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Abstract Geophysical tomography captures the spatial distribution of the underly-
ing geophysical property at a relatively high resolution, but the tomographic images
tend to be blurred representations of reality and generally fail to reproduce sharp
interfaces. Such models may cause significant bias when taken as a basis for pre-
dictive flow and transport modeling and are unsuitable for uncertainty assessment.
We present a methodology in which tomograms are used to condition multiple-point
statistics (MPS) simulations. A large set of geologically reasonable facies realiza-
tions and their corresponding synthetically calculated cross-hole radar tomograms
are used as a training image. The training image is scanned with a direct sampling al-
gorithm for patterns in the conditioning tomogram, while accounting for the spatially
varying resolution of the tomograms. In a post-processing step, only those condi-
tional simulations that predicted the radar traveltimes within the expected data error
levels are accepted. The methodology is demonstrated on a two-facies example fea-
turing channels and an aquifer analog of alluvial sedimentary structures with five
facies. For both cases, MPS simulations exhibit the sharp interfaces and the geolog-
ical patterns found in the training image. Compared to unconditioned MPS simula-
tions, the uncertainty in transport predictions is markedly decreased for simulations
conditioned to tomograms. As an improvement to other approaches relying on clas-
sical smoothness-constrained geophysical tomography, the proposed method allows
for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological con-
straints and (3) generation of multiple realizations that enables uncertainty assess-
ment.
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1 Introduction

Predictive modeling of subsurface flow and solute transport requires detailed models
of the spatial distribution of hydraulic properties. A lot of recent research has fo-
cused on finding ways to use geophysical data for hydrological parameter estimation
(e.g., Hubbard and Rubin 2000; Linde et al. 2006; Eppstein and Dougherty 1998;
Dafflon and Barrash 2012). The benefit of geophysical techniques is that a high num-
ber of sensors can be used at rather low costs and with little invasive impact. Data sets
of thousands of data points of high spatial density are easily acquired and when these
data are inverted, tomographic images of high resolution can be obtained. Unfortu-
nately, inference of the geophysical property distribution from measured data, that
is, the process of inversion or tomography, is generally non-unique due to limited
data coverage, noisy data and non-linear physics. To overcome this non-uniqueness,
the inverse problem is regularized where the most common approach is to explic-
itly search least-structure models by applying a smoothness constraint. Smoothness-
constrained inversions are optimal in the sense of reducing regularization bias (Ory
and Pratt 1995) and turned out to be a forceful tool to prevent inversion artifacts. Their
main disadvantage is that they produce tomograms that tend to image the subsurface
property distributions as blurred or patchy structures and usually fail to recover sharp
interfaces or small-scale structures. For accurate flow and transport modeling, we
often need models that capture such features since they may control the subsurface
connectivity.

The classical geostatistical approach aims at defining a model such that the two-
point statistical relations observed in the field are matched (Kitanidis 1997). These
methods are invariant towards connectivity patterns (e.g., Gómez-Hernández and
Wen 1998; Krishnan and Journel 2003), which means that parameter fields of very
different connectivity characteristics can be identical in terms of their probability
density function (pdf) or variogram. For example, Zinn and Harvey (2003) showed
for parameter fields of near-identical lognormal univariate conductivity distributions,
how flow and transport behavior changed dramatically for different connectivity pat-
terns. Various methods have been proposed to fully characterize parameter fields by
including the connectivity patterns. Journel and Posa (1990) proposed to describe
connectivity by indicator variograms that provide the probability that two distant
points share the same indicator value. This approach has further been advanced by
modified connectivity functions that account for points within a certain value range
that are connected by an arbitrary continuous path (Western et al. 2001). A recent
development are multiple-point statistics (MPS) algorithms that simulate parameter
fields by accounting for the statistical relations between large sets of points, thereby
allowing the reproduction of complex geological structures and connectivity patterns.
The algorithms take the statistics from training images that feature the representative
patterns that are subject to simulation. MPS approaches make use of the fact that cer-
tain geological settings are often built up by a limited number of repeating structural
elements.
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At the same time, the need to recover geological patterns and facies structures
has been recognized and caught up by the geophysics community. The application of
pattern-based approaches for the characterization of subsurface structures is a subject
of intense research, mainly led by the petroleum industry (e.g., Coléou et al. 2003;
de Matos et al. 2007). Caers and Ma (2002) extracted probabilistic facies distributions
from seismic data using neural networks on colocated windows of seismic informa-
tion. Similarly, Moysey et al. (2003) trained neural networks on geological analogs or
well data to retrieve facies information from surface ground-penetrating radar (GPR)
images. Based on this, Moysey et al. (2006) compared different transform techniques
to translate the radargram into a facies classification. They found that textual mea-
sures that preserve the spatial structure of the GPR image often outperform measures
based on univariate statistics (variance). A rather novel approach was presented by
Cardiff and Kitanidis (2009), who developed an inversion scheme in which facies
boundaries as well as parameter values within facies are updated by a Bayesian level
set methodology. An example of how a GPR cross-section is used to establish a fa-
cies model, which in turn is used for flow and transport simulations is given in Rauber
et al. (1998). Dafflon and Barrash (2012) use radar tomograms together with neutron
borehole logs to condition stochastic simulations of the 3D porosity distribution in
a well field. They show that conditioning to tomograms improves both simulated-
annealing-based and Bayesian sequential simulation results.

In this study, we present a novel approach of combining geophysical models and
conceptual geological knowledge to produce realistic high-definition subsurface fa-
cies models. A categorical training image (TI) containing the geological facies infor-
mation available about the site of interest is converted into a tomogram by geophys-
ical forward and inverse modeling. The tomogram can be seen as a filtered version
of the facies TI that is dependent on the spatial distribution of the underlying geo-
physical property. Information about resolution of the tomographic setup, and about
regularization and data error effects are included in the tomogram since all these
factors change the ‘tomographic filter’ and consequently influence the tomography
results. The discrete facies TI and its continuous tomogram are combined to form a
bivariate TI. A conditioning tomogram is obtained by applying the same tomogra-
phy procedure to geophysical data that are measured in the field. We then generate
MPS simulations by scanning the bivariate TI for patterns found in the condition-
ing tomogram, in this case, we use tomograms from cross-hole GPR experiments.
Compared to conditioning to individual data points placed somewhere in the model
domain (e.g., Zhou et al. 2012), we exploit the spatial information in the tomograms
which is distributed over the entire domain.

The proposed method circumvents a problem generally inherent in the interpre-
tation of geophysical models: Inferring the true geology from tomographic images
requires correcting the models for all inversion effects, that is, one needs to decon-
volve the tomogram and the ‘tomographic filter’ (Singha et al. 2007). Approaches
to tackle this problem are linearized resolution analysis (Menke 1989; Day-Lewis
et al. 2005) or the use of numerical analogs to field studies (Moysey et al. 2005;
Singha and Moysey 2006). Since we are mimicking the geophysical tomography ap-
plied to the measured data when creating the bivariate TI, the ‘tomographic filter’ is
implicitly taken into account. This and the fact that conceptual geological informa-
tion is incorporated at an early stage of the inverse modeling process reduces the risk
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Fig. 1 Schematic workflow of the proposed conditioning method

of misinterpretation due to limited knowledge about the ‘tomographic filter’ (e.g.,
Richardson et al. 1987; Rankey and Mitchell 2003). Compared to classical inversion
studies, we do not leave the interpreter with a geophysical image on which to base a
geological interpretation, but we present a tool to condition a conceptual geological
model to the distribution of the inferred geophysical parameters.

2 Methodology

2.1 General workflow

We developed a procedure to condition multiple-point geostatistical simulations to
tomographic images. The method builds on the work of Mariethoz et al. (2010b), who
present a direct sampling algorithm for multiple-point geostatistical simulations. This
multiple-point direct sampling (MPDS) algorithm allows to co-sample from a TI that
contains both a distribution of a categorical and a continuous variable. Here, we use
a categorical TI featuring characteristic geological structures and its corresponding
geophysical tomogram. We then use a tomogram obtained at the field site of interest
as a known continuous image to condition the simulation. In this way, we produce a
categorical simulation that contains the structures from the categorical training image
and whose tomographic image is in agreement with the geophysical tomogram given
as input variable. The general workflow is (see also Fig. 1):
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1. Invert the available geophysical field data by smoothness-constrained determinis-
tic least-squares inversion. The resulting image is referred to as ‘original tomo-
gram’ in the following.

2. Choose or create a training image that represents conceptually the expected ge-
ological structures/patterns. This is referred to as ‘original TI’. This is a crucial
step, a poorly chosen training image will severely bias the modeling outcome.

3. Create an ensemble of realizations of the chosen original TI. Here, this is done
using MPDS.

4. For each realization of the original TI, generate a synthetic tomogram:
(a) Assign realistic values of the underlying geophysical parameters (e.g., seis-

mic or radar slowness, electrical resistivity) to the different facies in the re-
alizations. This step can be based on established petrophysical models, for
example the CRIM model (complex resistive index method, Tinga et al. 1973;
Alharthi and Lange 1987; Roth et al. 1990) or petrophysical relationships in-
ferred from previous investigations (e.g., Hubbard et al. 2001).

(b) Calculate synthetic geophysical data by simulating field experiments. Model
the experiments using a setup similar to that used to acquire the actual data
(Moysey et al. 2005). Contaminate the synthetic data with an expected amount
of noise.

(c) Invert the synthetic data. Apply the same modeling parameters (grid dis-
cretization, initial model, regularization type and weights) as used to produce
the original tomogram (Moysey et al. 2005).

5. Combine the realizations of the categorical original TI and their continuous tomo-
grams to one bivariate ‘working TI’ that contains the facies and the geophysical
parameters as two separate variables.

6. Simulate facies models based on direct sampling:
(a) Pick a location in the simulation grid whose facies is not yet defined. Retrieve

the data events (i.e., certain patterns formed by a pre-defined number of grid
cells) centered at this location in the original tomogram and for the facies
variable. Then, scan through the ensemble of synthetic tomograms and their
corresponding facies models until similar data events are found. ‘Similar’ here
means that the distances between the actual events and the found ones are
below some pre-defined threshold. Building the working TI as stacks of two-
dimensional models (as will be described in detail later) allows for choosing a
scanning procedure so that the spatially varying resolution within a tomogram
is accounted for.

(b) Paste the facies value (at the central node of the data event) found in the TI to
the selected location in the simulation grid.

(c) Randomly pick a new location in the simulation grid and repeat until it is
entirely filled.

7. For each simulated facies model, calculate geophysical forward data and com-
pare to the true data. Accept the simulation as a possible model, if the weighted
root-mean square error (WRMSE) of the predicted data is below a threshold
WRMSEtarget.

The resulting ensemble of accepted models forms a possible basis for geological
interpretation, flow and transport modeling or uncertainty assessment.
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2.2 Deterministic Inversion

Both the original data (i.e., the ‘true data’ measured in the field) and the predicted
data for all facies realizations undergo smoothness-constrained deterministic inver-
sion (steps 1 and 4c in previous section). This inversion type is commonly referred to
as Occam’s inversion (Constable et al. 1987). In the smoothness-constrained inver-
sion scheme, a model m is sought that features the least structure possible and still
predicts the data within the assumed data error levels. In a general sense, we seek to
minimize an objective function φ that contains both a measure of the data misfit and
the model roughness (e.g., Menke 1989):

φ = ∥
∥C−0.5

d

(

d − F(m)
)∥
∥

2
2 + α

∥
∥C−0.5

m (m − mref)
∥
∥

2
2, (1)

where the first term is the error-weighted misfit between original data (d) and data
predicted by the forward model (F(m)) in a least-squares sense. The second term is
the model misfit or regularization. In Eq. (1),

Cd is the data error covariance matrix;
Cm is the model covariance matrix;
α is a trade-off parameter that weights the model regularization with respect to the
data misfit term;
mref is a (uniform) reference model.

In our smoothness-constrained inversion, Cm is an anisotropic first-order differences
operator, used to penalize abrupt changes between adjacent model parameters. In this
study, horizontal-to-vertical anisotropy ratios of 3:1 and 10:1 were used for the first
and the second application. Since the forward problem is non-linear, it is linearized
about a reference model (for the first iteration) or the model of the previous itera-
tion (for subsequent iterations), resulting in the following system of equations that is
solved with a conjugate gradient solver (Paige and Saunders 1982):
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where k indicates the iteration index and J is the Jacobian matrix containing the ele-
ments Jij = ∂di/∂mj . The model update we solve for, �mk+1, is then used to con-
struct a new model mk+1 = mref +�mk+1. During the inversion, we decrease α con-
secutively from one iteration to the other in order to start with a smooth model where
structure is gradually added to decrease the data misfit. The inversion is stopped when
the weighted root-mean squared error WRMSEtarget is reached. The weighting by the
data errors implies that for WRMSE = 1, on average all data are fit to their error lev-
els. For a more rigorous description of the inversion scheme, we refer to Linde et al.
(2006).

2.3 Multiple-Point Statistics Simulation

Multiple-point statistical simulations describe the procedure to draw fields of facies or
geological properties based on the spatial dependencies between a set of points larger
than 2. Unlike simulations based on two-point statistics, such as Gaussian sequen-
tial simulation, it is insufficient to know only the pdf. Rather, patterns (so-called data
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events) of a certain pre-defined size and density are extracted from a training image
and the pixel of interest is simulated according to its statistics with respect to previ-
ously assigned pixels in the surrounding. The main advantage of MPS over two-point
statistics is the ability to deal with non-stationarity and sharp interfaces and conse-
quently allowing simulation of categorical facies models with curvilinear features,
which can be crucial to adequately represent connectivity (e.g., Hu and Chugunova
2008).

Classical MPS simulation codes (e.g., Strebelle 2002) scan the training image for
patterns and store the multi-point statistics of these in a structured tree. To overcome
the limitations due to the large storage demand required by the trees, a list approach
was developed by Straubhaar et al. (2011, 2013). In these classical implementations
of MPS, the multiple grid approach is used to capture patterns of different scales
within the TI (Tran 1994). In this work, we use the MPDS algorithm DeeSse, which
is an enhanced and commercialized version of the algorithm described by Mariethoz
et al. (2010b). Note that in the following, we use ‘MPDS’ to describe the general di-
rect sampling procedure developed by Mariethoz et al. (2010b), and ‘DeeSse’ when
we talk about the particular algorithm we used. In DeeSse (as in all direct sampling
algorithms), the training image is scanned for data events in the simulation grid and
directly simulates the pixel of interest, thus avoiding storage limitations, computa-
tion of pdf and the use of multiple grids. We give a brief summary of this sampling
procedure here; for a complete description we refer to Mariethoz et al. (2010b). If
a simulation grid with nodes x is to be filled using the training image with nodes
denoted y, all locations x are visited successively. At each location x, the n closest
neighboring nodes that already have been assigned a value are found and the pattern
of their locations and values defines one data event. Starting from a random location
in the training image, the training image is systematically scanned for the particular
data event. At every location y, the distance between the data event and the event
found in the TI is calculated. The data event found in the TI is kept and the node x of
interest is simulated by copying the value from y, if the calculated distance is below
a threshold t . If a certain fraction f of the TI has been scanned without success, the
event with the smallest distance is accepted and used for simulation. Choosing an
appropriate distance measure is crucial for the simulation (e.g., Zhou et al. 2012). We
applied an �1-norm for continuous variables and the sum of non-matching nodes for
categorical variables. In addition, DeeSse allows to decrease the node density in the
group of neighboring nodes to also consider nodes in the pattern recognition that are
not directly clustered around the node of interest.

The resolution of a geophysical tomogram is not evenly distributed, but often
varies markedly in space. This is due to (1) limitations in signal coverage, and (2) the
fact that in non-linear problems, the resolution depends on the property distribution
(e.g., Day-Lewis et al. 2005; Singha and Moysey 2006; Singha et al. 2007). There-
fore, scanning a training image horizontally, that is, moving through a single 2-D
image until a certain data event is scanned, can produce large bias since it treats the
tomograms as if resolution is constant in space. To overcome this, we stacked a large
number of realizations of a training image and the corresponding tomograms, similar
to Zhou et al. (2012).

Technically speaking, a 3-D training image with four variables is set up. In our
case, this constitutes two stacks of the catalogue of the categorical training images and



632 Math Geosci (2014) 46:625–645

Fig. 2 The sampling principle used to account for the spatially variable resolution of geophysical tomo-
grams

the corresponding tomograms. The other two variables are the x- and y-coordinates
of all nodes. By doing so, we treat the individual layers of the stacks as projections
of a single plane and sample for 2-D patterns within these bodies. The x- and y-
coordinates are dummy variables needed to keep the MPDS algorithm from seeking
data events in 3-D. The ‘working TI’ is thus scanned until a data event is found for
which

• the distance between the pattern in the facies variable and the pattern formed by
the already simulated pixels in the simulations grid is below the threshold tfacies,

• the distance between the pattern in the tomogram variable and the pattern in the
conditioning tomogram is below the threshold ttomogram and

• the distances between the x- and y-coordinates of the pixel of interest and the
undefined pixel in the data event are below thresholds tx and ty .

Once this data event is found in the tomogram variable of the ‘working TI’, the value
for the pixel of interest is pasted from the facies variable in the ‘working TI’ and
copied to the simulation grid. Figure 2 depicts the general scanning procedure. The
possibility to deal with multiple variables, whether categorical or continuous, is an
advantage of MPDS over conventional MPS algorithms.
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2.4 Forward Modeling

Though the framework of our approach is general in terms of the type of tomograms
used, we will now focus on applications to cross-hole GPR tomograms. In cross-hole
GPR experiments, transmitter and receiver antennas are placed in adjacent boreholes
and the subsurface electromagnetic properties are sensed by measuring the transmit-
ted signal for different transmitter-receiver configurations. Here, we focus on the first
arrivals of the radar wave, which bear information about the radar wavespeed in the
interwell region. In our first application, we assume that the relation between the fa-
cies type and the radar wavespeed is known (in practice, this could be known from
laboratory experiments). In our second application, detailed information about the
porosity and the hydraulic conductivity of each facies type are available. The poros-
ity information for the individual facies was translated into values of radar wavespeed
v using (Sen et al. 1981)

ε = εwφm

(1 − εm

εw

1 − εm

ε

)m

(3)

and (e.g., Davis and Annan 1989)

v = c√
ε
, (4)

where εw , εm and ε [-] are the relative electrical permittivity of water, of the grains
and of the bulk material, respectively. We here used εw = 81 and εm = 3. The porosity
of each facies is φ, the so-called cementation factor m is typically taken to be 1.5 in
unconsolidated media and the speed of light c = 3 × 108 m/s.

Based on the velocity model, we determined radar traveltimes for a cross-hole
GPR experiment using

tGPR =
∫ x2

x1

u(s) ds, (5)

where u(s) [s/m] is the radar slowness (i.e., the reciprocal of the radar wavespeed)
along the trajectory s, starting at point x1 and ending at x2. The trajectories of the
radar signals are dependent on the spatial distribution of the radar wavespeed. We
solve the eikonal equation to get the spatial distribution of first-arrival traveltimes
for each source location using the finite-difference algorithm of Podvin and Lecomte
(1991) and perform ray-tracing by back-propagation for each receiver location (Vi-
dale 1988).

In the two applications considered below, transmitters and receivers were placed
at the left and right boundary of the model domain at a spacing of 0.25 m and exper-
iments were repeated for reciprocal transmitter and receiver boreholes so that trans-
mitter positions become receiver positions and vice versa. As is common practice,
only rays for which the transmitter-receiver path is inclined less than 50° to the hori-
zon are taken into account (e.g., Peterson 2001). This resulted in data sets of 2430
and 1388 traveltimes for the first and second application. All synthetic radar data
were contaminated with Gaussian noise corresponding to a relative error of 1 % of
the measurement value.
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Table 1 Overview of MPDS
parameters. The summation
signs denote that the simple sum
of non-matching nodes is taken
as a distance measure. The scan
fraction f is a parameter for the
multivariate TI and is not chosen
for each individual variables

Variable n t f n-density Distance type

Case 1: Channels

facies 25 0.04 0.1 1.0
∑

tomogram 25 0.04 0.1 1.0 �1-norm

x-coordinate 1 0.06 0.1 1.0 �1-norm

y-coordinate 1 0.03 0.1 1.0 �1-norm

Case 2: Herten

facies 25 0.04 0.1 0.5
∑

tomogram 25 0.04 0.1 0.5 �1-norm

x-coordinate 1 0.03 0.1 1.0 �1-norm

y-coordinate 1 0.02 0.1 1.0 �1-norm

3 Application to a Channel Scenario

We first applied the method to a two-facies case featuring channel-like structures
(Strebelle 2002). Radar wavespeeds of 70 and 80 m/µs were assigned to facies 0
and 1, respectively. A total of 1000 realizations of the original TI (generated with
DeeSse, with a resolution of 0.1 × 0.1 m) and the corresponding tomograms build
the bivariate working TI from which we sample. The number of neighboring nodes
n in the simulation defines the order of the statistics that are honored during the
simulation. For the facies variable, the number of neighboring nodes is set to n = 25
and the distance threshold to tfacies = 0.04. This means that if no more than one of
the 25 nearest cells (25 × 0.04 = 1) around the cell to be simulated differs from the
cell values in the data event, the pattern for this variable is considered acceptable
(Mariethoz et al. 2010a). For the tomogram variable, the same parameters are used
(n = 25 and ttomogram = 0.04), whereas for the dummy variables (i.e., the x- and y-
coordinates), we choose n = 1 and the distance thresholds tx and ty so that the data
events used for simulation are in an area that differs maximally three grid cells in x-
and y-direction from the simulation cell (Table 1).

Results are shown in Fig. 3. The tomograms clearly highlight the smearing effect
inherent in smoothness-constrained tomography: Even if the true image is built up
only by two facies (black and white), classical tomography always produces shades
of gray. A total of 100 MPDS simulations, conditioned to the original tomogram,
were generated with DeeSse. For each simulation, we calculated the radar travel-
times and compared them to the true radar data. Keeping only simulations for which
the WRMSE is below 1.0, left us with 68 simulations (Fig. 4a). For illustration of
the MPDS simulations with different conditioning (Fig. 5), we adapted the so-called
movie strategy for the visualization of stochastic inversion results (Tarantola 2005).
As expected, the conditioning to a tomogram brings the simulations closer to the true
facies model. For simulated facies models that fail to predict the true radar travel-
times, the main structures of the true model are reproduced, but they often fail to
represent the connectivity of the channels. The accepted facies models are visually
very similar to the true facies model and the connectivity of the channels is recovered.
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Fig. 3 (a) and (b): One layer of the bivariate training image; (a) facies and (b) corresponding tomogram.
(c) The true facies we seek to recover and (d) its tomogram, which is used as conditioning data in the
MPDS simulations. D.I. stands for deterministic inversion. White dots indicate transmitter and receiver
positions for the radar traveltime calculations. (e) One simulated facies model

4 Application to a Multi-facies Aquifer Analog

As a more realistic example, we applied our methodology to a facies model based on
a detailed gravel aquifer mapping study (Bayer et al. 2011). The underlying model
includes features that are typical for aquifers built up by alluvial gravel deposits.
These types of aquifer bodies are of high importance in many parts of the world due
to their generally high storage capacity, high permeability and accessibility.

4.1 The Herten Aquifer Analog

The Herten aquifer model is based on detailed mapping of sedimentary deposits in a
gravel pit in southwest Germany. Bayer et al. (2011) set up a geological map of the de-
posits to establish a realistic aquifer analog. The analog is a 3-D representation of the
gravel body, which was made possible by mapping during ongoing excavation. The
deposits are mainly formed by unconsolidated fluvio-glacial and fluvial sediments
in the Rhine basin (Bayer et al. 2011). The dominant structural elements, erosional
surfaces, scours, gravel sheets, are typical for sediments deposited in braided river
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Fig. 4 (a) Distribution of
weighted root-mean squared
errors (WRMSE) of radar
traveltimes for 100
unconditioned (red) and
conditioned (blue) MPDS
simulations for the channel
scenario. The acceptance
threshold (dashed vertical line)
is the same as for the
deterministic inversion. 68 % of
the conditioned simulations
predict traveltimes with an
WRMSE below the indicated
threshold of 1.0 (red line).
(b) As for a, but for the Herten
case and for 1000 unconditioned
and conditioned simulations.
Ten conditioned simulations
predict the traveltimes with an
WRMSE below the threshold of
1.05

Fig. 5 Different MPDS simulations of the channel scenario in movie illustration. (a) Unconditioned sim-
ulations as they are used as layers of the ‘working training image’. (b) MPDS simulations conditioned to a
geophysical tomogram. These simulations failed to predict the radar data satisfactorily and were rejected.
(c) As for (b) but with radar traveltimes for which the WRMSE is below the threshold, these simulation
were accepted
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Fig. 6 Clustering of the original
10 facies to the reduced facies
distribution. Vertical crosses
(denoted facies 1 in Table 2),
circles (facies 2), triangles
(facies 3), diagonal crosses
(facies 4) and asterisks (facies 5)
refer to the simplified facies
model. In red the new facies

Table 2 Description of the different facies types

Facies index Description Hydraulic conductivity K [m/s] Porosity [-]

1 (+) Alternating gravel, bimodal basal
subunit (sand, silt, clay)

2.2 × 10−5 0.21

2 (◦) Well-sorted gravel and sand 1.2 × 10−3 0.32

3 (�) Sand-rich, poorly sorted, matrix
supported gravel

6.1 × 10−5 0.13

4 (×) Poorly sorted, matrix supported
gravel

2.4 × 10−4 0.16

5 (∗) Alternating gravel, open
framework

8.4 × 10−2 0.25

environments. Ten different subunitary lithofacies are defined to describe the gravel
deposits. For every lithofacies, porosity and hydraulic conductivity values and ranges
are provided by experimental studies of Bayer (2000), Heinz et al. (2003) and Kostic
et al. (2005).

The detailed aquifer analog was digitized to use it as a base for geostatistical sim-
ulations (Comunian et al. 2011). We used a 2-D slice of the Herten analog as a con-
ceptual model, that is, as an original training image. The dimensions of one slice
of the analog are 7 × 16 m. We generated 1000 realizations of the original training
image with DeeSse. All realizations show some of the geological patterns and of
the lithofacies found in the analog, but the direction and dimension of these patterns
varies between the realizations. The ensemble of realizations consequently represents
a rather wide variety of geological scenarios.

For this study, the available facies realizations were simplified in that (1) only
a 7 × 4 m part of the images were considered for simulation (keeping the original
cell size of 0.05 × 0.05 m) and (2) the number of facies was reduced from 10 to
5 by clustering similar facies together. The clustering is based on both similarities
in geological texture (Bayer et al. 2011), as well as in hydrogeological properties
(Fig. 6). The modified facies and their properties are summarized in Table 2.
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4.2 Results

We chose slightly different parameters in the MPDS algorithm to account for the
higher degree of complexity in this multi-facies case. To define a data event for the
facies and radar wavespeed (‘tomogram’) parameters, the maximum density of neigh-
boring nodes within the search environment was reduced to 0.5 to capture more com-
plex patterns and to prevent just reproducing overly fine small-scale variations. This
means that we consider n out of the 2n closest cells for pattern definition. Again, the
distance thresholds for the x- and y-coordinates, tx and ty , were chosen such that the
node to be simulated is constrained solely by data events occurring in the same region
of the grid (Table 1).

Unlike the tomograms, the simulations feature the desired sharp interfaces be-
tween facies (Fig. 7). Typical facies-in-facies patterns (e.g., facies 1 and 5 are fre-
quently connected in tight layering) are reproduced rather well. We simulated 1000
facies models, of which 10 predicted the radar traveltimes within the error bounds
(Fig. 4b). Different simulations that predict the radar data within the error bounds are
displayed in Fig. 8.

We face two different problems when simulating facies models based on the
Herten TI. (1) The complexity of the realizations leads to higher computational costs
since it takes a longer time until a suitable data event is found in the TI. Also, the
choice of the simulation parameters becomes more crucial than in the simpler chan-
nel case. (2) Many conditioned simulations feature small-scale structures that are not
present in the true facies model. Together with the wide range of radar wavespeeds
(much larger than for the channel scenario), this leads to a high number of conditioned
simulations that fail to predict the radar data within the defined error bounds. Thus,
more simulations are required to get a decent number of conditioned simulations that
honor the geophysical data and not only patterns in the tomograms.

5 Impact on Flow Predictions

The main purpose for determining the spatial distribution of lithofacies and their
hydrological parameters with high resolution is to use these models for prediction
of flow or solute transport. To demonstrate the improvement of the models resulting
from bivariate simulation, we conducted synthetic tracer experiments and compared
unconditioned (i.e., the layers of the facies training image) and conditioned MPDS
simulations with respect to their transport predictions. Tracer breakthrough at certain
locations on the right boundary is calculated for an injection of a conservative tracer
at the left boundary of the domain that is driven by a horizontal head gradient. We
used the finite-difference code MaFloT (Matlab Flow and Transport (maflot.com),
Künze and Lunati 2012) to solve the advection-dispersion equation and calculate the
tracer concentration evolution during continuous tracer injection. For dispersivities
in longitudinal and transversal direction, we used αl = 10−2 m and αt = 10−3 m and
for molecular diffusion D = 10−9 m2/s.

For the channel scenario, hydraulic conductivity values of K0 = 10−5 m/s and
K1 = 10−2 m/s were assigned to facies 0 and 1, respectively, to model highly con-
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Fig. 7 (a) One layer of the facies training image and (b) corresponding radar wavespeed distribution,
obtained by applying a petrophysical relation (P.R.). (c) The corresponding tomogram results from de-
terministic inversion (D.I.) of (b). (d) The true facies we seek to recover, (e) its wavespeed distribution
and (f) its tomogram, which is used as conditional data in the MPDS simulations. White dots indicate
transmitter and receiver positions for the radar traveltime calculations. (g) One simulated facies model

ductive channels in a low-conductivity matrix. The porosity was kept constant at
φ = 0.3. For the aquifer analog (Herten), hydrogeological facies information, that is,
the porosity and the hydraulic conductivity values were directly available from an
outcrop data set (Table 2).

In both cases, the uncertainty in the predictions for the tracer breakthrough is
clearly reduced for the simulations that are conditioned to a tomogram (Fig. 9).
For simulations that predict the radar traveltimes within the error bounds, the un-
certainty is further reduced. There is no indication of modeling bias, the predicted
breakthroughs are consistent with the breakthrough curves of the true models.
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Fig. 8 Different MPDS simulations of the Herten training image in movie illustration. (a) Unconditioned
simulations as they are used as layers of the training image. (b) MPDS simulations conditioned to a geo-
physical tomogram. These simulations failed to predict the radar data satisfactorily and were rejected.
(c) As for (b) but with radar traveltimes for which the WRMSE is below the threshold, these simulation
were accepted

6 Discussion

We show that combining MPS simulations and classical geophysical tomography can
produce models that overcome some of the shortcomings of both purely tomogram-
based inverse models and unconditioned MPS simulations. Unlike classical geophys-
ical tomography, the presented method allows to recover models that feature expected
geological patterns and sharp interfaces between facies elements. At the same time,
the inverse models are constrained by geophysical data whose information is spread
over large parts of the model domain, which is not the case for unconditioned sim-
ulations or simulations conditioned to point data only. When applied in practice, the
following issues must be taken into account:

• As for all methods that include MPS simulations, the choice of an adequate training
image is of utmost importance. If no auxiliary geological information is available,
MPS simulations carry a substantial risk of creating illusive results. This was ob-
served in tests performed by applying the method with a poorly chosen TI: We
tried to represent an object-based model featuring lenses with the same channel TI
as used in the first application. The resulting models reproduce the overall distribu-
tion of the two facies but feature channels instead of lenses and fail to predict the
data well. Problems in finding models with satisfactory data fit can thus be taken
as an indicator for an incomplete or biased TI. A detailed assessment about how
a poorly chosen TI affects the quality of MPS simulations is beyond the scope of
this study and is left as a recommendation for further research.
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Fig. 9 Statistics of calculated breakthrough curves for (a) channel scenario and (b) Herten scenario. Solid,
dashed and dotted lines depict mean, 50 % quantiles and 95 % quantiles. Blue line: breakthrough of the
true model

• In the current formulation, the GPR signals are approximated by curved rays rather
than accounting for the full-waveform signal. This approximation has been proven
robust in many applications (e.g., Davis and Annan 1989; Alumbaugh et al. 2002;
Dafflon and Barrash 2012). New developments in full-waveform inversion tech-
niques (e.g., Meles et al. 2011; Klotzsche et al. 2012) promise improved inversion
results for certain settings if further attributes of the waveform than just the first
arrival are considered.

• In the two scenarios presented, we assumed the petrophysics (i.e., the relationship
between the lithological properties and the geophysical parameters) to be perfectly
known and exact, which is rarely the case in practice. We postulate that the un-
certainty of the petrophysics can be accounted for by using a much larger TI that
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contains several tomograms for one facies model, each calculated with different
petrophysical parameters. We leave this for further research.

• We applied the method to cross-hole GPR tomograms, but the method is general
with regard to the measured geophysical signal. Applications to other geophysical
or hydrological tomographic methods, such as electrical resistivity tomography
(ERT), seismic tomography or hydraulic tomography are straightforward.

The ‘weight’ of the facies TI versus the conditioning data can be changed by varying
the MPDS parameters. For a smaller distance threshold t , for example, patterns in the
TI are reproduced more accurately. This requires larger parts of the TI to be scanned
in order to find a matching data event. Thus in general, the choice of the sampling
parameters is a compromise between reproduction accuracy and computational ef-
fort and to a large part controls the CPU burden in our workflow (Meerschman et al.
2013). Another computationally expensive step is creating the working TI, since each
generation of a MPDS realization of the original TI is followed by a forward calcu-
lation and a geophysical inversion. However, the inversion parameters are taken as
in the inversion of the field data, which implies that constructing the working TI de-
mands no extensive parameter study and needs to be done only once.

Like purely stochastic inversions based on Markov chain Monte Carlo, the pro-
posed method provides the user with an ensemble of possible models (e.g., Cordua
et al. 2012). Since the models are not extracted from a Markov chain and are in-
trinsically uncorrelated, our method is significantly faster than stochastic inversions.
Applying the method to a 3D case is straightforward, but CPU restrictions are non-
negligible.

The quality of a geophysical inverse model strongly depends on the choice
of the inversion parameters. This problem is largely circumvented by our ap-
proach, since we do not use the tomogram for interpretation but for condition-
ing of a geological conceptual model. We implicitly account for the resolution
limitations of tomograms, thus there is no need for an explicit resolution analy-
sis. Also, we create several possible models, which are used to assess the uncer-
tainty in the modeling results. This highlights the improvement over interpretation
of individual tomograms, where accurate estimation of both resolution and uncer-
tainty generally remains difficult (e.g., Williamson 1991; Day-Lewis and Lane 2004;
Doser et al. 1998).

The resulting models reproduce the large- and small-scale structures of the true
models rather well. They can be used for geological interpretation or as starting points
for further inversion or conditioning. Additional reduction of the uncertainty in the
parameter estimations might be achieved by including other types of geophysical or
hydrological data in the presented workflow.

7 Conclusions

A method is presented to condition MPS simulations to geophysical tomograms. We
create facies simulations by scanning a bivariate training image, constructed from ge-
ological facies realizations and their tomograms, for patterns found in a conditioning
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tomogram. This allows to exploit the advantages of both tomography and multiple-
point geostatistical simulation. MPS simulations produce detailed facies models with
sharp interfaces, where realistic geological constraints are honored by sampling from
a TI. Conditioning the simulations to a tomogram that resolves large-scale features
over large parts of the model domain, allows to adequately recover realistic facies
models. We found running a geophysical forward calculation on the proposed sim-
ulations and comparing the response to the measured data to be a valid acceptance
criterion. Unlike the classical geophysical approach where the interpreter is left with
one tomographic image, the method provides an ensemble of possible facies mod-
els that allows for uncertainty assessment. Testing the conditioned simulations with
respect to their transport predictions reveals that they correctly predict the transport
characteristics of the true model and that the uncertainty is reduced compared to pre-
dictions of unconditioned MPS simulations.
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