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Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured,

using conventional models can cause wrong inference about population parameters. When the missing data process relates to

the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a

shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a

logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made

using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are

missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of

Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that

genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude

of both natural selection and additive genetic variance.

KEY WORDS: Animal model, missing not at random, sex-linked inheritance, shared parameter model, Tyto alba.

It is emphasized in a recent review that a number of key issues

in ecology and evolutionary biology can be only tackled using

data collected in populations over many years (Clutton-Brock and

Sheldon 2010). For instance, long-term studies in the common tern

(Sterna hirundo) have identified traits that are naturally selected

in an age-specific manner (e.g., Rebke et al. 2010), which can then

explain patterns of population dynamics (e.g., Ezard et al. 2007).

Selection is typically exerted at different intensities throughout

life, and identifying the life stages when selection is maximally

exerted on a given phenotype will bring essential information on

its adaptive function. This is however not an easy task because

gathering information at all life stages can be logistically difficult.

This is a problem because failing to collect data in the life stage

∗These are senior authors of this work.

when selection is maximally exerted on a given phenotype may

give the wrong impression that this trait is not or only weakly

selected. Data can be missing either because the entire population

cannot be momentarily monitored or because animals are counter-

selected even before the trait of interest can be measured. A very

important question to answer is whether a specific trait is under

(indirect) selection even before it is expressed. We here present

quantitative genetic methods that allow us to identify whether

the missing individuals from a long-term dataset with a known

pedigree are not a random sample of the population.

Quantitative genetic studies of wild populations and domestic

breeds often suffer from a considerable amount of missing data

for a multitude of reasons, including that some individuals escape

capture, migrate out of the study area, or die before the trait is

measured (Nakagawa and Freckleton 2008). In animal and plant
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breeding it is often the case that only a subset of individuals

selected for reproduction or cultivation are measured (Im et al.

1989; Piepho and Mohring 2006). Also in quantitative genetic

analysis in medical research, missing data are often a challenge

(e.g., Verbeke and Molenberghs 2000; Bechger et al. 2002).

Current methods used for estimating relevant genetic param-

eters are mixed models often called animal models (Henderson

1975; Lynch and Walsh 1998). These models implicitly assume

that the observed sample is a random and representative sam-

ple of the population under study. However, missing data may

compromise this randomization justification, leading to biased

inferences. How missing data affect statistical inference depends

on why and how the data are missing, that is, the nature of the

missing data process. Little is, however, known about the poten-

tial effects of missing data on the bias of quantitative genetic

estimates, in particular for wild populations.

According to Little and Rubin (2002) missing data theory

distinguishes between “missing completely at random” (MCAR),

“missing at random” (MAR), and “missing not at random”

(MNAR). When missing data are MCAR, the missing data pro-

cess is independent of any observed or unobserved data, that is, the

missing observations are purely a random sample of the potential

full sample. Accidentally deleting an observation is an example

of the MCAR mechanism. Given that the observed data provide

sufficient power to the analysis, statistical inferences should be

unbiased under MCAR. However, MCAR is a strong and rarely

realistic ecological assumption (Hadfield 2008; Nakagawa and

Freckleton 2008). A less-stringent assumption is that the data are

MAR, in which the missing data process may depend on observed

rather than unobserved data. Any systematic pattern of missing-

ness can be mediated by the observed data under MAR, and thus

conditional on observed data the missing data process is random.

Effective computational methods for handling missing data un-

der the MAR assumption are well established, such as multiple

imputations or the EM algorithm (Little and Rubin 2002). In the

Bayesian or likelihood setting, the missing data process is said

to be “ignorable” under MCAR and MAR (Im et al. 1989; Little

and Rubin 2002). This means that a valid inference can be ob-

tained based on the model for the observed data only, ignoring

the missing data process. Finally, when neither the assumption of

MCAR or MAR holds the missing data are MNAR, where even

after accounting for all available observed information the missing

data process still depends on the missing observations themselves,

perhaps in addition to observed data. The missing data process

is in general “nonignorable” under MNAR and a valid inference

would require the missing data process to be explicitly modeled

and incorporated into the modeling procedure.

Missing data in evolutionary studies might be particularly

important when the reason for missingness is that individuals die

before a trait is expressed or measured. These individuals are

referred to as the “invisible fraction” (Grafen 1988) and will of-

ten constitute a substantial amount of the missing data. When

this mortality is nonrandom in relation to the trait of interest,

for example, lighter individuals have higher mortality than heav-

ier individuals, missing data are MNAR in most cases (Hadfield

2008). As the probability of death before the trait is expressed, and

hence missingness, depends on the phenotypic value of the trait,

it would imply that viability selection acts directly on the focal

trait or indirectly via genetically correlated traits. Moreover, the

distributional properties of the observed sample will differ from

those of the potential full sample, leading to biased inferences.

This is illustrated in Figure 1 with an example of parent–offspring

regression on height data, where the parameter of interest is the

heritability given by the slope of the regression line. The left

panel shows the regression on the complete data with no missing

values. In the middle panel, we deleted 32 observations at ran-

dom. The regression line and hence the heritability is only slightly

changed and asymptotically the heritability estimate is equal to

that from the full dataset. The right panel shows the regression on

the dataset after we deleted data on the 32 tallest offspring. The

reason for missingness is directly linked to the response variable

itself (i.e., the height of offspring), and the data are MNAR. It is

obvious from the figure that the estimated heritability is signifi-

cantly downward biased under MNAR. If data for the offspring of

the 32 tallest parents were missing, but the height of the parents

were known, we would have an example of MAR.

Unfortunately, it is not possible to tell from the data at hand

whether the missing data process is ignorable or nonignorable

(Little and Rubin 2002). A general approach to account for non-

ignorable missing data is to base inferences on a joint model of

both the data and missing data process. Joint modeling approaches

for handling nonignorable missing data are frequently appearing

in biostatistics (Diggle and Kenward 1994; Little 1995; Verbeke

and Molenberghs 2000; Bechger et al. 2002). Based on the ideas

presented in such literature, we propose a joint modeling approach

for the phenotypic data and missing data process to accommodate

potential nonignorable missing data due to the invisible fraction

(e.g., caused by viability selection before age of measurement).

For heritable traits, at least some information on the missing ob-

servations can be recovered from observed phenotypic values of

their relatives, which will be reflected in the breeding values.

We suggest a shared parameter model (SPM) (e.g., Vonesh et al.

2006), which assumes conditional independence between the data

model and missing data process given the breeding values.

In the present study, we first explore how inferences vary

under assumptions of MAR (ignoring the missing data process)

and MNAR (joint modeling), for various missing data processes

and different heritabilities. Next we consider a phenotypic trait

in the barn owl (Tyto alba), the diameter of black plumage

spots displayed on the ventral body side, that is highly heritable
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Figure 1. Results from illustrative parent–offspring regression, with no missing data (left), missing completely at random (MCAR) data

(middle), and missing not at random (MNAR) data (right). Solid lines give regression for available data. In MCAR and MNAR plots, missing

data are indicated with “x,” and dashed lines indicate the result based on all data.

(h2 = 0.82) and for which the expression is only weakly sensi-

tive to environmental factors (Roulin and Djikstra 2003). Hence,

additive genetic variance can be accurately estimated, provid-

ing a unique opportunity to evaluate whether our joint modeling

approach to account for missing data is indeed efficient when ap-

plied to data collected by evolutionary biologists. The barn owl

pedigree is also used for the simulation study.

The key reason for considering the barn owl is that we previ-

ously showed that the size of black spots is directionally selected,

with females displaying larger black spots having a survival ad-

vantage in the first year of life. As a consequence of this selection,

we could demonstrate microevolution with the mean spot size hav-

ing significantly increased in our population over the course of

12 years (Roulin et al. 2010). We thus ask the question of whether

mortality among nestling females (i.e., before these young pro-

duce feathers and hence the black spots) is random with respect to

spot size. If selection is already acting before females produce the

black spots, it would indicate that at least at that stage selection is

acting on genetically correlated traits.

We take a Bayesian approach to inference, which can be

performed efficiently and accurately without simulations using

integrated nested Laplace approximations (INLAs). The INLA

methodology was introduced by Rue and Martino (2006) and

Rue et al. (2009), and provides a fast and deterministic alternative

to the traditional Markov chain Monte Carlo (MCMC) methods.

INLA has proven very efficient in the modeling of Gaussian traits

(Steinsland and Jensen 2010; Holand et al. 2013) and it allows us

to draw inferences from the joint model in a reasonable amount

of time.

The rest of the article is organized as follows. The next section

presents the barn owl system used and introduces the Bayesian

animal model framework. Furthermore, our joint model formula-

tion is specified, the connection between our model and a bivarite

model of a focal trait and missingness is established, and a joint

model is set up for the barn owl system. Results from the sim-

ulation study and from applying our joint model for barn owls

are presented in the subsequent section . In the following section,

the method and our findings are discussed. Then conclusions are

drawn. Data for the barn owl system, R-code, and additional tables

and figures are given in Supporting Information.

Methods and Materials
FIELD DATA

The barn owl is a medium-sized nocturnal bird that preys upon

small mammals captured in the open landscape. On ventral body

side its plumage varies both within and among populations, as

well as within families, with respect to pheomelanin-based col-

oration (variation from white to dark reddish) and number and

size of black eumelanic spots located at the tip of feathers. These

traits are sexually dimorphic with females being on average darker

EVOLUTION JUNE 2014 1 7 3 7



INGELIN STEINSLAND ET AL.

reddish and displaying on average more and larger black spots.

Variation in the size of eumelanic spots is particularly interest-

ing as it was shown to covary with a number of physiological,

morphological, and behavioral traits (Roulin and Ducrest 2011;

Van den Brink et al. 2012). We have also recently shown in our

Swiss population that females are positively selected for large

spots (Roulin et al. 2010). Here we use data collected between

1996 and 2007 (a subset of the dataset in Roulin et al. 2010,

as we have removed all owls that hatched before 1996) on the

size of eumelanic spots of individuals breeding in 110 nest boxes

put up in barns over the study area—a plain covering 190 km2.

The pedigree was constructed by assuming that the social par-

ents were the biological parents, as extra-pair paternity is rare in

the barn owl (Roulin et al. 2004). Breeding females were dis-

tinguished from males by the presence of a brood patch, and

sex of each nestling was determined from blood cell DNA using

sex-specific molecular markers. For a more thorough description

of the fieldwork and methods, see, for example, Roulin et al.

(2010).

The pedigree used in this work consists of N = 2999 barn

owls, of which 1550 were females and 1449 were males, and

where sex and hatch year were known for all individuals. Spot

measurements are available for 2476 owls (1293 females and

1183 males), that is, 17% are missing. The barn owls fledge at an

age of 55–60 days, while the plumage spots are expressed after

40–45 days. Nest boxes are visited frequently during the breeding

season, and we have spot measurements for all owls that fledged,

except in year 2000 when plumage spots were not measured.

Hence for the 298 owls that hatched in 2000 we neither have data

on spot diameter nor do we know whether they survived until they

fledged. For owls that hatched in the years other than 2000, 225

of 2701 are missing, that is, 8% are missing. Most of these died

before they were 20-day old because of brood reduction due to

food shortage. The spot diameter data were standardized to have

zero mean and unit variance.

BAYESIAN ANIMAL MODELS

A popular approach to quantitative genetic analysis for do-

mestic and wild populations is the use of generalized linear

mixed models, so-called “animal models” (Henderson 1975;

Lynch and Walsh 1998; Sorensen and Gianola 2002; Kruuk

2004). The animal model links phenotypic values to dif-

ferent genetic and environmental effects through information

from large pedigrees, to estimate important quantitative genetic

parameters.

The scope of this article is restricted to analysis of a single

trait at a time, in which case the vector of phenotypic values y of

all individuals in a population can be written as

y = Bβ + Xa + ε, (1)

where β is the vector containing group-level effects or “fixed

effects,” and a is the vector of additive genetic effects, called

breeding values. ε is a vector of random individual effects, and B
and X are known incidence matrices.

Bayesian inference from animal models requires the likeli-

hood for the phenotypic values as well as prior distributions for the

latent variables and hyperparameters to be defined. Continuous

traits are expected to be approximately Gaussian distributed and

generated from the following conditional probability distribution:

y|β, a,σ2
ε ∼ N

(
Bβ + Xa, Iσ2

ε

)
, (2)

where σ2
ε is the variance of random individual environmental ef-

fects and I denotes the identity matrix.

Animal models are so-called “latent Gaussian models,” in

which the latent variables (β, a, ε) are assigned Gaussian prior

distributions. The random individual effects ε are assumed inde-

pendent between observations, with zero mean.

ε ∼ N
(
0, Iσ2

ε

)
. (3)

The variance of ε is often a parameter of direct interest and we let

σ2
ε enter the prior as an unknown hyperparameter.

The breeding values a are also assigned zero mean Gaussian

prior, and have a covariance structure corresponding to how indi-

viduals within the population are related (e.g., Lynch and Walsh

1998)

a ∼ N
(
0, Aσ2

a

)
. (4)

Here, A is the additive genetic relationship matrix and

σ2
a is the additive genetic variance, which is an unknown

hyperparameter.

Finally, each group-level effect (e.g., sex and hatch year)

are assumed independent and given zero mean Gaussian prior

distribution. The variance of the group-level effects are often not

of explicit interest, at least not in the present work, so we set the

variance to a fixed value to ease computational efforts. To reflect

vague prior knowledge about the group-level effects, the variance

is set to a high value and the prior becomes

β ∼ N (0, I103). (5)

To set up the full Bayesian model, the priors for the hyper-

parameters (σ2
ε and σ2

a) must be specified. We use independent

inverse Gamma priors with known parameters for the variance

components

σ2
ε ∼ IG(aε, bε)

σ2
a ∼ IG(aa, ba). (6)
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Bayesian animal models are considered efficient in dealing with

missing data as the missing data are treated as random variables

and do not require deletion or imputation of incomplete cases

(O’Hara et al. 2008; Steinsland and Jensen 2010). However, an-

imal models implicitly assume any missing data are MCAR or

MAR. To account for potential nonrandom (directional) selective

processes resulting in missing data, we propose to use a joint mod-

eling approach in which the missingness is considered informative

(part of the data) and modeled together with the phenotypic trait.

JOINT MODEL FORMULATION

Consider a population of N individuals (i = 1, . . . , N ) and let

y = {yi } be the vector of potential phenotypic measurements for

the population, in the sense that some measurements may be miss-

ing. Moreover, let m = {mi } denote the vector of missing data

indicators, defined such that mi = 0 if yi is observed and mi = 1

if yi is missing. The vector m is fully observed and describes the

distribution of missingness in the population. In the presence of

nonignorable missing data, this vector provides additional infor-

mation to the analysis of the trait of interest and should be treated

as part of the data (Little and Rubin 2002).

In principle, one would like to consider the joint density

p( y, m|θ,φ), where θ and φ are parameter vectors describing the

measurement model and the missing data process, respectively. A

major challenge for the joint modeling approach is that the correct

model for the missing data process is rarely known. But as most

traits of interest in quantitative genetics and/or selection studies

are to some extent heritable, at least some information about the

genetic component of the invisible fraction can be recovered from

observed phenotypic values of recorded relatives. The genetic

correlation between the trait of interest and missingness there-

fore gives valuable information about the missing data process

(Hadfield 2008). By assuming that the measurement model and

the missing data process are independent given the additive ge-

netic effects a, we can factorize the joint model as

p( y, m|θ,φ) = p( y|a, θ)p(m|a,φ). (7)

This model falls within the class of SPMs (Little 1995; Vonesh

et al. 2006), and implies that all association between the trait of

interest and the missing process is induced by the additive genetic

effects.

The SPM is obtained by specifying a conditional model for

the phenotypic data p( y|a, θ), for which we use the animal model

(1), and a conditional model for the missing process p(m|a,φ).

The missingness is represented by binary variables, and assumed

to come from the conditional distribution m|π ∼ Bin(1,π). We

model the probability of individual i being missing πi = Pr(mi =
1|φ) using a logistic model

logit(πi ) = ηi = vT
i κ + γai , i = 1, . . . , N , (8)

where κ is a vector containing group-level effects relevant to the

missing process and vT
i is a design vector (row vector of indexes to

assign the appropriate group-level effects to πi ). ai is the breeding

value of individual i , and this parameter appears in both models

and is what links the two models together. Because the two re-

sponses y and m can be related, the (scalar) hyperparameter γ

describes the nature of this association. Consequently, if γ = 0

the two models are unrelated and there is nothing to be gained by

a joint analysis.

Priors on the latent variables and hyperparameters for the

missing data process must be specified to complete the modeling

setup. The prior for the additive genetic effects ai is specified in

(4). The group-level effects κ are in conformity with the group-

level effects entering the animal model assigned independent zero

mean Gaussian prior with known variance

κ ∼ N (0, I103). (9)

Hence, also the missing process is a latent Gaussian model, with

latent field η. The association parameter γ is an unknown hyper-

parameter and is assigned zero mean Gaussian prior with known

variance

γ ∼ N (0, 103). (10)

Even though our model has two responses ( y, m), the SPM

is a univariate animal model. Only the additive genetic effect of

the trait y is included the model. But this does not imply that the

genetic correlation between the trait and the missing process is 1.

These issues are further discussed below.

RELATION TO BIVARIATE ANIMAL MODEL FOR

FOCAL TRAIT AND MISSINGNESS

For our data on spot diameter, the missing process corresponds to

prejuvenile survival. In Appendix A, we set up a bivariate animal

model (BAM) for our focal trait, that is, spot diameter, and the

missing process, that is, prejuvenile survival. Further it is shown

that the SPM introduced in Section “Joint model formulation”

corresponds to using the BAM. Importantly, the SPM simplifies

the inference when the additive genetics of the focal trait and

its association with the missing process/prejuvenile survival is

of interest, and not the additive genetic variance of the missing

process. We also find that γa is not the breeding value of the

missing process, but the part of the additive effect the missing

process shares with the focal trait.

SIMULATION STUDY 1: SPM

We conducted a simulation study to evaluate the performance of

the SPM in comparison to a naive modeling approach in which

the animal model was used without considering the missing data

process. Datasets were simulated to represent phenotypic data
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with various levels of additive genetic basis, and with missing

data caused by various missing data processes. Phenotypic values

were simulated across the known pedigree of the barn owl popu-

lation by sampling from the following simple animal model:

y = a + ε, (11)

where a ∼ N (0, Aσ2
a) and ε ∼ N (0, Iσ2

ε ), A and I as in Section

“Bayesian animal models.” To simulate approximately standard-

ized data, we chose σ2
a and σ2

ε such that σ2
a + σ2

ε = 1. Thus, the

models used to simulate y are determined by the values chosen for

the additive genetic variance, σ2
a , and we used σ2

a = (0.2, 0.5, 0.8).

Further, individual i’s trait record is missing (i.e., deleted)

with probability

logit(πi ) = α + γai , (12)

where ai is the additive genetic effect of individual i . In (12)

α sets the average level of missing values and γ is the associ-

ation parameter, which determines the strength of dependency

between missing process and phenotypic values. In the simula-

tion study, we used nine sets of parameters for the missing data

process: all combinations of (1) three different values for the level

(α = −2,−1, 0) and (2) three different values for the association

(γ = −2,−1, 0). Under model (12), the missing process is unre-

lated to the data model if γ = 0. Then each individual has the same

probability of being missing, and hence, the data are MAR. Be-

cause the probability density function of a is symmetric, positive

values of γ will yield on average the same results with respect to

the estimated additive genetic variance as their negative counter-

parts and only negative values for γ are therefore chosen. Negative

association (γ < 0) implies that individuals with smaller genetic

values are more likely to be missing than individuals with larger

values.

For each combination of (σ2
a, α, γ), we generated 100 com-

plete datasets from model (11). Further, based on each complete

dataset, the missing data pattern was simulated by model (12)

and observations were deleted accordingly. Thus, we have 100

synthetic datasets with missing values for each set of model pa-

rameters. For each of these datasets, parameters were estimated

under both the SPM and MAR model.

The parameter α set the general level of the proportion of

missing data, which is increasing within α. For non-negative as-

sociation (γ �= 0) and α �= 0.5, the proportion of missing data

also depends on γ and the additive genetic variance σ2
a , and is

increasing with stronger association and heritability. This can be

understood from the unsymmetrical relation between these pa-

rameters and the “logit” link function. The proportion of missing

data depends on all three parameters, and are given for our pa-

rameter sets in Table S1.

For a real dataset at hand we know the proportion of missing

data, but neither the additive genetic variance nor the associa-

tion between the breeding values and the missing process. To

get an impression of how large a bias we might get, we have

also preformed a simulation study in which we set the proportion

of missing data to m ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. We use an

extreme association between breeding values and the missing pro-

cess. In each simulation, the individuals with the largest breeding

values are set to be missing. For each proportion of missing data

m we simulate 100 datasets with heritability 0.8 (σ2
a = 0.8 and

σ2
ε = 0.2). For these datasets, MAR-models are fitted and biases

(σ̂2
a − σ2

a) calculated.

SIMULATION STUDY 2: BAM

We have also preformed a simulation study in which we generate

data from the BAM and draw inference using the SPM. The

purpose of this study was to demonstrate that the SPM gives a

valid inference of the genetic parameters also when the true data

generating model is the BAM.

We simulated datasets using the barn owl pedigree for dif-

ferent G-matrices. We set σε = 0.5, σa = 0.5, and α = −1, and

chose a set of parameter values of the association parameters;

γ = {0,−1,−2} and for the extra additive genetic variance of the

missing process σ2
2 = {0, 0.2, 0.5, 0.8}. The interpretation of γ is

as for the SPM. The corresponding G-matrices are given by (A2),

and the additive genetic correlation between the focal trait and

missing process is given by (A3).

For each of these 12 parameter sets we generated 100 datasets

with missing values based on the BAM presented in Section “Re-

lation to bivariate animal model for focal trait and missingness.”

Further, inference was made using both the MAR model and the

SPM.

JOINT MODEL FOR FIELD DATA

We now set up an SPM for the barn owls system presented in

Section “Field data.” The trait of interest is the diameter of black

plumage spots expressed on the ventral body side. This trait has

previously been shown to be under strong genetic control and not

significantly sensitive to rearing environment or body condition

(Roulin and Djikstra 2003). More recent studies have also revealed

that spot diameter has a partially sex-linked inheritance (Roulin

et al. 2010). As spot diameter is highly heritable, the SPM should

be able to account for potential nonrandom missingness in relation

to this trait, making it suitable for demonstration of the proposed

methodology.

Roulin et al. (2010) found that selection exerted on spot size

directly, or on unmeasured traits highly genetically correlated

with spot size favored females with large spots and weakly fa-

vored males with smaller spots. Strong directional selection on

females caused an increase in spot diameter in the population
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Table 1. Bias (̂σ2
a − σ2

a) from simulation study 1.

SPM MAR

α γ σ2
a = 0.2 σ2

a = 0.5 σ2
a = 0.8 σ2

a = 0.2 σ2
a = 0.5 σ2

a = 0.8

Bias, simulation study 1

−2 −2 −0.00 −0.03 −0.04 −0.03 −0.12 −0.22
−1 0.00 −0.01 0.01 −0.01 −0.04 −0.06

0 −0.01 −0.01 0.00 −0.01 −0.01 0.00
−1 −2 0.01 −0.02 −0.10 −0.05 −0.16 −0.28

−1 0.01 −0.01 −0.00 −0.02 −0.06 −0.11
0 0.01 0.00 0.02 −0.01 −0.01 0.02

0 −2 0.07 −0.02 0.03 −0.06 −0.20 −0.36
−1 0.03 −0.01 −0.02 −0.03 −0.09 −0.15

0 −0.03 0.01 0.00 −0.02 −0.01 0.01

Each presented quantity is the mean of the bias for the 100 data sets in the simulation study with the corresponding parameters (α, γ, σ2
a ) using the shared

parameter model (SPM) and the missing at random (MAR) model. Numbers in bold correspond to parameter sets for which the mean credible interval (see

Table S2) does not cover the true additive genetic variance σ2
a .

over the study period from 1996 to 2007. The results indicate

that spot diameter is under viability selection and thus a modeling

approach assuming MAR, like the animal model, might not be

valid.

We follow the modeling framework presented in Section “Re-

lation to bivariate animal model for focal trait and missingness,”

but to account for sex-linked inheritance we used an extended

animal model as presented in Roulin et al. (2010). Further, as

selection seems to favor opposite characteristics of spot diameter

in the two sexes, we allow the parameters in the missing data

process to be sex specific. Hence, we have two sets of parameters

for the missing data process, one for males and one for females.

The full model then reads as follows:

yi = βsex(i) + βyear (i) + ai + zi + εi (13a)

logit
(
πm

i

) = α + κyear (i) + γm
a ai + γm

z zi (13b)

logit
(
π

f
i

) = α + κyear (i) + γ
f
a ai + γ

f
z zi , (13c)

where superscripted of m and f indicate parameters correspond-

ing to males and females, respectively. The other parameters have

an interpretation equivalent to that in model (1) and (8). Since the

owls that hatched in 2000 are missing, they have another missing

process than the others. Therefore, these birds are not included in

the model with their trait status or their missing status. They only

contribute to the model through the connections they provide in

the pedigree.

When comparing our results in this study with the results

in Roulin et al. (2010), note that there are slight differences in

the data, pedigrees, and models used. Whereas in our study, the

sex-linked variance is for the heterogametic sex. In Roulin et al.

(2010), it is for the homogametic sex here (which is twice as

large).

Results
All models are fitted using INLA, and model choice is made using

deviance information criterion (DIC). A brief description is given

in Appendix B.

RESULTS: SIMULATION STUDIES

The objective of simulation study 1 was to investigate model

performance for different values of additive genetic variance and

for the parameters governing the missing data process, that is, the

level of missingness (α) and the association between the missing

process and the focal trait (γ). We calculated the bias of estimated

additive genetic variance obtained by the MAR model and the

SPM in each simulation. The results are summarized in Tables 1

and S2.

MAR performs well in terms of both bias and coverage un-

der MCAR, that is, when γ = 0, for any given values of σ2
a and

α. This is in accordance with missing data theory that states

that an MAR model will be valid under MCAR. Results are

not (at least not systematically) sensitive to changes in σ2
a and

α under MCAR. Further, it is clear from our study that esti-

mated additive genetic variance obtained using the MAR model

is downward biased under an MNAR process (γ = −1,−2). The

biasedness extent depends highly on the value for σ2
a and γ. Low

values of these parameters (σ2
a = 0.2 and γ = −1) yield relatively
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Figure 2. The proportion of missing data against bias of additive

genetic variance (̂σ2
a − σ2

a) using the MAR model with maximum

association between breeding values and missing data (individuals

with largest breeding values are missing).

accurate estimates of σ2
a , whereas high values (σ2

a = 0.8 and

γ = −2) result in severe bias and poor coverage. This is a rea-

sonable result, as the dependency between data and missingness

decreases as γ approaches zero. Also, when σ2
a is low, there is less

dependency between phenotypic and additive genetic values, and

hence less dependency between the phenotypic values and miss-

ingness. Traits with low additive genetic variance are much influ-

enced by other factors than genes. Due to the nature of the missing

data process, the missingness is more random for low values of σ2
a

and γ.

The results of the study with extreme association between

breeding values and the missing process are given in Figure 2.

We find that with a high heritability (σ2
a = 0.8 and σ2

ε = 0.2)

even a relatively low proportion of missing data (5%), can give

a substantial downward bias (σ̂2
a − σ2

a = −0.18) when assuming

MAR. This bias gets more severe with larger proportion of missing

data.

The results from simulation study 2 are summarized in

Tables 2 and S3. Comparing these results with the corresponding

results for simulation study 1, that is, with α = −1 and σ2
a = 0.5,

we find, as expected from theory, that the results are almost iden-

tical and independent of the value of σ2
2. Thus, our SPM gives

correct estimates for the additive genetic variance σ2
a also for data

simulated from a BAM.

RESULTS: FIELD DATA

Several models were fitted to determine the appropriate factors

(sex and hatch year) to include the data model in equation (13a),

and also to decide whether the autosomal- and/or Z-linked ad-

ditive genetic component should comprise the shared parameter

in the missing process models in equation (13b) and (13c). The

models were compared using the DIC, where the model with the

lowest value of DIC is considered the best model (Spiegelhalter

et al. 2002). The DIC strongly suggested that only sex should

be included in the data model while only hatch year was to be

included in the missing data processes. Further, the difference in

DIC suggested a model with autosomal effect as shared parameter

for males and that Z-linked effect as shared parameter for both

males and females. Thus, we specified the SPM as

yi = βsex(i) + ai + zi + εi (14a)

logit
(
πm

i

) = α + κyear (i) + γm
a ai + γm

z zi (14b)

logit
(
π

f
i

) = α + κyear (i) + γ
f
z zi . (14c)

The corresponding MAR model, used for comparison, is

solely the extended animal model (14a).

Parameter estimates for both the SPM model and MAR model

are given in Table 3, and the marginal posterior distributions of

autosomal- and Z-linked additive genetic variance are shown in

Figure S1. Posterior mean of σ2
a is 0.46 (95% CI: 0.38–0.56) from

Table 2. Bias (̂σ2
a − σ2

a) from simulation study 2, which has σ2
a = 0.5 and α = −1 for all datasets.

SPM MAR

γ σ2
2 = 0.0 σ2

2 = 0.2 σ2
2 = 0.5 σ2

2 = 0.8 σ2
2 = 0.0 σ2

2 = 0.2 σ2
2 = 0.5 σ2

2 = 0.8

Bias, simulation study 2

−2 −0.00 0.01 0.02 0.03 −0.17 −0.16 −0.14 −0.13
−1 0.01 0.02 0.01 0.02 −0.06 −0.05 −0.05 −0.05

0 0.00 −0.00 0.01 −0.00 0.00 −0.00 0.01 0.00

Each presented quantity is the mean of the bias for the 100 data sets in the simulation study with the corresponding parameters (α, γ, σ2
a , σ2

2 ) using the

shared parameter model (SPM) and the missing at random (MAR) model. Numbers in bold correspond to parameter sets for which the mean credible interval

(see Table S3) does not cover the true additive genetic variance σ2
a .
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Table 3. Results from field data.

SPM (DIC = 6089) MAR (DIC = 61113)

Parameter Mean 95% CI Mean 95% CI

γa
m −0.06 (−0.47, 0.36) – –

γz
m 0.77 (0.15, 1.39) – –

γz
f 1.23 (0.70, 1.78) – –

σa
2 0.46 (0.38, 0.56) 0.43 (0.36, 0.54)

σz
2 0.27 (0.18, 0.39) 0.25 (0.17, 0.36)

Posterior mean and 95% credible interval for parameters in the shared parameter model (SPM) given by equations (14a, 14b, and 14c) and from the missing

at random (MAR) model given by (14a).

SPM and 0.43 (95% CI: 0.36–0.54) from the MAR model, and the

posterior mean of σ2
z is 0.25 (95% CI: 0.17–0.36) from SPM and

0.27 (95% CI: 0.18–0.39) from the MAR model. Hence, pheno-

typic variation in spot diameter is dominated by additive genetic

variance and a substantial part of this variation is attributed to

Z-linked genes. The variance estimates differ only slightly be-

tween SPM and MAR, but a comparison of DIC values showed

a difference of 24 in favor of the SPM, which implies SPM pro-

vides a substantially better fit than the MAR model; the missing

process is better explained by including the breeding values in the

model.

According to SPM, there is a significant positive association

between the missing process and sex-linked breeding values of

spot diameter for both males and females. The posterior mean

of γ
f
z is 1.23 (95% CI: 0.70–1.78) and of γm

z is 0.77 (95% CI:

0.15–1.39), which indicates that individuals with larger Z-linked

spot breeding values are more likely to be missing than those with

smaller breeding values, and more so for females than males.

The association between the missing process and autosomal spot

diameter breeding values in males γm
a , is only slightly negative,

with a posterior mean of −0.06 (95% CI: −0.47 to 0.37). Zero is

well within the credible interval.

We have also calculated the posterior distribution of mean

autosomal and Z-linked breeding values for each hatch year for

both the naive and the joint model, see Figure 3. Further, the pos-

terior distributions for the difference in mean breeding values for

the first (1996) and last (2007) year have been calculated for both

autosomal and Z-linked breeding values. The MAR model gives

difference in autosomal breeding values 0.20 (95% CI: 0.10–

0.31) and for sex-linked breeding values 0.05 (95% CI: −0.05

to 0.15), and the SPM gives differences in autosomal breeding

values of 0.17 (95% CI: 0.06–0.28) and for sex-linked breeding

values 0.11 (95% CI: 0.01–0.20). The MAR and SPM give similar

differences, but the SPM model gives significant differences in

both autosomal and Z-linked breeding values, whereas the MAR

only gives significant differences for the autosomal breeding

values.

Discussion
Although some of the potential problems caused by ignoring the

“missing fraction” of a population in evolutionary analysis were

pointed out more than two decades ago (Grafen 1988), this is-

sue subsequently received little attention. Only recently has it

again been brought to the attention of scientists studying natural

populations (Hadfield 2008; Nakagawa and Freckleton 2008).

Hadfield (2008) used missing data theory (Rubin 1976) to show

that the presence of nonignorable missing data may lead to

estimates of selection that are downward biased or even in the

wrong direction. He also suggested to extend existing quantita-

tive genetic techniques to account for missing data and use such

techniques in evolutionary biology studies.

We have introduced a framework that simultaneously model

the missing process and quantitative genetics of the trait of in-

terest. A simulation study was carried out to explore when the

(indirect) assumption of MAR is critical, and how our joint mod-

els deal with this. Further, the methodology was used to reanalyze

additive genetic parameters of a directionally selected melanin-

based trait (in the form of black feather spots) in a Swiss barn owl

population.

The simulation study showed that especially when the heri-

tability is high and association between the breeding values and

missing process is strong, we get severely biased estimates for

the genetic variance, and also very low coverage. This is in agree-

ment with both Hadfield (2008) and other studies including the-

oretical work, simulation studies, and case studies. For example,

Blomquist (2010) examined three proxies for individual fitness

in a natural population of rhesus macaques (Macaca mulatta)

and found that estimates of the heritability of these traits were

reduced by 35–60% when nonreproductive individuals were ex-

cluded from the analysis. Mojica and Kelly (2010) showed that

there was strong selection for small flowers in the yellow monkey

flower Mimulus guttatus when viability selection prior to trait ex-

pression was taken into account in addition to fecundity. Previous

studies on Mimulus, which did not include survival to flower-

ing in their analyses, provided the opposite conclusion, showing
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Figure 3. Marginal posterior mean of mean autosomal (solid lines) and Z-linked (dashed lines) additive genetic effects for each hatch

year resulting from fitting the shared parameter model (SPM, i.e., accounting for missing data process, black) and the missing at random

(MAR) model (gray) to spot diameter data in the barn owl case study. Ninety-five percent credible intervals (dotted for autosomal and

dashed-dotted for Z-linked) are also given.

positive selection on flower size (see references in Mojica and

Kelly 2010).

Our model, the SPM, only requires the pedigree and the trait

measurements, which implicitly gives the missing data structure.

The dependency between the missing process and trait is modeled

through a linear dependency between missingness and breeding

values. As demonstrated in the barn owl study, other explanatory

variables, for example, hatch year, can be included in the analysis,

both in the model for the trait and missing process. The modeling

framework also allows nongenetic random effects such as mater-

nal effects or nest effects to be included in the models. From the

simulation study we have seen that in the presence of NMAR,

the SPM model gives unbiased estimates and good coverage. If

the SPM is used when there is no association between the missing

process and breeding values, we still get unbiased estimates, but

with slightly larger credible intervals than the MAR model, see

Table 2 for γ = 0.

A quantity of key interest for evolutionary biologists is

the rate and direction of adaptive evolution. To precisely pre-

dict the rate and direction of the adaptive evolution of a trait both

the strength and selection (i.e., relationship between phenotype

and fitness) and the adaptive potential (i.e., the additive genetic

variance) of the trait need to be accurately estimated (Lynch and

Walsh 1998). In our simulation study, we show that ignoring

missing data in quantitative genetic analyses might lead to bi-

ased estimates of additive genetic variance. As a consequence,

predictions of the potential rate of evolutionary change might be

wrong. Our simulation study shows that this potential problem

is particularly important for traits that have high heritability, and

when the relationship between trait and missing process is strong

(Table 1). However, we also find that estimates of additive genetic

variance may be reduced by more than 30% in the presence of

nonignorable missing data even when the heritability of the trait

is only 0.2 (Table 1), if the association between the breeding value

of the trait and the missing process is strong.

Based on the previous finding that females displaying larger

black spots are positively selected in the barn owl, a key aim of the

present study was to determine whether this pattern of selection

takes place even before female nestlings produce their feathers

where spots are located (i.e., because we measured this plumage

trait in nestling birds, a number of individuals that die prematurely

are missing from our dataset). In the study of barn owl spot size,

we found that accounting for the missing data process improved

the model fit, but that the estimated additive genetic variances

of spot size did not change much (Fig. 2, Table 5). In this case,

we have moderate heritability and association, but relatively few

individuals are missing (about 6%). The closest parameter set

in the simulation study is one where (σ2
a = 0.5, α = −2, and

γ = −1), and the lack of any effect on the quantitative genetic es-

timates when including the missing data process is in accordance

with the simulation study. In an analysis of the same population,

Roulin et al. (2010) modeled late survival (from fledging to re-

cruitment) and quantitative genetics separately, and survival was

modeled based on trait observations. In this article, the analy-

sis of the trait and the missing process (nestling mortality) are

conducted jointly; and the missing model is based on breeding

values.

Roulin et al. (2010) found that there was a strong nega-

tive relationship between spot size and the probability of becom-

ing missing between fledging and recruitment in females (i.e., a
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positive relationship between spot size and survival), and a weak

positive relationship in males (Table 2 in Roulin et al. 2010).

Our results (on nestling mortality) show that there is a positive

relationship between Z-linked additive effects and missingness

for both males and females, that is, that smaller breeding val-

ues give a higher probability of surviving until fledging. Hence,

there seems to be opposite selection processes for different life

phases for female barn owls. Brood reduction is the dominating

cause of death for nestlings, whereas traffic accidents is the dom-

inating cause of death between fledging and recruitment (Baud-

vin 1986). Therefore, it is not unreasonable that the selection

is in opposite directions before and after fledging. Compared to

Roulin et al. (2010), our study indicates a weaker positive se-

lection on spot size in females and a stronger negative selection

in males, which is in accordance with results in Roulin et al.

(2011).

The results indicate that selection is taking place even be-

fore the black spots are produced. This emphasizes that spot size

is genetically correlated with other traits that are under selec-

tion. Thus, owls displaying large spots were missing from our

study not because they displayed large spots, but because this

trait is associated with a number of phenotypes that are under

selection. Indeed, it is shown that spot size displayed by mothers

is correlated with offspring quality measures including parasite

resistance, resistance to oxidative stress, and an increase in cor-

ticosterone levels, appetite, and the ability to withstand lack of

food (Roulin and Ducrest 2011). The fact that nestling stage se-

lection acts on genetically correlated traits does, of course, not

exclude the possibility that large spots are themselves under di-

rect selection at a later stage as previous experimental studies

suggested (Roulin 1999; Roulin and Altwegg 2007). Our esti-

mation of a positive trend in autosomal breeding values supports

this possibility. Our findings of negative associations between

missingness and Z-linked additive genetic effects, together with

a positive trend in autosomal breeding values, call for putting

effort into finding the autosomal genes on which selection is pos-

itive between fledging and recruitment and the Z-linked genes

on which selection is negative at the nestling stage. This study

demonstrates that our SPM can be used not only to account

for missing data in quantitative genetic analyses, but also to ex-

plore evolutionary processes that cannot be explored directly:

the association parameter γ gives information about the selection

process.

Conclusion
Missing data in quantitative genetic studies can cause severely

biased estimates of additive genetic variance and an underestima-

tion of natural selection; if the data are MNAR, seen from the trait

of our interest, but the model used assumes MAR. In such cases,

a joint model of the missing process and quantitative genetics is

needed. We have proposed the SPM that has proven to be suc-

cessful through a simulation study. Whether an SPM is needed

or not is hard to judge from a model assuming MAR: even with

relatively few missing data (15%), the additive genetic variance

estimate can be severely biased if the heritability is moderate to

high and the association between the trait and missing process is

strong. In any case, an MAR model does not give any information

about the association, which might give important information on

the selection process that causes the missing process. Hence, we

recommend that an SPM is always fitted to check whether MAR

can be assumed.
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Appendix A: Derivation of Relation
between Shared Parameter Model
and Bivariate Model

To set up the bivariate model, we first define two independent

genetic fields; c1 ∼ N (0, A) and c2 ∼ N (0, A)), where A is the

additive genetic relationship matrix. Next, we define a = σa c1

with σa > 0 and u = ρc1 + σ2c2 with σ2 > 0. Using the fact that

c1 and c2 are independent, it is straightforward to show that[
a
u

]
∼ N

([
0
0

]
, G0 ⊗ A

)
, (A1)

where ⊗ denotes a Kronecker product and

G0 =
[

σ2
a ρσa

ρσa ρ2 + σ2
2

]
=

[
σ2

a γσ2
a

γσ2
a γ2σ2

a + σ2
2

]
(A2)

for γ = ρ

σa
. We recognize this as the genetic part of a BAM (e.g.,

Sorensen and Gianola 2002, p. 578), where G0 is known as the

additive genetic covariance matrix. The additive genetic correla-

tion is given as

corr(ui , ai ) = γσ2
a√

σ2
a(γ2σ2

a + σ2
2).

(A3)

c1 can be interpreted as the genes that influence our focal trait,

with σa as a scaling factor for the focal trait and ρ = γσa as a

scaling factor for the genetic part of the missing process for these

genes. The missing process might have an additive genetic part

not shared, c2, scaled with σ2. We see from equation (A2) that

an appropriate choice of (σ2
a, σ

2
u, ρ) can give us any G-matrix,

and hence this specification using c1 and c2 is an alternative to

specifying the G0-matrix directly.

To complete the BAM, we give the focal trait likelihood

as in Section “Bayesian animal models,” equation (1). For the

prejuvenile survival/missing process the likelihood model is sim-

ilar to the one specified in Section “Joint model formulation”;

mi ∼ Bin(1,πi ) with

logit(πi ) = vT
i κ + ui = vT

i κ + γai + σ2c2i ,

i = 1, . . . , N . (A4)

If we compare (A4) with the model for the SPM in (8), we find

that the only difference is that the term σ2c2i is added. Because

independent random effects are confounded with the link for bi-

nary likelihoods (Cox and Snell 1989). This implies that it is not

possible to estimate (independent) environmental effects for bi-

nary traits. This is the reason, we do not include an environmental

effect εi for the missing process.

To finalize the Bayesian model priors have to be assigned

to hyperparameters. It is common to give the G0-matrix the

conjugate inverse-Wishart distribution, which corresponds to a
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inverse-gamma prior for the variance σ2
a and a Gaussian prior

for γ.

The model can be illustrated using a graph, see Figure S2,

panel A. From Figure S2B, it seems as y and m relate to c1 in

a symmetric way. But they do not as we require that the addi-

tive genetic variance σ2
a > 0, while γ can take any real number,

including 0.

We now assume that properties of the additive genetic ef-

fects of the focal trait and their association with the missing

process/prejuvenile survival are of interest, and not the additive

genetic variance of the missing process itself. According to miss-

ing data theory (Little and Rubin 2002), only variables that the

focal trait and the missing process have in common have to be

included in the model. In our case only c1 is common, and hence

c2 can be omitted from the analysis. In our setting, we can ex-

plain this as only the effects of genes that influence both the focal

trait and the missing process have to be included in the analysis,

whereas the effect of genes that do influence the missing pro-

cess, but not the focal trait, can be omitted. This model can be

illustrated with the graph in Figure S2, panel B, and coincides

with the SPM. The parameters and variables that are denoted sim-

ilar in the corresponding BAM and SPM should be interpreted

similarly, and estimates will also be similar. It is important to

note that in an SPM we do not calculate the genetic variance of

the missing process, or breeding values of the missing process.

We can see this in our setup because σ2
2 is not calculated, and

hence we do not have an estimate of the additive genetic variance

of the missing process or the breeding values u of the missing

process. The quantity γa is not the breeding value of the missing

process, but the part of the additive effect the missing process

shares with the focal trait.

Appendix B: Parameter Estimation
and Model Choice

We use INLAs (Rue and Martino 2006; Rue et al. 2009)

to estimate relevant parameters from our models. INLA is a

new nonsampling-based approach to Bayesian inference avail-

able for latent Gaussian Markov random field (GMRF) mod-

els. MCMC is currently the standard tool for Bayesian inference

for such models. MCMC methods are, however, computationally

very expensive and might suffer from poor mixing and conver-

gence properties. INLA provides a fast deterministic alternative

to MCMC to accurately approximate the posterior marginals of

interest.

INLA use two basic properties that many latent Gaussian

models satisfy. The first is that the latent field (β, a, ε, κ) ad-

mits conditional independence properties, such that the latent

field is a GMRF with a sparse precision matrix (inverse covari-

ance matrix). This enables the use of fast numerical methods for

sparse matrices, which INLA benefits from in calculations. The

second property is that the number of non-Gaussian hyperpa-

rameters must be small to allow fast numerical integration. Cur-

rently, INLA can handle models with up to 10–15 non-Gaussian

hyperparameters.

It has been shown that animal models fall within the class of

latent GMRF models (Steinsland and Jensen 2010; Holand et al.

2013), and the INLA methodology is established and tested for

animal models in Holand et al. (2013) including a comparison of

MCMC and INLA.

A further benefit the sparse structure of the GMRF property

provides is that the simulations from the models are fast, and this

combined with fast inference enable simulation studies (Holand

et al. 2013).

Model comparison in the analysis of field data are carried

out using the DIC (Spiegelhalter et al. 2002). The model with

the smallest DIC is considered the best model, that is, the model

that would best predict a replicate dataset, which has the same

structure as that currently observed. According to Spiegelhalter

et al. (2002), differences in DIC of more than 10 should definitely

rule out the model with the higher DIC. In Holand et al. (2013),

simulation studies showed that difference in DIC is an appropri-

ate measure for identifying models with/without additive genetic

effects.
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