, including B-cell chronic lymphocytic leukemia (CLL), express high levels of 

telomerase but exhibit low levels of hTERT promoter methylation (12). More recently, the 

acute myeloblastic leukemic cell line (HL-60) and Burkitt lymphoma (Raji) cell lines as well 

as normal lymphocytes were found to have hypomethylated hTERT promoters (14).  
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Paired box (PAX) proteins include nine members that are important regulators in early 

development for tissue specificity (16). Once bound to DNA, PAX proteins can play the role 

of transcriptional activators or repressors (17-19). Deregulation of PAX genes has been 

associated with a variety of cancers, including astrocytoma, medulloblastoma, lymphoma, and 

Wilm’s tumor (20,21). Moreover, PAX expression has been suggested to be essential for 

survival of cancer cells. Recently, PAX8 has been implicated in the activation of hTERT and 

hTR promoters, which in turn activate telomerase in glioma (22). PAX2, PAX5, and PAX8 

belong to the same subgroup, and thus could impact on hTERT regulation in a tissue-specific 

manner.  

During B-cell development, the PAX5 gene is expressed in early B cell precursors 

(pro-B cells) and continues to be expressed up to mature B cells, but not in terminally 

differentiated plasma cells (23,24). As a consequence, PAX5 expression is used as a lineage-

specific marker in B-cells neoplasms (25,26). Accordingly, a large study revealed that PAX5 

is expressed in 91.5% B-cell non-Hodgkin lymphomas (B-NHL) and in 85.7% Hodgkin 

lymphomas (HL) (27). PAX5 has been shown to promote the expression of target genes 

encoding crucial components of the (pre)BCR signaling cascade, such as the receptor 

signaling chain Igα, also called CD79a and mb-1 (24,28), the costimulatory receptor CD19 

(29,30), and the central adaptor protein BLNK (31). PAX5 also facilitates the VH-DJH 

recombination step and can activate other transcription factor genes. Overall, the pleiotropic 

role of PAX5 is involved in control of the B-lineage commitment and simultaneously 

suppression of other lineage-specific genes (29,32,33).  

Our working hypothesis for the experiments reported in this paper was that hTERT 

regulation in B-cells is methylation independent and involves an activating role of the PAX5 

transcription factor. Our data confirm that hTERT expression in telomerase-positive B cells is 

methylation independent. We found that PAX5 activates the hTERT promoter, supporting the 

hypothesis that PAX5 is a critical determinant of hTERT expression in telomerase-positive B 

cells. 
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EXPERIMENTAL PROCEDURES 

 

 

Cell culture  

The Burkitt lymphoma cell lines, Daudi and Ramos, and the pre-B cell leukemia line, Nalm6, 

were kindly provided by Dr. Benedicte Baisse (CHUV, Lausanne, Switzerland). The Burkitt 

line, Raji, was kindly provided by Apoxis (Lausanne, Switzerland).  The cells were grown in 

RPMI 1640 medium supplemented with 10% heat-inactivated Fetal Bovine Serum (HI-FBS; 

Invitrogen, Basel, Switzerland). Normal BJ fibroblasts were obtained from and grown in the 

medium recommended by ATCC (Manassas, VA).  

 

Tissue Samples  

The lymphomas and normal tissues came from the files of the Institute of Pathology of 

Lausanne. The samples included: 4 histologically non-neoplastic lymphoid tissues (2 lymph 

node biopsies and 2 tonsil biopsies); 6 B-cell non-Hodgkin lymphomas (NHL), comprising 3 

high-grade NHL and 3 low-grade NHL; and 6 T-cell NHL. All diagnosis were confirmed by a 

pathologist (R.B.). The lymphoma cases were selected to ensure that sufficient populations of 

T or B cells were present. The use of human tissues for this study was done according to the 

guidelines of the local ethics committee. 

 

RT-PCR 

Total RNA of frozen tissues and cultured cells was extracted using Trizol-LS (Invitrogen, 

Basel, Switzerland) according to the manufacturer's protocol. The extraction protocol for 

fixed tissues was described previously (34). Both cDNA synthesis and PCR were performed 

in a single tube using SuperScript One-Step RT-PCR or Quantitative RT-PCR 

ThermoScript™ One-Step System (Invitrogen). Primers and RT-PCR for each individual 

gene are described in the supplemental Table S1. The amplification products were analyzed 

by electrophoresis on 2% agarose gels. 
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Table S1 - Primers sequences for RT-PCR 

 

Gene Primer sequences (sense and antisense) PCR  
product Program 

hTERT 5’ CGG AAG AGT GTC TGG AGC AA 3’ 

5’ GGA TGA AGC GGA GTC TGG A 3’ 
145 bp RT: 60°C (THERMOSCRIPTTM) 

PCR: Tm = 60°C - 40 cycles 

PAX5 
5’-GAGCGGGTGTGTGACAATGA -3’ 

5’-GCACCGGAGACTCCTGAATAC -3’ 
265 bp RT: 50 °C  (SUPERSCRIPTTM) 

PCR: Tm = 64°C - 30 cycles 

β-actin 5’ AGG CCA ACC GCG AGA AGA TGA 3’ 

5’ GCC GTG GTG GTG AAG CTG TAG 3’ 
273 bp RT: 50 °C (SUPERSCRIPTTM) 

PCR: Tm = 60°C - 30 cycles 

CD19 
5’-GTGGCAACCTGACCATGTCATT -3’ 

5’-GACCAGGGCTCTTTGAAGATGA -3’ 
167 bp 

RT: 50 °C (SUPERSCRIPTTM) 

PCR: Tm = 58°C - 40 cycles 

 

 

DNA methylation analysis  

DNA was extracted from frozen and fixed tissues, and cultured cells using the DNeasy tissue 

kit (Qiagen). Two µg of DNA were modified with sodium bisulfite and used to amplify a 224 

bp fragment of the hTERT promoter as previously described (35). PCR products were 

analyzed by a methylation-sensitive dot blot assay (MS-DBA) (35) and confirmed by direct 

sequencing (9) and methylation-sensitive single-strand conformation analysis (MS-SSCA) 

(36,37).  

 

Analysis of the hTERT promoter 

Potential binding sites for transcription factors in the hTERT promoter were identified using 

MatInspector software (http://www.genomatix.de/matinspector.html).  

 

Electrophoretic mobility shift assay (EMSA) 

Double strand oligonucleotides of the hTERT exonic region and the CD79A promoter region 

(hTERT sense: 5’-GCTGGTGCAGCGCGGGGACCCGGCGGCTTT-3’; CD79A: sense 5’-

AGCGAGGGCCACTGGAGCCCATCTCCGGGG-3’) were labeled with the DIG-

Oligonucleotide 3’-End Labeling Kit (Roche). Cellular extracts were obtained by incubating 

the Nalm6 and Raji cell lines with a Triton lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 10 mM MgCl2, 2 mM EDTA, 10% glycerol, 1% Triton X-100, 2.5 mM β-
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glycerophosphate, 1 mM NaF, 1 mM DTT, Complete protease inhibitor). Gel shift reactions 

were performed using the DIG Gel Shift Kit (Roche) with 0.5 pmol of DIG-labeled 

oligonucleotide and 5 µg of cell extract. A supershift assay was performed with a PAX5 

rabbit antibody (Active Motif, Carlsbad) on Raji cell extracts according to the manufacturer’s 

protocol. One quarter of the reaction solution was loaded on a 6% polyacrylamide gel. The 

transfer was done by electroblotting on a nylon membrane using a transblot semi-dry system 

(Bio-Rad, Hercules, CA), for 90 min at 9 V. After crosslinking, the generated 

chemiluminescence signals were recorded on X-ray film. A negative control was performed 

without cell extract. Competition assays with unlabeled oligonucleotides were performed with 

the same double strand oligonucleotides for hTERT and CD79A.  

 

Chromatin immunoprecipitation (ChIP) 

ChIP assays were performed using EZ ChIP (Upstate Biotechnology, Lake Placid, NY) 

following the manufacturer's instructions with some modifications. A 1% formaldehyde 

solution was added to the cultured cells to crosslink proteins to DNA. Ten million cells were 

resuspended in 500 µL of SDS lysis buffer (2 mL for CTCF) and incubated on ice for 15 

minutes. After sonication to shear DNA, lysates from 2x106 cells (PAX5) or 4x106 cells 

(CTCF) were diluted in 450 µL of the ChIP dilution buffer (8 mL for CTCF) for further 

immunoprecipitation or stored at 4°C to be directly uncrosslinked and purified (DNA input 

fraction). Magnetic beads (80 µL, Dynabeads Protein G, Invitrogen) were washed twice with 

1 mL of blocking solution (1X PBS; 5 mg/mL BSA; 0.008% of sonicated Salmon sperm 

DNA solution; protease inhibitors). Half of the beads were incubated 1 h at room temperature 

in 60 µL of the blocking solution with 2 µg of goat polyclonal anti-PAX5 antibody (Santa 

Cruz, Santa Cruz, CA), 10 µg of mouse polyclonal anti-CTCF antibody (Rockville, MD), or 

without antibody. The beads were then washed twice with 1 mL of the blocking solution, 

added to the diluted chromatin solution and incubated overnight at 4°C. They were then 

washed twice with 500 µL of each of the following washing solutions: low salt solution, high 

salt solution, LiCl solution, and finally TE. The eluate was then resuspended in 200 µL of 5% 

Chelex solution and incubated 10 min at 100°C to reverse protein-DNA crosslinks. The 

immunoprecipitated DNA was purified by proteinase K treatment, RNAse A digestion, 

followed by phenol/chloroform extraction, ethanol precipitation, and resuspension in 50 μL 

water.  

For PAX5 ChIP assays, purified DNA was analyzed by PCR with specific primers for 

the first exon of the hTERT gene to generate a 178 bp fragment (hTERT exon1: forward: 5’-
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CAGCCCCTCCCCTTCCTTTC-3’; reverse: 5’- GCAGCACCTCGCGGTAGTG-3’), the 

second exon of the hTERT gene as a 143 bp fragment (hTERT exon2: forward: 5’-

CCAGCGTGCGCAGCTACCT -3’; reverse: 5’- GGGAGCCACCAGCACAAAGA-3’), the 

CD19 gene as a 135 bp positive control (CD19:   forward: 5’-

ACCACCGCCTTCCTCTCTG-3’; reverse:  5’-TGGCATGGTGGTCAGACTCT-3’), and 

finally the KRAS gene as a 162 bp negative control (KRAS: forward : 5’-

GCCTGCTGAAAATGACTG-3’; reverse: 5’-GGTCCTGCACCAGTAATATG-3’). 

Quantitative PCR was performed using SybrGreen-ER kit (Invitrogen) with the following 

PCR conditions: 95°C for 5 min for initial denaturation, then 45 cycles of 94°C for 30 s, 54°C 

(CD19 and KRAS) or 62°C (hTERT) for 45 s, and 72°C for 60 s.  

For CTCF ChIP assays, purified DNA was analyzed by PCR with specific primers for the 

amplification of the first exon of the hTERT gene (hTERT exon1). The human CTCF-binding 

site N, a MYC insulator site (MYC-N) was used as positive control and a CTCF non-binding 

site G of MYC (MYC-G) was used as a negative control (38, 39). 

 

Immunohistochemistry (IHC) 

Four µm paraffin sections were cut and mounted on coated slides. Slides were dewaxed and 

rehydrated in a xylene-ethanol series. hTERT IHC was performed using a rabbit polyclonal 

antibody (EST21-A; Alpha Diagnostic International, San Antonio, Texas). Antigen retrieval 

was performed using a pressure cooker for 2 min in 10 mM sodium citrate buffer pH 6. The 

slides were washed with PBS, incubated for 2 h at room temperature, and then overnight at 

4°C with the anti-TERT antibody, diluted 1:50 in Dako Diluent Antibody (Dako, Glostrup, 

Denmark) containing 0.5 M NaCl. After washing, the EnVision+ System-HRP (AEC) (Dako) 

was used according to the manufacturer’s instructions. Slides were then counterstained with 

hematoxylin.  

Immunohistochemical studies of PAX5 and CD3 were performed using a PAX5 

mouse monoclonal antibody (BD Biosciences Pharmingen, San Jose, CA) and a CD3 mouse 

monoclonal antibody (Novocastra, Newcastle, UK). PAX5 antibody was diluted 1:50 in Dako 

Antibody Diluent (Dako) containing 0.5 M NaCl, and CD3 antibody was used undiluted. 

After washing, the EnVision+ Peroxidase rabbit (Dako) was used according to the 

manufacturer’s instructions, and the results were visualized with DAB+ substrate-chromagen 

solution (Dako). 
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Transient transfection 

Normal fibroblast BJ cells were seeded at a concentration of 105 cells/well in a 12-well plate 

24 h before transfection. Jet PEI transfection reagent (2 µl) (Polyplus-transfection, Illkirch, 

France) was used to transfect 2 µg of a PAX5 expression plasmid (phPAX5, a kind gift from 

Pr. M. Busslinger, Research Institute of Molecular Pathology, Vienna, Austria) (30). Cells 

treated the same way but without plasmid were used as a transfection control. Extraction of 

total RNA and DNase treatment were performed 48 h after transfection. 

 

Transfection of siRNA 

A double-stranded annealed Stealth RNAi oligonucleotide targeting PAX5 was designed by 

Invitrogen software (sense, 5’-GAGGAUAGUGGAACUUGCUCAUCAA-3’). A non-

specific fluorescent siRNA (Invitrogen) was used as a control. Transfection of siRNA 

oligonucleotides in Raji cells was performed with Amaxa Nucleofector (Amaxa Biosystems, 

Cologne, Germany) according to the manufacturer’s protocol. To transfect 4x106 cells, 130 

pmol of siRNA was used. To determine the effect of PAX5 silencing on hTERT expression, 

cells were harvested at 24 and 48 hours after transfection. The efficiency of RNA silencing 

was checked by quantitative RT-PCR of PAX5 mRNA and by immunofluorescence staining 

with PAX5 antibody (BD Biosciences, Erembodegem Belgium). 

 

Quantitative RT-PCR 

Total RNA was extracted from cells before and after siRNA treatment using Trizol-LS 

(Invitrogen) according to the manufacturer's protocol. Quantitative RT-PCRs were performed 

on a Rotorgene 6000 cycler (Corbett Research, Sydney, Australia). hTERT and PAX5 

mRNAs were amplified using the Quantitative RT-PCR Thermoscript One-Step System 

(Invitrogen). Each reaction included 50 ng of template RNA, 250 nM of FAM-labeled probe, 

and 500 nM of each primer. The primers and probes are described in supplemental Table S2. 

Cycling parameters were 60°C for 30 min followed by 95°C for 5 min, and then 45 cycles of 

95°C for 15 s and 60°C for 60 s. The positive control mRNAs, CD19 and β-actin, were 

amplified by the same enzymes, but with 1.25 µM SYTO 9 green fluorescent nucleic acid 

stain (Invitrogen) instead of the labeled probes. After amplification, a melting curve was 

acquired by heating from 70°C to 95°C. 

The reaction efficiency was determined with a cDNA dilution series. The relative level 

of each mRNA was calculated on the basis of the two standard curve relative quantification 

method. Gene expressions were normalized to β-actin and to the cells transfected with the 
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non-coding siRNA. At least two independent determinations of fold differences were used to 

calculate the average fold difference values and associated standard deviation.  

 

Table S2 - Primer sequences for quantitative RT-PCR 

 

Gene Primer sequences (sense and antisense) PCR product

hTERT 
5'-TGACACCTCACCTCACCCAC-3' 

5'-CACTGTCTTCCGCAAGTTCAC –3 
   probe    5’-FAM-ACCCTGGTCCGAGGTGTCCCTGAG-EDQ-3’ 

95 pb  

PAX5 
5’-TACTCCATCAGCGGCATCCT-3’ 

5’-CTCCTGAATACCTTCGTCTCTCTTG-3’ 
   probe    5’-FAM-CCAGCGCCGACACCAACAAGC-BHQ1-3’ 

81 bp 

β-actin 5'-AGGCCAACCGCGAGAAGATGAC-3' 
5'-GGGATAGCACAGCCTGGATAGCA -3' 87 pb 

CD19 
5’-GTGGCAACCTGACCATGTCATT -3’ 
5’-GACCAGGGCTCTTTGAAGATGA -3’ 167 bp 
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RESULTS 

 

In lymphoid cells, a hypomethylated hTERT promoter allows hTERT expression 

To define the methylation status of the hTERT promoter in lymphoid tissues, we 

analyzed 6 primary B-cell lymphomas, 6 primary T-cell lymphomas and 4 non-malignant 

lymphoid tissues. Four human lymphoid tumor cell lines were also investigated. RT-PCR 

analysis confirmed that hTERT transcripts were present in all the lymphoma tissues and cell 

lines as well as in the non-neoplastic lymphoid tissues (Fig. 1A). The β-actin gene was 

simultaneously amplified as a control. 

 

 
Figure 1. hTERT mRNA expression and hTERT methylation in lymphoid tissues and cell lines. (A) 
Detection of hTERT expression by RT-PCR in 6 B-cell lymphomas, 6 T-cell lymphomas, 4 non-neoplastic 
lymphoid tissues, and 4 lymphoid cell lines. (B) Methylation analysis of the hTERT promoter by methyl-
sensitive dot blot assay (MS-DBA). Hybridization with a « TG » probes revealed the non-methyl part of the PCR 
and hybridization with a « CG » probes detected the methyl part of the PCR. A scale of methylation (100%, 
80%, 50%, 20%, and 0%) was used to quantify the percentage of methylation found in the different samples. 
100* means that the 100% of methylation possesses a residual background with the non-methyl probe. The same 
samples used for RT-PCR were tested for methylation. 
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Using MS-DBA, we next explored the methylation status of the hTERT promoter. In 

B-cell lymphomas and non-neoplastic lymphoid tissues, the hTERT promoter was 

unmethylated, while it was hypermethylated in half of the T-cell lymphomas (Fig. 1B). The 

hTERT promoter was methylated in Daudi cells but unmethylated in the other three cell lines 

(Raji, Ramos, and Nalm6). Direct sequencing and MS-SSCA confirmed the results obtained 

by MS-DBA (data not shown). To summarize, in some T-cell lymphomas hTERT expression 

goes along with hTERT promoter methylation, as is the case for most solid tumors. In 

transformed B cells and non-neoplastic lymphocytes, however, hTERT is expressed in the 

presence of a hypomethylation promoter. In this situation hTERT expression must be 

regulated by a methylation-independent mechanism.  

 

Putative PAX5 binding sites are present in the hTERT gene 

To determine if transcription factors specific to lymphoid cells might be involved in 

hTERT regulation, we searched the gene sequence for new transcription factor binding sites. 

MatInspector revealed two potential binding sites for PAX5, also known as B cell-Specific 

Activator Protein (BSAP), a transcription factor involved in B-cell differentiation and 

function (23,24), from +110 to +137 bp and +489 to +516 bp downstream of the ATG 

translational start site (Fig. 2). This suggested that PAX5 might be involved in the regulation 

of hTERT transcription in lymphoid cells. 

CTCF

CTCF

PAX5

C-MYC/HIF-1B

SP1

SP1SP1

SP1

SP1SP1

C-MYC/HIF-1B

E2F

E2F

E2F

PAX5
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Figure 2. Localization of putative transcription factor binding sites on hTERT sequences from -401 bp to 
+600 bp flanking the ATG (+1). The main transcriptional start sites are indicated by arrows. The ATG 
translational start site is highlighted in grey. The exonic regions are underlined. Binding sites for known 
activators and repressors of hTERT are shown in boxes. Known binding sites of SP1, c-MYC, E2F and CTCF 
are shown in small boxes. Potential binding sites of PAX5 predicted by the MatInspector program are shown in 
large grey boxes. 
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PAX5 binds the hTERT CpG island in vitro and in vivo 

To determine if the predicted PAX5 binding sites in the hTERT exon were authentic, 

we first performed EMSAs using extracts from Raji cells. Two DIG-labeled oligonucleotide 

probes were used, one representing the PAX5 binding site present on the first hTERT exon. 

The second, a site on the CD79A promoter, served as a positive control (30,40). A specific 

band for PAX5 was obtained with the CD79A oligonucleotide (Fig. 3A, lane 1). A similar 

band was obtained with the hTERT probe (lane 2). A negative control was performed to 

visualize the background of the reaction (lane 3). To check the specificity of the band, cold 

competitor oligonucleotides were added to the labeled hTERT probe. A 100-fold molar 

excess of CD79A and hTERT competitors resulted in almost complete inhibition of PAX5 

binding (lanes 4 and 5). The same results were obtained with Nalm6 extracts (Fig. 3A). A 5- 

to 150-fold increase in the amount of cold CD79A probe also resulted in a progressive 

inhibition of binding (Fig. 3B). Preincubation of Raji cell extracts with a PAX5-specific 

antibody resulted in a supershifted band, confirming that PAX5 bound to the site identified in 

the first exon of hTERT (Fig. 3C). These results demonstrated that PAX5 does bind to the 

predicted target sequence in the first exon of hTERT.  

 

To determine if PAX5 bound to the hTERT gene under physiological conditions, 

chromatin immunoprecipitation (ChIP) experiments were performed using Nalm6 and Raji 

cells. DNA samples isolated from the input, the anti-PAX5-bound, and the no-antibody 

fractions were analyzed by quantitative PCR. CD19 is a well-known target of PAX5 (29) and 

was used as positive control. The results indicated an approximately 10-fold enrichment of 

hTERT exon 1 when normalized with the negative control KRAS gene and around 8-fold 

enrichment of hTERT exon 2 in both Nalm6 and Raji cells (Fig. 3D). Enrichment of the 

CD19 gene was about 3 to 4 times greater than that for hTERT, which was not surprising as 

the binding of PAX5 to the CD19 target sequences is very strong. In the no-antibody fraction, 

no enrichment was detected with either hTERT or CD19 (data not shown). Thus, PAX5 is 

bound in vivo to the first and the second exons of hTERT, providing strong evidence that 

PAX5 could be involved in the transcriptional regulation of the gene in B cells. 
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Figure 3. In vitro and in vivo binding of PAX5 in Nalm6 and Raji cells. (A) EMSAs were performed with 
DIG-labeled oligonucleotides representing PAX5 binding sites on CD79A as a positive control gene (lane 1) and 
on the hTERT gene (lanes 2-5). A negative control without extract was performed (lane 3). An excess (100x) of 
unlabeled oligonucleotide (hTERT; CD79A) was used in a competition assay for PAX5 binding to the labeled 
probes (lanes 4 and 5, respectively). (B) A graduated competition with unlabeled oligonucleotide (CD79A) was 
performed on Raji cellular extracts, with an excess of 5x, 15x, 50x, and 150x of unlabeled CD79A 
oligonucleotide and with an excess (150x) of unlabeled hTERT oligonucleotide. (C) A supershift is performed 
with a PAX5 antibody on Raji cellular extracts. (D)  Chromatin immunoprecipitation (ChIP) of PAX5 in Nalm6 
and Raji cells. Fold amplification of hTERT and CD19 was calculated versus the KRAS negative control. The 

ound fraction was compared to the input fraction fixed to 1. 

 

b
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PAX5 does not inhibit binding of CTCF to hTERT in vivo 

A possible explanation for the effect of PAX5 on hTERT expression could be that it 

interferes with CTCF-binding to the hTERT promoter. The CTCF transcription factor was 

found to be essential for repression of hTERT transcription in a variety of normal somatic 

cells (6). As PAX5 binding sites lie downstream CTCF target sequences (Fig.2), we therefore 

performed ChIP analysis to analyze CTCF binding. In Raji cells, hTERT exon 1 was enriched 

approximately four-fold compared to the negative control, which is in the same range as in the 

two positive controls, MYCN and H19 (Fig. 4). After transfection with a PAX5 siRNA, ChIP 

of CTCF was performed but no change in CTCF binding was noticed (Fig. 4). Thus, PAX5 

binding to the hTERT exonic region does not block CTCF binding. 

 

 
 

Figure 4. ChIP of CTCF in Raji cells 48 h after transfection with either a control siRNA or a siRNA 
against PAX5. Fold amplification of hTERT, MYC-N and H19 was calculated versus the MYC-G negative 
control. The bound fraction was compared to the input fraction fixed to 1. 
 

 

hTERT and PAX5 have similar patterns of expression in B-cell lymphomas and the B-cell 

areas of non-neoplastic lymphoid tissues 

PAX5 is a specific marker for all stages of B-cell differentiation except for plasma 

cells (41). In our series, PAX5 mRNA was detected by RT-PCR in all B- and T-cell NHL, as 

well as in non-neoplastic lymphoid tissues and cell lines.  

By IHC of consecutive sections, hTERT and PAX5 were both detected in the same 

regions of the B-cell lymphomas suggesting they were present in the same tumor cells (Fig. 
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5A-B). The T cells were identified by CD3 expression. In B-cell lymphomas, the normal T 

cells did not appear to express either PAX5 or hTERT (Fig. 5A, 5C). In non-neoplastic 

lymphoid tissues, both PAX5 and hTERT were highly expressed in germinal center B cells 

and B cells of the mantle zone (Fig. 5G, 5H), whereas CD3+ T cells were PAX5- and hTERT-

negative (Fig. 5G-I). In T-cell lymphomas, hTERT was expressed in the CD3+ neoplastic T 

cells (Fig. 5D, 5F) while PAX5 was not (Fig. 5E-F). The positivity of PAX5 by RT-PCR in 

the T-cell lymphomas was thus apparently due to the presence of normal B cells in the tumor 

tissue. In the T-cell lymphomas studied, PAX5 had no role in activating hTERT expression. 

In summary, PAX5 and hTERT co-localize in normal and malignant B cells, supporting the 

suggestion that PAX5 might be involved in hTERT activation in these cells. 
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Figure 5. IHC of hTERT, PAX5 and CD3. Representative pictures are shown at high magnification (x 40) and 
at low magnification (x 2) in the insets. A, B, C were from a B-cell lymphoma; D, E, F were from a T cell 
lymphoma; G, H, I were from a normal lymph node.  
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Suppression of PAX5 by siRNA represses hTERT transcription in telomerase-positive cells  

 To determine if a reduction in PAX5 expression would be associated with a change in 

hTERT expression, we transfected Raji cells with a PAX5 siRNA. After transfection, 

transcript levels of PAX5, the down-regulation of PAX5 protein was confirmed by PAX5 

immunofluorescence staining, while the level of PAX5, hTERT and CD19 transcripts were 

monitored by quantitative RT-PCR. Cells transfected with a scrambled siRNA were used as a 

control. Twenty-four hours after transfection, PAX5 transcript levels were reduced ~50% in 

association with significant reductions in the levels of CD19 and hTERT expression (~30%) 

(Fig. 6A). After 48 h, PAX5 transcripts were reduced by 77% in association with reductions 

of 57% and 64% in transcripts for CD19 and hTERT, respectively. These studies showed that 

inhibition of PAX5 leads to a strong downregulation of hTERT expression, indicating that 

PAX5 is essential for hTERT expression in B cells. 

 

PAX5 activates hTERT transcription in normal telomerase-negative cells 

To determine if ectopic expression of PAX5 could activate hTERT expression in 

normal telomerase-negative cells, we transfected normal BJ fibroblasts with a PAX5 

expression plasmid.  RT-PCR analyses of PAX5 transcripts 40 h post-transfection confirmed 

the efficacy of transfection (Fig. 6B). RT-PCR analyses of transcripts for CD19, an 

established target of PAX5, showed substantial expression in the transfected cells. In addition, 

the transfected cells expressed hTERT transcripts at high levels. Non-transfected and mock-

transfected BJ cells did not express transcripts of PAX5, CD19, or hTERT. This experiment 

showed that ectopic expression of PAX5 was sufficient to activate hTERT transcription in 

normal somatic cells. 
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Figure 6. The effect of activation or inactivation of PAX5. (A) Quantitative RT-PCR of PAX5, hTERT, and 
CD19 after transfection of a PAX5 siRNA into Raji cells. Quantitations were performed 24 and 48 h after 
transfection. The relative amounts of each mRNA were normalized to the amounts of mRNA after transfection 
of a scrambled siRNA compared with β-actin. (B) Detection of PAX5, CD19, and hTERT expression by RT-PCR 
before and after transfection of a PAX5 expression plasmid into telomerase- and PAX5-negative BJ cells and in 
Raji positive control cells. β-actin was used as a control for the RT-PCR. Triplicates of the transfection 
experiments are shown. 
 
 

 

 

 160 



 PAX5 activates hTERT in B cells 

 

 

DISCUSSION 

 
In the present study, we showed that hTERT is transcribed in association with the 

unmethylated 5’ region in B cells, B-cell lymphomas and B-cell lymphoma cell lines, 

defining a novel methylation-independent mode of hTERT regulation. EMSA and ChIP 

assays identified two binding sites in hTERT for the B cell-specific transcription factor 

PAX5. These sites lie downstream of the ATG translational start site and are located in the 

first exon and at the beginning of the second exon of hTERT. Moreover, in B cells, 

decreasing PAX5 expression resulted in a significant reduction in hTERT expression. 

Importantly, we showed that ectopic expression of PAX5 in telomerase-negative normal cell 

lines is sufficient to activate hTERT expression. Taken together, these data strongly implicate 

PAX5 as a key factor in the transcriptional regulation of hTERT expression in B cells.  

hTERT is a new PAX5 target, which has no direct link to B-cell differentiation, in 

contrast to the well-known PAX5 target genes. These other target genes were identified 

through a study in which a large panel of genes, known to be important for B lymphopoiesis, 

was chosen for comparative expression analysis in wild-type and PAX5-deficient pre-B cells 

(30). Among the principal targets of PAX5, three genes - CD79A, CD19 and PDCD1 (PD-1) - 

code for cell surface molecules involved in signal transduction, while the products of two 

other target genes, MYCN (N-Myc) and LEF1, are nuclear transcription factors (29,30). 

PAX8, which belongs to the same subgroup of PAX proteins as PAX5, has been 

implicated in the activation of hTERT in glioma (22). PAX8 failed to activate the hTERT 

promoter in telomerase-negative primary cell lines and other factors seem to be necessary for 

the expression of hTERT. On the contrary, activation of PAX5 was sufficient to initiate the 

transcription of hTERT in telomerase-negative primary cell lines. Apparently, the action of 

PAX5 on hTERT is very different from that of PAX8. PAX8 mainly seems to act on the 

formation of the transcription complex, whereas the major role of PAX5 in transcriptional 

activation does not seem to recruit basal transcription machinery, but is likely to modulate the 

structure of local chromatin, allowing other sequence-specific factors to activate transcription. 

Indeed, PAX5 can activate transcription through association with chromatin effector enzymes 

such as DAXX, CREB binding protein (CBP), and GCN5, which possess histone 

acetyltransferase (HAT) activity. PAX5 can also interact with BRG1, a catalytic component 

of the Swi/Snf chromatin remodeling complexes (42). On the other hand, CTCF directly binds 

 161



CHAPTER 3  

to SIN3A, which condenses chromatin and prevents transcription by recruitment of histone 

deacetylase (HDAC) activity (43). Therefore, the simultaneous binding of CTCF and PAX5 

on hTERT exons might produce opposing effects on chromatin: the recruitment of histone 

modification and nucleosome remodeling activities by PAX5 might antagonize chromatin-

mediated transcriptional repression by CTCF. Additional studies need to be performed to 

more accurately understand how CTCF and PAX5 interact in regulating hTERT expression.  

In summary, we describe a methylation-independent mechanism of hTERT regulation 

that occurs in telomerase-positive B cells. In these cells, hTERT is a novel target of PAX5, 

which is essential for B-cell development and function. According to our data, in B cells, 

PAX5 also participates in cellular mechanisms underlying cell immortality by upregulating 

hTERT gene expression. 
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ABSTRACT 

 
Background: Sensitive and specific cancer biomarkers are needed for screening, primary 

diagnosis, and follow-up. hTERT expression might be such a marker but its use is hampered 

by proliferating normal lymphocyte cells. hTERT methylation, characterizing most cancer 

cells, might be an alternative as proliferating lymphocytes do not have hTERT methylation 

(or have unmethylated hTERT promoter). The aim of this study was to develop a specific, 

sensitive, quantitative, and fast method for detection of hTERT methylation and to explore its 

use as a cancer biomarker in a biological fluid, using cerebrospinal fluid (CSF) as a model. 

Materials and methods: hTERT methylation levels were assayed by several quantitative 

techniques including methylation-sensitive dot blot assay (MS-DBA), methylation-sensitive 

high resolution melting (MS-HRM), and a newly developed real-time MS-HRM assay. We 

used MS-HRM assays for the analysis of 50 CSF specimens from 45 patients including 22 

CSFs from 18 patients with a known malignancy suspected for leptomeningeal metastasis. 

Cytological analysis served as a gold standard. 

Results: MS-HRM assays both allowed hTERT methylation quantification in CSF samples. 

The MS-HRM detected samples containing more than 10% of hTERT methylated alleles 

whereas real-time MS-HRM detected methylation below 10%. PCR products were obtained 

from 46 CSF samples (92%). hTERT methylation was only detected in the CSF from patients 

with a known malignancy.  

Conclusion: The real-time MS-HRM analysis is a fast, sensitive, and specific technique for 

methylation assessment in many diagnostic and research applications. We have tested this 

approach on CSF and proof of concept has been obtained. 

 

 

 

Key words: hTERT, metastasis, DNA methylation, cerebrospinal fluids, HRM, biomarker 
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INTRODUCTION 

 

The inheritance of information on the basis of gene expression levels is known as 

epigenetics, as opposed to genetics, which refers to information inherited on the basis of gene 

sequence. The most commonly occurring epigenetic event in mammalian genome is DNA 

methylation of the CpG dinucleotides. In contrast to the relative paucity of CpGs in the 

genome as a whole, these dinucleotides can be clustered in small stretches of DNA termed 

“CpG islands” and are often associated with the promoter regions. Abnormal patterns of DNA 

methylation have been recognized in cancer cells. They exhibit both loss of methylation in the 

CpG-depleted regions, where most CpG dinucleotides should be methylated, and gains in 

methylation of CpG islands in gene promoter regions (Bird and Wolffe, 1999; Herman and 

Baylin, 2003). Methylation of CpG islands in gene promoter regions is associated with 

aberrant silencing of transcription and is a mechanism for inactivation of tumor-suppressor 

genes, in addition to mutation (Jones and Laird, 1999; Jones, 1999). In carcinogenesis, 

methylation of promoter CpG islands tends to be an early event, and therefore the detection of 

methylation holds promise as a tool for early cancer detection (Laird, 2003; Shi et al., 2007). 

Methylation of genes has already been used to detect tumor cells, such as methylation of APC 

and hTERT in esophageal cancers (Clement et al., 2006), MGMT in glioblastoma (Hegi et 

al., 2005) or RASSF1A in breast cancers (Shinozaki et al., 2005). However, in body fluids 

such as blood, urine, or cerebrospinal fluid (CSF) sputum, tumor-derived material is hard to 

detect because of the presence of material from normal cells. Therefore, only highly sensitive 

methods of cancer detection are suitable for these materials. 

Telomerase activity is detected in about 90% of human cancers, but not in most 

normal cells. The expression of its catalytic subunit, hTERT (human telomerase reverse 

transcriptase), has been shown to be a biomarker in hepatocellular, colorectal, and esophageal 

carcinoma (Gertler et al., 2002; Miura et al., 2007; Gertler et al., 2008). Normal proliferating 

progenitor cells and activated lymphocytes, often infiltrated tumor tissues and in some normal 

tissues, also express hTERT and have an active telomerase complex (Weng, 2002). In body 

fluids, including CSF, proliferating lymphocytes can be the cause of hTERT expression 

(Kleinschmidt-DeMasters et al., 1998; Braunschweig et al., 2001; Lee, 2005), which limits its 

use as a diagnostic tool in cancer. In contrast, hTERT promoter methylation is correlated with 

hTERT expression in most telomerase-positive tumors (Devereux et al., 1999; Dessain et al., 

2000; Guilleret et al., 2002; Nomoto et al., 2002), while the promoter is unmethylated in 

telomerase positive normal cells, including activated lymphocytes (Bougel, submitted). 
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Therefore, the use of hTERT methylation as a biomarker might circumvent the confounding 

effect of activated lymphocytes.  

The finding of malignant cells in the cerebrospinal fluid is essential for the diagnosis 

of leptomeningeal metastasis (LM). Because early treatment of LM may prevent neurological 

deterioration, it is important to establish the diagnosis as early as possible. CSF cytology is 

the only examination that directly verifies the presence of malignancy in CSF (Aboulafia et 

al., 1996). Nevertheless, cytological diagnosis is often difficult to establish by morphology 

alone, especially in cases with low numbers of cells (Schinstine et al., 2006). PCR techniques 

are more sensitive than cytology if there is a specific genetic marker, such as immunoglobulin 

gene rearrangements for lymphoma (Gleissner et al., 2002) or KRAS mutation in lung or 

colorectal cancers (Swinkels et al., 2000). However, most of these markers characterize a 

limited set of cancers and so, as yet, no single tumor marker allows detection of LM in CSF. 

Most methods used for DNA methylation analysis discriminate methylated and 

unmethylated sequences after bisulfite modification of the target DNA and followed by PCR 

amplification. Real-time PCR methods allowed the development of new sensitive and 

quantitative techniques derived from Methylation-specific PCR (MSP), such as MethyLight, 

quantitative analysis of methylated alleles (QAMA) or Sensitive Melting Analysis after Real 

Time (SMART-MSP) (Kristensen et al., 2008). In the SMART-MSP methodology, sensitive 

melting analysis using high resolution melting (HRM) is performed immediately after the 

real-time PCR in a closed-tube system, and allow to avoid false-positive results referred for 

MSP analysis (Rand et al., 2002; Brandes et al., 2007). Methylation sensitive HRM (MS-

HRM) analysis has been advocated as the method of choice for methylation assessment 

(Wojdacz and Dobrovic, 2007). 

The aim of this study was to develop a specific, sensitive, quantitative and fast method 

for detection of low level of hTERT methylation and to explore its potential use as a cancer 

biomarker in the diagnosis of metastasis in CSF. As the number of tumor cells can vary, a 

method is needed with a detection level of as low as 1% of methylated DNA in a non-

methylated background. In this study, we developed real-time methyl-sensitive high 

resolution melting in combination with TaqMan analysis (real-time MS-HRM) in order to 

attain a very low level of detection of methylation, which could be applicable to clinical 

samples.  
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MATERIALS AND METHODS 

 

Control samples 

Hela cells were used as 100% hTERT methylated standard and placental tissue as a 0% 

hTERT methylated standard. The range of methylated and unmethylated allele dilutions was 

created by mixing genomic DNAs before bisulfite modification to obtain 

methylated/unmethylated hTERT template ratios of 0, 1, 10, 20, 50, 80, and 100%. Each of 

our experimental runs included a range of methylated/unmethylated standards. Human tumor 

cell lines (SW480, OE33, CO115 cells) and human lymphoid tissues were tested. 

 

Patients 

All available 50 CSF specimens were collected from 45 patients seen at the Centre Hospitalier 

Universitaire Vaudois (CHUV) of Lausanne and at regional hospitals between 2005 and 2007. 

All CSF samples were immediately processed for cytological analysis (J. C. de Flaugergues 

and R. Janzer). Residual CSF samples were 1-2 ml in volume and were stored at 4°C for 1-4 

days before processing for hTERT methylation analysis. No patient had CSF specially and 

solely for this study.  

Eighteen patients with a known malignancy were suspected for LM. A total of 22 

CSFs were investigated. For all these patients the primary tumor was also investigated for 

hTERT methylation analysis. The primary tumors included 11 breast cancers, 3 

medulloblastomas, 2 lung adenocarcinomas, 1 prostate carcinoma and 1 colon cancer. The 

tumor tissues came from the files of the Institute of Pathology of Lausanne. The use of human 

tissues for this study was done according to the guidelines of the local ethical committee. 

In addition, 28 CSFs from 27 patients with non-neoplastic diseases (including 

inflammatory diseases and viral syndromes) or with a B-cell lymphoma were used as negative 

controls. 

 
DNA extraction and bisulfite modification 

DNAs were extracted by using the DNeasy Tissue Extraction Kit (Qiagen, Hilden, Germany) 

with some modifications. 360 μL of ATL buffer and 40 μL (600 ng) of proteinase K were 

added to 1-2 ml of CSF. After evaporation in a Speedvac to a residual volume of 400 μL, 

DNA extraction was performed as recommended by the manufacturer. Bisulfite modification 

of the genomic DNA was performed with the EpiTect Bisulfite Kit (Qiagen). The starting 
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amount of DNA was 1 µg for the controls, but variable amounts of CSF DNA (10 to 500 ng) 

were used depending on the number of cells contained in each sample. 

 

hTERT methylation analyses 

Three methods were performed to analyze hTERT promoter methylation. All the analyses 

were performed twice. Methylation-sensitive dot blot assay (MS-DBA) was performed as 

previously described (Clement and Benhattar, 2005).  

Methylation-sensitive high resolution melting (MS-HRM) was carried out sequentially 

on a Rotor-Gene 6000 (Corbett Life Science, Sydney, Australia). PCR amplification was 

performed in a 20 µL total volume containing 2.5 mM MgCl2, 250 µM of dNTP, 200 nM of 

each primer, 5 µM SYTO 9 dye (Invitrogen, Carlsbad, CA), 5% DMSO, 1 U Platinium Taq 

polymerase (Invitrogen), and 2 µL of bisulfite-modified DNA template. DNA was amplified 

using the following primers: forward 5'- CGCCCTAAAAACAACCCTAAATCTC -3’; 

reverse 5'- AGGGAGGGGTTATGATGTGGAG -3'. The amplification consisted of 5min at 

95°C, followed by 7 cycles of 10s at 95°C, 15s at 55°C and 15s at 72°C, and finally 33 cycles 

of 10s at 95°C and 30s at 60°C. High resolution melting (HRM) analysis was performed at the 

temperature ramping and florescence acquisition setting recommended by the manufacturer 

(temperature ramping from 70–95°C, rising by 0.1°C/2s). The 97-bp amplified fragment 

contained 5 CpG sites. 

Real-time methylation-sensitive high resolution melting (real-time MS-HRM), 

comprising both HRM and real-time TaqMan PCR analysis, was performed. The TaqMan 

MGB probe was designed to contain four CpG sites that were always found methylated in 

cancers (Guilleret et al., 2002; Guilleret and Benhattar, 2004). This probe was labeled with 

TET and can only detect the methylated allele. PCR amplification and high resolution melting 

analysis were carried out sequentially on a Rotor-Gene 6000 with the same mix as for MS-

HRM analysis, but with the addition of 200 nM of labeled probe. The program of 

amplification consisted of 5min at 95°C, followed by 40 cycles of 10s at 95°C and 30s at 

60°C. A 107-bp hTERT-bisulfite modified fragment was amplified using the following 

primers: forward 5’- GCGTCCGAACCTAAAAACAACCCTA -3’, reverse 5’- 

TTCGAGGGAGGGGTTATGATGTG -3’; and the internal labeled probe: 5’- TET-

CGACCAAAAAATCGCCGCACGCA-BHQ1 -3’. The length of PCR product was 

minimized for equivalent amplification of methylated and unmethylated alleles. High 

resolution melting (HRM) analysis was performed as described for MS-HRM analysis. The 

reaction efficiency was determined with a DNA dilution series. The evaluation of the 
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methylation was calculated as the ratio between methylation part (M) monitored by the 

Taqman MGB probe and the totality of the PCR amplification (M+U) measured by the 

SYTO9. The ratio was calculated on the basis of the two standard curve relative 

quantification method. The melting curves of the HRM analysis were normalized by the 

software which allows a direct comparison of the samples even with different starting 

fluorescence levels. 
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RESULTS AND DISCUSSION 

 

1- Sensitivity of the MS-DBA and MS-HRM assays 

A methyl-sensitive Dot blot assay (MS-DBA) was first performed on a mixture of genomic 

DNAs with different levels of hTERT methylation (Figure 1). The results show that this 

technique is sensitive and quantitative, but insufficiently specific as a residual background 

signal that does not reflect methylation can be detected in unmethylated samples (Figure 1, 

lane 2). MS-DBA is an efficient technique for screening large numbers of samples, but it not 

specific enough to distinguish 1-2% of methylation from unmethylated samples.  
 

 

Unmethyl. CpGs          

Methyl. CpGs

Methylation scale

0            1            10           20          50        80         100% of methyl. 
alleles

1     2        3     4       5     6      7      8 9     10     11    12    13    14

Unmethyl. CpGs          

Methyl. CpGs

Methylation scale

0            1            10           20          50        80         100% of methyl. 
alleles

1     2        3     4       5     6      7      8 9     10     11    12    13    14

 
Figure 1. hTERT methylation by methyl-sensitive dot blot assay. Bisulfite DNA containing a known level of 
hTERT methylation were amplified by PCR and dot blot analysis was performed. Dots hybridized with an 
oligoprobe specific for either the methylated DNA (Methyl. CpGs) or the unmethylated DNA (Unmethyl. 
CpGs). The experiments were performed twice for each level of hTERT methylation.  

 

 

MS-HRM was previously described as a sensitive and specific method for the 

detection of MGMT methylation (Wojdacz and Dobrovic, 2007). MS-HRM assay also gives a 

quality control to avoid false-positive results caused by incomplete conversion or false 

priming due to less stringent PCR conditions (Wojdacz and Dobrovic, 2007). We therefore 

applied this method to the detection of hTERT methylation. As the hTERT promoter is 

included in a CpG-rich region, we added a three base tail at one primer to obtain CpG-free 

primers with a sufficiently high Tm. HRM relies upon the precise monitoring of the change of 

fluorescence intensity as a DNA duplex melts. Standard DNA mixtures containing 0, 1, 10, 

20, 50, 80 and 100 % of hTERT methylation were tested. The melting curves obtained by 

HRM analysis were unique and characteristic of each standard sample. An evaluation of the 

extent of methylation can be achieved by a comparison of the shapes of normalized melting 

profiles between standards and samples (Figure 2A). The HRM analysis was accurate for a 

 174 



Detection of hTERT promoter methylation in CSF 
 

range of 10% to 100% methylation and gave reproducible and specific results. MS-HRM 

analysis confirmed the hTERT methylation status obtained by MS-DBA of different cell lines 

(SW480, OE33, CO115 cells) and tissues (3 human lymphoid tissues), which were 

respectively 100% and 0% of methylation (Figure 2B). The simplicity and the rapidity of 

HRM procedure in the closed-tube system could be helpful for diagnosis and is a significant 

advantage compared to MS-DBA assay.  
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Figure 2. MS-HRM analysis of hTERT methylation. (A) MS-HRM profiles obtained with mixtures of 
bisulfite DNA containing a known level of hTERT methylation (0, 1, 10, 20, 50, 80, and 100%). Each HRM 
curve is specific for a standard sample. (B) MS-HRM profiles obtained with bisulfite-DNA from standards (100, 
50, 0% of hTERT methylation), from cell lines (SW480, OE33, CO115 cells), and from 3 human lymphoid 
tissues (LB1, LB2, LB3). Before the HRM step, all the PCR reactions were performed with an annealing 
temperature of 60°C. 
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In order to increase the sensitivity of MS-HRM, PCR primers with CpGs were 

selected to induce a PCR bias towards the methylated templates. This is acceptable if a 

limited number of CpGs is included in the primers, particularly if they are placed away from 

the 3′ end (Dobrovic et al., 2002). Moreover, in order to reduce potential false-positive or 

false-negative signals, hTERT methylation was simultaneously investigated by HRM and 

TaqMan MGB probe analysis in a same closed-tube. We coined the term real-time MS-HRM 

for this approach. In this method, TaqMan assay covers methylation of CpG sites by the 

fluorescent probe, and HRM scans all of the CpGs flanked by the primers-binding to the 

target sequence, regardless of the methylation status of CpGs in the primer-binding side. 

Standard curves for the assay are shown in Figure 3.  

 

A 

B 

 

 

Figure 3. Parameters of the standard curves (coefficient of correlation (R2) and efficiency) of real-time 
MS-HRM assays. Assays were performed with dilutions of fully methylated control DNA of Hela cells. The 
green channel detects the amplification of both methylated and unmethylated strands by SYTO9 dye. The yellow 
channel detects the amplification of methylated strand by the TET-labeled probe. (A) Annealing  temperature of 
PCR reaction =  60°C. (B) Annealing  temperature of PCR reaction = 64°C. 
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The TaqMan MGB probe had a high specificity and the background signal on 

unmethylated targets was negligible. Moreover, it was possible to detect methylation of DNA 

mixtures containing 10% or 20% of methylation with high resolution (Figure 4A). Increasing 

of the annealing temperature of PCR amplification allowed higher sensitivity. At 64°C, 

samples containing 1% methylated template could be easily detected by HRM analysis as 

well as TaqMan analysis (Figure 4B and 4C respectively). In contrast, samples with more 

than 20% methylation could not be differentiated from a fully methylated sample. The real-

time MS-HRM performed at 64°C with primer containing CpG, was more sensitive than both 

MS-HRM and MS-DBA assays.  

 

 

Thus, MS-HRM and real-time MS-HRM are both suitable to quantitatively analyze 

hTERT methylation when variable amounts of methylated-tumor DNA are present in the 

analyzed samples. The MS-HRM will allow detection of samples containing more than 10% 

of hTERT methylated alleles and the real-time MS-HRM of samples containing less than 10% 

hTERT methylated alleles. 
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Figure 4. Real-time MS-HRM analysis of hTERT methylation from DNA mixtures containing a known 
level of hTERT methylation. (A) MS-HRM profiles obtained at the annealing temperature of 60°C for the PCR 
reaction. (B) MS-HRM profiles obtained at the annealing temperature of 64°C for the PCR reaction. (C) 
Comparison of hTERT methylation quantification by TaqMan probe when using an annealing temperature of 
60°C or 64°C. M: methylated sequences. U: unmethylated sequences. The evaluation of the methylation was 
calculated as the ratio between methylation part (M) monitored by the Taqman MGB probe and the totality of 
the PCR amplification (M+U) measured by the SYTO9. The ratio was calculated on the basis of the two 
standard curve relative quantification method.  The 1/10 and 1/100 samples represent the dilution ratio of fully 
methylated DNA.
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2- Application of the hTERT MS-HRM assays to clinical specimens 

The applicability of the hTERT MS-HRM and real-time MS-HRM assays was tested on a 

panel of 50 CSF samples from a total of 45 patients. Among those, 22 CSFs were suspected 

for leptomeningeal metastasis and 28 CSFs were non-neoplastic samples. CSF samples were 

first processed for cytological analysis. For patients with an identified primary tumor, CSF 

cytological diagnosis was positive for malignancy when atypical large cells with prominent 

nucleoli were present in significant number. CSF was negative for malignancy when only 

inflammatory cells were found. Primary tumors were tested for the occurrence of hTERT 

promoter methylation for reasons of comparison. 

Of the 50 investigated CSFs, the DNA extracted and bisulfite-modified from 46 (92%) 

samples was amplifiable by PCR. Four non-neoplastic CSFs were not amplified probably 

because of the limited number of collected cells. 

The 28 CSFs from 27 patients with non-neoplastic diseases, including inflammatory 

diseases and viral syndromes, or with B-cell lymphomas were used as negative controls. In 

cytologically non-malignant CSFs, no hTERT methylation was observed (Table 1). 

 

  
Table 1. Cytology and hTERT methylation for the detection of leptomeningial metastasis in CSF 

 
Cytological diagnosis  

Positive  Negative 
Total 

hTERT Methylated 12 0 12 

hTERT Unmethylated 3 28* 31 

Total 15 28 43 

 
*4 tumors and 24 negative control samples. 

 

 

Of 18 patients suspected for leptomeningeal metastasis, 3 patients (16%) had an 

unmethylated primary tumor. The corresponding CSFs from these 3 patients were also 

unmethylated, even if tumor cells were identified by cytology. Of the 19 CSF samples from 

the other 15 patients with a methylated primary tumor, 15 CSFs were positive for malignancy 

by cytological analysis, and 4 negative. None of the 4 negative samples were hTERT 

methylated by MS-HRM analysis (Table 1). MS-HRM assays detected hTERT methylation in 

 179



CHAPTER 4 
 
 
12 of the 15 cytologically positive samples (Table 1). Interestingly, the level of hTERT 

methylation correlated with the percentage of tumor cells estimated by cytology. Methylation 

of 3 samples was only detectable by the most sensitive approach (real-time MS-HRM), which 

indicates that the number of tumor cells is relatively low in these samples. All the results were 

reproducible between replicates.  

  hTERT methylation and cytological analyses were concordant in 84% (16/19) of the 

CSF samples from patients with an hTERT methylated primary tumor. In the 3 negative 

samples, the cytological analysis identified between 5 to 10% atypical cells, which should 

have been easily detectable by real-time MS-HRM. Sample variation could explain the 

discrepancy between the cytology and the methylation analysis, like aggregate formation, but 

also hTERT unmethylated metastasizing cells from an hTERT methylated primary tumor. The 

possibility of cytological overdiagnosis should also be considered.  

 

In summary, the real-time MS-HRM analysis is a fast, sensitive and specific technique 

for hTERT methylation detection. The combination of TaqMan technology with HRM 

provides a double in-tube method meaning that the analysis takes place without the PCR 

product leaving the tube that it was amplified in, which could be suitable for diagnostic 

applications. In our series, bisulfite-modified DNA was amplified successfully from 92% 

(46/50) of the CSF specimens, which confirms the overall relatively good preservation of 

DNA in CSF (Pine et al., 2005). According our data (Table 1), the sensibility was 80%, and 

the specificity was 100%. The positive prospective values and the negative prospective values 

were 100% and 90%, respectively. Therefore, hTERT methylation through MS-HRM analysis 

could provide a useful contribution to the diagnosis of leptomeningeal metastasis. A larger 

study is needed to confirm our findings and to determine whether hTERT methylation could 

become a powerful cancer biomarker for the detection of leptomeningeal metastasis in CSF. 
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Telomerase adds telomeric repeat sequences to the end of chromosomes, and prevents 

the loss of telomere and cellular senescence. The catalytic subunit of telomerase, hTERT, is 

the limiting factor for its activation (Bodnar et al., 1998; Counter et al., 1998). An abundance 

of regulatory models involved in the transcriptional control of hTERT has been suggested 

after identification of numerous activators and repressors that bind to the hTERT 5’ 

regulatory region, and implication of CpG methylation and histone acetylation (Devereux et 

al., 1999; Cong and Bacchetti, 2000; Dessain et al., 2000; Poole et al., 2001; Takakura et al., 

2001; Ducrest et al., 2002; Guilleret et al., 2002; Goueli and Janknecht, 2003; Lv et al., 2003; 

Pardal et al., 2003; Goueli and Janknecht, 2004; Nishi et al., 2004; Yatabe et al., 2004; 

Pendino et al., 2006; Renaud et al., 2007; Cairney and Keith, 2008). Numerous investigations 

have attempted to elucidate the regulation of hTERT transcription, its transport to the nucleus, 

the assembly of the telomerase complex, its recruitment to the telomere, and the role of post-

translational modifications of hTERT protein. No single mechanism can explain silencing of 

telomerase in most somatic cells and its reactivation in tumor cells. This thesis illustrates the 

complexity of the hTERT transcriptional regulation in normal and tumor cells. 

In telomerase-negative somatic cells, telomeres shorten with each cell division, 

resulting in replicative senescence and cell death. In general, stem cells and other actively 

replicating cells are telomerase-positive and are an exception to this rule (Figure 1).  

 

 
Figure 1. Telomere and telomerase dynamics in human cells (cited from Hiyama and Hiyama, 2007). 
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In germ cells, telomerase is expressed in order to maintain telomere length from 

generation to generation (Blasco et al., 1997). Stem cells demonstrate proliferative capacity 

and therefore have to preserve telomere length through numerous cell divisions. In fact, 

human adult stem cells including skin, intestinal crypt, mammary epithelial, pancreas, 

neuronal, adrenal cortex, hematopoietic, kidney, and mesenchymal stem cells exhibit low 

levels of telomerase activity (Hiyama and Hiyama, 2007). Upon activation lymphocytes also 

develop telomerase activity, whereas naïve or memory cells exhibit very low telomerase 

activity.  

 

The discovery of the implication of CTCF in the transcriptional regulation of hTERT 

in part explained the mechanism of silencing of telomerase in most somatic cells and its 

reactivation in neoplastic cells (Renaud et al., 2005). In telomerase-negative cells, binding of 

CTCF to the hTERT 5’ regulatory region inhibits hTERT transcription and prevents 

telomerase activation. In telomerase-positive cells, CTCF cannot exert its inhibitory activity 

because of methylation-dependent and -independent mechanisms, and as a result hTERT 

transcription occurs. In this study, we identified new factors implicated in both methylation-

dependent and -independent mechanisms of the regulation of hTERT expression.  

First, we aimed to identify factors involved in the regulation of hTERT expression 

when methylation is present in the 5’ region of the gene, which is the case in most telomerase-

positive cancer cells. A particular pattern of methylation was shown to be crucial for 

establishing hTERT expression at a basal level, through prevention of CTCF inhibitor binding 

and hypomethylation of a short region of the CpG islands surrounded by highly methylated 

border regions (Renaud et al., 2007). Usually, CpG islands are unmethylated in normal cells 

(Weber et al., 2007), while hypermethylation of these sequences silences gene expression, for 

example of tumor suppressor genes as is found in cancer cells (Ehrlich, 2002). DNA 

methylation patterns are “interpreted” by the methyl-CpG binding domain family of proteins. 

The potential involvement of MBD proteins in the unconventional regulation of hTERT 

expression by methylation was therefore investigated. ChIP experiments and ChIP on chip 

analysis indicate that MBD2 specifically binds to the methylated CpG island of hTERT. 

MBD2 depletion by RNAi did not induce MeCP2 or MBD1 binding to this methylated region 

in HeLa cells, but increased hTERT expression. The specific transcriptional repression of 

hTERT through MBD2 was confirmed in breast, liver, and neuroblastoma cancer cell lines, 

and thus represents an additional element in the control of hTERT expression. We showed 

that repression of hTERT transcription by DNA methylation in most carcinoma cells is 
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mediated by one MBD protein, as for other genes like BRCA1, although the MBD2 affect is 

not sufficient to completely arrest hTERT expression. 

We decided to focus on methylation-independent mechanisms of telomerase activation 

through hTERT expression (Bechter et al., 2002; Widschwendter et al., 2004; Zinn et al., 

2007). We first characterized the methylation status of the hTERT gene in normal 

lymphocytes and lymphomas. The hTERT gene was found to be completely demethylated in 

telomerase-positive B cells. We also found that the B-cell specific transcription factor PAX5 

is necessary for activation of hTERT expression. PAX5 binding sites were identified by 

EMSA and ChIP experiments, from +110 to +137 bp and +489 to +516 bp downstream of the 

ATG translational start site, in close proximity to the CTCF binding sites. PAX5 and CTCF 

were shown to simultaneously bind to the hTERT gene. We determined that ectopic 

expression of PAX5 in telomerase-negative cells is sufficient to activate hTERT transcription 

whereas depletion of PAX5 by RNAi leads to repression of hTERT transcription in B cells. In 

summary, we demonstrated that hTERT transcription, in normal and neoplastic telomerase-

positive B cells, does not require DNA methylation, but is dependent on PAX5.  

Understanding how hTERT is activated in lymphoid cells is of interest because solid 

tumors are often invaded by inflammatory cells (Ruegg, 2006). Among them, B lymphocytes 

exhibit variable levels of telomerase activity depending on their developmental stage 

(Norrback et al., 1996; Hu et al., 1997; Igarashi and Sakaguchi, 1997; Weng et al., 1997). 

Their presence can lead to telomerase activity or hTERT expression in non tumor cell 

containing samples, which hampers their uses in cancer diagnosis (Cunningham et al., 1998; 

Yang et al., 1998; Dikmen et al., 2003). On the contrary, hTERT methylation is highly 

correlated with the presence of cancer cells and is not detected in telomerase-positive normal 

B cells. Therefore, we studied hTERT methylation as a potential cancer biomarker. The 

developed method for hTERT methylation detection relies on MS-HRM technology, which 

was improved by the addition of a TaqMan probe in order to attain a very low level of 

detection of methylation. Our results suggest that, hTERT methylation holds promise as a 

sensitive and highly specific biomarker for cancer cells, for example in the detection of 

leptomeningial metastasis in cerebrospinal fluids (CSF).  

 

In summary, we have investigated the implication of MBD2 and PAX5 in the 

regulation of hTERT transcription in telomerase-positive cells, and we revealed an interesting 

diagnostic approach that uses hTERT methylation as a cancer biomarker. These results 
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complete an earlier model elaborated in our laboratory and allow the development a general 

understanding of how hTERT transcription is regulated by CTCF. 

Our results suggest that different telomerase-positive cell types use different 

mechanisms to inhibit CTCF effects. In addition, normal and cancerous telomerase-positive 

cells from a same tissue origin apparently use the same mechanism to eliminate the inhibitory 

effect of CTCF. In germ cell tumors, BORIS has been directly involved in the activation of 

hTERT transcription through competition with CTCF binding, which alleviates the CTCF 

block (Renaud S., manuscript in preparation). BORIS is also expressed in normal germ cells 

and probably allows these cells to keep a very high level of telomerase, which is required to 

preserve the correct telomere length for the daughter cells. Likewise, preliminary results have 

shown that hTERT methylation also occurs in the stem cell niches located at the base of the 

colon crypt (unpublished data). Thus, it seems that epithelial stem cells and carcinoma cells 

both use DNA methylation to block the inhibitory effects of CTCF and allow hTERT 

transcription. We will explore this possibility in further studies. Furthermore, we still do not 

know if the cancer cells develop directly from stem or progenitor cells without loss of hTERT 

methylation or if a step of hTERT remethylation occurs in preneoplastic somatic cells. 

Finally, we identified PAX5 as a factor involved in the activation of hTERT transcription, in 

both normal and neoplastic telomerase-positive B cells.  

All these results are summarized in a multifaceted model of hTERT regulation by 

CTCF described in Figure 2.  
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Figure 2. Hypothetic model of hTERT transcriptional regulation. In normal cells, the hTERT gene is not 
methylated, thus CTCF can inhibit the transcription. In telomerase-positive normal or cancerous cells, CTCF 
inhibition is counteracted, thus hTERT expression is allowed. In germ cells, BORIS factor prevents the binding 
of CTCF, allowing transcription of hTERT. In epithelial cells, hTERT gene are hypermethylated, except in a 
region upstream of the transcription start site. The methylation releases CTCF and some transcription of hTERT 
occurs. In B cells, PAX5 factor probably inhibits the repressor effect of CTCF by an unknown mechanism. 
Green arrows represent the transcriptional start sites; empty circles represent unmethylated CpG sites and solid 
circles the methylated ones. 
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It is important to note that CTCF is not the only factor implicated in the complex 

regulation of hTERT: other factors are necessary to activate hTERT transcription. For 

instance, we have already observed that some ALT-telomerase-negative osteosarcoma cells 

do not express hTERT in spite of a profile of hTERT methylation that is permissive for 

hTERT transcription in other cell lines. hTERT CpG island methylation appears to be an 

important factor for hTERT activation, but not sufficient by itself. The hTERT promoter 

activation by the transcription factors present in these cells could be insufficient to counteract 

the inhibition imposed by binding of MBD2 to the methylated promoter (unpublished data). 

Another study suggests that cells activate ALT pathway because they lack some factors that 

enable the activation of hTERT transcription (Stewart, 2005). Likewise, around 50% of the 

immortalized cell lines used hTERT methylation to avoid CTCF binding, but other 

immortalized cells are unmethylated and do not express the BORIS factor. It would be 

interesting to investigate PAX5 expression or find other specific factors allowing hTERT 

expression in immortalized cells.  

 

To better explain the mechanism of our proposed model (Figure 2), further 

investigations are needed to understand how the binding of CTCF to the proximal hTERT 

exonic region can inhibit hTERT transcription. The association of CTCF with histone 

deacetylase suggests that the transcriptional repression might occur through chromatin 

condensation (Lutz et al., 2000). In the regulation of the H19/Igf2 imprinted region, CTCF 

emerges as a mediator of long-range interactions that form a special conformation to sequester 

a gene into a loop of silent chromatin. The Chromosome Conformation Capture (3C) assay 

has highlighted that on the unmethylated maternal allele of Igf2, CTCF associates to create a 

boundary that blocks the access of the enhancers to the promoters (Murrell et al., 2004; 

Kurukuti et al., 2006). Thus, CTCF might interact with the transcriptional machinery or with 

histone deacetylases to allow the inhibition of the hTERT promoter, and a mechanism by 

chromatin looping should be studied in order to detect if CTCF creates an inactive loop to 

block hTERT transcription.  

 

Several points remain to be clarified, such as how the pattern of methylation of 

hTERT CpG island is established during tumorigenesis, or how hTERT expression is 

regulated in other normal cells such as embryonic stem cells or in neuronal precursor cells 

which also express telomerase (Haik et al., 2000). 
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To further explore the regulation of hTERT in lymphoid cells, it would be necessary to 

study the relationship between CTCF and PAX5 and determine how PAX5 manages to block 

CTCF inhibition on the hTERT gene. As the function of PAX5 factor depends on its 

interactions with different other proteins, it would be of interest to identify partners in the 

complex associated with PAX5.  

 

We have demonstrated that in some T cell lymphomas regulation of hTERT is 

methylation-independent, without expression of PAX5 or BORIS factors (unpublished data). 

It might erase other tissue-specific factors that could prevent the effect of the CTCF repressor.  

 

The role of other PAX proteins in the regulation of hTERT expression has to be 

investigated more closely. PAX proteins are essential in early development for tissue 

specificity and their deregulated expression is correlated with different types of cancer 

(Muratovska et al., 2003; Robson et al., 2006). Pax gene expression is involved in enhancing 

survival and proliferation of cancer cells, as tumor decrease is induced after deletion of Pax 

gene. As PAX8 factor, which has been involved in the activation of hTERT and hTR 

promoters in glioma (Chen et al., 2008), other members of PAX5 family could influence 

hTERT transcription in a tissue-specific manner. For instance, PAX2, which is normally 

expressed during kidney development, is a sensitive and highly specific marker for renal cell 

carcinoma (Gokden et al., 2008). Implication of PAX2 in the hTERT regulation and its effect 

on CTCF has to be explored. Moreover, PAX5 was revealed to maintain the proliferative and 

tumorigenic phenotype of neuroblastoma (Baumann Kubetzko et al., 2004). Therefore, it 

would be interesting to determine the involvement of PAX5 in the regulation of hTERT in 

neuroblastoma, and determine the methylation profile of the 5’region of hTERT in this 

cancer. Recently, anti-PAX5 immune responses were revealed of interest in the targeting of 

many malignancies (Yan et al., 2008). Therefore, PAX5 is a new promising target for cancer 

immunotherapy. This supports the hypothesis that PAX transcription factors could play a key 

role in the regulation of telomerase activity and could be the center of new investigations in 

cancer therapy (Muratovska et al., 2003). 
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A larger study has to be performed to confirm the use of hTERT methylation as a 

specific cancer biomarker for leptomeningeal metastasis detection and to determine the 

sensibility and the specificity of this new marker.  

We studied hTERT methylation in cancer diagnosis in CSF, but the method could also 

be explored in other samples, including blood. It has been demonstrated that cell-free DNA 

circulating in blood (cirDNA) exhibits the same tumor specific alterations as the DNA from 

tumor tissues, such as mutation and promoter hypermethylation (Anker et al., 2003; 

Swaminathan and Butt, 2006; Fleischhacker and Schmidt, 2007). Alterations in DNA 

methylation patterns are the manifestation of an early and common dysregulation in 

tumorigenesis (Miyamoto and Ushijima, 2005). The applicability of methylation markers to 

cancer diagnosis and evaluation of treatment efficacy have already been evaluated in cirDNA 

for breast cancer (Laktionov et al., 2004; Martinez-Galan et al., 2008; Rykova et al., 2008). 

Methylation analysis of cirDNA samples from gastric cancer patients were performed on 

MGMT, p15, and hMLH1 genes, and allowed the detection of cancer with a sensitivity of 

75% and a specificity of 54% (Kolesnikova et al., 2008). The analysis of hTERT methylation 

in blood from cancer patients could help diagnose different kinds of cancer, and potentially 

could have a significant impact on screening, early diagnosis, and monitoring therapy of 

cancer.  

 
 

The hTERT regulatory model proposed here is the only one that takes into account the 

epigenetic status of the gene and some involved transcriptional factors. Transcriptional gene 

regulation study requires not only the one-by-one analysis of transcriptional factors, but also a 

general overview of epigenetic events. Our studies underline the fact that genetic and 

epigenetic regulations can never be dissociated. Our results allow a better understanding of 

the hTERT regulation in normal somatic cells and tumor cells, and can open the way to the 

elaboration of new diagnostic approaches and new anti-telomerase strategies in cancer 

treatment. 
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