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a b s t r a c t

In this paper, we consider the compound Poisson risk model with a threshold dividend
strategy and a dependence structure modeled by a Farlie–Gumbel–Morgenstern copula.
The integro-differential equations satisfied by the Gerber–Shiu functions and the expected
discounted dividend payments paid until ruin respectively are derived. Further, by deriving
and solving the renewal equations satisfied by the Gerber–Shiu functions and the expected
discounted dividend payments, we give the explicit formulas for them.

Crown Copyright© 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Dividend strategy for insurance risk model was initially introduced by De Finetti (1957) for a binomial model. From then
on, more general barrier strategies have been studied in several papers. See e.g., Lin et al. (2003), Gerber and Shiu (2006), Lin
and Pavlova (2006) and Yang and Zhang (2008) and references therein. In the ruin theory, the researchers aremainly focused
on the ruin and related quantities, such as the Gerber–Shiu function, and the expected discounted dividend payments paid
until ruin. Lin et al. (2003) investigate the Gerber–Shiu function for the classical risk model with a constant dividend barrier.
Later on, Lin and Pavlova (2006) study the Gerber–Shiu functions and related problems for the classical compound Poisson
risk model with a threshold dividend strategy. Recently, Yang and Zhang (2008) consider the Gerber–Shiu function in a
Sparre Andersen model with multi-layer dividend strategy. In Li et al. (2009), the authors give a closed form expression of
the expected discounted dividend function for a jump–diffusion risk process by studying a constructed fluid flow process.

In recent years, the risk model with dependence structure between inter-arrival times and claim sizes has got more and
more attention since the independence of them is not well applicable from the practical point of view. Albrecher and Boxma
(2004) propose an extension of the compound Poisson risk model where the distribution of a claim interval is controlled
by the previous claim size. Boudreault et al. (2006) consider a risk model with a reverse dependence structure where the
distribution of the next claim size depends on the last inter-arrival time. Later on, Landriault (2008) studies the risk model
with interclaim-dependent claim sizes and a constant dividendbarrier. Cossette et al. (2010) propose a dependence structure
between the claim amounts and the inter-arrival times which is introduced through a Farlie–Gumbel–Morgenstern (FGM)
copula, where the defective renewal equation for the Gerber–Shiu function is obtained and solved. Zhang and Yang (2011)
consider the Gerber–Shiu function in a perturbed riskmodel with the similar dependence structure as Cossette et al. (2010).
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In this paper, we consider the classical risk model with a threshold strategy and dependence between claim amounts
and inter-arrival timesmodeled by a FGM copula. Integro-differential equations for the Gerber–Shiu functions and expected
discounted dividend payments paid until ruin are first derived and then solved.

The rest of the paper is organized as follows. In Section 2, we give the description of the model. Integro-differential
equations satisfied by the Gerber–Shiu functions are derived and solved in Section 3. Finally, in Section 4, we discuss the
expected discounted dividend payments paid until ruin.

2. Model description

Consider the compound Poisson surplus process {U(t), t ≥ 0} given by

U(t) = u + ct − S(t), t ≥ 0, (1)

where u(≥0) is the insurer’s initial surplus, c(>0) is the rate of premium income, and S(t) =
N(t)

i=1 Xi denotes the
total amount of claims. {Xi}

∞

i=1 are independent and identically distributed (i.i.d) random variables (r.v.’s) with common
distribution function (df) denoted by FX andprobability density function (pdf) denoted by fX (with Laplace transformdenoted
by f ∗

X ), representing the successive claim amounts, and {N(t), t ≥ 0} is a Poisson process with positive parameter λ, which
is assumed to be independent of {Xi}

∞

i=1, representing the number of claims until time t . Define {Wj, j ≥ 1} to be a sequence
of inter-arrival times of the Poisson process. It is known that Wj, j ≥ 1, are i.i.d with common pdf p(t) = λe−λt . Obviously,
(Xj,Wj), j ≥ 1, are i.i.d random vectors. Further, the net profit condition is given by c > λE (X1).

In this paper, we consider a modified model of (1), i.e., we assume that the claim amounts {Xi}
∞

i=1 and the inter-arrival
times {Wj, j ≥ 1} are not independent but with a dependence structure modeled by a FGM copula. To be specific, recalling
that (e.g., Denuit et al. (2005)) the FGM copula is defined, for θ ∈ [−1, 1], by

CFGM
θ (u1, u2) = u1u2 + θu1u2(1 − u1)(1 − u2), u1, u2 ∈ [0, 1],

we assume that, for fixed j ≥ 1, the joint pdf of (Xj,Wj) is defined by

fX,W (x, t) = fX (x)λe−λt
+ θhX (x)(2λe−2λt

− λe−λt), x, t ≥ 0,

where hX (x) = (1 − 2FX (x))fX (x), x ≥ 0 (with its Laplace transform denoted by h∗

X ). Furthermore, we suppose that the
company pays dividends to its shareholders in the following way. When the surplus is below a threshold, say b(≥u), no
dividend is paid. However, when it exceeds b, dividends are paid continuously at a rate c − α (α ∈ [0, c] and α > λE (X1),
providing a positive safety loading factor), thus the net premium rate after dividend payments becomes α. Let {Ub(t), t ≥ 0}
denote the modified surplus process under this threshold dividend strategy described above, then it satisfies the following
stochastic differential equation:

dUb(t) =


cdt − dS(t), Ub(t) < b,
αdt − dS(t), Ub(t) ≥ b, t ≥ 0, (2)

with Ub(0) = u.
Let Tb = inf{t ≥ 0,Ub(t) < 0}(inf{∅} = ∞) be the time of ruin for the risk process (2). Define, for δ ≥ 0,

m(u; α; b) = E

e−δTbw(Ub(Tb−), |Ub(Tb)|)I(Tb < ∞)|Ub(0) = u


, u ≥ 0,

to be the Gerber–Shiu function, where w(·, ·) is a non-negative function, Ub(Tb−) and |Ub(Tb)| are two important non-
negative r.v.’s in connection with the time of ruin Tb, representing the surplus immediately before ruin and the deficit at
ruin, respectively, and I(·) denotes the indicator function.

It isworth noting thatm(u; 0; b) denotes theGerber–Shiu function of the riskmodel (2)with the constant barrier strategy
(i.e., when the surplus exceeds b, all the premiums are paid as dividends), andm(u; α; ∞) denotes the Gerber–Shiu function
of the risk model (2) with the dependence structure and without paying any dividend.

From the threshold dividend strategy described above, we see that the dividend distributing process, denoted by
{D(t), t ≥ 0}, satisfies the following stochastic differential equation:

dD(t) =


(c − α)dt, Ub(t) ≥ b,
0, Ub(t) < b, t ≥ 0.

Next, define, for δ ≥ 0,

v(u; b) = E
 Tb

0
e−δtdD(t)|Ub(0) = u


, u ≥ 0,

to be the expected discounted dividend payments until ruin.
For notational simplicity, in the sequel, we will use the following notation:

m(u; α; b) =


m1(u), 0 ≤ u < b,
m2(u), u ≥ b,


m(u) = m(u; 0; b),
m(u; ∞) = m(u; α; ∞),

v(u; b) =


v1(u), 0 ≤ u < b,
v2(u), u ≥ b. (3)

We note thatm(u; α; ∞) has nothing to do with α.



2000 Y. Shi et al. / Statistics and Probability Letters 83 (2013) 1998–2006

3. Analysis of the Gerber–Shiu functions

In this section, wewill investigate the Gerber–Shiu function of the risk process (2).We first give some preliminary results
for the Gerber–Shiu functionm(u), u ∈ [0, b], under a constant barrier strategy.

Let I and D denote, respectively, the identity and the differential operators. Using a similar approach as in Landriault
(2008), we derive thatm(u), u ∈ [0, b], satisfies the integro-differential equation:

λ + δ

c
I − D

 
2λ + δ

c
I − D


m(u) =

λ

c


2λ + δ

c
I − D


σ1(u) +

λθ

c


δ

c
I − D


σ2(u), 0 ≤ u ≤ b, (4)

with boundary conditions

m′(b) = 0, m′′(b) = −
λ

c
σ ′

1(b) −
λθ

c
σ ′

2(b),

where

σ1(u) =

 u

0
m(u − x)fX (x)dx + α1(u), σ2(u) =

 u

0
m(u − x)hX (x)dx + α2(u),

α1(u) =


∞

u
w(u, x − u)fX (x)dx, α2(u) =


∞

u
w(u, x − u)hX (x)dx.

From the theory of integro-differential equation, we conclude that the general solution of Eq. (4) can be given as
m(u) = m(u; ∞) + γ1y1(u) + γ2y2(u), 0 ≤ u ≤ b, (5)

where γ1 and γ2 are two constants, and y1(·) and y2(·) are two functions satisfying the integro-differential equation:
λ + δ

c
I − D

 
2λ + δ

c
I − D


yi(u) =

λ

c


2λ + δ

c
I − D

  u

0
yi(u − x)fX (x)dx

+
λθ

c


δ

c
I − D

  u

0
yi(u − x)hX (x)dx, i = 1, 2. (6)

Note thatm(u; ∞) has been discussed extensively in the literature, see e.g., Cossette et al. (2010).
Recall the Dickson–Hipp operator Tr , r ∈ C, defined by

Tr f (x) =


∞

x
e−r(u−x)f (u)du, x ≥ 0,

for an integrable real-valued function f . It is shown that
Tsf ′(b) = sTsf (b) − f (b)

where f ′(x) denotes the derivative of f (x) (see Li and Garrido (2004) for more on the properties of the Dickson–Hipp
operator).
By taking the Dickson–Hipp operator Ts(∗)(0) (multiply with e−ru and then take integral from 0 to ∞) on both sides of (6),
and then taking inverse of it, we see that yi(·), i = 1, 2, satisfy the following defective renewal functions:

yi(u) =

 u

0
yi(u − x)h(x)dx + ri(u), i = 1, 2, (7)

where

h(u) =
λ

c
Tρ2 fX (u) +

λθ

c
Tρ2hX (u) +

λ

c


2λ + δ

c
− ρ1


Tρ2Tρ1 fX (u) +

λθ

c


δ

c
− ρ1


Tρ2Tρ1hX (u),

r1(u) =
ρ1 −

3λ+2δ
c

ρ1 − ρ2
eρ1u +

ρ2 −
3λ+2δ

c

ρ2 − ρ1
eρ2u, r2(u) =

1
ρ1 − ρ2

eρ1u +
1

ρ2 − ρ1
eρ2u,

with ρ1, ρ2 being the two different positive real roots of the Lundberg’s generalized equation:

g(s) =


2λ + δ

c
− s

 
λ + δ

c
− s


−

λ

c
f ∗

X (s)

2λ + δ

c
− s


−

λθ

c
h∗

X (s)


δ

c
− s


= 0. (8)

See Cossette et al. (2010) for the analysis of the Lundberg’s generalized equation.
From the renewal equation theory, we can conclude that

yi(u) =

∞
n=0

 u

0
ri(u − x)dHn∗(x), i = 1, 2, (9)

where H(x) =
 x
0 h(u)du and Hn∗(x) denotes the n-fold convolution of H(x) with itself.

Next we give the integro-differential equations satisfied by the Gerber–Shiu functionm(u; α; b) (recall (3)).
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Theorem 3.1. The Gerber–Shiu function m(u; α; b) satisfies the following integro-differential equations:
λ + δ

c
I − D

 
2λ + δ

c
I − D


m1(u) =

λ

c


2λ + δ

c
I − D


π1(u) +

λθ

c


δ

c
I − D


π2(u), 0 ≤ u < b, (10)

and 
λ + δ

α
I − D

 
2λ + δ

α
I − D


m2(u) =

λ

α


2λ + δ

α
I − D


×

 u−b

0
m2(u − x)fX (x)dx +

 u

u−b
m1(u − x)fX (x)dx +


∞

u
ω(u, x − u)fX (x)dx


+

λθ

α


δ

α
I − D


×

 u−b

0
m2(u − x)hX (x)dx +

 u

u−b
m1(u − x)hX (x)dx +


∞

u
ω(u, x − u)hX (x)dx


, u ≥ b, (11)

with boundary condition

m1(b) = m2(b), (12)

where

π1(u) =

 u

0
m1(u − x)fX (x)dx + β1(u), β1(u) =


∞

u
ω(u, x − u)fX (x)dx, (13)

π2(u) =

 u

0
m1(u − x)hX (x)dx + β2(u), β2(u) =


∞

u
ω(u, x − u)hX (x)dx. (14)

Proof. By conditioning on the time and the amount of the first claim, we have

m1(u) =

 b−u
c

0

 u+ct

0
e−δtm(u + ct − x; α; b)


fX (x)λe−λt

+ θhX (x)

2λe−2λt

− λe−λt dxdt
+

 b−u
c

0


∞

u+ct
e−δtω(u + ct, x − u − ct) ×


fX (x)λe−λt

+ θhX (x)

2λe−2λt

− λe−λt dxdt
+


∞

b−u
c

 b+α

t− b−u

c


0

e−δtm

b + α


t −

b − u
c


− x; α; b


×


fX (x)λe−λt

+ θhX (x)(2λe−2λt
− λe−λt)


dxdt

+


∞

b−u
c


∞

b+α

t− b−u

c

 e−δtω


b + α


t −

b − u
c


; x − b − α


t −

b − u
c


×


fX (x)λe−λt

+ θhX (x)(2λe−2λt
− λe−λt)


dxdt. (15)

Eq. (15) can be rewritten as

m1(u) = λ

 b−u
c

0
e−(λ+δ)t(π1(u + ct) − θπ2(u + ct))dt + 2λθ

 b−u
c

0
e−2(λ+δ)tπ2(u + ct)dt

+ λ


∞

b−u
c

e−(λ+δ)t


π1


b + α


t −

b − u
c


− θπ2


b + α


t −

b − u
c


dt

+ 2λθ


∞

b−u
c

e−2(λ+δ)tπ2


b + α


t −

b − u
c


dt, (16)

where π1(u) and π2(u) are given in Eqs. (13) and (14), respectively.
Letting u + ct = v in Eq. (16), we further have

m1(u) =
λ

c

 b

u
e−

(λ+δ)(v−u)
c (π1(v) − θπ2(v))dv +

2λθ

c

 b

u
e−

(2λ+δ)(v−u)
c π2(v)dv

+
λ

c


∞

b
e−

(λ+δ)(v−u)
c


π1


b + α


v − b

c


− θπ2


b + α


v − b

c


dv

+
2λθ

c


∞

b
e−

(2λ+δ)(v−u)
c π2


b + α


v − b

c


dv. (17)
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Differentiating Eq. (17) with respect to (w.r.t.) u leads to

m′

1(u) =
λ

c
λ + δ

c

 b

u
e−

(λ+δ)(v−u)
c (π1(v) − θπ2(v))dv +

2λθ

c
2λ + δ

c

 b

u
e−

(2λ+δ)(v−u)
c π2(v)dv

+
λ

c
λ + δ

c


∞

b
e−

(λ+δ)(v−u)
c


π1


b + α


v − b

c


− θπ2


b + α


v − b

c


dv

+
2λθ

c
2λ + δ

c


∞

b
e−

(2λ+δ)(v−u)
c π2


b + α


v − b

c


dv −

λ

c
π1(u) −

λθ

c
π2(u). (18)

It follows easily from the last two equations that
λ + δ

c
I − D


m1(u) = −

λ

c
2λθ

c

 b

u
e−

(2λ+δ)(v−u)
c π2(v)dv −

λ

c
2λθ

c

×


∞

b
e−

(2λ+δ)(v−u)
c π2


b + α


v − b

c


dv +

λ

c
π1(u) +

λθ

c
π2(u). (19)

Differentiating Eq. (19) w.r.t. u yields

D


λ + δ

c
I − D


m1(u) = −

2λ + δ

c
λ

c
2λθ

c

 b

u
e−

(2λ+δ)(v−u)
c π2(v)dv +

λ

c
π ′

1(u) +
λθ

c
π ′

2(u) +
λ

c
2λθ

c
π2(u)

−
2λ + δ

c
λ

c
2λθ

c


∞

b
e−

(2λ+δ)(v−u)
c π2


b + α


v − b

c


dv. (20)

Consequently, we have from Eqs. (19) and (20) that Eq. (10) is established.
Similarly, we obtain that

m2(u) =


∞

0

 u+αt

0
e−δtm(u + αt − x; b)


fX (x)λe−λt

+ θhX (x)

2λe−2λt

− λe−λt dxdt
+


∞

0


∞

u+αt
ω(u + αt, x − u − αt)


fX (x)λe−λt

+ θhX (x)

2λe−2λt

− λe−λt dxdt.
Thus, Eq. (11) can be proved by using the same arguments as Eq. (10). The proof is completed. �

Next let us recall the divided differences of a function hwith respect to distinct numbers s, r1, r2, . . . , defined recursively
as follows:

h[r1, s] =
h(s) − h(r1)

s − r1
, h[r1, r2, s] =

h[r1, s] − h[r1, r2]
s − r2

h[r1, r2, r3, s] =
h[r1, r2, s]h[r1, r2, r3]

s − r3
,

and so on. The following theorem is our main result of this section.

Theorem 3.2. The Gerber–Shiu function m(u; α; b) is given by

m(u; α; b) =


m(u; ∞) + ξ1y1(u) + ξ2y2(u), 0 ≤ u < b,
k1(u) + ξ1k2(u) + ξ2k3(u), u ≥ b, (21)

where ξ1, ξ2 are two constants determined in Lemma 3.1 given below, yi(·), i = 1, 2, are the same as in (9),

k1(u) =

∞
n=0

 u−b

0
A(u − x)dHn∗

α (x) +

 u−b

0
dHn∗

α (x)
 b

0
m(y; ∞)R(u − x − y)dy


,

k2(u) =

∞
n=0

 u−b

0
dHn∗

α (x)
 b

0
y1(y)R(u − x − y)dy,

k3(u) =

∞
n=0

 u−b

0
dHn∗

α (x)
 b

0
y2(y)R(u − x − y)dy,

hα(u) =
λ

α
Tρ4 fX (u) +

λθ

α
Tρ4hX (u) +

λ

α


2λ + δ

α
− ρ3


Tρ4Tρ3 fX (u) +

λθ

α


δ

α
− ρ3


Tρ4Tρ3hX (u),
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R(u) =
λ

α


2λ + δ

α
− ρ3


Tρ3Tρ4 fX (u) +

λ

α
Tρ4 fX (u) +

λθ

α


δ

α
− ρ3


Tρ3Tρ4hX (u) +

λθ

α
Tρ4hX (u),

A(u) = Tρ3Tρ4


λ

α

2λ + δ

α
β1(u) −

λ

α
β ′

1(u) +
λθ

α

δ

α
β2(u) −

λθ

α
β ′

2(u)


(u), Hα(u) =

 u

0
hα(x)dx,

and Hn∗
α denotes n-fold convolution of Hα(u) with itself.

Proof. We note that Eq. (10) coincides with Eq. (4). Consequently, the expression of m1(u), 0 ≤ u < b, follows easily. Next
we focus onm2(u), u ≥ b.

Taking the Dickson–Hipp operator Ts(∗)(b) on both sides of Eq. (11), we obtain

−m′

2(b) + s(sTsm2(b) − m2(b)) −
3λ + 2δ

α
(sTsm2(b) − m2(b)) +

λ + δ

α

2λ + δ

α
Tsm2(b)

=
λ

α

2λ + δ

α


f ∗

X (s)Tsm2(b) +

 b

0
m1(y)TsfX (b − y)dy + Tsβ1(b)


−

λ

α


sf ∗

X (s)Tsm2(b) + s
 b

0
m1(y)TsfX (b − y)dy


−

λ

α


−

 b

0
m1(b − y)fX (x)dy + Tsβ ′

1(b)


+
λθ

α

δ

α


h∗

X (s)Tsm2(b) +

 b

0
m1(y)TshX (b − y)dy + Tsβ2(b)


−

λθ

α


sh∗

X (s)Tsm2(b) + s
 b

0
m1(y)TshX (b − y)dy


−

λθ

α


−

 b

0
m1(y)hX (b − y)dy + Tsβ ′

2(b)


,

which can be rewritten as
2λ + δ

α
− s

 
λ + δ

α
− s


−

λ

α
f ∗

X (s)

2λ + δ

α
− s


−

λθ

α
h∗

X (s)


δ

α
− s


Tsm2(b)

=
λ

α


2λ + δ

α
− s

  b

0
m1(y)TsfX (b − y)dy +

λθ

α


δ

α
− s

  b

0
m1(y)TshX (b − y)dy

+
λ

α

 b

0
m1(y)fX (b − y)dy +

λθ

α

 b

0
m1(y)hX (b − y)dy + m′

2(b)

+


s −

3λ + 2δ
α


m2(b) +

λ

α

2λ + δ

α
Tsβ1(b) −

λ

α
Tsβ ′

1(b) +
λθ

α

δ

α
Tsβ2(b) −

λθ

α
Tsβ ′

2(b). (22)

It is observed that g0(s) := ( 2λ+δ
α

− s)( λ+δ
α

− s) −
λ
α
f ∗

X (s)( 2λ+δ
α

− s) −
λθ
α
h∗

X (s)(
δ
α

− s) has the same form as g(s) in (8), and
thus it has also two distinct positive roots, denoted by ρ3 and ρ4, respectively.

Considering the property of Dickson–Hipp operator and dividend difference operator, we derive that
2λ + δ

α
− s

 
λ + δ

α
− s


−

λ

α
f ∗

X (s)

2λ + δ

α
− s


−

λθ

α
h∗

X (s)


δ

α
− s


Tsm2(b)[s, ρ3, ρ4]

= (1 − Tshα(0))Tsm2(b)
λ

α

 b

0
m1(y)fX (b − y)dy +

λθ

α

 b

0
m1(y)hX (b − y)dy + m′

2(b) +


s −

3λ + 2δ
α


m2(b)


[s, ρ1, ρ2] = 0

λ

α

2λ + δ

α
Tsβ1(b) −

λ

α
Tsβ ′

1(b) +
λθ

α

δ

α
Tsβ2(b) −

λθ

α
Tsβ ′

2(b)


[s, ρ1, ρ2] = TsA(b)
λ

α


2λ + δ

α
− s

  b

0
m1(y)TsfX (b − y)dy +

λθ

α


δ

α
− s

  b

0
m1(y)TshX (b − y)dy


[s, ρ3, ρ4]

=
λ

α


2λ + δ

α
− ρ3

  b

0
m1(y)TsTρ3Tρ4 fX (b − y)dy +

λ

α

 b

0
m1(y)TsTρ4 fX (b − y)dy

+
λθ

α


δ

α
− ρ3

  b

0
m1(y)TsTρ3Tρ4hX (b − y)dy +

λθ

α

 b

0
m1(y)TsTρ4hX (b − y)dy

=

 b

0
m1(y)TsR(b − y)dy.
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Consequently, taking divided difference operator with respect to ρ3, ρ4 on both sides of Eq. (22) leads to

(1 − Tshα(0))Tsm2(b) =

 b

0
m1(y)TsR(b − y)dy + TsA(b).

Taking the inverse of the Dickson–Hipp operator gives

m2(u) =

 u−b

0
m2(u − y)hα(y)dy +

 u

u−b
m1(u − y)R(y)dy + A(u), u ≥ b. (23)

From renewal equation theory, we conclude that

m2(u) =

∞
n=0

 u−b

0

 b

0
m1(y)R(u − x − y)dy + A(u − x)


dHn∗

α (x), u > b.

Inserting the expression ofm1(u) given in Eq. (21) into equation above, we have that

m2(u) = k1(u) + ξ1k2(u) + ξ2k3(u), u ≥ b,

and thus the proof is complete. �

In the next lemma, we give system of linear equations satisfied by the constants ξi, i = 1, 2, appearing in Eq. (21).

Lemma 3.1. The constants ξ1 and ξ2 satisfy the following system of linear equations:

ξ1


λ

α
c2


λ + δ

α


−

λθ

α
c5


λ + δ

α


+

2λθ

α
c5


2λ + δ

α


− y1(b)


+ ξ2


λ

α
c3


λ + δ

α


−

λθ

α
c6


λ + δ

α


+

2λθ

α
c6


2λ + δ

α


− y2(b)


= m(b; ∞) −

λ

α
c1


λ + δ

α


+

λθ

α
c4


λ + δ

α


−

2λθ

α
c4


2λ + δ

α


, (24)

ξ1 (y1(b) − (y1 ∗ R)(b)) + ξ2 (y2(b) − (y2 ∗ R)(b)) = −m(b; ∞) + (m(∗; ∞) ∗ R)(b) + A(b) (25)

where the functions R(·), A(·), ki(·), i = 1, 2, 3, are given as in Theorem 3.2,

c1(a) = Taβ1(b) +

 b

0
m(x; ∞)TafX (b − x)dx, +


∞

b
e−a(u−b)du

 u

b
k1(x)fX (u − x)dx,

c2(a) =

 b

0
y1(x)TafX (b − x)dx +


∞

b
e−a(u−b)du

 u

b
k2(x)fX (u − x)dx,

c3(a) =

 b

0
y2(x)TafX (b − x)dx +


∞

b
e−a(u−b)du

 u

b
k3(x)fX (u − x)dx,

c4(a) = Taβ2(b) +

 b

0
m(x; ∞)TahX (b − x)dx, +


∞

b
e−a(u−b)du

 u

b
k1(x)hX (u − x)dx,

c5(a) =

 b

0
y1(x)TahX (b − x)dx +


∞

b
e−a(u−b)du

 u

b
k2(x)hX (u − x)dx,

c6(a) =

 b

0
y2(x)TahX (b − x)dx +


∞

b
e−a(u−b)du

 u

b
k3(x)hX (u − x)dx,

and (yi ∗ R)(b) =
 b
0 yi(b − x)R(x)dx, i = 1, 2.

Proof. Taking Dickson–Hipp operator Ta(∗)(b) for π1(u) given in (13), we have that
∞

b
e−a(u−b)π1(u)du =


∞

b
e−a(u−b)

 u

0
m(x; b)fX (u − x)dx + β1(u)


du

=


∞

b
e−a(u−b)

 u

0
m(x; b)fX (u − x)dxdu + Taβ1(b)

=


∞

b
e−a(u−b)

 b

0
m1(x)fX (u − x)dx +

 u

b
m2(x)fX (u − x)dx


du + Taβ1(b).
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Inserting the expressions ofm1(u) and m2(u) given in Theorem 3.2 into the last equation, we obtain
∞

b
e−a(u−b)π1(u)du = c1(a) + c2(a)ξ1 + c3(a)ξ2. (26)

Similarly, we derive that
∞

b
e−a(u−b)π2(u)du = c4(a) + c5(a)ξ1 + c6(a)ξ2. (27)

Considering Eq. (17) for u = b, we have

m1(b) =
λ

c


∞

b
e−

(λ+δ)(v−b)
c


π1


b + α


v − b

c


− θπ2


b + α


v − b

c


dv

+
2λθ

c


∞

b
e−

(2λ+δ)(v−b)
c π2


b + α


b + α


v − b

c


dv. (28)

Let b + α( v−b
c ) = u, then Eq. (28) can be rewritten as

m1(b) =
λ

α


∞

b
e−

(λ+δ)(u−b)
α (π1(u) − θπ2(u))du +

2λθ

α


∞

b
e−

(2λ+δ)(u−b)
α π2(u)du. (29)

Inserting Eqs. (26)–(27) and the expressions of m1(u) given in Theorem 3.2 into Eq. (29), we conclude that Eq. (24) is valid.
Further, Eq. (25) follows from Eq. (12), Eq. (23) and the expressions ofm1(u). Therefore the proof is complete. �

4. Expected discounted dividend payments

In this section, by the similar approach, we obtain an analytical expression for expected discounted dividend payments
with a threshold dividend strategy and we only give the results here.

Theorem 4.1. The expected discounted dividend payments v(u; b) satisfy the following equations:
λ + δ

c
I − D

 
2λ + δ

c
I − D


v1(u) =

λ

c


2λ + δ

c
I − D


π3(u) +

λθ

c


δ

c
I − D


π4(u), 0 ≤ u ≤ b,

and 
λ + δ

α
I − D

 
2λ + δ

α
I − D


v2(u)

=
λ

α


2λ + δ

α
I − D

  u−b

0
v2(u − x)fX (x)dx +

 u

u−b
v1(u − x)fX (x)dx


+

λθ

α


δ

α
I − D

  u−b

0
v2(u − x)hX (x)dx +

 u

u−b
v1(u − x)hX (x)dx


+

c − α

α

2λ + δ

α
, u > b,

with boundary condition

v1(b) = v2(b),

where

π3(u) =

 u

0
v(u − x; b)fX (x)dx, π4(u) =

 u

0
v(u − x; b)hX (x)dx.

Theorem 4.2. The expected discounted dividend payments v(u; b) are given by

v(u; b) =


η1y1(u) + η2y2(u), 0 ≤ u ≤ b,
k0(u) + η1k2(u) + η2k3(u), u ≥ b,

where η1, η2 are two constants determined in Lemma 4.1 given below, yi(·), i = 1, 2, are given in Eq. (9), ki(·), i = 2, 3, can be
found in Theorem 3.2 and

k0(u) =

∞
n=0

c − α

α

2λ + δ

α

1
ρ3ρ4

Hn∗
α (u − b).
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Lemma 4.1. The constants η1 and η2 appearing in Theorem 4.2 satisfy the following system of linear equations:

η1


λ

α
c2


λ + δ

α


−

λθ

α
c5


λ + δ

α


+

2λθ

α
c5


2λ + δ

α


− y1(b)


+ η2


λ

α
c3


λ + δ

α


−

λθ

α
c6


λ + δ

α


+

2λθ

α
c6


2λ + δ

α


− y2(b)


= −

λ

α
c0


λ + δ

α


+

λθ

α
c7


λ + δ

α


−

2λθ

α
c7


2λ + δ

α


,

η1 (y1(b) − (y1 ∗ R)(b)) + η2 (y2(b) − (y2 ∗ R)(b)) =
c − α

α

2λ + δ

α

1
ρ3ρ4

,

where the functions R(·), ki(·), i = 2, 3 are given as in Theorem 3.2, k0(·) is given in Theorem 4.2, ci(·), i = 2, 3, 5, 6, can be
found in Lemma 3.1 and

c0(a) =


∞

b
e−a(u−b)du

 u

b
k0(x)fX (u − x)dx, c7(a) =


∞

b
e−a(u−b)du

 u

b
k0(x)hX (u − x)dx.
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