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Abstract

Geophysics and hydrogeology are scientific disciplines that play important roles in understan-
ding the subsurface environment. By proposing and implementing new methods to explore
and characterize the subsurface, it is possible to make predictions, manage resources and mi-
tigate hazards in better ways. The data acquired in geophysical and hydrogeological surveys
are used to infer relevant properties of the subsurface by solving inverse problems. A probabi-
listic framework to solve these problems that accounts for different uncertainty sources is
provided by Bayesian inversion. Unfortunately, the estimation of the posterior probability
density function (PDF) provided by widely used standard Markov chain Monte Carlo (MCMC)
methods can be limited when inverse problems are non-linear and high-dimensional. In
practice, they may fail to properly sample the posterior PDF in allowed computational times
by getting trapped in local minimas. Alternative methods relying on tempering overcome
these difficulties by enhancing the freedom of exploration using a temperature variable re-
ducing the influence of the likelihood function in Bayes’ theorem. Sequential Monte Carlo
(SMC) is a group of methods that build a sequence of importance sampling steps between
distributions with gradually decreasing temperatures, going from the prior to the posterior
PDF. These particle approaches use a set of evolving particles and their associated weights
to approximate the posterior PDF. An appealing property of SMC methods is that they also
offer an estimation of the evidence (marginal likelihood), a key quantity for comparing and
ranking competitive conceptual models. The challenge of SMC and other tempering methods
of pre-defining a suitable sequence of temperatures is overcome by adaptive SMC (ASMC)
that adaptively finds the most suitable temperature decrement. In this thesis, we implement
the ASMC method in challenging synthetic geophysical and hydrogeological test cases where
the prior information is encoded either by deep generative neural networks or training images
explored by multiple-point statistics methods to handle geologically-realistic prior PDFs. We
find that ASMC is considerably more efficient to locate and sample the posterior PDF than a
state-of-the-art adaptive MCMC method and parallel tempering, a popular MCMC method
relying on tempering. We demonstrate that the ASMC evidence estimations are robust re-
garding proposal schemes and inversion parameters. Still, ASMC is computationally costly
when considering expensive forward solvers in geophysics and hydrology. To seek important
computational gains while targeting the original posterior PDF and evidence, we propose a
multifidelity ASMC approach relying on surrogate solvers that are updated as the inversion
progresses. For a multivariate Gaussian test example, we show that this method accelerates
the inversion while reaching similar accuracy as methods relying on high-fidelity solvers
only. We find that ASMC is very powerful to solve complex geophysical and hydrogeological
inverse problems, especially when non-linearity and multi-modality challenge standard
MCMC approaches.

Key words : Bayesian inversion, Bayesian model selection, sequential Monte Carlo, geostatistics,
geophysics, hydrogeology, multifidelity methods.
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Résumé

La géophysique et l’hydrogéologie sont des disciplines scientifiques qui jouent un rôle im-
portant dans la compréhension de l’environnement souterrain. En proposant et en mettant
en œuvre de nouvelles méthodes pour explorer et caractériser le sous-sol, il est possible de
faire des prévisions, de gérer les ressources et d’atténuer les risques de manière plus effi-
cace. Les données acquises lors des études géophysiques et hydrogéologiques sont utilisées
pour déduire les propriétés pertinentes du sous-sol en résolvant des problèmes inverses.
L’inversion bayésienne offre un cadre probabiliste pour résoudre ces problèmes en tenant
compte des différentes sources d’incertitude. Malheureusement, l’estimation de la fonction
de densité de probabilité a posteriori fournie par les méthodes standard de Markov chain
Monte Carlo (MCMC) largement utilisées peut être restreinte lorsque les problèmes inverses
sont non linéaires et de haute dimension. Dans la pratique, elles risquent de ne pas parvenir à
échantillonner correctement la fonction de densité de probabilité a posteriori dans les temps
de calcul autorisés en se retrouvant piégées dans des minima locaux. D’autres méthodes
reposant sur le tempering permettent de surmonter ces difficultés en augmentant la liberté
d’exploration à l’aide d’une variable de température réduisant l’influence de la fonction de
vraisemblance dans le théorème de Bayes. La méthode sequential Monte Carlo (SMC) est un
groupe de méthodes qui construisent une séquence d’étapes d’échantillonnage préférentiel
entre des distributions dont les températures diminuent progressivement, en passant de la
fonction de densité de probabilité a priori à la posteriori. Ces approches particulaires utilisent
un ensemble de particules évolutives et leurs poids associés pour approximer la fonction de
densité de probabilité a posteriori. Une propriété intéressante des méthodes SMC est qu’elles
offrent également une estimation de l’évidence (vraisemblance marginale), une quantité clé
pour comparer et classer des modèles conceptuels compétitifs. Le défi du SMC et d’autres
méthodes de tempering consistant à prédéfinir une séquence appropriée de températures est
surmonté par le SMC adaptatif (ASMC) qui trouve de manière adaptative la décrémentation
de température la plus appropriée. Dans cette thèse, nous mettons en œuvre la méthode
ASMC dans des cas d’essai géophysiques et hydrogéologiques synthétiques difficiles où les in-
formations préalables sont encodées soit par des réseaux génératifs de neurones profond, soit
par des images d’entraînement explorées par des méthodes statistiques à points multiples
pour traiter des priors géologiquement réalistes. Nous constatons que la méthode ASMC est
considérablement plus efficace pour localiser et échantillonner la fonction de densité de
probabilité a posteriori qu’une méthode MCMC adaptative et que le parallel tempering, une
méthode MCMC populaire reposant sur le tempering. Nous démontrons que les estimations
de l’évidence par ASMC sont robustes en ce qui concerne les schémas de proposition et les
paramètres d’inversion. Cependant, la méthode ASMC est coûteuse en termes de calcul si
l’on considère les solveurs utilisés en géophysique et en hydrologie. Pour obtenir des gains
de calcul importants tout en ciblant la fonction de densité de probabilité a posteriori et
l’évidence originale, nous proposons une approche ASMC multifidélité reposant sur des
surrogate solveurs qui sont mis à jour au fur et à mesure que l’inversion progresse. Pour un
exemple de test gaussien multivarié, nous montrons que cette méthode accélère l’inversion
tout en atteignant une exactitude similaire à celle des méthodes reposant uniquement sur
des solveurs de haute fidélité. Nous constatons que la méthode ASMC est très puissante pour
résoudre des problèmes inverses géophysiques et hydrogéologiques complexes, en particulier
lorsque la non-linéarité et la multi-modalité défient les approches MCMC standard.

Mots clefs : Inversion bayésienne, sélection de modèles bayésiens, Monte Carlo séquentiel,
géostatistique, géophysique, hydrogéologie, méthodes multifidélité.
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Résumé pour le large public

Pour étudier notre planète et son environnement, nous élaborons des idéalisations et des
simplifications des systèmes naturels sous la forme de modèles conceptuels. La géophysique
et l’hydrogéologie sont des disciplines scientifiques des géosciences qui étudient les pro-
priétés et la dynamique du sous-sol. Dans ces domaines, les scientifiques ont mis au point
des techniques de mesure sur le terrain qui fournissent des informations indirectes sur le
sous-sol. Pour transformer les données acquises en quantités utiles caractérisant le sous-sol,
nous devons effectuer des processus mathématiques et informatiques connus sous le nom
d’inversions. L’approche bayésienne offre un cadre pour y parvenir ; au lieu de rechercher
une solution optimale, elle décrit la probabilité de chaque réalisation possible du modèle.
Dans cette thèse, nous explorons une méthode bayésienne particulière qui n’a pas encore
été popularisée dans les domaines de la géophysique et de l’hydrogéologie. Cette méthode,
appelée adaptive sequential Monte Carlo (ASMC), incorpore des stratégies qui améliorent
les chemins empruntés pour explorer les solutions possibles du problème, ce qui la rend
potentiellement plus efficace et plus puissante que les méthodes standard. Elle présente
également des avantages liés à sa nature adaptative qui permettent de réduire le temps de
test et l’effort de l’utilisateur. Nous évaluons les performances de l’ASMC à l’aide de différents
cas tests géophysiques et hydrogéologiques complexes. Nous comparons les résultats avec
des approches de pointe largement utilisées en géophysique et en hydrogéologie, et nous
constatons que l’ASMC surpasse souvent ces méthodes lorsque les problèmes sont difficiles.
Nous proposons en outre des stratégies pour prendre en compte des modèles conceptuels
plus réalistes sur le plan géologique, pour différencier les modèles conceptuels alternatifs,
ainsi que pour accélérer l’inversion qui peut être très coûteuse en termes de calcul. Nous
encourageons l’utilisation de l’ASMC en géophysique et en hydrogéologie, en particulier
pour les problèmes non linéaires impliquant plusieurs modèles conceptuels géologiquement
réalistes.
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Chapter 1

Introduction

1.1 The inverse problem in geophysics and hydrogeology

Geophysics and hydrogeology are interconnected scientific disciplines within the broader
field of geoscience. While geophysics focuses on understanding the Earth’s structure, compo-
sition, and dynamics (Lowrie and Fichtner, 2020), hydrogeology specifically deals with the
distribution, movement, and reactions of water and its solutes in the subsurface (Domenico
and Schwartz, 1997). The study of these disciplines is essential for managing resources, miti-
gating natural hazards, protecting the environment, and ensuring sustainable development
(Rubin and Hubbard, 2006; Reynolds, 2011). They provide valuable insights into the Earth’s
processes and help inform decision-making for various sectors, including environmental
conservation, water management, and infrastructure development.

Inverse problems can be thought of as puzzles in which we are given observational data
about a system we are interested in studying, and we need to reconstruct some of its prop-
erties. They are widely studied in diverse fields such as medical imaging (Arridge, 1999),
economics (Horowitz, 2014), weather forecasting (Cotter et al., 2009), astronomy (Craig and
Brown, 1986), and signal processing (Pike et al., 1984), among others. They play an essential
role in geophysics and hydrogeology as they enable us to derive meaningful information
about subsurface structures and processes that are otherwise difficult (or impossible) to
directly observe. The inversion process consists of inferring the unknown parameters of the
subsurface based on data measured at or near the Earth’s surface. In geophysics, the data are
acquired through methods such as seismic, electromagnetic, gravity and magnetic surveys,
or well logging (Everett, 2013). These techniques are used to infer information about the
physical properties of the Earth, such as elastic properties and electrical resistivity. Similarly,
in hydrogeology, the objective is to estimate parameters related to groundwater flow, aquifer
properties, or contaminant transport based on measurements collected from monitoring
wells, pumping tests, tracer studies, or other hydrogeological measurements. The targeted
properties of the hydrogeological system are often those that govern the movement and
storage of water or contaminants in the subsurface, for example, hydraulic conductivity,
porosity, or dispersivity (Fetter, 2018).

The opposite of inverse problems is forward problems, in which the response of a system
(simulated measurements or observations) is predicted given a set of input parameters.
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Contrary to the forward problem, the inverse problem is challenging due to its inherent ill-
posed nature (to be well-posed, the solution needs to exist, be unique and stable) (Mueller and
Siltanen, 2012). There are two main approaches to tackle the inverse problem. Deterministic
inversion focuses on finding a single solution for the unknowns by minimizing an objective
function subject to constraints (Parker, 1994). On the other hand, probabilistic inversion
treats the unknown parameters as random variables and targets a range of possible solutions
along with their associated probabilities (Tarantola, 2005). Bayesian inversion is a specific
approach within probabilistic inversion that follows the principles of Bayesian statistics. It
is widely used in geophysics and hydrogeology as it offers a comprehensive and flexible
framework for solving practical inverse problems. By incorporating prior knowledge and
accounting for uncertainty sources, it addresses the challenges of ill-posedness, leading to
improved understanding and decision-making in these fields (Stuart, 2010).

1.2 Bayesian inversion

Solving inverse problems requires a parametrization of the system under study in order to
represent it using a finite number of parameters that capture its essential characteristics.
The chosen parametrization can significantly impact the success and efficiency of inverse
problem-solving as it defines the unknown parameters to be inferred in the process. The
number of parameters to estimate is referred to as the dimension of the inverse problem. A
well-chosen parametrization should strike a balance between simplicity and the ability to cap-
ture the relevant features and variability of the system. For geophysical and hydrogeological
studies, it usually implies a spatial discretization of the domain under study.

Bayesian inversion enables the incorporation of prior assumptions regarding the system
based on previous studies, expert knowledge, physical principles, or other sources of infor-
mation. The prior probability density function (PDF) describes the expected uncertainty
and variability of the parameter values before observing the data. It represents the initial
belief about the parameters to infer and it can be built relying on empirical data, theoretical
considerations, but also subjective judgments (Scales and Tenorio, 2001). In this thesis, a
conceptual model refers to a parametrization of the subsurface together with an associated
prior PDF (Brunetti, 2018).

Bayesian inversion targets the posterior PDF of the system parameters after considering the
observed data. If we consider a conceptual model Mk with parameters θ, and a given a set
of data observations y, Bayes’ theorem is expressed as (Bayes, 1763; Calvetti and Somersalo,
2007):

π(θ|y, Mk ) = π(θ|Mk )p(y|θ, Mk )

π(y|Mk )
, (1.1)

where π(θ|y, Mk ) is the posterior PDF and π(θ|Mk ) is the prior PDF. The likelihood function
p(y|θ, Mk ) assesses the probability that a particular model realization, under a prescribed
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error model, has generated the observed data y. Hence, it quantifies the agreement or
fit between the model predictions and the actual measurements, taking into account the
uncertainties in the observations. When the errors or uncertainties in the observed data are
assumed to follow a Gaussian (normal) distribution, the likelihood is given by:

p(y|θ, Mk ) =
(

1

2π

) n
2 |C |− 1

2 exp

(
−1

2
(F (θ)−y)T C−1(F (θ)−y)

)
, (1.2)

where n is the number of data points, C the data covariance matrix describing the estimated
data uncertainty and correlations and |C | its determinant. The forward operator F (θ) is
a mathematical model of the physical system that provides the simulated response for a
particular set of values assigned to the parameters θ.

The normalizing constant in Bayes’ theorem π(y|Mk ) is known as the evidence or marginal
likelihood. The evidence can be challenging to calculate for high-dimensional problems as it
is a multi-dimensional integral (as many dimensions as the number of model parameters)
over the prior:

π(y|Mk ) =
∫
π(θ|Mk )p(y|θ, Mk )dθ. (1.3)

For many applications, the computation of the evidence is not required. The posterior PDF
in Bayesian inference can then be estimated up to a constant as the following proportionality
holds:

π(θ|y, Mk ) ∝π(θ|Mk )p(y|θ, Mk ). (1.4)

The evidence can be ignored as long as the model parametrization is constant. This is not the
case in some Bayesian inversion approaches, for example, transdimensional Markov chain
Monte Carlo (Green, 1995; Sisson, 2005; Bodin and Sambridge, 2009), in which the number of
parameters to infer is treated as an unknown. When the focus of the study is the uncertainty
in the conceptual model, the evidence is the key quantity to estimate. If we are considering
different and competitive conceptual models, the evidence can be used to compare and rank
them, a process known as Bayesian model selection (Knuth et al., 2015).
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1.2.1 Monte Carlo-based Bayesian inference

The posterior PDF can only be recovered analytically for very specific scenarios. For more
general cases, one needs to explore the parameter space to generate representative posterior
samples (Tarantola, 2005). Random or pseudo-random explorations can be performed by
Monte Carlo methods (Metropolis and Ulam, 1949), which have been widely used for inverse
problems in Earth sciences (Sambridge and Mosegaard, 2002). This group of computational
algorithms relies on repeated generation of samples from a specific distribution over a
given sampling space. Rejection-sampling is a popular Monte Carlo method that generates
random samples from a simpler density, and accepts or rejects them such that, provided
enough samples, the accepted ones approximate the target distribution (Von Neumann et al.,
1951). This method is useful to approximate the posterior distribution in lower dimensions,
however, the low probability of accepting samples in higher dimensions makes the process
very inefficient.

More efficient explorations of the parameter space are possible by using Markov chain Monte
Carlo (MCMC) methods (see for example Gilks et al. (1995)). The basic idea behind these
methods is to build sequences of evolving states of the values taken by the model parameters
θ. In these sequences, known as Markov chains, each state depends only on the immediately
previous state. In MCMC methods, the Markov chains gradually converge to a unique and
stationary distribution that does not depend on their initial state and approximates the
posterior PDF, given that the detailed balance condition is fulfilled (Mosegaard and Sambridge,
2002):

P (θi |θ j )h(θ j )dθ j dθi = P (θ j |θi )h(θi )dθi dθ j , (1.5)

where h(θ) is the desired equilibrium distribution, and P (θi |θ j ) is the transition probability
distribution that gives the probability of visiting θi when the algorithm is at θ j .

A proposal distribution is needed to suggest moves within the chains, that is, to generate
a candidate set of parameters for the next state. One of the first MCMC approaches is the
random walk Metropolis (Metropolis et al., 1953), in which the chains evolve by iteratively
proposing moves using a symmetric proposal distribution. These moves are accepted ac-
cording to the Metropolis rule, that expresses the probability that the chain moves from the
current state θc to a proposed state θp :

Γ(θp ,θc ) = mi n

(
1,
π(θp )p(y|θp )

π(θc )p(y|θc )

)
. (1.6)

The proposal distribution and its scale play an important role as it directly impacts the
acceptance rate. This rate is defined as the ratio of the number of accepted moves to the
total number of proposed moves. If the proposal scale is too small, the candidate set of
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parameters will be similar to each other. The resulting acceptance rate will be high but the
Markov chain becomes slow at exploring different parts of the posterior distribution. On the
other hand, if the proposal scale is too high, the acceptance rate will be low and a significant
amount of computational resources will be wasted in simulating the forward response of
candidate states that are unlikely to be accepted. It is not trivial to define an efficient proposal
distribution but it is crucial, especially in higher dimensions when sampling efficiency is
computationally needed. Multiple variations of the Metropolis-Hastings algorithm have been
proposed that aim at improving the sampling through more complex proposal distributions
schemes (Haario et al., 2006; Bai et al., 2011; Vrugt, 2016).

Tempering-based methods

There is a need to broaden the scope of inverse problems that can be tackled in terms of
complexity, by employing more effective and robust inversion algorithms (Sambridge, 2014).
Even if MCMC methods have been widely applied in diverse fields, and much effort has
been dedicated to improving the schemes and the proposal distributions, the challenge
of thoroughly exploring complex posterior PDFs in realistic computational times remains.
Relevant factors that contribute to the complexity of an inverse problem are (i) the dimension
of the inverse problem and spatial correlation among parameters, (ii) the non-linearity of the
associated forward problem, and (iii) the existence of more than one mode in the posterior
PDF, known as multimodality. What is observed in practice is that the Markov chains become
trapped in regions of local minima for extended periods and are unable to transition between
regions of high posterior probability.

To overcome such challenges, a group of methods relying on tempering have been proposed.
By introducing a variable, known as the temperature, they modify the prominence of the local
and global minimas by re-scaling the objective function. Kirkpatrick et al. (1983) relied on this
idea when developing the popular method of simulated annealing (SA), where a schedule of
conditional distributions with decreasing temperatures are sampled to find a global minimum
of the objective function. Tempering was first introduced in the geosciences by Rothman
(1985, 1986) for global optimization of the residual statics in reflection seismology.

Tempering in Bayesian inversion involves altering the influence of the likelihood function.
The temperature T ≥ 1, or its inverse α = 1/T 0 ≤ α ≤ 1, is introduced to change the
likelihood weight in equation 1.4:

π(θ|y) ∝π(θ)p(y|θ)α, (1.7)

where we have assumed a fixed conceptual model and suppressed Mk for simplicity. An
α= 0 means that we sample the prior PDF and an α= 1 means that we sample proportional
to the posterior PDF. Decreasing α (or increasing the temperature) flattens the likelihood
function, such that the considered data have less influence and the sampling gets closer
to the prior distribution (see Figure 1.1). In this way, tempering enhances the freedom of
exploration of probabilistic samplers and reduces the risk of getting trapped in local minimas.
The tempered distributions in equation 1.7 are known as unnormalized power posteriors.
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Figure 1.1: Effect of tempering in a 1-D multi-modal Gaussian likelihood. If the temperature
increases, α decreases, and the function becomes flatter with less pronounced maximas of
the likelihood function (minimas for a corresponding misfit function).

Simulated tempering (ST) (Marinari and Parisi, 1992; Geyer and Thompson, 1995) is a prob-
abilistic sampling method that relies on a temperature ladder that can either decrease or
increase, where the proposed temperature changes are accepted or rejected in a stochas-
tic way. Compared to SA, the detailed balance conditions are ensured when transitioning
between temperatures, however, the implementation is difficult as it requires computation
of the tempered distributions’ normalizing constants for the acceptance rule (Sambridge,
2014). A similar method that overcomes this issue is parallel tempering (PT) (Geyer, 1991;
Falcioni and Deem, 1999; Earl and Deem, 2005), which relies on MCMC chains that explore
individually different power posteriors (each chain has a fixed temperature), instead of a
single walker that decreases or increases its temperature. The higher temperature chains
are freer to explore the whole space, and by proposing eventual swaps between the states of
the chains, the information is transferred to the low temperature chains that can explore the
individual modes. Examples of PT applications in the geosciences can be found in Mohamed
et al. (2012), Carter and White (2013), Sambridge (2014), Laloy et al. (2016), Wang et al. (2019),
Reuschen et al. (2020).
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Figure 1.2: Taken from Brunetti (2018), examples of alternative conceptual models in a hydro-
geological study: (a) horizontal layers, (b-d) multi-Gaussian models with different correlation
structures, and (e-h) models obtained through multiple-point statistics approaches.

1.2.2 Bayesian model selection

We rely on models to study the world around us, but we need to keep in mind that “All models
are wrong, but some are useful” (Box, 1979). Indeed, models are idealizations whose purpose
is to represent the system we are interested in. It is not possible to validate conceptual
models in the geosciences, implying that we should instead try to falsify them (Popper, 2005;
Oreskes et al., 1994) or compare plausible alternative models in relative terms. Inversion
results and associated uncertainty quantification are only meaningful as long as the impact
of the underlying assumptions is small. The choice of our conceptual model, sometimes our
primary and major assumption when performing inversion, brings with it a great amount of
subjectivity when addressing Earth science problems (Bond et al., 2007). A more transparent
approach then is to consider competitive conceptual models and quantitatively compare
them through Bayesian model selection (see Figure 1.2 from Brunetti (2018)).

The evidence (equation 1.3) is the key quantity in Bayesian model selection as it quantifies
the consistency of a conceptual model with the observed data (Kass and Raftery, 1995).
An outstanding property of the evidence is that it honors the principle of parsimony or
Occam’s Razor, in the sense that it implicitly embodies a trade-off between minimizing model
complexity and goodness of fit (Angluin and Smith, 1983; Jefferys and Berger, 1992; MacKay,
2003).

Model selection can be performed by relying on mathematical approximations or numerical
approaches. A group of mathematical approximations known as information criteria (IC), for
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example Kashyap (KIC, Kass and Raftery (1995)), Akaike (AIC, Poeter and Anderson (2005)) and
Bayesian (BIC, Gideon (1978)), have shown to perform inconsistently, leading to contradicting
model ranking (Lu et al., 2011; Schöniger et al., 2014). The Laplace-Metropolis method (Lewis
and Raftery, 1997) evaluated at the maximum a posteriori (MAP) point is a mathematical
approximation of the evidence that has shown to perform better than the information criteria
(Schöniger et al., 2014). On the other hand, simulation-based approaches can be more
reliable but they become computationally demanding in high-dimensions (Evans and Swartz,
1995). Examples of simulation-based approaches include brute force Monte Carlo (BFMC) or
arithmetic mean approach (Hammersley, 1960), Monte Carlo integration with importance
sampling (Hammersley and Handscomb, 1964) (e.g., Gaussian mixture importance sampling
by Volpi et al. (2017)), Monte Carlo integration with posterior sampling or harmonic mean
approach (Newton and Raftery, 1994), nested sampling (Skilling, 2006), thermodynamic
integration (Gelman and Meng, 1998; Friel and Pettitt, 2008), stepping stone sampling (Xie
et al., 2011), and sequential Monte Carlo (Zhou et al., 2016).

1.3 Adaptive sequential Monte Carlo

1.3.1 Sequential Monte Carlo

A group of algorithms to perform Bayesian inversion is the family of sequential Monte Carlo
(SMC) methods (Chopin, 2002; Del Moral et al., 2006). The original application of SMC
methods was as particle filters for data assimilation problems with observations that become
available with time. In these problems, the inference is performed on-the-go by updating
the posterior of the states using the new data; examples are radar measurements employed
to monitor an aircraft’s position or stock market data to estimate the volatility of financial
instruments (Doucet et al., 2001). Nearly all particle filtering methods can be interpreted as
instances of a generic SMC algorithm (Doucet and Johansen, 2011). In this thesis, we use the
SMC method in the context of tempered exploration for Bayesian inversion, by relying on a
sequence of importance sampling steps between power posteriors at gradually decreasing
temperatures.

1.3.2 Importance sampling

Importance sampling (IS) is a Monte Carlo approach approximating the mathematical expec-
tation of a target distribution by computing a weighted average of random samples drawn
from a different distribution known as the importance distribution (Hammersley and Hand-
scomb, 1964). While sampling the target distribution is impractical or even impossible, the
importance distribution should be easy to sample from. The concept underlying IS is to
weight samples obtained from the importance distribution such that they emulate samples
derived from the target distribution. If the importance distribution is q(θ) and the target
distribution is l (θ), the importance weight w of a sample θs is given by:
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w = l (θs )

q(θs )
. (1.8)

The effectiveness of importance sampling relies on the choice of a suitable importance
distribution. An ideal importance distribution is slightly wider than the target distribution
but with the same mean (Geweke, 1989), which ensures that all possible values of the target
distribution can be sampled and the variance of the importance weights is not too large.

1.3.3 Sequence of power posteriors

When the importance and target distribution are not sufficiently close, IS may fail to prop-
erly estimate the target distribution, a frequent situation when using the prior PDF as the
importance distribution to target the posterior PDF (Agapiou et al., 2017). To address this,
Neal (2001) proposed the annealed importance sampling (AIS) method in which the prior
and the posterior PDF are linked through a sequence of intermediate importance sampling
steps involving power posteriors at different temperatures. The inverse temperature schedule

αt ∈ [0,1] defines the sequence of power posteriors
{
γt (θt |y)

}T
t=0 (equation 1.7). The method

is initialized by sampling from the prior αt=0 = 0, and then gradually considers increases in
α, thereby, giving more influence to the likelihood function, until αt=T = 1. Each interme-
diate power posterior is approximated using a number of K Markov steps (iterations of a
Markov chain targeting the corresponding power posterior, section 1.2.1), and to transition
from one power posterior to the following one, an intermediate importance sampling step is
performed.

Both AIS and SMC are particle methods enabling to perform Bayesian inversion. In these
approaches, a number of N particles with evolving states run in parallel. Each of the particles
targets sequentially the sequence of power posteriors and has an associated weight resulting
from the intermediate importance sampling steps.

1.3.4 Incremental weights

If we consider a transition from αt−1 to αt , the corresponding intermediate importance
sampling step is performed using the approximation of the power posterior γt−1(θt−1|y) as
the importance distribution for estimating γt (θt |y). For a particle i , the incremental weight
w i

t resulting from this step is:

w i
t =

γt (θi
t−1|y)

γt−1(θi
t−1|y)

. (1.9)
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Figure 1.3: Schematic representation of sequential Monte Carlo (SMC) using N = 5 particles
evolving in parallel. After the initial sampling from the prior PDF (blue circles), K = 4 Markov
steps are performed to approximate one of the power posteriors γt . In these power posteriors,
the likelihood is raised to an inverse temperature αt that increases gradually. At the end of
each approximation, an importance sampling step is performed to calculate an incremental
weight wt . A resampling step is indicated by the red dashed lines.

As the sequence of power posterior progresses, the incremental weights are multiplied in the
form of normalized particle weights:

W i
t = W i

t−1wt
i∑N

j=1 W j
t−1w j

t

. (1.10)

The final normalized particle weights W i
T are the ones determining the relative weights

of each of the particles final states approximating the posterior PDF. Figure 1.3 shows a
schematic simplified representation of SMC.

10



1.3.5 Resampling

The variance of the particle weights is an indicator of the quality of the particle approximation,
as a high variance indicates that only a fraction of the particles contribute in a significant way
to the approximation. A complication of AIS is that, due to stochastic convergence behaviors
of the intermediate MCMC steps, the particle weights tend to diverge as the algorithm
progresses. The various SMC methods overcome this issue by incorporating resampling steps
(Figure 1.3). In these steps, the particles are re-initialized by replicating their states according
to their normalized weights, such that they all have the same normalized weight after the
resampling step. That is, the states of particles with higher weights are more likely to be
replicated than states of particles with very low weights. A comparison of different resampling
schemes can be found in Douc and Cappé (2005).

In this thesis, we rely on systematic resampling, due to its simple and efficient implemen-
tation. Figure 1.4 illustrates the procedure, in which the following steps are followed (Bolić
et al., 2004):

1. Draw a random value U from the uniform distribution U
[
0, 1

N

]
and define the points

U i =U + (i−1)
N , i = 1, ..., N (red dots in Figure 1.4a).

2. Build the normalized weights W i
t cumulative function (blue ladder in Figure 1.4a).

3. The number of replications of a particle state in the resampling step is equal to the num-
ber of points that fall into the vertical jump of the cumulative function corresponding
to that particle.

For example, the state of particle number number 3 is replicated three times, but the state of
particle number 4 is lost as no points fall into the corresponding jump (Figure 1.4b).

1.3.6 Posterior estimation

Contrary to MCMC methods, the posterior distribution in particle methods as SMC is not
approximated by a cumulative set of samples gathered as the chain progresses with equal
weights. In SMC methods, if N particles are used, the initial normalized weights are all
equal to 1/N . These weights evolve and, at the end of the SMC algorithm, there is a set of N
particle states, each one with a corresponding normalized final weight W i

T . The W i
T give the

relative weights to the final particle states to approximate the posterior distribution. Figure
1.5 illustrates the difference between how SMC and MCMC results are used to estimate the
posterior PDF. Evidently, the number of particles used in particle approaches is a key variable
that impacts the posterior estimation quality.
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Figure 1.4: Simplified example of a systematic resampling step using N = 5 particles: (a) a
random number U is drawn from U

[
0, 1

N

]
to define the points U i =U + (i−1)

N (red dots), the
number of replications is equal to the number of points falling in the jump corresponding
to that particle in the normalized weights cumulative function (blue ladder), and (b) the
particles are replicated and the normalized weights are reinitialized to 1

N .
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Figure 1.5: Diagram representing the difference between (a) MCMC and (b) SMC posterior
approximations. The circles represent the chains/particle states and the color denotes the
temperature. In MCMC, all chains target the posterior (equivalent to an inverse temperature
α= 1, purple circles). After an initial burn-in period that needs to be discarded, every sample
(regardless of the chain and the location within the chain) is used to approximate the posterior
with the same weight. MCMC samples are often highly correlated and generally long chains
are needed to obtain a sufficient number of independent samples (Kass et al., 1998). On the
other hand, SMC methods target sequentially power posteriors at gradually-increasing αt ,
and when α= 1, the final normalized weight of a given particle describes its weight in the
particle approximation. For illustrative purposes, we only used six particles, although usually
more particles are used in practice.
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1.3.7 Evidence estimation

An advantage of SMC over MCMC algorithms is that they also provide an estimation of the
evidence. This means that with (almost) the same computational cost, we obtain both a
numerical approximation of the posterior PDF and the evidence, making it a flexible method
to perform Bayesian inference, Bayesian model selection or both.

The normalizing constant of an unnormalized power posterior γt (θt |y) is given by Zt =∫
γt (θt |y)dθt . Following Del Moral et al. (2006), the ratio of the normalizing constants of two

consecutive power posteriors in SMC can be approximated as:

Zt

Zt−1
≈

N∑
i=1

W i
t−1w i

t . (1.11)

Given that the prior PDF integrates to 1 (Z0 = 1), the evidence (equation 1.3) can be estimated
as:

π(y) = ZT = ZT

Z0
=

T∏
t=1

Zt

Zt−1
≈

T∏
t=1

N∑
i=1

W i
t−1wt

i . (1.12)

In practice, the evidence is updated using the evolving particle incremental and normal-
ized weights as the inverse temperature increases. Compared to SMC, alternative MCMC
tempering-based methods may require a post-processing stage to calculate the evidence, for
example, using parallel tempering results to approximate the evidence by thermodynamic
integration (Bailer-Jones, 2015).

1.3.8 Adaptive scheme

In this thesis, we refer to adaptive sequential Monte Carlo (ASMC) following Zhou et al. (2016),
as the SMC method that combines automatic tuning of both the proposal scale and the
sequence of temperatures, with decisions on when to perform resampling steps. Note that
ASMC is used in the literature to denote any SMC algorithm in which adaptivity is included.

Resampling criterion

The divergence of the weights, also known as sample impoverishment or weight degener-
acy, can lead to many of the particles having extremely low normalized importance weights
and, therefore, not making a substantial contribution to approximating the target distribu-
tion (Cappé et al., 2005). In this thesis, we adopt a scheme in which decisions to perform
resampling are based on the effective sample size (ESS):
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ESSt =
(
∑N

i=1 W i
t−1w i

t )2∑N
j=1(W j

t−1)2(w j
t )2

. (1.13)

The ESS indicates the number of samples that effectively contribute to the particle approxi-
mation. The ESS is initially N and decreases as the power posterior sequence progresses and
the weights diverge; resampling steps are performed when the ESS falls below a pre-defined
fixed threshold.

Temperature ladder

One common challenge of tempering-based methods is the definition of the temperature
ladder. Determining an optimal sequence of temperatures to efficiently sample the space
may require substantial user effort. In SMC, the inverse temperature increments can be
determined on-the-go by relying on the conditional effective sample size (CESS) describing
the quality of the importance sampling distribution:

C ESSt = N
(
∑N

i=1 W i
t−1w i

t )2∑N
j=1 W j

t−1(w j
t )2

. (1.14)

While the ESS (equation 1.13) considers the accumulated discrepancy between the impor-
tance and target distributions, the CESS focuses on the following IS step (Zhou et al., 2016).
In practice, one can easily rely on an algorithm that searches between possible inverse tem-
perature increments ∆αt =αt −αt−1, to obtain the CESS that is the closest to a pre-defined
value.

Proposal scale

Changing the scale of the proposal distribution in MCMC algorithms violates the detailed
balance condition (equation 1.5). In SMC methods, however, tuning the proposal scale for
each power posterior using the results from previously considered temperatures does not, as
it is only used to perform the K Markov steps to approximate the importance distribution
for the next intermediate importance sampling step (Jasra et al., 2011; Del Moral et al., 2012).
In ASMC, we consider an adaptive tuning where the proposal scale can be modified by a
certain percentage. The proposal scale used to approximate a power posterior is tuned
depending on the acceptance rate of the K Markov steps approximating the previous one: if
the acceptance rate reaches some above (below) pre-defined threshold, the proposal scale is
increased (reduced).

15



1.4 Geologically-realistic priors

Bayesian inversion is strongly influenced by the choice of the conceptual model. Ideally,
a prior PDF should incorporate any relevant knowledge about the system. Nonetheless,
reliable prior information is not always available, and it might be challenging to convert
the information into a PDF (Linde et al., 2015). If available, including reliable information
within the prior should be encouraged as it can strongly reduce the complexity of solving
the inverse problem and the results will be more useful (Hansen et al., 2012). When limited
prior information is available, it might be tempting to perform the inversion with few prior
assumptions. However, the resulting realizations will often have no resemblance to geological
formations and the results will, hence, be of limited value. One solution is to acknowledge
that the prior is uncertain and that it is rather to be considered as one of an infinite number
of alternative conceptual models. By then comparing the evidence for the different priors,
one can then determine the most suitable conceptual model using Bayesian model selection
(Linde, 2014; Brunetti et al., 2017, 2019).

The choice of a suitable and useful prior is not trivial and highly problem-dependent. Model-
ing the spatial statistics of subsurface heterogeneity has traditionally been approached using
geostatistical models relying on two-point statistics, for example, multi-Gaussian models
(Kitanidis, 1997). One advantage of this type of priors is that they are parametric, meaning
that they can be represented with mathematical expressions allowing to evaluate the prior
probability of any set of parameter values. Unfortunately, multi-Gaussian models are gen-
erally insufficient to represent complex geological structures and account for connectivity
patterns (Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003; Renard and Allard, 2013).
This limitation can lead to inaccurate predictions and underestimation of the uncertainty.

Alternative approaches have been proposed to integrate geological knowledge and account
for enhanced complexity in the prior representation (Linde et al., 2015). One option is to
rely on typically two-dimensional or three-dimensional conceptualizations of the subsur-
face known as training images (TI). These continuous or categorical images are obtained
from diverse sources like remote sensing data, geological maps, physics-based modeling of
geological processes, observed outcrops, or other available information. Their objective is
to capture the main subsurface spatial structures and heterogeneity patterns. To generate
realizations that honor the higher-order statistics and patterns of the TI, there is a group of
algorithms that rely on multiple-point statistics (MPS)(Mariethoz and Caers, 2014). Even
if MPS-based prior models conceptualized by TIs are generally non-parametric or implicit,
they have been successfully incorporated in Bayesian inversion by sequential resampling
schemes related to Gibbs sampling (Fu and Gómez-Hernández, 2009; Mariethoz et al., 2010a;
Hansen et al., 2012; Ruggeri et al., 2015) or patch-based approaches influenced by texture
synthesis (Zahner et al., 2016).

On the other hand, artificial intelligence has been growing and revolutionizing most research
fields including the geosciences (Karpatne et al., 2018; Bergen et al., 2019). Deep learning is a
subset of machine learning that focuses on the development and training of artificial neural
networks with multiple layers (LeCun et al., 2015). Deep generative neural networks trained
on TIs learn a transform between a low-dimensional latent space with a prescribed prior
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and the original image space (Laloy et al., 2017, 2018; Mosser et al., 2017, 2020). However,
even if there is a substantial dimensionality reduction as the inversion is performed over the
latent parameters, there is an increase in the non-linearity inherited from the neural network
transformation.

Despite current challenges, both traditional MPS algorithms and generative neural networks
enable the use of more realistic prior models and, consequently, lead to more representative
estimations and predictions resulting from the inversion process.

1.5 Surrogate forward modeling

Both SMC and MCMC inversions require repeated evaluations of the forward operator. For-
ward solvers have been developed to mimic as accurately as possible the system response,
but they are generally rather computationally expensive. In this thesis, we refer to this type
of solvers as high-fidelity solvers. Alternative solvers that aim to emulate the high-fidelity
ones at lower computational times are known as surrogate, proxy or meta solvers. The ob-
jective of surrogate solvers is to accelerate the response computation while maintaining
reasonable accuracy. Surrogate models are generally constructed based on a limited set
of input-output data points generated from the high-fidelity solver. Although widespread
utilization of surrogate modeling in geophysical and hydrogeological inversion has started
only recently, they enable the opportunity to significantly lower the computational demand
of Bayesian inversion schemes (Linde et al., 2017).

Replacing a high-fidelity solver with a surrogate solver in a Bayesian inversion usually intro-
duces some degree of approximation error. The accuracy of the surrogate model depends
on the quality and representativeness of the training data, the problem considered and the
surrogate modeling technique used. Validation and verification procedures are typically
performed to assess the accuracy and reliability of the surrogate model before deploying it for
further analysis. In Bayesian inversion, ignoring this model error can lead to inaccurate esti-
mations and it is recommended to account for it within the likelihood function (Kaipio and
Somersalo, 2007; Nissinen et al., 2007; Hansen et al., 2014). Careful combination of high- and
low-fidelity simulations in Bayesian inversion within specialized algorithms is an attractive
strategy that allows accelerating the computation while ensuring accuracy and convergence
(Peherstorfer et al., 2018). We refer to these hybrid schemes as multifidelity approaches. An
example is two-stage Markov chain Monte Carlo (MCMC), in which high-fidelity simulations
are computed on samples that have been pre-accepted by the low-fidelity solver (Christen
and Fox, 2005).

There are different approaches to create surrogate models. Kriging-based approaches involve
modeling the spatial correlation between data points to predict values at unobserved loca-
tions (e.g, Gaussian Process Regression, Santner et al. (2003), Rasmussen (2004)). These are
localized surrogates, as they rely on local information to make accurate predictions near the
points of the training set. Localized techniques are better for interpolation, whereas global
surrogates are better for extrapolation, giving them higher global accuracy (Marelli et al.,
2021). Examples of global surrogates are those obtained with deep-learning, which have been
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used, for example, to model reservoir subsurface flow in geophysics (Jin et al., 2020). On the
other hand, polynomial chaos expansion (PCE) (Xiu and Karniadakis, 2002; Blatman and
Sudret, 2011) is a mathematical approach that approximates the high-fidelity solver through
its spectral representation in an orthonormal polynomial basis. The polynomial expansion
can be truncated at a certain order to balance accuracy and computational efficiency. Combi-
nations of localized and global approaches have been proposed to train surrogates with good
extrapolation and local accuracy, for example, PCE-Kriging (Schobi et al., 2015; Kersaudy et al.,
2015). In this thesis, we use regression-based sparse (meaning that most of the coefficients
are zero) PCE surrogate models because they have shown strong extrapolation capabilities
and are robust with respect to noise (Blatman and Sudret, 2011; Lüthen et al., 2021; Marelli
et al., 2022; Meles et al., 2022). PCE have been successfully implemented for surrogate models
within various Bayesian inversion frameworks (Marzouk et al., 2007; Marzouk and Xiu, 2009;
Wagner et al., 2020; Meles et al., 2022).

1.6 Objectives

Bayesian inversion provides a comprehensive framework to solve complex inverse problems
where different sources of uncertainty can be accounted for. For this reason, it has become
an essential tool in the field of geophysics and hydrogeology, allowing to infer subsurface
properties, make predictions on the studied systems, quantify the estimation uncertain-
ties, and compare competitive conceptual models. Current challenges when relying on the
Bayesian framework to solve inverse problems include the difficulty of properly exploring the
different regions of the posterior PDF, especially when the problems are high-dimensional,
multi-modal, and non-linear. Even if Bayesian approaches are powerful tools, the counterpart
of most algorithms is the high computational demand associated with the large number of
forward evaluations needed. There is, therefore, a necessity of improving existing methods,
testing approaches developed in other contexts and developing new strategies to enhance
the capacity and efficiency of exploration. On the other hand, geoscientists have a growing
interest in building realistic conceptual models that resemble natural structures and behav-
ior. The definition and extent of the prior PDF that can be considered in inversion studies
is expanding due to developments in MPS and deep learning. Accounting for geological
realism while defining a prior that can be properly and efficiently incorporated in a Bayesian
inversion is a current challenge.

In this thesis, we explore the ASMC method, to address the following objectives:

• evaluate the ability of ASMC to estimate the posterior PDF and the evidence in chal-
lenging synthetic hydrogeological and geophysical test cases,

• compare the performance with MCMC: standard MCMC, adaptive MCMC and parallel
tempering,

• account for geological realism in conceptual models by multiple-point statistics and
deep-learning based priors,
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• seek ASMC speed-ups by proposing a multifidelity framework in which we combine
high-fidelity and low-fidelity solvers aiming for both a fast and accurate inversion.

The use of classical SMC and particle filter approaches in geophysics and hydrology (Van Leeuwen,
2009; Werner et al., 2011; Vrugt et al., 2013; Khaki et al., 2019; Veettil and Clark, 2020; Mil-
tenberger et al., 2023), as well as adaptive SMC for Bayesian inversion purposes (Jeremiah
et al., 2011, 2012; Zhu et al., 2018; Lee et al., 2020; Davies et al., 2023) is, to the best of our
knowledge, still very limited. Through this thesis we aim to present the advantages, potential
and limitations of ASMC through geophysical and hydrogeological test cases, hoping to
motivate and encourage its application and its testing for inversion and model selection in
complex real-case scenarios throughout the geosciences.

1.7 Outline

To address the presented objectives, this thesis includes two published articles (Chapters 2
and 3) and a third to be submitted (Chapter 4). Below is a brief description of its structure:

• In Chapter 2, we implement the ASMC method in a synthetic GPR crosshole tomog-
raphy problem to estimate the posterior PDF and the evidence. We compare the
performance with MCMC using two alternative schemes for model proposals within
the inversion: a basic uncorrelated Gaussian and an adaptive DREAM(ZS) algorithm.
Two different conceptual models with priors encoded by spatial generative adversarial
neural networks (SGANs) are considered and the evidences are evaluated for different
scenarios. The uncertainty of the evidence estimations is assessed by repetitive runs
and a modified single-run estimator that is proposed for the first time.

• In Chapter 3, we consider a challenging hydrogeological groundwater transport inverse
problem, designed to have a bimodal posterior distribution. The results are compared
with results obtained using parallel tempering for a similar computational budget. We
rely on a MPS-based proposal scheme named sequential geostatistical resampling.
We investigate the relative sampling of the two modes as the temperature progresses
and discuss how ASMC intermediate results can be interpreted as corresponding to
assumptions of higher data errors.

• In Chapter 4, we propose speed-ups in the ASMC inversion considering surrogate mod-
eling and two types of high-fidelity solvers. We compare the performance when using
surrogates trained with prior samples against an algorithm in which the surrogate is
updated on-the-go. We combine tempering steps with surrogate updates and propose
a final transition to the high-fidelity solver. Through this multifidelity framework, we
seek computational time reductions without compromising accuracy.

• In Chapter 5: we summarize the main conclusions of the thesis, discuss the main impli-
cations, highlight the advantages and challenges of implementing ASMC in geophysical
and hydrological inverse problems, and propose an outlook.
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Adaptive sequential Monte Carlo for poste-
rior inference and model selection among
complex geological priors
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Abstract

Bayesian model selection enables comparison and ranking of conceptual subsurface models
described by spatial prior models, according to the support provided by available geophysical
data. Deep generative neural networks can efficiently encode such complex spatial priors,
thereby, allowing for a strong model dimensionality reduction that comes at the price of
enhanced non-linearity. In this setting, we explore a recent adaptive sequential Monte
Carlo (ASMC) approach that builds on annealed importance sampling (AIS); a method that
provides both the posterior probability density function (PDF) and the evidence (a central
quantity for Bayesian model selection) through a particle approximation. Both techniques
are well suited to parallel computation and rely on importance sampling over a sequence
of intermediate distributions, linking the prior and the posterior PDF. Each subsequent
distribution is approximated by updating the particle weights and states, compared with
the previous approximation, using a small pre-defined number of Markov chain Monte
Carlo (MCMC) proposal steps. Compared with AIS, the ASMC method adaptively tunes the
tempering between neighboring distributions and performs resampling of particles when
the variance of the particle weights becomes too large. We evaluate ASMC using two different
conceptual models and associated synthetic cross-hole ground penetrating radar (GPR)
tomography data. For the most challenging test case, we find that the ASMC method is faster
and more reliable in locating the posterior PDF than state-of-the-art adaptive MCMC. The
evidence estimates are found to be robust with respect to the choice of ASMC algorithmic
variables and much less sensitive to the model proposal type than MCMC. The variance of
the evidence estimates are best estimated by replication of ASMC runs, while approximations
based on single runs provide comparable estimates when using a sufficient number of
proposal steps in approximating each intermediate distribution.

2.1 Introduction

Markov chain Monte Carlo (MCMC) methods are, for strongly non-linear inverse problems
and a limited computational budget, not always able to locate the posterior probability
density function (PDF) of interest or to explore it sufficiently. Parallel tempering (Earl and
Deem, 2005) is a well-known approach to circumvent such issues and it was popularized in
geophysics by Sambridge (2014). Parallel tempering runs multiple interacting chains target-
ing a sequence of power posteriors including faster moving chains at higher temperatures
(i.e., corresponding to less weight being given to the likelihood function). Such chains help to
locate significant modes of the posterior distribution that can, through a swapping mecha-
nism, be explored by the chain targeting the posterior distribution of interest for which the
temperature is 1. The resulting increase in the ability to bypass local minima and explore
multimodal distributions is offset by the need for many parallel chains and a carefully-tailored
temperature sequence to ensure efficient mixing among chains.

Neal (2001) introduced the annealed importance sampling (AIS) method, which is also
well suited to derive information about the posterior PDF of interest when confronted with
highly non-linear or multi-modal inverse problems. AIS is a particle method in which many
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particles (the evolution of each particle is represented by an individual chain) are evolving in
parallel. Particle methods rely on the states and weights of a collection of evolving particles
to approximate distributions of interest. This is in contrast to MCMC methods in which all
states have the same weight and the distribution of interest is approximated by proposal and
acceptance mechanisms ensuring that sampling is proportional to the posterior probability
density. In developing AIS, Neal (2001) demonstrates how intermediate results obtained by
simulated annealing (Kirkpatrick et al., 1983), typically used for global optimisation, can be re-
interpreted as a sequence of importance sampling steps from approximations of intermediate
posterior PDFs at gradually decreasing temperatures (i.e., annealing), thereby, creating a
succession of approximations of intermediate distributions between the prior to the posterior
distribution of interest. This method has several attractive properties: (1) it inherits from
simulated annealing the ability to bypass problems with local minima by initially allowing
large steps and efficient exploration before focusing on a more detailed search in areas of
high posterior probability; (2) it is well suited for parallelization; (3) the final states and
their associated importance weights approximate the posterior distribution; and (4) it offers
directly an approximation of the evidence, the central quantity in Bayesian model selection.

Even if AIS is still widely used, it suffers from two main deficiencies: (1) it is very challenging
to pre-define an appropriate annealing sequence (i.e., the sequence of inverse temperatures
to which the likelihood function is raised) and (2) the populations of importance weights
have increasingly higher variances as the AIS run progresses, thereby, increasing the risk of
obtaining poor estimates of the posterior PDF and the evidence. Sequential Monte Carlo
(SMC) (Doucet and Johansen, 2011) represents a family of particle methods that are widely
used in science and engineering, particularly for data assimilation tasks, but their use in
geophysics has been limited to date (see review by Linde et al. (2017)). At the most basic
level, SMC relies on importance sampling combined with resampling steps which ensures
that the particle approximation of the high-dimensional posterior PDF is of sufficient quality.
The resampling step tends to reinitialize particles of low probability by states of higher
probability, thereby avoiding that computational time is wasted in regions of low posterior
density. Zhou et al. (2016) proposed an adaptive SMC algorithm (referred to hereafter as
ASMC) that addresses the limitations of AIS stated above by adaptively tuning the progression
between intermediate distributions and by resampling when the variance of the particle
weights becomes too large.

The prior PDF has a strong impact on Bayesian geophysical inversion results (Hansen et al.,
2012) and should reflect the existing geological knowledge at a site (see review by Linde et al.
(2015)). One effective way of encoding prior knowledge in a low-dimensional latent vector
of uncorrelated parameters is offered by deep generative neural networks (Goodfellow et al.,
2014). Laloy et al. (2017) and Laloy et al. (2018) demonstrated using variational autoencoders
(Kingma and Welling, 2013) and generative adversarial networks (GAN) (Goodfellow et al.,
2014), respectively, that the generated realizations of such networks are of high quality and
that inversion can be successfully performed on this latent space. The challenge when
working with deep generative neural networks is the highly non-linear transform linking
the latent variables to the image representation (i.e., the typically gridded model of physical
properties). This non-linearity often leads to poor and unreliable convergence when applying
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gradient-based optimization methods (Laloy et al., 2019) and inversion on such latent spaces
may challenge state-of-the-art MCMC algorithms (Laloy et al., 2018).

Here, we explore the performance of the ASMC method (Zhou et al., 2016) when used to-
gether with deep generative networks to approximate evidences and posterior distributions
using geophysical data. As examples, we consider crosshole geophysical ground-penetrating
radar (GPR) data and GAN-based priors, which implies highly non-linear and challenging
inverse problems. In ASMC, the approximations of intermediate posterior distributions
is achieved by successively, at each temperature, performing a small number of Markov
steps. As model proposals, we consider both an elaborate proposal scheme influenced by
evolutionary algorithms and a basic uncorrelated Gaussian proposal. Through these exam-
ples, we demonstrate that the ASMC method is: (1) easy to implement in existing MCMC
algorithms; (2) well-suited for parallelization; (3) robust to parameter settings and model
proposal schemes; (4) providing posterior approximations that can be superior to those
offered by state-of-the-art MCMC; and (5) deriving accurate evidence estimations without
strong distributional assumptions.

2.2 Method

In our method description below, we rely largely on the notation of Zhou et al. (2016) who
introduced the ASMC algorithm.

2.2.1 Bayesian inference and model comparison

Bayes’ theorem expresses the posterior PDF of a conceptual model Mk with parameters θ,
given a set of observations y as:

π(θ|y, Mk ) = π(θ|Mk )p(y|θ, Mk )

π(y|Mk )
. (2.1)

All the knowledge about the model parameters that is available before considering the data is
encapsulated in the prior PDF π(θ|Mk ). The likelihood function p(y|θ, Mk ) quantifies how
likely it is that a specific model realization gave rise to the observations when considering a
prescribed error model. The normalizing constant π(y|Mk ) is referred to as the evidence or
the marginal likelihood, and it is a multidimensional integral over the parameter space:

π(y|Mk ) =
∫
π(θ|Mk )p(y|θ, Mk )dθ. (2.2)
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The evidence quantifies the support provided by the data to the conceptual model under
consideration, as formalized by the prior PDF, and can be used to rank different conceptual
models. Schöniger et al. (2014) describe and compare different methods to estimate the
evidence and found that numerical approaches generate more reliable estimates than math-
ematical approximations of equation 2.2 that yield analytical expressions. Recent studies
comparing state-of-the-art approaches to evidence estimation in geophysical and hydrogeo-
logical contexts include Brunetti et al. (2017) and Brunetti et al. (2019).

2.2.2 Adaptive sequential Monte Carlo

Importance sampling

Brute force Monte Carlo (BFMC), also known as the arithmetic mean approach, evaluates
many realizations drawn from the prior and the corresponding evidence estimate is their
average likelihood. Unfortunately, BFMC suffers from the curse of dimensionality (Curtis
and Lomax, 2001) in that most draws from the prior, when considering a handful or more
unknown model parameters and high-quality data, have negligible likelihoods. Consequently,
high likelihood regions contributing strongly to the mean are poorly sampled, leading to
high-variance evidence estimates and frequent underestimation of evidence values as demon-
strated by Brunetti et al. (2017). Throughout this manuscript, a high-variance estimate refers
to that obtained by estimators of a mean quantity (e.g., the mean of the sampled likelihoods)
for which repeated estimations lead to widely different estimates.

Compared to BFMC, importance sampling offers lower-variance estimates, whereby Monte
Carlo samples are drawn proportionally to a so-called importance distribution q(θ, Mk )
(Hammersley and Handscomb, 1964). In order to sample regions with a high contribution to
the mean, this distribution is chosen to be as close as possible to the target distribution; in
this case the posterior PDF. To account for the biased sampling procedure, every sample θi

drawn from q(θ, Mk ) is associated with an importance weight defined as

w i = π(θi |Mk )p(y|θi , Mk )

q(θi , Mk )
, (2.3)

that determines the corresponding weight in the mean estimation. Assuming that q(θ, Mk ) ̸=
0 whenever π(θ|Mk )p(y|θ, Mk ) ̸= 0, and if the number of draws N →∞, then the following
approximation holds (Neal, 2001):

∑N
i=1 w i

N
≈

∫
π(θ|Mk )p(y|θ, Mk )dθ∫

q(θ, Mk )dθ
. (2.4)

In the particular case of using the prior as the importance distribution (equivalent to BFMC)
and noting that its evidence is equal to one (the integral of the prior PDF is 1), the evidence of
Mk is approximated by the mean of the N weights:
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π(y|Mk ) =
∫
π(θ|Mk )p(y|θ, Mk )dθ∫

π(θ, Mk )dθ
≈

∑N
i=1 w i

N
=

∑N
i=1

π(θi |Mk )p(y|θi ,Mk )
π(θi |Mk )

N
=

∑N
i=1 p(y|θi , Mk )

N
,

(2.5)

which reduces to the average of the sampled likelihood as discussed above. The importance
distribution strongly influences the accuracy of importance sampling and unreliable high-
variance estimates are obtained when the importance distribution is far from the target
distribution. Therefore, if the prior PDF is markedly different from the posterior PDF, then
the quality of the evidence estimate in equation 2.5 is low. Below, we explain how to obtain
low-variance estimates of evidences by relying on a succession of importance sampling steps
with importance distributions that are close to intermediate target distributions known as
power posteriors.

Annealed importance sampling (AIS)

Simulated annealing (Kirkpatrick et al., 1983) is a well-known global optimizer that bypasses
local minima by gradually reducing the parameter space exploration using a sequence of in-
termediate target distributions (i.e., power posteriors characterized by an annealing scheme
of successively decreasing temperatures). In developing AIS, Neal (2001) took advantage of
this sequence of transitional target distributions starting at the prior PDF (infinite tempera-
ture) and ending at the posterior PDF (temperature of 1). The algorithm runs in parallel with
each chain being interpreted as a particle with an evolving weight and state. From the result-
ing sequence of intermediate importance weights and states, it is possible to estimate both
the posterior PDF and the evidence. AIS shares all the exploratory advantages of simulated
annealing and allows for, potentially, high-quality posterior PDF and evidence estimations by
creating a smooth path between the prior and the posterior PDF. A schematic visualization of
AIS is given in Figure 2.1a.

In the following, we consider a given conceptual model Mk and suppress the corresponding

subindex k for simplicity. The unnormalized power posterior PDFs
{
γt (θt |y)

}T
t=0 are:

γt (θt |y) ≡π(θt )p(y|θt )αt , (2.6)

whereπ(θt ) is the prior probability density function and p(y|θt ) the likelihood. The annealing
schedule αt ∈ [0,1] of inverse temperatures defines these power posteriors, where αt=0 = 0
gives the prior and αt=T = 1 the posterior PDF. At small αt , the contribution of the likelihood
is small and the corresponding power posterior is close to the prior PDF. As αt grows, the
influence of the likelihood on the power posterior increases. We denote Zt as the normalizing
constant of the corresponding power posterior, implying that the normalized power PDF is:

πt (θt |y) = γt (θt |y)

Zt
. (2.7)
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Figure 2.1: (a) Schematic representation of annealed importance sampling (AIS) using N = 4
particles evolving in parallel. Except for the initialization step, each color represents K = 4
Markov steps in which the particle system moves from approximating a previous unnormal-
ized power-posterior to a new one. After each K = 4 Markov steps, the sampled states are
used in an importance sampling step to determine the incremental weights wt associated
with the change in the intermediate posterior PDF. (b) In adaptive sequential Monte Carlo
(ASMC), one main difference compared with AIS is that the α-sequence determining the in-
termediate posterior distributions is no longer fixed but determined adaptively. Furthermore,
resampling occurs when the variance of the weights are too large. Such a resampling step is
here visualized with dashed red lines.
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By using γt−1(θt−1|y) as an importance distribution for γt (θt |y), we define the unnormalized
incremental weights wt for particle i at state θi

t−1 as:

w i
t =

γt (θi
t−1|y)

γt−1(θi
t−1|y)

. (2.8)

Except for the initialization step, the corresponding importance distributions γt−1(θt−1|y) are
approximated by updating N particles using K Markov steps targeting γt−1(θt−1|y) starting at
a previous estimation of γt−2(θt−2|y). Without these Markov steps, the AIS algorithm would
reduce to BFMC. This process is schematized in Figure 2.1a for N = 4 and K = 4 .

It is customary to work with normalized weights defined as:

W i
t = W i

t−1wt
i∑N

j=1 W j
t−1w j

t

, (2.9)

where Wt−1 are the previously defined normalized weights, that is,
∑N

i=1 W i
t−1 = 1. The final

normalized weights W i
T determine the relative probabilities of each of the final N states,

thereby, approximating the posterior distribution through a particle approximation.

Evidence estimation

One major advantage of AIS and ASMC in the context of Bayesian model selection is that
the evidence is readily obtained. The ratio of the normalizing constants of two consecutive
intermediate distributions γt (θt |y) and γt−1(θt−1|y) is:

Zt

Zt−1
=

∫
γt (θt |y)dθt∫

γt−1(θt−1|y)dθt−1
, t (2.10)

and it can be approximated as (Del Moral et al., 2006):

Zt

Zt−1
≈

N∑
i=1

W i
t−1w i

t . (2.11)

The posterior PDF of interest is the last distribution of the sequence (αt=T = 1), therefore, its
normalizing constant is the evidence, ZT =π(y). Since the normalizing constant of the prior
PDF, Z0, is equal to one, the evidence can be estimated as the product of the intermediate
ratios:
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π(y) = ZT = ZT

Z0
=

T∏
t=1

Zt

Zt−1
≈

T∏
t=1

N∑
i=1

W i
t−1wt

i . (2.12)

Adaptive sequence of intermediate distributions

Zhou et al. (2016) introduce several adaptations to AIS leading to the more robust ASMC
algorithm that requires much less tuning. The choice of the annealing schedule in equation
2.6 has a strong impact on performance and it is generally difficult to assign a proper α-
sequence in advance. Zhou et al. (2016) solve this by introducing an adaptive procedure
relying on the conditional effective sample size (CESS):

C ESS = N
(
∑N

i=1 W i
t−1wt

i )2∑N
j=1 W j

t−1(wt
j )2

. (2.13)

The CESS measures the quality of the current intermediate distribution as an importance
distribution to calculate expectations of the following one. To define the next distribution in
the sequence (Figure 2.1a), a binary search is performed for the α-increment for which the
CESS is the closest to a pre-defined target value. The larger this target value is, the better the
approximation, but the slower is the algorithm as the L number of intermediate distributions
grows.

Resampling

The variance of the importance weights provides an indicator of the quality of the importance
estimator. The importance weights invariably diverge over time leading to high variances, for
example, because of poor convergence of some particles. To circumvent this, SMC methods
rely on resampling (Del Moral et al., 2006; Doucet and Johansen, 2011). Resampling consists
of reinitializing the states of each particle by replicating them according to a probability that
is proportional to their current normalized weights. After resampling, the new states are
assigned equal weights of 1/N . Figure 2.1b illustrates a resampling step. The purpose of this
operation is to limit the variance of the weights by excluding states with lower weights and
replicating those with higher weights. Since high-dimensional posterior distributions are
estimated using N particles only, it is essential that all samples contribute meaningfully to
this approximation by avoiding regions of very low probability. We rely herein on system-
atic resampling, which is easy to implement and performs well with respect to alternative
resampling schemes (Doucet and Johansen, 2011). The resampling step impacts the variance
of estimates (Douc and Cappé, 2005) and it is often beneficial to only perform resampling
occasionally. To decide when to apply resampling, we follow standard practice by relying on
a quantity that considers the history of the weight variance evolution, namely the effective
sample size (ESS) (Kong et al., 1994):
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The ESS can be interpreted as reflecting the number of effective samples in the particle
approximation and resampling is applied when the ESS is lower than a pre-defined threshold.

Evidence uncertainty estimation

The most reliable approach to assess uncertainty on evidence estimates is to perform multiple
ASMC runs and calculate the resulting variance of the estimates. This is the approach used
by Zhou et al. (2016) when introducing ASMC. Even if such Monte Carlo replication is easily
parallelized, it implies a significant computational overhead as the total computational effort
grows linearly with the number of replicates. In recent years, progress has been made in
obtaining evidence variance estimates from single SMC runs. The first consistent estimator
was proposed by Chan and Lai (2013) and a refined estimator was later introduced by Lee and
Whiteley (2018). We consider a modified form of this latter estimator in Doucet and Lee (2018)
that we adopted to account for occasional resampling. The resulting expression should be
interpreted as a relative variance contribution of the evidence estimate contribution since
the last resampling time:

V N
t(

ηN
t

)2 = 1(
ηN

t

)2

(
N

N −1

)n 1

N (N −1)

N∑
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t −ηN
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, (2.15)

where ηN
t =∑N

i=1 NW i
t−1w i

t and n is the cumulative number of resampling steps that has been

performed until t. The index E j
t is the so-called Eve index of particle j at time t , which traces

the origin of the particles. If no resampling is done, the Eve indices stay constant and are
equal to 1 : N . After resampling, the states of the particles are reorganized and the Eve indices
change, denoting the original particle that moved to that position. A graphical illustration of
this process is given by Lee and Whiteley (2018). The number of remaining unique Eve indices
along the run can be interpreted as a conservative estimate of the number of independent
particles.

We compute the estimator in equation 2.15 before each resampling step and at the last step
of the ASMC algorithm. We then sum the resulting contributions:

σr =
√√√√ R∑

h=0

V N
h(

ηN
h

)2 , (2.16)
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where R is the total number of resampling times. This equation is valid under the assumption
that the individual contributions in the sum are independent (Brown and Neal, 1991). Hence,
we assume here that the particles decorrelate from each other between resampling steps.

Markov proposals and acceptance criteria

We implemented ASMC within the popular differential evolution adaptive Metropolis ZS
(DREAM(ZS)) algorithm (Laloy and Vrugt, 2012). In this MCMC algorithm, model proposal
updates with respect to the present state are drawn proportionally to random differences of
past states, thus, helping to better explore the target distribution by automatically determin-
ing the scale and direction of the model proposals. If we consider J as a m ×d dimensional
matrix that contains m past states of the chains, where d is the number of parameters, the
jump vector for the i -th chain is given by (Vrugt, 2016):

dθi
A = ζd∗ + (1d∗ +λd∗)ψ(δ,d∗)

δ∑
j=1

(J
a j

A − J
b j

A ). (2.17)

If the current state isθi , then the candidate point for particle i isθi
pr op = θi+dθi . The number

of pairs used to generate the jump is given by δ, and a and b are vectors of integers drawn
without replacement from {1, ..,m}. The parameters ζ and λ are sampled independently from
pre-defined uniform and normal distributions, respectively. This algorithm implements
subspace sampling, which implies that only a random subset A of d∗-dimensions from the
original parameter space is updated at each proposal step. The difference between past states
is multiplied by a fixed proposal scale referred to as jump rate ψ(δ,d∗) = 2.38p

2δd∗ ϵ, where ϵ is an

user-defined factor that we introduce to further control the size of the jumps. In contrast to
MCMC, ASMC allows straightforward adaptation of the ϵ−factor on-the-go without violating
detailed balance condition. This tuning of ϵ is achieved by using the acceptance rate (AR) of
the last K Markov steps to target an acceptance rate above ARmi n . To implement this, ϵ is
initialized to a comparatively large value and a percentage decrease of its value f is made
when the acceptance rate falls below ARmi n . For comparison purposes, we also consider
standard model proposals given by uncorrelated Gaussian draws centered on the previous
state. For this case, the jump vector for the i -th chain is given by:

dθi
A

i .i .d .∼ NA(0,ϵ2). (2.18)

Our considered model proposals are symmetric and the prior PDF is uniform. Consequently,
with proper boundary handling, the proposed moves are accepted according to the likelihood
ratio (Mosegaard and Tarantola, 1995). The probability to accept each candidate model
during the K Markov steps used to approximate γt (θt |y) is:
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Algorithm 1: ASCM algorithm adopted from Zhou et al. (2016); their algorithm 4.

Assignment of user-defined variables:

Define number of particles (N ), optimal CESS (C ESSop ), ESS threshold (ESS∗),

number of MCMC iterations at each intermediate distribution (K ), minimal acceptance rate (ARmi n),

initial proposal scale factor (ϵ) and its percentage decrease ( f ).

Initialization: Set t = 0

Set α= 0

Sample θ0 from the prior π(θt |Mk ) N times

Set the N -dimensional vector of normalized weights W0 = [ 1
N ; 1

N ; ...; 1
N ]

Set evidence π(y|Mk ) = 1

Iteration : Set t = t +1

Search for incremental distribution

Do binary search for the increment ∆α that gives the CESS (equation 2.13) that is the closest to C ESSop .

Update α= mi n(1,α+∆α) and define the intermediate distribution γt (θt |y) =π(θt |Mk )p(y|θt )α.

Compute the weight increments w i
t (equation 2.8), update and save the normalized weights W i

t (equation 2.9)

and the evidence π(y|Mk ) =π(y|Mk )
∑N

i=1 W i
t−1w i

t (equation 2.12).

Resampling

Calculate ESS (equation 2.14), if ESS < ESS∗ do resampling: re-organize θt states and update Wt = [ 1
N ; 1

N ; ...; 1
N ]

Do K MCMC iterations for each of the N particles (chains):

Propose moves θpr op (equation 2.17 and 2.18) and accept or reject based on acceptance criterion (equation 2.19)

using γt (θt |y).

Save the N θ and their likelihoods.

Set last state as θt+1

Tune proposal scale

If acceptance rate AR < ARmi n then decrease proposal scale factor: ϵ= ϵ∗ (1− f
100 )

Repeat until α=1

P = mi n

{
1,

p(y|θpr op )αt

p(y|θ)αt

}
. (2.19)

2.2.3 Full ASMC algorithm

The full algorithm is given in Algorithm 1, for which the total number of iterations per
considered particle (chain) is equal to L (number of intermediate distributions) × K (MCMC
steps per distribution).

This algorithm has several important strengths: (i) it requires a rather small number of user-
defined parameters; (ii) the posterior PDF and the evidence are estimated; (iii) the variance of
the weights are used to assess accuracy, (iv) the adaptation of classical MCMC algorithms into
ASMC is straightforward, and (v) the acceptance rate is controlled throughout the inversion.
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2.2.4 The Laplace-Metropolis method

MCMC algorithms provide an approximation of the posterior distribution, however, they need
to be combined with an additional estimation procedure to provide evidence estimates. For
later comparison purposes with ASMC, we mention here the Laplace-Metropolis estimator
(Lewis and Raftery, 1997), a mathematical approximation of the evidence using a Taylor
expansion around the maximum a posteriori (MAP) estimate. Assuming that the posterior
PDF is well approximated by a normal distribution, the resulting evidence estimate is:

π(y|Mk ) = (2π)
d
2 |H(θ∗)| 1

2π(θ∗|Mk )p(y|θ∗, Mk ), (2.20)

where θ∗ is the MAP estimate, d is the number of parameters and |H(θ∗)| is the determinant
of minus the inverse Hessian matrix evaluated at the MAP, which is approximated from the
MCMC-based samples from the posterior.

2.2.5 From implicit to prescribed geostatistical priors

Multiple-point statistics (MPS) (Mariethoz and Caers, 2014) is a sub-field of geostatistics
aiming at producing conditional geostatistical model realizations of high geological realism,
thereby, capturing more meaningful connectivity patterns than those offered, for instance,
by classical multivariate Gaussian priors (Renard and Allard, 2013). MPS algorithms produce
model realizations that are in agreement with the spatial patterns found in a so-called training
image (TI). A TI is a gridded representation of the targeted spatial field obtained from geolog-
ical information such as outcrops or process-based simulation methods (Koltermann and
Gorelick, 1996). Performing inversion (Mariethoz et al., 2010a; Hansen et al., 2012; Linde et al.,
2015) and model selection (Brunetti et al., 2019) based on one or more TIs commonly requires
inversion algorithms that work with so-called implicit priors. That is, the MPS algorithm
provides model realizations that are drawn proportionally to the prior, but the prior density of
a given realization is unknown. Two main issues arise with this approach: (1) the generation
of conditional prior realizations may be computationally expensive in MCMC settings when
a large number of model proposals are needed, and (2) the implicit prior model precludes
the calculation of prior probability densities as needed in many state-of-the-art inversion
and model selection methods.

Deep learning (LeCun et al., 2015) applied to geoscientific problems has been growing rapidly
in recent years (Bergen et al., 2019; Karpatne et al., 2018). In particular, deep generative
neural networks offer an attractive approach to build an explicit prior PDF from training
images (Laloy et al., 2017, 2018; Mosser et al., 2017, 2020), that is, a prior for which the prior
density of any realization is easily calculated. This is achieved by learning a non-linear
transform between a low-dimensional latent space with a prescribed prior (typically an
uncorrelated standard normal or bounded uniform prior) and the image space (on which the
forward simulations are performed). To do this, the neural network is trained repeatedly with
pieces of a large TI or MPS realizations. Such tailor-made model parametrizations achieve
significant dimensionality reduction by leveraging spatial patterns in the TI. Inversion is
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then performed on the latent space and the resulting posterior is mapped, using the trained
transform, into a posterior on the original image space (a so-called push-forward operation).
We rely on a spatial generative adversarial neural network (SGAN) (Jetchev et al., 2016),
where each dimension of the latent space influences a given region of the generated image
space. The network’s weights are learned by adversarial training (Goodfellow et al., 2014).
The latter consists of a competition between a so-called discriminator and a generator:
the discriminator aims to distinguish fake (i.e., realizations by the generator) and real (i.e.,
training samples) images, while the generator tries to fool it by generating realizations similar
to the training samples. This is mathematically translated in a minimization-maximization
problem (see the book by Goodfellow et al. (2016), for details). The main computational effort
is related to training and once trained, the computational cost to draw model proposals in the
latent space and to map them into the image space (for further forward computations) is very
low. The motivation of evaluating ASMC using a deep-learning based parameterization is
two-fold: (1) the SGAN parameterization implies strong non-linearity which makes it difficult
for MCMC algorithms to converge when performing inversion on the SGAN latent space
(Laloy et al., 2018), thus providing challenging test examples for which the added value of
ASMC for posterior inference can be demonstrated and (2) to build on recent work (Brunetti
et al., 2019) on MPS-based Bayesian model selection to highlight the value of prescribed
priors when performing model selection among MPS-based prior models.

2.3 Results

2.3.1 Test examples

Two conceptual 2-D models represented by TIs were used to assess ASMC for inversion and
model selection purposes. These TIs are used to train SGANs that generate realizations
honoring the multiple-point statistics of the TIs (Laloy et al., 2018). The first conceptual
model (Figure 2.2a) is represented by a binary channelized training image (CM1) (Zahner
et al., 2016) and the second one (Figure 2.2b) is represented by a tri-categorical training image
characterizing braided-river aquifer deposits (CM2) (Pirot et al., 2015). The SGAN generators
are assigned uniform priors on the latent space: the CM1-realizations and the more complex
CM2-realizations have 15 and 45 latent variables, respectively. All realizations correspond to
an image dimension of 129×65 cells that is cropped to 125×60, with a discretization of 0.1 m
× 0.1 m (Figure 2.3).

Our synthetic data correspond to simulated crosshole ground-penetrating radar (GPR) first-
arrival travel times with a geometry consisting of two boreholes that are 5.8 m apart. A total
of 24 sources and 24 receivers are placed equidistantly every 0.5 meters in depth. First-arrival
times were calculated using the time2d algorithm by Podvin and Lecomte (1991). Following
common practice, the data were filtered according to a maximum angle between sources
and receivers of 45 degrees (Peterson, 2001), resulting in 444 travel times. In order to assign
velocities to each facies, the corresponding dielectric constants were approximated using
the complex refractive index method (CRIM) (Roth et al., 1990). Representative porosities
for CM2 were taken from Pirot et al. (2019) and adjusted to CM1 to have the same mean
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Figure 2.2: Training images: (a) 2500 × 2500 binary channelized training image (CM1) (Zahner
et al., 2016) and (b) 400 × 400 tri-categorical training image representing a braided aquifer
(CM2) (Pirot et al., 2015). The discretization of the cells is 0.1 m × 0.1 m.

and variance. The two reference models used to produce the synthetic data are shown in
Figure 2.3. They were obtained as a randomly chosen realization from the respective SGAN
generators. Uncorrelated Gaussian random noise with standard deviation σ= 1 ns was added
to the resulting travel times simulated from these models.

2.3.2 ASMC performance

We first present the parameter settings and the performance of the ASMC algorithm (section
2.2.3) using DREAM(ZS) proposals (ASMC-DREAM) with N = 40 particles. To tune the proposal
scale, we apply a 20% decrease ( f = 0.2) with ARmi n = 0.25. The starting large proposal scale
ϵ is gradually decreased as the annealing progresses (i.e., the inverse temperature α increases
towards 1). We implemented adaptive selection of the α-sequence, using a binary search
defined on a range of α-increments from 10−5 to 10−2, to find the increments with the C ESS
that is the closest to the target C ESSop . The C ESSop /N ratio is in practice chosen close to
1. The closer it is to 1, the higher the number of intermediate distributions and the larger is
the quality of estimates. Resampling is applied whenever ESS/N falls below 0.5. Table 2.1
contains the user-defined parameters and the resulting sequence lengths. The total number
of forward simulations of each ASMC run is N ×K ×L.

Figures 2.4a-b show the evolution of the likelihood raised to the power of the correspondingα
in the natural log-scale for CM1 and CM2, respectively. This type of plotting is consistent with
the target distribution γt (θt |y) at each step (equation 2.6). The black dashed line indicates the
target log-likelihood calculated with the random noise realization used to noise-contaminate
the forward response of the reference model, raised to the power of the corresponding
α. Figures 2.4c-d present correspondingly the acceptance rate evolution. As α grows, the
acceptance rate for a given jump rate decreases as the targeted posterior distribution gives

35



Figure 2.3: Reference models with associated velocities. (a) CM1: channel velocity v=0.071
m/ns and matrix velocity v=0.085 m/ns. (b) From Pirot et al. (2015) CM2: gray gravel (gray)
v=0.083 m/ns, open framework (black) v=0.065 m/ns and bimodal (white) v=0.086 m/ns.
Red stars and blue triangles represent GPR sources and receivers, respectively.

larger weights to the likelihood. When the acceptance rate falls below ARmi n = 0.25, the
proposal scale is reduced causing a small increase, after which the acceptance rate starts
decreasing again until another reduction of the proposal scale is required, thereby, keeping
the acceptance rate in a range between 25% and 40%. Figures 2.4e-f show the optimized
sequence of α-values defining the intermediate posterior distributions, obtained through a
binary search of the α-increments. In Figures 2.4g-h, the logarithm of the normalized weight
of each particle is plotted against the α-index. Finally, Figures 2.4i-j shows the evolution of
the natural logarithm of the evidence vs. α.

To ensure convergence with the more complex test case CM2, we had to choose a higher
C ESSop and K than for CM1, which resulted in an approximately 4.7 times longer run.
Despite these adaptations, more resampling steps were needed compared to CM1 (see Table
2.1), which reinforces the impression that it is a more challenging scenario. The increasing
complexity of CM2 is also indicated by the fact that the intermediate target distributions
are well-approximated for CM1 (Figure 2.4a) for which the sampled likelihoods fall close to
the dashed line, while this is less the case for CM2 (Figure 2.4b). However, both test cases
reached the target log-likelihood and the resampling fulfills its role of limiting the variance of
the weights.

Algorithm 1 is applicable to other model proposals than DREAM(ZS). This is demonstrated
using standard (vanilla) MCMC model proposals based on uncorrelated random Gaussian
perturbations (ASMC-Gauss). In this case, the algorithm starts with a high standard devia-
tion of the centered Gaussian model proposal and it is subsequently decreased when the
acceptance rate falls below 25%. The user-defined parameters were chosen to be the same as
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Figure 2.4: Results of ASMC with DREAM(ZS) model proposals (ASMC-DREAM) for conceptual
models CM1 (left column) and CM2 (right column): (a) and (b) natural logarithm of the
likelihood to the power of α vs. iterations per particle. Each color represents a different
particle and the black dashed line indicates the logarithm of the likelihood to the power
of α calculated using the random noise realization used to noise-contaminate the forward-
simulated true model; (c) and (d) acceptance rate vs. iterations per particle, the dashed
line indicates a 25% threshold; (e) and (f) α-sequence vs. α index; (g) and (h) natural log-
normalized weights vs. α index where each color represents a different particle; (i) and (j)
natural log-evidence evolution vs. α.
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Table 2.1: ASMC user-defined parameters and resulting sequence length.

ASMC-DREAM ASMC-DREAM ASMC-Gauss ASMC-Gauss

CM1 CM2 CM1 CM2

Particles (N ) 40 40 40 40

C ESSop /N 0.999993 0.999996 0.999993 0.999996

ESS∗/N 0.5 0.5 0.5 0.5

ARmi n 25% 25% 25% 25%

K iterations 20 60 20 60

L intermediate distributions 4798 7775 4871 7673

Iterations per particle 95960 466500 97420 460380

Resampling times 1 5 2 3

Total numerical demand [×105] 38.384 186.600 38.968 184.152

for the ASMC-DREAM tests detailed in Table 2.1, leading to a similar sequence length as for
ASMC-DREAM. The corresponding results are shown in Figure 2.5. For CM1, ASMC-Gauss
needed one more resampling time (Fig. 2.5c) compared to ASMC-DREAM due to a faster
increase in the variance of the weights. Otherwise, the performance of ASMC-DREAM (Figure
2.4) and ASMC-Gauss (Figure 2.5) are very similar.

2.3.3 MCMC performance

For comparative purposes, we also perform MCMC inversions (no ASMC) using 40 chains and
a similar number of forward simulations. Again, we consider two tests: one using DREAM(ZS)

(MCMC-DREAM) and one with random Gaussian perturbations (MCMC-Gauss). Extensive
manual tuning of the inversion parameters was needed to achieve satisfactory results. Figure
2.6 shows the results obtained for conceptual models CM1 and CM2. The log-likelihood
evolution is shown in Figures 2.6a-d and the acceptance rate in Figures 2.6e-h. In order to
assess convergence, the potential scale reduction factor R̂ is calculated (Gelman and Rubin,
1992) and plotted in Figures 2.6i-l, with convergence declared when R̂ is below 1.2 for all
model parameters.

The only MCMC run reaching convergence is MCMC-DREAM for CM1 at around 10,000 iter-
ations. For this conceptual model, the results obtained with MCMC-Gauss are unsatisfactory
with only a few of the chains approaching the target likelihood, while the others are trapped
in local minima, thereby, demonstrating a vastly superior performance of MCMC-DREAM
compared with MCMC-Gauss. For CM2, none of the MCMC inversions converge within
the allotted computational time, as R̂ does not fall below 1.2. This is also reflected in the
likelihood evolution: the majority of sampled likelihoods remains below the target likelihood
along the run. To summarize, we find for a similar computational budget that the ASMC
algorithm reaches the target likelihood for both conceptual models and model proposal types,
while the MCMC runs only approximate the target likelihood for CM1 using MCMC-DREAM.
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Figure 2.5: Results of ASMC with standard MCMC (ASMC-Gauss) for conceptual models CM1
(left column) and CM2 (right column): (a) and (b) natural logarithm of the likelihood to the
power of α vs. iterations per particle. Each color represents a different particle and the black
dashed line indicates the logarithm of the likelihood to the power of α calculated using the
random noise realization used to noise-contaminate the forward-simulated true model; (c)
and (d) acceptance rate vs. iterations per particle, the dashed line indicates a 25% threshold;
(e) and (f) α-sequence vs. α index; (g) and (h) natural log-normalized weights vs. α index,
each color represents a different particle; (i) and (j) natural log-evidence evolution vs. α.
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Figure 2.6: MCMC inversion results from DREAM(ZS) (MCMC-DREAM) and standard MCMC
with Gaussian model proposals (MCMC-Gauss) for conceptual models CM1 and CM2. (a)-
(d) the natural logarithm of the likelihood vs. iterations, where each color represents a
different particle and the black dashed line indicates the log-likelihood calculated using the
random noise realization, (e)-(h) the acceptance rate evolution, and (i)-(l) the evolution of
the potential scale reduction factor R̂ with each color representing a different parameter and
the black dashed lines indicating the value below which convergence is declared (R̂ = 1.2).
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2.3.4 Posterior distributions

We focus now on the posterior approximations obtained with ASMC-DREAM and MCMC-
DREAM. For MCMC-DREAM, the posterior is obtained by first removing the so-called burn-in
period, that is, the number of iterations needed to reach the target likelihood, from which
it starts to sample from the posterior PDF. The remaining samples contribute equally to
the posterior estimations. This is not the case for ASMC, for which the posterior PDF is
approximated by the last states and weights of the particles (chains).

For a smoother representation of the posterior PDF approximated by ASMC, we applied
kernel density estimation (KDE) (Scott, 2015). Figure 2.7 compares the estimated posteriors
for CM1. The KDE bandwidth impacts on the level of smoothing, that we chose to kept fixed
for the 15 parameter posteriors. Nevertheless, the estimated posteriors are overall very similar,
which suggests that ASMC provides a good estimation of the posterior. No comparison is
provided for CM2 as the MCMC-DREAM algorithm did not converge, neither in terms of
reaching the target likelihood nor in terms of exploration of the posterior PDF.

We now consider the posterior means and variances in the image space by translating the
posterior realizations in the latent space using the SGAN generator. For ASMC-DREAM, the
mean and standard deviation images correspond to the last states of the chains weighted by
their weights. For MCMC-DREAM, the mean and standard deviation images are obtained
using the equally weighted states in the second half of the chains. The means and standard
deviations for CM1 are very similar for ASMC-DREAM (Figure 2.8b-c) and MCMC-DREAM
(Figure 2.8d-e) that both approximate the true model very well (Figure 2.8a). For CM2, we
see a much better defined mean model and smaller standard deviations for ASMC-DREAM
(Figure 2.8g-h). The poorer approximations by MCMC-DREAM 2.8i-h) is a direct consequence
of the fact that this run did not converge. Table 2.2 shows the log-likelihood range for the
different inversions. For MCMC-DREAM, the second halves of the chains are considered for
the range, while only the last states of the particles are considered for ASMC-DREAM.

2.3.5 Evidence estimation

Even if the theoretical basis of the ASMC method for evidence estimation is well-established
(Zhou et al., 2016), we start this section by considering a simple example that allows for
comparison with BFMC (see section 2.2.2). We consider CM1 in a high-noise setting using
uncorrelated Gaussian random noise with standard deviation σ = 15 ns. This is certainly
an unrealistically high noise level, but it allows us to obtain reliable evidence estimates
through BFMC using 2 million prior samples. The resulting log-evidence obtained by BFMC
is -1798.92, while the corresponding ASMC-DREAM run using K = 5 and C ESSop /N = 0.9999
(resulting in 1100 iterations per particle) led to a log-evidence estimate of -1798.86, which is
practically identical to the BFMC estimate.

After having established that our ASMC implementation provides accurate evidence esti-
mation by comparison with BFMC, we now return to the original low-noise σ= 1 ns setting.
For the test examples considered in the previous sections, the evidence estimates obtained
with ASMC-DREAM and ASMC-Gauss given in Table 2.2 (i.e., the last computed values
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Figure 2.7: Estimated marginal posterior distributions for CM1 using ASMC with DREAM(ZS)-
proposal (ASMC-DREAM) and regular DREAM(ZS) (MCMC-DREAM) with a comparable num-
ber of forward computations. Results are shown for all latent model parameters that have
bounded uniform priors between -1 and 1.
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Figure 2.8: Reference model for (a) CM1 and (f) CM2; mean of the weighted final states from
ASMC-DREAM for (b) CM1 and (g) CM2; standard deviations of the corresponding weighted
final states for (c) CM1 and (h) CM2; mean of the second half of the MCMC chains obtained
with MCMC-DREAM for (d) CM1 and (i) CM2 (not converged); corresponding standard
deviations for (e) CM1 and (j) CM2 (not converged).

shown in Figures 2.4i-j and 2.5i-j) are very close to each other. For comparison purposes, we
also calculate the Laplace-Metropolis evidence estimator (LM) using the MCMC-DREAM
inversion results (equation 2.20). This is done for CM1 only as MCMC-DREAM did not con-
verge for CM2. The Laplace-Metropolis estimate (Table 2.2) is only slightly lower than the
ASMC-DREAM and ASMC-Gauss estimates. The close agreement between ASMC-DREAM
and ASMC-Gauss, and the close agreement considering the simplifying assumptions of the
Laplace-Metropolis method, suggest again that the results obtained with ASMC are accurate.

Until now, we have considered that the right conceptual (prior) model was used in the
inversions. That is, the noise-contaminated data were generated with a realization of the
assumed prior PDF. We now consider how the evidence changes if we make the wrong
assumption, that is, use the noise-contaminated data generated from a prior draw of another
conceptual model. In Figure 2.9 we display the evidence evolution for two such incorrect
scenarios using ASMC-DREAM with combinations of CM1 and CM2 in the data generation
and inversion process. The resulting log-evidence estimates (Table 2.2) are many hundreds
of times smaller than the estimations obtained by making the right assumption, suggesting
in these simple scenarios that the true conceptual model can easily be inferred if it is in the
set of considered conceptual models.
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Figure 2.9: ASMC-DREAM evidence evolution with respect to the α-sequence evolution when
making incorrect assumptions about the underlying conceptual model: (a) CM1-based prior
in the inversion using data generated from a prior realization from CM2, and (b) CM2-based
prior in the inversion using data generated from a prior realization from CM1.

Table 2.2: Natural log-likelihood range, natural log-evidence estimation and number of
resampling steps for the different inversion cases. The log-likelihoods of the reference models
are -642.34 (CM1) and −616.00 (CM2).

Log-likelihood Log-evidence Resampling

range estimation times

CM1 inv - CM1 data/ ASMC-DREAM [-652.03; -641.02] -679.48 1

CM1 inv - CM1 data/ MCMC-DREAM [-666.07; -636.71] -678.39(LM) -

CM1 inv - CM1 data/ ASMC-Gauss [-654.79; -640.65] -679.80 2

CM2 inv - CM2 data/ ASMC-DREAM [-628.60; -603.91] -671.18 5

CM2 inv - CM2 data/ MCMC-DREAM [-682.90; -612.23] - -

CM2 inv - CM2 data/ ASMC-Gauss [-638.64; -611.15] -671.49 3

CM1 inv - CM2 data/ ASMC-DREAM [-1086.42;-1063.34] -1115.76 5

CM2 inv - CM1 data/ ASMC-DREAM [-831.70; -795.19] -919.17 9
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Figure 2.10: Natural log-evidence estimations for ten replications of the ASMC-DREAM
algorithm applied to CM1 using K = 1,3,5,10,20 iterations per intermediate distribution,
where each colored point denotes a given replication. The gray dashed line represents the
mean of the K = 20 replications and the black stars the corresponding mean for each K .

2.3.6 Evidence uncertainty quantification

We first assess the uncertainty of the evidence estimations by performing Monte Carlo replica-
tion. For the low noise ASMC-DREAM tests shown in section 2.3.2, we performed ten separate
runs of ASMC-DREAM for CM1 and five for CM2. We varied K and kept all other parameters
fixed. Figure 2.10 shows the corresponding evidence estimations for CM1 and their means in
logarithmic units. Table 2.3 shows the relative standard deviation for both conceptual models.
For CM1, it decreases almost by a factor of 10 when moving from K = 1 to K = 20. For this
case, even K = 1 leads to rather high-quality estimates with a relative standard deviation of
1.72. The decrease is less abrupt for CM2 when increasing K = 5 to K = 60.

From a computational standpoint, it is beneficial if high-quality uncertainty estimates of the
evidences would be obtained from one ASMC run only. Hence, we assess how the predictions
of equations 2.15 and 2.16 compare with the estimates based on Monte Carlo replications.
For smaller K , resampling compensates for the faster increasing variance of the weights, but
this is at the expense of strong correlations between the particles. The impact of resampling
on the variance estimation in equation 2.15 is primarily embodied in the sum involving
the Eve indices. For smaller K , more resampling is needed and the number of remaining
Eve indices are smaller. Figure 2.11 illustrates the evolution of the Eve indices E i

t for K = 1
and K = 5 as the CM1 α-sequence progresses. Of the original 40 Eve indices, there are at
the end only 3 and 8 Eve indices surviving for K = 1 and K = 5, respectively. For K = 20,
there are 15 surviving Eve indeces. The larger the number of surviving Eve indices, the less
is the risk of mode collapse in which the ASMC algorithm only explore a small part of the
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posterior distribution. This basically implies that the higher-quality estimates are obtained
by using larger K or C ESSop , but this comes at the cost of an increasing number of forward
simulations. Table 2.3 shows the relative standard deviation obtained with Monte Carlo
replication and the single ASMC run estimates. For CM1, the relative standard deviations
calculated with both estimators are similar for K = 10 and K = 20 suggesting that equations
2.15 and 2.16 may provide high-quality uncertainty estimates for long-enough ASMC runs.
For small K , we observe significant underestimation of the relative standard deviations. For
K = 1, the single ASMC estimation is three times smaller than those obtained by Monte
Carlo replication. Why does the single-run ASMC uncertainty estimation work well for large
K , but not for small ones? To shed some light on this question, we present in Figure 2.12
the evolution of the difference between the weighted mean of the 40 particles’ likelihoods
p̂(y|θ) and the target log-likelihood calculated with the noise realization pn(y|θ), both raised
to the power of the corresponding α with the differences expressed in logarithmic units,
that is, ∆log [p(y|θ)α] = log [p̂(y|θ)α]− log [pn(y|θ)α]. This difference is shown for the ten
replications and for the different K -values considered. In addition, Table 2.3 shows the
variance and the root-mean-square error (RMSE) for the last states (α= 1) ∆log [p(y|θ]) that
decrease with increasing K . We observe in Figure 2.12 that when K decreases, the trajectories
becomes more separate and show more auto-correlation. At K = 20 and K = 10 for which the
single-ASMC estimates worked well, we observe that the trajectories overlap and cross each
other, thereby, suggesting that the information content of one individual ASMC run is not
so much different than another. In contrast, for K = 1 (Figure 2.12a) the mean trajectories
tend to be more separated from each other suggesting that they sample slightly different
posteriors. The Monte Carlo replications account for these differences between individual
ASMC runs, while this is impossible when considering estimates from a single ASMC run.
This suggests then that the single-run evidence estimator should only be trusted when
performing a sufficient number of K iterations, thereby, ensuring that the approximations of
the intermediate distributions for different ASMC runs are small. In practice, this suggests that
it is useful to run at least two ASMC runs and to ensure that the weighted mean-likelihoods
of their particles are similar and tend to cross multiple times during the ASMC runs. If this
is not the case, our results suggest that the uncertainty estimation of the evidence obtained
from one ASMC run is too small.

This finding is also supported by the CM2 estimations in Table 2.3. This is clearly a more
challenging conceptual model, where the K used for the ASMC runs was three times higher
than for CM1. Even if the single-run uncertainty estimations decrease consistently when
increasing K , the values are too low compared to those of Monte Carlo replication. This
suggests that K was not large enough to trust the single-run estimator. This is also reflected
in the higher variance and the RMSE of the likelihood difference compared to CM1. This
suggests that either Monte Carlo replications are needed to obtain an accurate error estimator
or K should be increased to improve the reliability of the single-run estimator.
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Figure 2.11: Eve index evolution vs. α-sequence evolution for (a) K = 1 and (b) K = 5. The
increasing opacity indicates superposition, that is, replication of specific Eve indices for
different particles.

Table 2.3: Relative standard deviation of evidence estimations obtained with ASMC-DREAM
using different K iterations per intermediate distribution. Results are shown for estimates
based on a single run (equations 2.16 and 2.15) and by ten replications for CM1 and five
replications for CM2 of the ASMC algorithm. Variance and root-mean-square error (RMSE)
of the difference between the average log-likelihoods and the target (noise) log-likelihood are
shown for the replications.

K σr [single run] σr [replications] σ2(∆l og [p(y |θ)]) RMSE(∆log [p(y |θ)])

CM1

1 0.62 1.72 1.70 2.99

3 0.42 0.66 1.42 1.91

5 0.35 0.50 0.62 1.84

10 0.29 0.27 0.67 1.14

20 0.21 0.20 0.69 1.47

CM2

5 0.47 1.92 8.45 43.34

10 0.40 1.56 4.16 21.59

20 0.38 1.02 3.66 13.89

40 0.36 1.52 5.06 7.70

60 0.33 1.22 6.36 2.46
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Figure 2.12: Evolution of the difference between the weighted mean log-likelihood p̂(y|θ) and
the target log-likelihood calculated with the noise realization pn(y|θ) raised to α, where each
color represents one replication, for (a) K = 1, (b) K = 3, (c) K = 5 (d) K = 10, and (e) K = 20
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2.4 Discussion

Our results suggest that ASMC can provide accurate approximations of posterior PDFs for
challenging inverse problems for which state-of-the-art adaptive MCMC fails to converge
when considering a similar number of forward simulations (Figure 2.8). Furthermore, ASMC
is very well suited for parallel computation, which is less the case for most MCMC methods.
A general recommendation for practical applications is that the algorithmic variables K
and C ESSop in Algorithm 1 are chosen sufficiently large to ensure that the weighted-mean
likelihood of the particles is close to the target likelihood during the ASMC run (Figure 2.12).
Clearly, if the total number of forward simulations are insufficient, the ASMC algorithm fails
in sampling posterior realizations of high likelihood for most particles. This leads to an
impoverished particle approximation of the posterior PDF as evidenced by few surviving Eve
indices (Figure 2.11) and mode collapse.

A similar argument holds for the evidence estimation. ASMC provides an unbiased estimation,
as shown for the high-noise setting example (section 2.3.5). However, the evidence estimation
procedure will only be reliable if the particles approximate the target power posteriors well
enough. In addition, too low K and C ESSop lead to frequent resampling that increases the
estimation variance. Our results also suggest that error approximations based on single ASMC
runs (eqs. 2.15 and 2.16) are too optimistic in such settings, but reliable for sufficiently long
ASMC runs (Table 2.3). We also note that the relative standard deviations of the evidence
estimates (Figure 2.10) are several orders of magnitude smaller than the evidences obtained
for the consistent and inconsistent prior models (Table 2.2).

Providing practical recommendations for parameter settings away from easily-recognizable
degenerate conditions is challenging. Of course, the larger the N the better, as the particle
approximation of the parameter space will be improved. Our choice of N = 40 was dictated by
the number of forward runs we could perform in parallel on one compute node, while much
larger values are possible on modern computational architectures. An important point is
how well the posterior can be described by a weighted average of N particles. The complexity
of the posterior distribution depends on several factors like the dimension of the parameter
space, the physics, the number and type of data, and the experimental design. Consequently,
a much larger number of particles might be needed in challenging high-dimensional settings
with strong parameter correlations or for problems with multi-modal posterior PDFs. In
agreement with Neal (2001), we recommend distributing the total number of forward runs
for each ASMC particle by favouring a large number of intermediate distributions over larger
K . In practice, we typically first choose a suitably large C ESSop and then vary K . In contrast
to K , the influence of C ESSop on the total number of forward simulations is non-linear and
difficult to predict before running the algorithm. The trial tests in this study suggest that
C ESSop needs to be larger than 0.99N , for our considered ranges of K , in order to reach the
target misfit and build a smooth α-sequence. After fixing C ESSop , one can then first run
the ASMC with an initially small K before re-running it with a twice as large value. If the
difference between the resulting evidence estimates for these two choices of K are much
smaller than the computed evidences for competing conceptual models, and if the inferred
posteriors are similar, then this choice of K is probably sufficient. If important differences
are observed between the ASMC runs obtained for the different K , then one needs to further
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double K , and so on. Finally, the proposal scale ϵ needs to be initialized with a high enough
value such that the initial acceptance rate is above ARmi n . After this, the automatic rescaling
of this parameter ensures high-quality estimates regardless of the model proposal scheme.

The observed relative insensitivity of the ASMC results to the model proposal type (Figures
2.4 and 2.5) is noteworthy, as the MCMC results (Figure 2.6) are highly sensitive to this
choice. CM1 and CM2 present different levels of complexity. For CM1, MCMC-DREAM
achieves convergence without difficulty (Fig. 2.6i), while this is far from being the case for
MCMC-Gauss (Figure 2.6j). For CM2, both MCMC approaches fail (Figures 2.6k and l), while
ASMC-DREAM and ASMC-Gauss perform similarly well for both CM1 and CM2 (Figures 2.4
and 2.5). The underlying reason for the success of ASMC and its insensitivity to the proposal
mechanism is likely found due to the following factors. On the one hand, the adaptive scaling
of the proposals (e.g., Figure 2.4c) and the tempering (e.g., Figure 2.4d) allow the particles to
more easily move away from local minima, while resampling, on the other hand, gives priority
to the high-likelihood regions (e.g., Figure 2.4h). Clearly, no such tuning of the proposal
scale is possible when using MCMC as it violates detailed balance conditions. We stress that
the comparisons made herein are with MCMC algorithms running at a unitary temperature,
while parallel tempering-based MCMC methods might not have these problems (Sambridge,
2014).

The presented ASMC method share similarities to other approaches for evidence estimation.
Nested Sampling (Skilling, 2004) reduces the evidence multidimensional integral to sampling
of a one-dimensional integral over prior mass elements, using an increasing constraint on the
log-likelihood lower bound. Other methods rely on MCMC sampling using power posteriors.
For instance, thermodynamic integration (TIE) (Gelman and Meng, 1998), also called path
sampling, reduces the evidence computation to a one-dimensional integral of the expectation
of the likelihood over α. Zeng et al. (2018) shows that TIE performs better than nested
sampling in terms of accuracy and stability. Stepping Stone Sampling (SS) (Xie et al., 2011)
also rely on power-posteriors but improves in accuracy compared with TIE by formulating
the evidence estimation by the product of ratios of intermediate normalizing constants, that
is, similarly to AIS and ASMC. An important practical difference is that SS is often performed
in parallel by running multiple MCMC runs targeting different power posteriors (Brunetti
et al., 2019). Since each chain starts from the prior, the total computational cost is high, and
perhaps more importantly, there is no solution to deal with MCMC chains for α close to one
that do not converge (as in our MCMC trials with both MCMC-Gauss and MCMC-DREAM for
CM2). This latter problem can be circumvented by running the SS algorithm sequentially
using a similar tempering sequence as for ASMC. However, the α-sequence needs to be
pre-defined, while ASMC allows for adaptive tuning. Even if not presented here, we stress
that the improvements offered by ASMC over AIS are drastic. Despite extensive testing and
tuning of AIS parameters, we were unable to match the performance of ASMC.
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2.5 Conclusions

This study demonstrates that adaptive sequential Monte Carlo (ASMC) is a powerful method
to approximate the posterior PDF and estimate the evidence in non-linear geophysical inverse
problems. Crosshole GPR examples in which complex geological priors are parameterized
through deep generative networks are used for demonstration purposes, but the method
is of wide applicability. ASMC is robust with respect to the type of model proposals used
and to algorithmic settings, implying a comparatively low user effort required for tuning the
algorithm for a given application. ASMC is particularly useful for moderately to strongly
non-linear inverse problems and for multi-modal distributions, where targeting the posterior
distribution with MCMC algorithms may result in poor convergence. For the considered
examples, ASMC outperforms state-of-the-art adaptive MCMC in estimating posterior PDFs.
The major advantage of ASMC compared with MCMC in a Bayesian model selection context is
that it provides straightforward computation of the evidence. Reliable uncertainty estimation
of evidence estimates is possible from single ASMC runs, provided that they are long enough.
We hope that this study will stimulate further adaptations of sequential Monte Carlo in a
geophysical context, and more specifically, lead researchers to the adaptation of ASMC when
confronted with challenging inference problems and model selection tasks.
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Chapter 3

Hydrogeological multiple-point statistics
inversion by adaptive sequential Monte Carlo

Macarena Amaya, Niklas Linde and Eric Laloy.

Published1 in Advances in Water Resources, herein slightly adapted to fit the theme of this
thesis with an appendix added after publication.

1Amaya et al. (2022). Hydrogeological multiple-point statistics inversion by adaptive sequential Monte Carlo.
Advances in Water Resources, 166 104252, doi:10.1016/j.advwatres.2022.104252
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Abstract

For strongly non-linear and high-dimensional inverse problems, Markov chain Monte Carlo
(MCMC) methods may fail to properly explore the posterior probability density function
(PDF) given a realistic computational budget and they are generally poorly amenable to
parallelization. Particle methods approximate the posterior PDF using the states and weights
of a population of evolving particles and they are very well suited to parallelization. We focus
on adaptive sequential Monte Carlo (ASMC), an extension of annealed importance sampling
(AIS). In AIS and ASMC, importance sampling is performed over a sequence of intermedi-
ate distributions, known as power posteriors, linking the prior to the posterior PDF. They
also provide estimates of the evidence (marginal likelihood) as needed for Bayesian model
selection, at basically no additional cost. ASMC performs better than AIS as it adaptively
tunes the tempering schedule and performs resampling of particles when the variance of
the particle weights becomes too large. We consider a challenging synthetic groundwater
transport inverse problem with a categorical channelized 2-D hydraulic conductivity field
defined such that the posterior facies distribution includes two distinct modes. The model
proposals are obtained by iteratively re-simulating a fraction of the current model using
conditional multiple-point statistics (MPS) simulations. We examine how ASMC explores the
posterior PDF and compare with results obtained with parallel tempering (PT), a state-of-the-
art MCMC inversion approach that runs multiple interacting chains targeting different power
posteriors. For a similar computational budget, ASMC outperforms PT as the ASMC-derived
models fit the data better and recovers the reference likelihood. Moreover, we show that
ASMC partly retrieves both posterior modes, while none of them is recovered by PT. Lastly, we
demonstrate how the power posteriors obtained by ASMC can be used to assess the influence
of the assumed data errors on the posterior means and variances, as well as on the evidence.
We suggest that ASMC can advantageously replace MCMC for solving many challenging
inverse problems arising in the field of water resources.

3.1 Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to tackle probabilistic inverse
problems arising in hydrology. As the dimensionality of the parameter space and the non-
linearity of the forward problem increases, standard MCMC methods often fail to explore
the posterior probability density function (PDF) given realistic computational constraints.
This happens as the Markov chains may be trapped in local minima for long times or they
may be unable to move between modes of high posterior probability. To circumvent such
issues, methods exploring a series of so-called power posteriors have been developed. In a
power posterior, less weight is given to the likelihood function as it is raised to the inverse of
a temperature that is larger than one, something that is typically referred to as tempering.
Tempering-based methods take advantage of the enhanced freedom of exploration at higher
temperatures (sampling closer to the prior PDF) as popularized by the widely-used simulated
annealing method for global optimization (Kirkpatrick et al., 1983).
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Parallel tempering (Earl and Deem, 2005) is a MCMC method in which many interacting
chains target different power posteriors. Through proposed swaps of the states between
chains, states sampled at higher temperatures can act as model proposals in the chains tar-
geting the posterior distribution, also called unit temperature chains. Analogous to classical
MCMC methods, PT approximates the posterior PDF by the states of the unit temperature
chains sampled after burn-in. In the context of geophysical inversion, Sambridge (2014)
demonstrated that PT can drastically improve sampling efficiency leading to an expanded
exploration of the parameter space compared to standard MCMC. The PT method has lately
been applied in a range of geoscientific problems such as landscape evolution (Chandra
et al., 2019), groundwater flow and transport (Laloy et al., 2016; Reuschen et al., 2020) and
earthquake source inversion (Gallovič et al., 2019).

A highly parallelizable alternative to MCMC is offered by particle methods such as annealed
importance sampling (AIS, Neal (2001)) and sequential Monte Carlo (SMC, Doucet and Jo-
hansen (2011)), where the posterior distribution is approximated using a weighted sample
of particle states. In these methods, importance sampling steps are performed sequentially
along a sequence of power posteriors. What differentiates these two methods from each
other is that SMC performs resampling of the particle population when the variance of the
importance weights becomes too high. One outstanding feature of both methods is that
the evidence, the normalizing constant in Bayes’ theorem and the key quantity in Bayesian
model selection, is estimated as well. Compared with its extensive use in science and engi-
neering, SMC appears poorly explored in the Earth sciences (Linde et al., 2017). Zhou et al.
(2016) proposed an adaptive version of SMC (ASMC) that automatically tunes the step size
(temperature reduction) between neighboring power posteriors. Recently, adaptive SMC
algorithms were introduced and successfully implemented in geophysical applications for
posterior PDF and evidence estimations (Amaya et al., 2021; Davies et al., 2023).

Realistic geological priors can often not be expressed by two-point geostatistical models
(e.g., multivariate Gaussian), for example, when connectivity patterns play an essential role
in determining the system response (Gómez-Hernández and Wen, 1998; Renard and Allard,
2013). Multiple-point statistics (MPS) is a sub-field of geostatistics aiming at generating
conditional model realizations that honor higher-order statistics found in a so-called training
image, a gridded 2-D or 3-D representation of the spatial field of interest that is built from
generic or previous geological knowledge of the site (Mariethoz and Caers, 2014). To generate
MPS-based candidate models within MCMC inversions, one popular approach is sequential
geostatistical resampling (SGR) (Ruggeri et al., 2015), in which model proposals are generated
by re-simulating a random fraction of the current model conditioned to the remaining grid
values. The SGR framework embraces two end-member strategies: either a randomly located
boxed-shaped area is resimulated as in sequential Gibbs sampling by Hansen et al. (2012) and
in blocking MCMC by Fu and Gómez-Hernández (2009), or random points throughout the
model domain are resimulated as in iterative spatial resampling by Mariethoz et al. (2010a).
Recently, hybrid methods determining an optimal combination of these end-members have
been proposed by Reuschen et al. (2021). Other approaches rely on much faster model
proposals offered, for instance, by graph cuts (Zahner et al., 2016) or by encoding the complex
priors in a much lower-dimensional space using deep generative networks, thereby, reducing
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the number of inferred parameters from several thousands of unknowns to some tenths of
latent variables (Laloy et al., 2017, 2018).

In this paper, we consider the challenging groundwater transport inverse problem introduced
by Laloy et al. (2016). It consists of a 2-D synthetic tracer experiment in which concentration
is monitored at pumping wells and the aim is to recover the hydraulic conductivity field
assuming a binary geological media (their case study 2). This test case is particularly challeng-
ing for three reasons: (i) the underlying non-linearity caused by long-range connectivity of
high-conductivity zones and a conductivity ratio of 100 between permeable channels and less
permeable matrix material, (ii) a large number of observations with a high signal-to-noise
ratio and (iii) a true field that is designed such that the targeted posterior distribution is
bimodal with the modes being located far from each other. Laloy et al. (2016) demonstrated
how PT clearly outperforms standard MCMC when used within a SGR framework. Neverthe-
less, even if PT offered important improvements it did not sample any of the posterior modes
and the simulated data of the generated model realizations did not fit the true data to the level
of the added noise. Compared to PT, ASMC presents the following advantages: (i) adaptive
determination of the temperature schedule, (ii) the model proposal scale is tuned adaptively
using the acceptance rate at the previously considered temperature and, (iii) the evidence is
calculated along the run with updates being made every time the temperature changes. In
PT, the temperature schedule and the proposal scale need to be pre-defined. The evidence
estimation in PT is reduced to a one-dimensional integral over the inverse temperature,
which can imply large approximation errors if the temperatures are comparatively few or
poorly chosen. We assess the performance of ASMC for this test case and compare the results
with the PT results of Laloy et al. (2016). We further discuss the insights offered by analysing
the results at intermediate temperatures corresponding de facto to assumptions of larger
measurement noise. With respect to the geophysical ASMC study by Amaya et al. (2021), the
present work considers a hydrogeological problem that is much more non-linear and the
model parameterizations and model proposal schemes are entirely different. In ASMC-SGR
we need to consider as many model parameters as there are pixels (7500 in our example)
while the deep generative network used by Amaya et al. (2021) only considered a few tenths
of unknowns.

3.2 Method

3.2.1 Bayes’ theorem

It is often beneficial to pose inverse problems within a probabilistic framework using Bayes’
theorem, in which the parameters to infer are treated as random variables. If we consider a
conceptual model composed by parameters θ, the posterior pdf π(θ|y) is given by:

π(θ|y) = π(θ)p(y|θ)

π(y)
. (3.1)
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The prior PDF π(θ) represents the a priori information concerning the model parameters.
This information is then weighted by the likelihood function p(y|θ) that expresses, for a given
noise model, how probable it is that a particular set of parameter values have produced the
observations y. Assuming the noise on the data to be uncorrelated and normally distributed
with a constant variance σ2, the likelihood is expressed as:

p(y|θ) = (
√

2πσ2)−md exp

[
− 1

2σ2

md∑
i

(yi −Fi (θ))2

]
, (3.2)

where md is the number of data points and F (θ) the simulated data given a set of model
parameter values. It can be convenient to consider the variable component of the natural
logarithm of the likelihood:

l (y|θ) =− 1

2σ2

md∑
i

(yi −Fi (θ))2, (3.3)

which we refer to as the reduced log-likelihood as it ignores the constant terms.

The evidence, also known as the marginal likelihood, is the normalizing constant in Bayes’
theorem. This quantity used to rank alternative conceptual models, defined by different prior
models, represents how consistent a conceptual model is with the set of observations under
consideration (Kass and Raftery, 1995). The evidence is a multidimensional integral over the
parameter space:

π(y) =
∫
π(θ)p(y|θ)dθ, (3.4)

making it very challenging to calculate for high-dimensional models. Brunetti et al. (2019)
focus particularly on how to compute the evidence to compare different conceptual models
within a MPS framework.

3.2.2 Sequential geostatistical resampling

Prior models are often represented by mathematical functions allowing any prior model
realization to be evaluated in terms of its probability. Examples include uniform priors, mul-
tivariate Gaussian priors and latent space distributions learned by a deep generative neural
network. However, such explicit prior model parameterizations are not always suitable, or
possible, when seeking to encode realistic geological spatial heterogeneity (Linde et al., 2015).
As an alternative, one can instead consider realizations of MPS simulation tools (Strebelle,
2002) as samples drawn from the prior model. These realizations honor the higher-order
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statistics of training images that can be built based on expected geological structures, out-
crops, geophysical or borehole data. The downside of such prior sampling-based approaches
is that one cannot calculate the prior probabilities of model realizations as needed in most
MCMC algorithms.

Sequential geostatistical resampling is a mechanism allowing MCMC inference when model
proposals are drawn using MPS algorithms that sample proposals proportionally to the prior
density. It builds on the foundational paper by Mosegaard and Tarantola (1995) in geophysics.
However, it is noteworthy that the underlying philosophy of such a prior sampling-based
algorithm has more recently received strong theoretical backing in the context of infinite-
dimensional inversion problems (e.g., Cotter et al. (2013)). At each MCMC iteration, a new
model proposal is generated by re-simulating a random fraction of the current model real-
ization using an MPS algorithm, conditioned to the remaining pixel values. There are two
end-member approaches to determine the locations of the pixels that are to be resimulated:
either a randomly located box-shaped area (Alcolea and Renard, 2010; Hansen et al., 2012)
or randomly located points (Mariethoz et al., 2010a). In this study, we use boxes as it pro-
vided the best results in Laloy et al. (2016). We further rely on the DeeSse MPS algorithm
(http://www.randlab.org/research/deesse/) that is, in turn, based on the direct sampling
method by Mariethoz et al. (2010b). To re-simulate the value of a certain uninformed pixel,
the algorithm scans the training image searching for patterns that agree with those found
in the vicinity of this pixel. If a similar-enough pattern is found, it assigns the value of the
pixel under consideration in the training image to the one in the new proposed model. This
procedure is repeated for all the pixels that are to be re-simulated.

In MCMC algorithms, the Metropolis rule is used to accept or reject model proposals obtained
from symmetric proposal distributions. The acceptance probability Γ to move from a current
state θc to a proposed state θp is:

Γ(θp ,θc ) = mi n

(
1,
π(θp )p(y|θp )

π(θc )p(y|θc )

)
. (3.5)

As mentioned above, this rule cannot be used with MPS algorithms such as DeeSse as π(θ) is
unknown. Instead, MPS-based inversions often rely on the extended Metropolis (Mosegaard
and Tarantola, 1995) method that is applicable if the model proposal mechanism generates
samples drawn proportionally to the prior PDF. The acceptance probability is then reduced
to:

Γ(θp ,θc ) = mi n

(
1,

p(y|θp )

p(y|θc )

)
(3.6)

and involves only likelihood ratios.
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Figure 3.1: Diagram illustrating structural differences between probabilistic inversion meth-
ods with the circles representing the evolving states at each iteration and the colors denoting
the temperatures of the targeted power posteriors. In (a) standard MCMC, all the chains
target the posterior PDF at unit temperature (shown in yellow). (b) Parallel tempering uses a
number of chains targeting different power posterior while allowing eventual swaps between
them (shown as purple dashed lines), whereas in (c) annealed importance sampling, the
targeted power posteriors change during the run in response to a gradually cooling sequence.

3.2.3 Adaptive sequential Monte Carlo

Power posteriors

Tempering consists in introducing a temperature variable flattening the likelihood function
in equation 3.1. The corresponding tempered posterior PDFs are called power posteriors and
can, in their unnormalized form, be expressed as:

γt (θt |y) ≡π(θt )p(y|θt )αt , (3.7)

where the likelihood is raised to an inverse temperature αt ∈ [0,1]. The effect of increasing
the temperature (decreasing αt ) is that the likelihood function becomes less peaky, that is,
with less pronounced modes. Targeting these power posteriors, instead of only targeting the
posterior PDF at unit temperature as in standard MCMC, increases the exploration capacity
because the tempering process decreases the probability of getting trapped in local minima.
A graphical explanation regarding the advantages of tempered exploration can be found in
Sambridge (2014). Figure 3.1 illustrates the main structural differences between standard
MCMC, and the methods of PT and AIS that both rely on tempering.

Annealed importance sampling (AIS)

Importance sampling is a Monte Carlo method used to estimate properties of a distribution
that it is not possible to sample from (Hammersley and Handscomb, 1964). It relies on an
auxiliary distribution q(θ) for drawing the samples, that must include and should ideally
be slightly inflated with respect to the target distribution. For most applications, sampling
from the prior distribution in order to estimate properties of the posterior PDF suffers from
the curse of dimensionality, meaning that the computational effort needed to draw enough
samples with a significant likelihood, as needed to enable reliable estimates, is unfeasible. In
contrast, sampling from a well-chosen importance distribution allows focusing the sampling
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in regions of high posterior probability. The samples drawn are then used to compute
the desired property while correcting for the bias resulting from the chosen importance
distribution. If the target distribution is the unnormalized posterior PDF π(θ)p(y|θ), the
importance weights are given by:

w = π(θ)p(y|θ)

q(θ)
. (3.8)

Neal (2001) combined tempering and importance sampling to produce the AIS method.
It uses N chains, each of them representing evolving particles that target sequentially a
sequence of power posteriors at different temperatures ranging from the prior to the unnor-

malized posterior PDF of interest. The sequence is given by
{
γt (θt |y)

}T
t=0, and it contains

unnormalized power posteriors given by equation 3.7 with αt ranging from αt=0 = 0 (the
prior) to αt=T = 1 (the unnormalised posterior PDF). The normalized power posteriors are
given by:

πt (θt |y) = γt (θt |y)

Zt
, (3.9)

where Zt is the normalizing constant of the distribution.

In AIS, importance sampling steps are performed sequentially between each pair of consecu-
tive power posteriors. A subsequent power posterior γt (θt |y) is approximated by using the
estimation of the previous power posterior γt−1(θt |y) as the importance sampling distribu-
tion. In contrast to standard importance sampling were the samples are drawn directly from
the importance distribution, in AIS the γt−1(θt |y) samples are obtained by performing K
MCMC iterations targeting this power posterior starting from the approximation γt−2(θt |y).
By performing multiple intermediate importance sampling steps between the prior and the
posterior PDF, it is possible to ensure that each importance distribution is of high quality
(slightly inflated with respect to the target) leading to estimates with low uncertainty (vari-
ance). After the importance sampling step (represented by the longer arrows in between
different colored circles in Figure 3.2), again each of the N chains perform K MCMC steps
targeting now γt (θt |y). This process is repeated until αt = 1

We refer to the importance weights (equation 3.8) resulting from each intermediate impor-
tance sampling step as the incremental weights. For a particle i at state θi

t−1, the incremental
weight w i

t that result from using γt−1(θt−1|y) as an importance distribution for γt (θt |y) is:

w i
t =

γt (θi
t−1|y)

γt−1(θi
t−1|y)

. (3.10)
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To calculate the total weight of a particle, one needs to account for all the intermediate
importance sampling steps. To achieve this, the incremental weight w i

t is used to update the
normalized weight of particle i by:

W i
t = W i

t−1w i
t∑N

j=1 W j
t−1w j

t

, (3.11)

where W i
t−1 is the normalized weight (that is,

∑N
i=1 W i

t−1 = 1) of the previous importance
sampling step. The posterior PDF is then approximated through a particle approximation,
in which the relative probabilities of the last N states of the particles are determined by the
final normalized weights W i

T . By saving intermediate normalized weights and corresponding
particle states, the method allows also to approximate intermediate power posteriors that
represent the solutions to the equivalent tempered problems.

Resampling

The variance of the particle weights influences strongly the quality of the importance sam-
pling estimator (Neal, 2001). When using AIS, this variance may grow exponentially, resulting
in poor estimations of the posterior PDF and the evidence. Sequential Monte Carlo (SMC) is a
family of particle approaches that, as AIS, rely on sequential importance sampling. However,
SMC incorporates also resampling (Del Moral et al., 2006; Doucet and Johansen, 2011). In
a resampling step, the states of the particles are replicated according to a probability that
is proportional to their current normalized weights, and all the weights are re-set to 1/N .
The replacement of particles with lower weights and increasing those with higher weights
results in two advantages: (i) it avoids the variance of the weights to grow indefinitely and (ii)
it orients the exploration towards regions of higher posterior probability. Nevertheless, since
the resampling process increases the variance of the estimates (Douc and Cappé, 2005), it is
often better to perform resampling only when needed. The effective sample size (ESS) (Kong
et al., 1994) is expressed as:

ESSt =
(
∑N

i=1 W i
t−1w i

t )2∑N
j=1(W j

t−1)2(w j
t )2

. (3.12)

It quantifies the number of effective samples in the particle approximation. The common
approach is to monitor the ESS along the run, and perform resampling when it is lower
than a specified threshold. In this paper, we rely on systematic resampling due to its good
performance and easy implementation (Doucet and Johansen, 2011). Figure 3.2 shows a
graphical example of SMC with N = 5 particles, in which the resampling step is indicated
with red dashed lines.
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Figure 3.2: Schematic representation of sequential Monte Carlo (SMC) using N = 5 particles
evolving in parallel. After the initial sampling from the prior PDF (blue circles), K = 4 Markov
steps are performed to approximate one of the power posteriors γt . In these power posteriors,
the likelihood is raised to an inverse temperature αt that increases gradually. At the end of
each approximation, an importance sampling step is performed to calculate an incremental
weight wt . Adaptive sequential Monte Carlo (ASMC) incorporates two modifications with re-
spect to annealed importance sampling (AIS): (i) adaptive determination of the αt -sequence
defining the sequence of power posteriors and (ii) resampling when the variance of the
particle weights becomes too large (indicated by red dashed lines).
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Adaptive tempering schedule

One complication of AIS and SMC methods is the difficulty to pre-define a suitable tempering
schedule (Figure 3.2). Zhou et al. (2016) propose an adaptive SMC method (ASMC) (their
algorithm 4) in which an appropriate α-step-size increment is determined before each
importance sampling step. To do so, they rely on the conditional effective sample size (CESS)
quantifying the quality of using the particle approximation γt−1(θt−1|y) as an importance
distribution to estimate expectations for the γt (θt |y) arising for different choices of αt , and is
given by:

C ESS = N
(
∑N

i=1 W i
t−1w i

t )2∑N
j=1 W j

t−1(w j
t )2

. (3.13)

The ESS and C ESS are both obtained by a sample approximation of a Taylor expansion
of the relative variance of the estimator (Kong et al., 1994). The difference between them
is that the ESS embraces the accumulated mismatch between the importance and target
distributions, whereas the C ESS focuses on the quality of the current importance sampling
step. If resampling was to be performed at every iteration, then the ESS and C ESS quantities
would be equal. A detailed derivation of the C ESS can be found in the supplementary
material of Zhou et al. (2016).

The C ESS depends on the incremental weights wt that in turn depend on αt . The strategy
consists in finding the α-increment between consecutive power posteriors, that is, the ∆αt

such that αt = αt−1 +∆αt , giving the C ESS that is the closest to a pre-defined quality ex-
pressed by C ESSop . To find ∆αt , we rely on a binary search within a sequence of possible
∆α values. First, the C ESS is computed using the middle value of the ∆α sequence and it is
compared with C ESSop . Depending on if it is higher or lower, one of the two∆α half-intervals
is kept. This procedure is repeated until the ∆α that gives the C ESS that is the closest to
C ESSop is found.

If we increase C ESSop , we obtain higher-quality estimates as the number L of intermediate
power posteriors increases, but at the expense of a longer ASMC run. The total number of
iterations per particle is L × K , with K the number of MCMC steps per intermediate power
posterior. In practice, the ratio C ESSop /N is chosen close to 1 in order to ensure high quality
estimates. It has been suggested that it should be at least 0.99 to build a smooth α-sequence
(Amaya et al., 2021), but the optimal value is highly problem-dependent. The impact of the
C ESSop /N value on the resulting L is non-linear and not easy to predict.
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ASMC-based evidence estimation

Evidence estimation is essential for Bayesian model selection. Considering two neighbouring
distributionsγt−1(θt−1|y) andγt (θt |y), we can express the ratio of their normalizing constants
as:

Zt

Zt−1
=

∫
γt (θt |y)dθt∫

γt−1(θt−1|y)dθt−1
. (3.14)

Del Moral et al. (2006) propose an approximation of this ratio as:

Zt

Zt−1
≈

N∑
i=1

W i
t−1w i

t . (3.15)

The evidence π(y) is the normalizing constant ZT of the unnormalized posterior PDF, that is,
the last distribution of the sequence whenαt=T = 1. Considering that the prior PDF integrates
to one, Z0 = 1, we can express the evidence as the product of the normalizing constant ratios:

π(y) = ZT = ZT

Z0
=

T∏
t=1

Zt

Zt−1
≈

T∏
t=1

N∑
i=1

W i
t−1wt

i . (3.16)

Consequently, the evidence can be updated along the run by accounting for the evolving
particle weights.

3.2.4 Full ASMC-SGR algorithm

Our algorithm combining the SGR method for model proposals with ASMC for posterior
PDF and evidence estimation is given in Algorithm 2. We denote this algorithm as ASMC-
SGR (following the nomenclature in Laloy et al., 2016). In this study, the proposal scale
φ indicates half of the side-length in meters of the box that is being re-simulated at each
iteration. In addition to the previously mentioned advantages of adaptive tempering and
evidence estimation, the algorithm also has the attractive feature that the proposal scale φ
can be tuned on-the-go without violating detailed balance conditions as would be the case
for MCMC. This is simply achieved by keeping track of the acceptance rate for the K MCMC
steps at the previous αt−1 and then to use this information to adapt the proposal scale for the
next number of K MCMC steps to ensure that it is within a pre-defined range. This saves a
lot of time compared with standard MCMC and PT algorithms that often necessitate tuning
using multiple time-consuming trial runs.
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Algorithm 2: ASMC-SGR
The SGR section of the algorithm is adapted from Laloy et al. (2016) and the ASMC section from Zhou et al. (2016) (their algorithm 4).

Variables to pre-define:

Number of particles (N ), optimal CESS (C ESSop ), ESS threshold (ESS∗),

number of MCMC iterations at each intermediate distribution (K ), minimal and maximal acceptance rate (ARmi n ,ARmax),

minimal (φmi n) and maximal (φmax) proposal scale and its percentage of change ( f ).

Initialization: Set t = 0

Set α= 0

Sample θ0 from the prior π(θ) N times

Set the N -dimensional vector of normalized weights W0 = [ 1
N ; 1

N ; ...; 1
N ]

Set evidence π(y) = 1

Iteration : Set t = t +1

Search for incremental distribution

Do binary search for the increment ∆α that gives the CESS (equation 3.13) that is the closest to C ESSop

Update α= mi n(1,α+∆α) and define the following intermediate distribution γt (θt |y) =π(θt )p(y|θt )α

Perform the importance sampling step: compute the weight increments w i
t (equation 3.10),

update and save the normalized weights W i
t (equation 3.11) and the evidence π(y) =π(y)

∑N
i=1 W i

t−1w i
t (equation 3.16)

Resampling

Calculate ESS (equation 3.12), if ESS < ESS∗ do resampling: re-organize θt states and update Wt = [ 1
N ; 1

N ; ...; 1
N ]

Do K MCMC iterations for each of the N particles (chains):

Propose moves θp : randomly select the location of a box with dimensions 2φ ×2φ, and run the MPS simulation using

the points outside the box as conditioning points and accept or reject based on the extended Metropolis rule,

with an acceptance probability given by: Γ(p,c) = mi n
(
1,

p(y|θp )α

p(y|θc )α

)
(equation 3.6)

Save the N models θ and their likelihoods.

Set last state as θt+1

Tune proposal scale

If acceptance rate AR < ARmi n then decrease proposal scale factor: φ=φ∗ (1− f
100 )

If acceptance rate AR > ARmax then increase proposal scale factor: φ=φ∗ (1+ f
100 )

If φ<φmi n then φ=φmi n , if φ>φmax then φ=φmax

Repeat until α=1

3.3 Results

3.3.1 Test case

We consider the second test case from Laloy et al. (2016), in which the concentration of an
injected tracer is measured at regular time intervals. The conceptual model is represented
by a 250 × 250 categorical binary training image from Strebelle (2002) (Figure 3.3). The 2-D
reference model is located in the x-y plane and has a dimension of 75 m × 100 m with a
discretization cell size of 1 m. The hydraulic conductivity K is 0.01 m/s for the channels
and 0.0001 m/s for the matrix. A conservative tracer with a concentration of 1 kg/m3 is
injected at 8 locations on the top and bottom of the model (Figure 3.4). The concentration
is measured every 8 hours during 10 days at 11 pumping wells (a total of 330 observations)
that extract 0.0005 m2/s of water, and the facies at these points are assumed to be known.
This test exhibits symmetry with respect to the x-axis, such that any model and its mirrored
image produce the same simulated concentration data and, therefore, the same likelihood.
Consequently, the posterior PDF is bi-modal with two distinct modes. Mode 1 of the reference
model was obtained as a random realization from the DeeSse algorithm (Figure 3.4a) and
then mirrored to obtain the mode 2 reference model (Figure 3.4b).

The simulations are performed using MaFloT, a finite-volume open-source code for transport
simulations in porous media (Künze and Lunati, 2012). Fixed head boundaries of 0 m on the
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Figure 3.3: Channelized binary training image from Strebelle (2002) with the spatial dimen-
sions used in the present study.

Figure 3.4: (a) Reference model [mode 1] and (b) mirrored reference model [mode 2], the red
squares represent the points where the tracer is injected and the blue circles represent the
pumping wells where measurements are made. Both models result in the same (c) simulated
concentration over time (shown before being contaminated with uncorrelated Gaussian
noise), where each color represents the observations at one pumping well.

top and bottom of the domain and no-flow boundaries on the sides are assumed to simulate
steady-state groundwater flow. For the tracer transport, we assume open boundaries, an
hydraulic dispersivity of 0.1 m and a background concentration of 0.01 kg/m3. The simulated
data were corrupted with uncorrelated Gaussian noise with a standard deviation of σ= 0.003
kg/m3, approximately 3% of the mean concentration.

ASMC-SGR settings

The proposal scale φ used to create candidate models is tuned along the run (see Algorithm 2)
by increasing or decreasing it by f = 20% to ensure that the acceptance rate stays within the
range of ARmi n = 15% and ARmax = 35%. It is further constrained to be between φmax = 50
m and φmi n = 5 m. For the DeeSse simulations, we follow Laloy et al. (2016) and use 75
neighbors, which implies that the patterns that are searched by the algorithm are composed
of the 75 informed nodes that are the closest to the one being re-simulated. The fraction of
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the training image that is scanned is 0.9 and the distance threshold to accept a pattern is 0.01
(Mariethoz et al., 2010b).

3.3.2 ASMC-SGR results

Test 1: ASMC-SGR with 24 particles

We first compare the ASMC-SGR results with those obtained by Laloy et al. (2016) for a similar
computational budget: 24 chains and 25,000 iterations per chain. To achieve this, we chose
N = 24 particles and C ESSop /N = 0.9997 combined with K = 18, which resulted in 25,956
iterations per particle. The resampling threshold ESS∗/N was set to 0.3 (Del Moral et al.,
2006). The user-defined parameters and length of the run are summarized in Table 3.1
(ASMC-SGR 24p).

We first consider the evolution of the tempered log-likelihood, that is, the likelihood raised to
the inverse temperature in the natural log-scale (Figure 3.5a). The tempered log-likelihood
of each particle is seen to evolve according to the reference tempered log-likelihood curve
(calculated using the assumed noise standard deviation σ= 0.003 kg/m3). If C ESSop /N or K
would be too low, then the particles would have considerably lower tempered likelihoods than
the reference curve, thereby, indicating that the sampled log-likelihoods are too low and that
the associated computational budget is insufficient for the problem at hand. Consequently,
this type of curve is a useful diagnostic plot allowing the user to terminate an ASMC run at an
early stage if the tempered log-likelihoods falls below the reference curve.

The automatically tuned proposal scale φ (Figure 3.5e) enables the acceptance rate to stay
within the pre-defined range (Figure 3.5c). The resulting αt -sequence (Figure 3.5b) demon-
strates that roughly half of the forward simulations are carried out with αt -values less than
0.01, corresponding to temperatures above 100. The plot showing the evolution of the nor-
malized weights (Figure 3.5d) illustrates the divergence of the weights between resampling
steps and the re-alignment of the weights when the normalized effective sample size ESS/N
(Figure 3.5f) reaches below the 0.3 threshold.

To compare these ASMC-SGR 24p results with those obtained by Laloy et al. (2016), we first
consider the measure used in their study as an indicator of data fitting:

∆l (y|θ)[%] = l̄ (y|θT )− l (y|θr e f )

l (y|θr e f )
×100, (3.17)

where l (y|θr e f ) is the reduced reference log-likelihood (equation 3.3) and l̄ (y|θT ) is the mean
sampled reduced log-likelihood. For MCMC and PT, this mean is simply the arithmetic
average of the reduced log-likelihoods after burn-in (only considering unit temperature
chains for PT), whereas for ASMC it is the weighted average of the N final reduced log-
likelihoods. Laloy et al. (2016) demonstrated a drastic improvement when using PT-SGR
compared with MCMC-SGR following Hansen et al. (2012). The indicator ∆l (y|θt ) was 9%; an
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Figure 3.5: ASMC-SGR results using 24 particles: (a) tempered log-likelihood vs. iterations
per particle, the colors represent different particles and the black dashed line indicates
the reference tempered log-likelihood; (b) α-sequence vs. α index; (c) acceptance rate vs.
iterations per particle, the dashed line indicates the pre-defined minimum and maximum
range; (d) normalized weights vs. α index, the colors represents different particles; the
(e) proposal scale vs. iterations per particle; (f) ESS/N vs. α index, the black dashed line
indicates the 0.3 threshold below which resampling is made.
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Table 3.1: User-defined parameters, resulting sequence length and data fitting for ASMC-SGR
using 24 and 72 particles. The reduced reference log-likelihood l (y|θr e f ) (equation 3.3) for
this test case is -165. Using PT-SGR, Laloy et al. (2016) obtained a∆l (y|θt )=9% for a numerical
demand of 600,000 forward simulations.

ASMC-SGR 24p ASMC-SGR 72p

Particles (N ) 24 72

C ESSop /N 0.9997 0.9997

ESS∗/N 0.3 0.3

ARmi n 15% 15%

ARmax 35% 35%

K iterations 18 18

L power posteriors 1,442 1,533

Iterations per particle 25,956 27,594

Resampling times 6 6

Total number of forward simulations 622,944 1,986,768

∆l (y|θt ) 3.76% 1.5%

l (y|θT ) range [-196,-164] [-188,-160]

important improvement of 70% on average compared with MCMC-SGR. Still, the reference
reduced log-likelihood was actually not contained in the range of sampled reduced log-
likelihoods with PT-SGR, indicating that these samples are not representative of the posterior
PDF. For our ASMC-SGR 24p run, the indicator ∆l (y|θt ) is 3.76% and the log-likelihood range
contains the reference value (Table 3.1).

Figures 3.6a-d show exemplary PT-SGR posterior samples from Laloy et al. (2016). These
samples do not resemble either mode 1 or mode 2, even if Figure 3.6b has some structural
similarities with mode 1 (Figure 3.4a). In contrast, the final states obtained by ASMC-SGR
24p (Figures 3.6e-h) recover models that resemble both reference modes: The realizations in
Figures 3.6e-g resemble mode 2 (Figure 3.4b) and the one in Figure 3.6h resembles mode 1
(Figure 3.4a).

The reference mean (Figure 3.7a) is the mean of mode 1 (Figure 3.4a) and mode 2 (Figure
3.4b) of the reference model. The true posterior mean is unknown and it is likely to be slightly
biased towards models resembling one of the modes. The reason for this is that even if
mode 1 and 2 have the same likelihood, they do not have the same prior probability. This
is a consequence of using the training image in Figure 3.3 that is likely to favour certain
orientations of structures when generating prior samples. Nevertheless, Figure 3.7a provides
a sensible point of comparison.

The ASMC-SGR 24p weights (Figures 3.6e-h) and the posterior mean corresponding to the
weighted arithmetic mean of the samples (Figure 3.7b) suggest that the total weights given to
the two “modes" is unbalanced with “mode 2" having a higher total weight than “mode 1".
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Figure 3.6: Samples from the posterior PDF obtained with: (a)-(d) PT-SGR by Laloy et al.
(2016); (e)-(f) ASMC-SGR using 24 particles and (i)-(l) ASMC-SGR using 72 particles (the
corresponding weights W of the particles are shown). The root mean square error (RMSE)
without units is indicated for each sample; the corresponding value for the true model (modes
1 and 2) is 0.0030.

Still, these results show that ASMC-SGR can sample the two modes of this very challenging
inverse problem and that the structures of the reference mean are partly recovered (unlike
for the PT-SGR mean, see Figure 9b in Laloy et al. (2016)).

Test 2: ASMC-SGR with 72 particles

ASMC provides an approximation not only of the posterior PDF but also of every tempered
intermediate power posterior. In this section, we focus on the evolution of the (unnormalized)
power posteriors as α increases from the prior (α=0) to the posterior PDF (α=1). One way
of interpreting these power posteriors is to consider them as posterior PDFs for different
assumptions on the data error level. Indeed, decreasing the α-exponent has the same impact
on the likelihood variable component as increasing the assumed standard deviation σ of the
data noise (α∝ 1

σ2 in Eqs. 3.3 and 3.7). Thus, the effect of tempering with a given α could
also be achieved by considering an assumed standard deviation of σα =σ/

p
α, where σ is the

original standard deviation of 0.003 kg/m3 (for example, α= 0.25 is analogous to assuming
a standard deviation that is twice as large σα = 0.006 kg/m3). Since the objective in this
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Figure 3.7: (a) Mean of the reference model’s two modes; (b) ASMC-SGR 24p posterior mean
and (c) ASMC-SGR 72p posterior mean obtained as a weighted mean of the final states of the
particles.

section is no longer to compare the results with Laloy et al. (2016) for a similar computational
budget, we now consider more particles. We increase the number of particles running in
parallel from 24 to 72, thereby, aiming for improved approximations of the intermediate
power posteriors, while keeping fixed the other user-defined parameters (ASMC-SGR 72p
in Table 3.1). The number of power posteriors needed to honor the targeted C ESSop are
slightly higher compared to the ASMC-SGR 24p test. The indicator ∆l (y|θ)[%] (equation 3.17)
for ASMC-SGR 72p is 1.5%, that is, 60% less than for the 24 particles test. Furthermore, the
likelihood range of the final particles is also reduced. The posterior mean for ASMC-SGR 72p
(Figure 3.7c) and four samples from the posterior PDF (Figs. 3.6i-l) indicate that most of the
samples resamble mode 1 instead of mode 2 of the reference model, that is, the opposite
behavior compared with the ASMC-SGR 24p run.

The structural similarity index measure (SSIM) (Wang et al., 2004) can be used to quantify
the similarity between two images. It varies between -1 and 1, the higher the SSIM the more
similar the two compared images are (SSIM=1 indicates identical images). The SSIM of the
power posterior mean models with respect to the reference mean model (Figure 3.7a) initially
increases before stagnating when α reaches 0.01 for both ASMC-SGR 24p (Figure 3.8a) and
ASMC-SGR 72p (Figure 3.8b). For ASMC-SGR 24p, the SSIM values with respect to mode
2 continue to increase while the SSIM values with respect to mode 1 is even decreasing at
the end of the run (Figure 3.8a). For ASMC-SGR 72p, the situation is the opposite with the
SSIM values with respect to mode 1 being those that continue to increase for larger α-values
(Figure 3.8b). For ASMC-SGR 24p, the SSIM remains the highest for mode 2 for all α-values
above 0.001, while the SSIM values with respect to mode 2 for ASMC-SGR 72p only start to
dominate for α-values above 0.1. This is a consequence of the larger number of particles and
the corresponding increased ability to approximate the power posterior. The range of SSIM
values between the particle realizations and the reference models are shown to decrease as
the run progresses.

Figure 3.9 shows the posterior means and standard deviations at five stages of the ASMC-SGR
72p run. The mean of the prior models (Figure 3.9a) is computed from the initial DeeSse
simulations using the facies at the pumping wells as conditioning data. At α= 2.0e−3 (Figure
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Figure 3.8: Structural similarity index measure (SSIM) of the weighted mean models for a
subset of the estimated power posteriors with respect to the reference mean model (Figure
3.7a) and reference models (modes 1 and 2) (Figures 3.4a-b) vs. α. For modes 1 and 2, the
range for all samples is indicated with shading. Results are shown for (a) ASMC-SGR 24p and
(b) ASMC-SGR 72p.

3.9b), α = 1.7e −2 (Figure 3.9c) and α = 8.8e −2 (Figure 3.9d), the power posterior mean
models already resembles patterns of the reference mean (Figure 3.7a). When α = 1, the
posterior mean model is dominated by mode 1 (Figure 3.9e). The standard deviations are
initially high except in the vicinity of the conditioning points (Figure 3.9f) and they decrease
as expectec with increasing α-values (Figures 3.9g-j) as the run evolves towards the posterior
PDF. Four samples from the power posteriors corresponding to α= 2.0e −3 (Figure 3.10e-h),
α = 1.7e −2 (Figure 3.10i-l) and α = 8.8e −2 (Figure 3.10m-p) indicate that the variability
among the realizations are high at the beginning with large corresponding RMSE values.
As α increases, the variability among the realizations and the corresponding RMSE values
decrease as the samples start resembling the modes and fit the data better.

Resampling and Eve indices

Resampling has the advantage of reducing the variance of the particle weights and focusing
the sampling in regions of high posterior probability. However, the corresponding decrease in
the variability of the sample realizations has also an adverse impact on the ASMC estimations.
A conservative way of estimating the number of independent particles remaining in a run
is to trace back the origin of the particles using the Eve indices. Before any resampling is
perfomed, the Eve indices of the particles are 1 : N . As resampling implies re-organization
and replication of particles, the Eve indices change along the run. At time t , each particle i
has an Eve index E i

t that denotes the original index of the particle that moved there (see Lee
and Whiteley (2018) for a detailed and illustrative explanation).
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Figure 3.9: Posterior (a-e) means and (f-j) standard deviations of five different power posteri-
ors for the ASMC-SGR 72p run: (a, f) αt = 0; (b, g) αt = 0.002; (c, h) αt = 0.017; (d, i) αt = 0.088
and (e, j) αt = 1.

The evolution of the Eve indices are shown for tests ASMC-SGR 24p (Figure 3.11a) and
ASMC-SGR 72p (Figure 3.11b). The Eve indices are modified after each resampling step:
particles with higher weights are more likely to be replicated, and as they bring their Eve
indices (their origin) with them, these Eve indices are replicated as well, while other Eve
indices corresponding to particle states with low weights are lost on the way. Consequently,
the number of distinct Eve indices is reduced along the run due to resampling; the more
resampling there is, the fewer surviving Eve indices at the end of the run. In each of our two
example runs there is six resampling steps; this led to two surviving Eve indices out of 24 for
ASMC-SGR 24p and only one surviving Eve index out of 72 for ASMC-SGR 72p. Of course, the
particles with the same Eve indices are generally not identical as they develop independently
after resampling in response to the MCMC proposal steps. Despite inherent randomness, a
larger number of Eve indices are expected when reducing the number of resampling steps
or increasing the number of particles. For our two test cases, the few surviving Eve indices
indicate that a higher number of particles N , intermediate power posteriors or K steps would
be beneficial.

Evidence estimation

The evidenceπ(y) (equation 3.4), which can be used for Bayesian model selection and ranking,
is obtained as a byproduct of the ASMC algorithm (equation 3.16). The log-evidence is shown
to evolve similarly for the ASMC-SGR 24p and ASMC-SGR 72p (Figure 3.12a) runs. Both
evidence curves have the same shape as α increases, and the final evidence estimates are
close: π(y) = 1374.14 for ASMC-SGR 72p and π(y) = 1371.06 for ASMC-SGR 24p. For many
model selection studies focused on conceptual model comparison, the differences in the
evidence between conceptual models are often much larger (Amaya et al., 2021; Brunetti et al.,
2017, 2019) than this discrepancy (Figure 3.12b), thereby, suggesting that only 24 particles
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Figure 3.10: Four samples from different power posteriors sampled with the ASMC-SGR
72p run: (a)-(d) αt = 0; (e)-(h) αt = 0.002; (i)-(l) αt = 0.017 and (m)-(p) αt = 0.088. The
corresponding weights W are shown and the root mean square error (RMSE) without units is
indicated for each sample with the corresponding value of the reference model (modes 1 and
2) being 0.0030.
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Figure 3.11: Evolution of the Eve indices for the (a) ASMC-SGR 24p and (b) ASMC-SGR 72p in
the range from α= 10−4 until α= 1. The opacity of the lines is proportional to the number of
particles that have the same Eve index (same origin) at a given α.

would probably provide sufficiently accurate results. Analogous to the power posteriors,
it is also possible to interpret the intermediate evidences as those corresponding to larger
assumed σ-values. This necessitates a correction nevertheless, as the multiplicative term
((
p

2πσ2)−md in equation 3.2) does not follow the proportionality α∝ 1
σ2 . The intermediate

log-evidences log [π(y,α)] can be corrected to log [π(y,α)]cor r following:

log [π(y),α]cor r = log [π(y,α)]+αmd log (
p

2πσ)− md log (
p

2πσα), (3.18)

where σ is the originally assumed standard deviation of 0.003 kg/m3 and σα = σ/
p
α is

the standard deviation corresponding to that particular α. The results highlight that the
estimated evidences depend very strongly on the assumed error level (Figure 3.12c).

3.4 Discussion

For a similar computational budget, ASMC-SGR has been shown to outperform PT-SGR in
terms of data fitting (Table 3.1). Moreover, ASMC-SGR recover particle states (Figure 3.6e-h)
that resemble both of the reference modes (Figure 3.4a-b), while none of them are recovered
when using PT-SGR (Figure 3.6a-d). The ASMC algorithm adaptively tunes both the proposal
scale and the α-sequence (inverse temperatures) along the run, which implies much less user
effort compared to the tedious testing needed to make PT-SGR perform well. If conceptual
model comparison is intended, ASMC becomes even more attractive as it provides evidence
estimations (Zhou et al., 2016) that are reliable and in agreement with unbiased estimations
obtained using brute force Monte Carlo (Amaya et al., 2021).
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Figure 3.12: (a) Natural log-evidence evolution vs. α for ASMC-SGR using 24 and 72 particles;
(b) difference of the log-evidence estimates for the two test cases vs. α; (c) corrected natural
log-evidence (equation 3.18) vs. different assumptions of σα.
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The intermediate power posterior approximations offered by the ASMC algorithm are highly
instructive (Figures 3.9-3.10). When the ASMC-SGR algorithm starts considering α-values
above a given threshold (lower for 24 particles than for 72 particles), the sampling tends to
become unbalanced in our two example runs and there is one mode that ends up having
a higher posterior probability than the other. This could be addressed by increasing the
computational budget: either by considering a much larger number of particles (one could
imagine using hundreds or thousands of particles), or by increasing C ESSop or K that would
reduce the number of resampling steps. Resampling plays the important role in particle
methods of focusing the sampling towards high-probability regions by controlling the vari-
ance of the particle weights. Unfortunately, this advantage comes at the expense of losing
the independence between the particles leading, in our case, to over-prediction of one of
the posterior modes. In our test example, it would be straightforward to facilitate sampling
of both modes simply by allowing for model proposals that would mirror the present state.
However, this would not be possible in most realistic settings.

The test example was primarily designed to ensure that the posterior had two posterior
modes located far from each other, thereby, enabling comparison of different probabilistic
methods for a very challenging inverse problem. In order to allow a fair comparison between
the previously published PT results and the new ASMC results, the training image and the
DeeSse simulation parameters were the same as in Laloy et al. (2016). However, this implies
that the prior probability of sampling modes 1 and 2 are different, and consequently that the
two posterior modes have unequal posterior probabilities despite that the likelihoods are
equivalent. To ensure that the true posterior has two modes of equal posterior probability,
one could use a training image with two layers. The first layer would be the original training
image and the second layer would be obtained by mirroring the training image similarly to
how mode 2 was created. At each SGR step, the MPS algorithm would scan from either layer 1
or 2. Nevertheless, the fact that ASMC-SGR 24p primarily sampled mode 2 and ASMC-SGR
72p primarily sampled mode 1 suggests that the main limitation in the presented runs are the
limited computational budgets that prohibit sampling the two posterior modes well during
one ASMC run.

After publication of this study, we performed a test in which we increased the computational
budget. We doubled the number of intermediate Markov steps in ASMC-SGR 72p, from K = 18
to K = 36. The results (Appendix A) show an important improvement both in the data fitting
and in the balance of the two modes sampling. One option to reduce the computational
time and, thereby, allow for longer runs would be to use faster algorithms for generating the
candidate models: either newer versions of DeeSse, quick sampling (Gravey and Mariethoz,
2020), graph cuts (Zahner et al., 2016), or by replacing MPS-based algorithms with deep
learning-based generators as in the study by Amaya et al. (2021). Also, a computational
gain could be achieved by replacing the expensive forward solver with a surrogate (e.g., by
polynomial chaos expansion (Laloy et al., 2013; Meles et al., 2022)). This should not bias the
results if the surrogate is only applied in the intermediate K Markov steps, while still using
the expensive forward solver for the importance sampling steps.

The power posterior approximations can also be interpreted as posterior PDF approximations
for different assumed data error levels (Figure 3.9). By raising the likelihood function to an
inverse temperature α that is less that 1, the impact on the reduced log-likelihood is the
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same as if increasing the assumed error level. That is, flattening the likelihood and, thereby,
enhancing the freedom of the exploration. A similar effect is obtained by decreasing the
number of data points considered md (α∝ md in equation 3.3): keeping a subset of the
original observations will have a similar impact as reducing α or increasing σ2. Tempering,
assuming artificially high data errors or reducing the number of data are not uncommon
in the literature when addressing challenging Bayesian inversions (e.g., Juda and Renard
(2021)). This results in an easier to solve, but different, inverse problem that is conservative
in the sense that the posterior mean is less informative and the posterior variance is larger
than for the original problem. One important advantage of ASMC is that it explores all these
intermediate problems, but also use the information gained to sample the original posterior
PDF that is unfeasible for many other methods. Similarly, the evidence computations can be
re-scaled to correspond to different assumptions of data error levels (Figure 3.12).

In field applications, the data error level is typically poorly known. ASMC can then be very
helpful, as one could assume a noise level that is likely too low and then obtain approxima-
tions of several power posterior corresponding to different (larger) error assumptions. One
could then consider choosing an optimal error level based on the ASMC intermediate results
using the relationship between α and σ. For instance, one could perhaps choose the error
level and the corresponding posterior (and evidence) approximations by considering the
divergence between the reference target log-likelihood and the tempered log-likelihoods
with increasing α. In Figure 3.2a there is no such divergence as the true data error level
is assumed. This would be much more efficient than running multiple MCMC runs with
different assumptions concerning σ.

An alternative and somewhat related method to solve inverse problems with SGR is Popu-
lation Expansion (PoPEx) introduced by Jäggli et al. (2017, 2018). This method is similar to
ASMC in the sense that the proposal distribution progressively evolves along the run towards
the posterior PDF. These evolving distributions provide information maps built to efficiently
select conditioning data for new SGR model proposals based on previously sampled high-
likelihood models. The posterior PDF is approximated by iteratively expanding the set of
models along the run. The corrected PoPEx algorithm by Jäggli et al. (2018) can be inter-
preted as an adaptive importance sampling algorithm (Naylor and Smith, 1988), in which
the evolving proposal distribution is the importance distribution and the posterior PDF is
the target distribution. This is different from ASMC where the importance sampling relies on
consecutive power posteriors. Compared with PoPEx, ASMC also includes resampling steps,
thereby, avoiding the degeneracy that often seems to plague PoPEx. To address this problem,
Jäggli et al. (2018) artificially reweigh the weights in order to achieve a lower variance and,
hence, a richer representation of the approximated posterior.
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3.5 Conclusions

Tempering of likelihood functions is used in a wide variety of Bayesian methods to enhance
posterior exploration and for evidence computations, particularly when confronted with high-
dimensional and multimodal posterior PDFs that standard MCMC methods often struggle
with. We demonstrate that adaptive sequential Monte Carlo (ASMC) outperforms parallel
tempering (PT) when using sequential geostatistical resampling (a multiple-point statistics
approach) as model proposal scheme in the context of a challenging synthetic groundwater
transport inverse problem involving 7,500 model parameters with a bimodal posterior PDF.
ASMC is found to be considerably more effective in locating the two posterior modes and to
sample states with likelihoods that are in agreement with the data noise. The algorithm has
a simple implementation and demands a minimal user effort in terms of tuning due to its
adaptive features. Furthermore, it also estimates the evidence (marginal likelihood) at almost
no additional computational cost. The intermediate results of the algorithm can be used to
determine the posterior means, standard deviations and evidences corresponding to different
assumptions of data errors. This can be very helpful as it avoids pre-defining one standard
deviation on the noise (or doing many MCMC runs with different assumed errors) and it
allows assessing how the posterior changes from the prior through a number of intermediate
power posteriors to the targeted posterior PDF. The method is versatile, robust and very
well suited for parallelization and could have wide applicability to solve inverse problems
arising in the field of water resources using a wide range of model parameterizations, forward
solvers and model proposal schemes. In the future, we will seek speed-ups through surrogate
modeling to enable a larger number of particles or longer runs and, thereby, improve the
posterior estimations further for a given computational cost. Indeed, our examples with
24 and 72 particles could locate the posterior modes, but the computational budgets were
insufficient to robustly sample the two posterior modes during the same ASMC run.

3.6 Appendix A

ASMC-SGR test with increased number of Markov steps

We perform a third test doubling the number of K intermediate Markov steps approximating
the power posteriors in ASMC-SGR 72p (K = 36 instead of K = 18), and keeping the rest of the
ASMC parameters fixed. We refer to this test as ASMC-SGR 72p (K=36). The results show a
strong improvement on the data fitting, the indicator ∆l (y|θt ) decreases from 1.5% (K = 18)
to 0.1% (K = 36). The upper row in Figure 3.13 is an extension of Figure 3.7 with the additional
Figure 3.13d showing the posterior mean of ASMC-SGR 72p (K=36). The patterns in Figure
3.13d are structurally more similar to the reference mean compared to Figure 3.13b and c.
Figure 3.13e shows the SSIM evolution for ASMC-SGR 72p (K=36), as in Figure 3.8 for the
K=18 tests. The orange and blue curves in Figure 3.13e indicate a more balanced sampling of
the individual modes throughout the inversion compared to Figure 3.8a and b.
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Figure 3.13: (a) Mean of the reference model’s two modes; (b) ASMC-SGR 24p posterior mean
using K=18, (c) ASMC-SGR 72p posterior mean using K=18, and (d) ASMC-SGR 72p posterior
mean using K=36, obtained as a weighted mean of the final states of the particles. Subfigure
(e) shows the structural similarity index measure (SSIM) of the weighted mean models for
a subset of the estimated power posteriors with respect to the reference mean model and
reference models (modes 1 and 2) vs. α. For modes 1 and 2, the range for all samples is
indicated with shading.
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Abstract

In the context of Bayesian inversion, Markov chain Monte Carlo (MCMC) methods are often
used to estimate posterior probability density functions (PDFs). Standard MCMC methods
can be inefficient for strongly non-linear, high-dimensional problems, with the chains getting
trapped in local minima and failing to properly sample the posterior PDF. Some methods
seek to overcome these issues by enhancing the ease of exploration through tempering,
which re-scales the target function by reducing the weight of the likelihood function. We
consider sequential Monte Carlo (SMC) methods that provide an approximation of the
posterior PDF and the evidence (marginal likelihood). These particle approaches build a
sequence of importance sampling steps between gradually-tempered distributions evolving
from the prior to the posterior PDF. To automate the definition of the tempering schedule,
adaptive sequential Monte Carlo (ASMC) allows tuning the temperature increments on-
the-go. Another recurrent challenge in Bayesian inversions is the computational burden
associated with expensive, high-fidelity forward solvers. Lower-fidelity surrogate models are
interesting in this context as they can emulate the response of expensive forward solvers
at a fraction of their cost. We consider surrogate modeling within ASMC and introduce
an approach involving surrogate modeling only, in which either prior samples are used
to train the surrogate, or the surrogate model is re-trained by updating the training set
during the inversion. In our implementation, we rely on polynomial chaos expansions for
surrogate modeling, principal component analysis for model parametrization and a ground-
penetrating radar cross-hole tomography problem with either an eikonal or finite-difference
time-domain solver as high-fidelity solvers. We find that the method based on re-training
the surrogate during the inversion outperforms the results obtained when only considering
prior samples. We then introduce a computationally more expensive multifidelity framework
including a transition to the high-fidelity forward solver at the end of the ASMC run leading
to even more accurate results. Both methods result in speed-ups that are larger than one
order of magnitude compared to performing standard high-fidelity ASMC inversion.

4.1 Introduction

Bayesian inversion provides a comprehensive characterization of the uncertainty associated
with inferred model parameters (Sambridge and Mosegaard, 2002). General formulations of
Bayesian inversion problems can be computationally expensive to solve as implementations
typically require a large number (possibly millions) of forward problem evaluations to obtain
a sufficient number of independent samples from the posterior distribution. In addition to
their computational costs, standard Markov chain Monte Carlo (MCMC) methods tend to
perform rather poorly when dealing with high-dimensional parameter spaces and highly
non-linear forward problems, failing to adequately explore the posterior probability density
function (PDF).

Exploration can be enhanced by using tempering-based MCMC methods such as parallel
tempering (Earl and Deem, 2005) that relies on temperature-dependent posteriors, known as
power posteriors. Tempering with high temperatures increases the exploration capacity; a
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property exploited in simulated annealing for global optimization (Kirkpatrick et al., 1983).
Annealed importance sampling (AIS, Neal (2001)) and sequential Monte Carlo (SMC, Doucet
and Johansen (2011)) are tempering-based methods that approximate the posterior distri-
bution by a weighted sample of particle states. Both AIS and SMC perform a sequence of
importance sampling steps targeting power posteriors with decreasing temperatures. The
difference between the two methods is that SMC incorporates resampling of the particle pop-
ulation when the variance of the importance weights becomes high. An important advantage
of both methods is that they also allow estimating the evidence, the normalizing constant in
Bayes’ theorem and a crucial parameter in Bayesian model selection (Kass and Raftery, 1995;
Schöniger et al., 2014). To address the challenge of finding a suitable sequence of tempera-
tures, Zhou et al. (2016) proposed an adaptive version of SMC that we will refer to as ASMC,
which automatically adjusts the temperature decrease between adjacent power posteriors.
Such adaptive SMC algorithms have recently been introduced and successfully applied in
geophysical applications demonstrating performances superior than state-of-the-art Markov
chain Monte Carlo (MCMC) methods (Amaya et al., 2021; Davies et al., 2023). Furthermore,
ASMC has shown a higher capacity to account for multi-modality than parallel tempering
(Amaya et al., 2022).

In this study, we consider forward solvers with different fidelity levels within ASMC to reduce
the computational cost of the inversion. The term high-fidelity modeling is used herein to re-
fer to schemes that achieve high-accuracy, but typically involve a high computational burden.
On the other hand, low-fidelity models (also known as surrogate, meta- or proxy models) are
mathematical tools that seek to emulate the behaviour of expensive high-fidelity forward
solvers at negligible cost per run. Surrogate modeling for geophysical inversion purposes
has been somehow limited despite their potential to greatly reduce the computational cost
associated with Bayesian inversion (Linde et al., 2017; Wagner et al., 2021; Meles et al., 2022).
Polynomial chaos expansion (PCE) is a type of surrogate that approximates models by their
spectral representations in a suitable basis of polynomial functions (Xiu and Karniadakis,
2002; Blatman and Sudret, 2011), and has been successfully implemented within various
Bayesian inversion frameworks (Marzouk and Xiu, 2009; Marzouk et al., 2007; Wagner et al.,
2020; Meles et al., 2022).

In Bayesian inversion, the combination of forward solvers with different fidelity levels has
shown to be advantageous (Peherstorfer et al., 2018). The concept of multifidelity modeling
was introduced in uncertainty quantification by Ng and Eldred (2012) and has been applied
to different surrogate modeling frameworks (Park et al., 2017). We use the term multifidelity
inversion to refer to Bayesian inversion strategies that accelerate the computation using
low-fidelity solvers, while ensuring accuracy and convergence by including a smaller number
of simulations with the high-fidelity solver. For example, two-stage MCMC reserves the
high-fidelity evaluations for samples that have been pre-accepted by the low-fidelity solver
(Christen and Fox, 2005). In this work, we propose an ASMC algorithm that operates within
such a multifidelity framework. The use of evolving forward solvers within SMC has already
been considered, for instance, in biology to predict dynamics of gene expression (Catanach
et al., 2020). In solid mechanics, the combination of increasing the spatial resolution consid-
ered in forward modeling and ASMC tempering was proposed by Koutsourelakis (2009), a
scheme further automatized by Latz et al. (2018).
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Our ASMC multifidelity inversion method relies on transitions to re-trained surrogate mod-
els and ultimately to the high-fidelity solver. The method is initialized with a low-fidelity
solver and updates the surrogate as the inversion progresses. High-fidelity simulations are
gathered and appended to the training set cumulatively, such that the surrogate training set
grows and contains more specified samples (more representative of the posterior PDF) as the
temperature decreases. To account for the transitions between different fidelity levels, impor-
tance sampling steps are performed. The sequence of updated surrogates ends with a final
transition to the high-fidelity solver. We test the method in a cross-hole ground-penetrating
radar (GPR) tomography setting modified from Meles et al. (2022). We first consider an
eikonal solver as the high-fidelity model, and we compare the inversion results when using
(i) the high-fidelity solver only, (ii) a surrogate trained exclusively by realizations from the
prior, and (iii) a sequence of surrogate updates. We then evaluate the method using a more
physically-realistic and computationally-demanding finite-difference time-domain solver.
We demonstrate that the multifidelity ASMC inversion with progressive surrogate updates
can successfully reproduce the results obtained by traditional high-fidelity inversion, but at a
fraction of its computational cost.

4.2 Method

4.2.1 Bayesian inference and model selection

A probabilistic formulation of the inverse problem is offered by Bayes’ theorem, which
expresses the posterior probability density function (PDF) π(ξ|y) over certain parameters of
interest ξ (e.g., pixel values of physical properties in a regular grid) given a set of observations
y:

π(ξ|y) = π(ξ)p(y|ξ)

π(y)
. (4.1)

All the prior knowledge on the system is encapsulated in the prior PDFπ(ξ), and the likelihood
function p(y|ξ) quantifies how likely it is that a model realization gave rise to the observations
given a prescribed error model. The normalizing constant π(y), known as evidence, or
marginal likelihood, quantifies the agreement between the observed data and the conceptual
model under consideration. A conceptual model refers here to the parameterization of the
subsurface together with its prior PDF (Brunetti et al., 2017). The evidence is needed to
compare or rank different conceptual models (Kass and Raftery, 1995). However, this quantity
can be challenging to compute for high-dimensional problems, as it is a multi-dimensional
integral over the prior (Schöniger et al., 2014):

π(y) =
∫

p(y|ξ)π(ξ)dξ. (4.2)
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Model parametrization and model reduction by principal components

When considering spatially-correlated fields, the number of parameters to be inferred can be
reduced using dimensionality-reduction techiques (Linde et al., 2015). The forward operator
F (ξ) computes the observational output from a set of model parameters ξ. If we consider a
change of coordinates ξ= g (θ f ul l ) and we assume there is no modeling error in F (ξ) or loss
of information in the decomposition, we can formulate the forward problem as:

y =F (g (θ f ul l ))+ϵy , (4.3)

where y represents the observed data corresponding to the set of parameters θ f ul l (e.g., a full
decomposition by principal component analysis (PCA, Jolliffe and Cadima (2016)) as used
in the present study) and ϵy the observational noise. The forward operator F (g (θ f ul l )) can
be expressed as a function composition M =F ◦ g . In practice, one achieve dimensionality-
reduction by using a truncated subset of, for example, PCA coordinates. If the function
composition over the truncated set θ adequately approximate the forward operator, then:

y =M (θ)+ϵy +ϵPC A, (4.4)

where ϵPC A is the error in the computed forward response associated with the PCA projection.
In this paper we consider a PCA decomposition that identifies the main features from a set of
random realizations from the prior similarly to Meles et al. (2022).

4.2.2 Surrogate modeling

Surrogate models M̂ (θ) are typically analytical functions that emulate selected quantities of
interest (QoI) of expensive forward solvers with much lower computational demand, based
on a relatively small size set of training data (the experimental design):

M̂ (θ) ≈M (θ). (4.5)

Common examples of surrogate models used in applied sciences include Kriging, or Gaus-
sian process modeling (Santner et al., 2003), and polynomial chaos expansions (Xiu and
Karniadakis, 2002; Lüthen et al., 2022).
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Polynomial chaos expansions

Polynomial chaos expansion (PCE) is a stochastic spectral expansion method that projects a
forward operator M (θ) onto a suitable orthonormal polynomial basis. PCE surrogate models
have shown to be both flexible and efficient (Lüthen et al., 2021; Lüthen et al., 2022). If θ is a
random vector of independent parameters with joint probability density function fθ, and H
a stochastic Hilbert space, then any map M (θ) of finite variance on H can be expanded as a
sum of polynomial basis elements ψb(θ) (Xiu and Karniadakis, 2002):

M (θ) = ∑
b∈N M

abψb(θ), (4.6)

where ab are the coefficients and ψb(θ) the multivariate polynomials orthonormal with
respect to fθ. In practice, the surrogate model M̂ (θ) is obtained by truncating the series at
a maximum allowed polynomial degree and the coefficients ab are calculated using basis-
adaptive sparse regression techniques (Lüthen et al., 2022). In this study, the surrogate solvers
are trained to learn a direct mapping between the PCA-reduced set of parameters and the
output response (Meles et al., 2022). The forward problem when using a PCE approximation
on a truncated PCA set of coordinates can be formulated as:

y = M̂ (θ)+ϵy +ϵPC A +ϵPC E , (4.7)

where ϵPC E is the error associated with the surrogate modeling.

To train a PCE surrogate, a set of model realizations together with their high-fidelity forward
responses are required. These input-output pairs compose the PCE training set. We consider
herein the input in the reduced PCA domain, and the output to be the simulated response
of the PCA models projected onto the physical domain F (g (θ)). The forward solver used
to compute the responses is a high-fidelity solver with modeling error assumed to be zero.
In this paper, we rely on PCE surrogates trained using the Matlab-based package UQLab
(Marelli and Sudret, 2014); details on the implementation of PCE can be found in Marelli
et al. (2022). The marginal distributions of the input parameters are approximated by Kernel
density estimation (Torre et al., 2019).

Accounting for errors in the likelihood function

A Bayesian inversion that incorporates dimensionality-reduction and surrogate modeling
needs to consider the errors induced by these simplifications. If we assume the various error
sources to be normally distributed, the corresponding likelihood function (c.f., equation 4.1)
can be expressed as (Tarantola, 2005):

p(y|θ) =
(

1

2π

) n
2 |C |− 1

2 exp

(
−1

2
(M̂ (θ)−dd −y)T C−1(M̂ (θ)−dd −y)

)
, (4.8)
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where n is the number of data points, y the observed data, C the covariance matrix and |C |
its determinant. The dd variable accounts for the modeling bias (Hansen et al., 2014). The
covariance matrix can be designed to account not only for the data errors, but for the errors
associated with the dimensionality reduction and surrogate modeling as well:

C =Cy +CPC A +CPC E , (4.9)

where Cy is the data covariance matrix, CPC A the covariance of the PCA projection error and
CPC E the covariance of the surrogate modeling error. Both CPC A and CPC E can be computed
as:

CPC A/PC E = 1

N
DmDT

m , (4.10)

where Dm is a misfit matrix. In the case of CPC A , Dm contains the difference between the high-
fidelity solver output for the full models and the models resulting from the PCA projection
computed on a set of samples. For CPC E , it is convenient in practice to derive Dm from the
PCE training set using cross-validation, to avoid having to compute additional expensive
high-fidelity responses. The j -th Dm column can be estimated with the output of a surrogate
that is trained on all the input samples excepted the j -th (Blatman, 2009), we refer to this
CPC E as the leave-one-out (LOO) covariance.

4.2.3 ASMC inversion

We rely on the ASMC approach introduced by Zhou et al. (2016), in which N particles evolve in
parallel towards an approximation of the posterior PDF. The unnormalized power posteriors
γt (θt |y) are distributions in which the likelihood function is raised to the power of an inverse
temperature αt :

γt (θt |y) ≡π(θt )p(y|θt )αt . (4.11)

The ASMC particles target in a sequential manner a series of power posteriors with gradually
increasing inverse temperatures (that is, decreasing temperatures), starting with the prior
PDF (α = 0) and ending with the posterior PDF (α = 1). To approximate the intermediate
power posteriors, a set of K intermediate MCMC steps are performed. After K steps, a
transition is made to the next power posterior (defined by an increment on the current αt )
using an importance sampling step (IS, Hammersley and Handscomb (1964)). In this step, the
approximation of the present power posterior forms the importance distribution for the next
one, resulting in an incremental weight for each particle i given by:
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Figure 4.1: Schematic representation of ASMC for N = 4 particles. The circles represent the
particles evolving states with the initial samples drawn from the prior PDF (white circles) and
K = 3 MCMC steps are used to approximate the power posteriors γt with increasing inverse
temperatures αt . The αt -increments are determined adaptively on-the-go. Importance
sampling steps are performed to transition between power posteriors, in which incremental
weights w i

t , contributing to the particle normalized weights W i
t , are computed . The red-

dashed lines indicate the re-organization of the particle states performed in a resampling
step.

w i
t =

γt (θi
t−1|y)

γt−1(θi
t−1|y)

, (4.12)

where θi
t−1 is the state of the particle after the K MCMC steps taken to approximate γt−1.

These incremental weights are multiplied throughout the run for each particle in the form of
normalized particle weights:

W i
t = W i

t−1w i
t∑N

j=1 W j
t−1w j

t

, (4.13)

where W i
t−1 is the normalized weight of the previous IS step. At the end of the run, the final

particle states (each one is a set of model parameter values θ) with associated weights WT

approximate the posterior PDF.

The ASMC method aims at building a suitable sequence of gradual intermediate IS steps
bridging the prior and the posterior, such that the quality of the importance sampling steps
quantified by the variance of the incremental weights in equation 4.12, can be controlled.
Figure 4.1 shows a graphical representation of the ASMC method using N = 4 particles.
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Adaptive power posterior sequence

Pre-selecting a suitable sequence of αt is very challenging. Zhou et al. (2016) propose a
method that automatically defines the αt -increments on-the-go based on the conditional
effective sample size (CESS):

C ESS = N
(
∑N

i=1 W i
t−1w i

t )2∑N
j=1 W j

t−1(w j
t )2

. (4.14)

In practice, a binary search is made over a range of possible increments to find the one that
provides incremental weights wt that give the C ESS that is the closest to a pre-defined value
(C ESSop ). The C ESSop parameter controls the quality of the importance sampling steps and,
hence, the quality of the resulting particle approximation. The C ESSop /N can take values
between 0 and 1, the higher it is, the better the quality of the importance distribution, but
the larger is the number of resulting power posteriors in the sequence L. As the relationship
between L and C ESSop is non-linear, it is challenging to recommend C ESSop values. Results
by Amaya et al. (2021) suggest that C ESSop /N >= 0.99 provides a suitably smooth sequence.

Resampling

Sequential Monte Carlo (SMC) methods (Doucet and Lee, 2018), and hence ASMC, uses
resampling. It refers to a re-organization of the particle states with replications that are
proportional to the particle weights (red-dashed lines in Figure 4.1). The states of particles
with high normalized weights are likely to be reproduced, whereas the states of particles
with low normalized weights are likely to be discarded. After a resampling step, the normal-
ized weights of all particles are re-initialized to W i

t = 1/N . Resampling keeps the variance
of the normalized particle weights from growing indefinitely by favouring exploration of
particles with significant posterior probabilities. However, the resampling process increases
the variance of the SMC estimates unnecessarily if it is performed too often (Douc and Cappé,
2005). To make decisions on when to perform resampling, the effective sample (ESS) size is
monitored throughout the run:

ESSt =
(
∑N

i=1 W i
t−1w i

t )2∑N
h=1(W h

t−1)2(w h
t )2

. (4.15)

The ESS quantifies the effective number of particles in the particle approximation and when
the ESSt /N ∈ [0,1] gets lower than a threshold value ESS∗/N , a resampling step is performed.
We rely on systematic resampling because of its simplicity and satisfactory performance
(Doucet and Johansen, 2011). A derivation of equations 4.14 and 4.15 can be found in Zhou
et al. (2016).
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Evidence estimation

The normalizing constant in Bayes’ theorem (equation 4.1) is the key quantity in Bayesian
model selection and it is obtained as a byproduct of the ASMC method. Del Moral et al.
(2006) show that the ratio of the normalizing constants of two consecutive power posteriors,
Zt =

∫
γt (θt |y)dθt and Zt−1 =

∫
γt−1(θt−1|y)dθt−1, can be approximated as:

Zt

Zt−1
≈

N∑
i=1

W i
t−1w i

t . (4.16)

As the prior PDF integrates to one (Z0 = 1), the evidence (equation 4.2) can be expressed as
the product of consecutive normalizing constant ratios and, hence, approximated using the
evolving particle weights as:

π(y) = ZT = ZT

Z0
=

T∏
t=1

Zt

Zt−1
≈

T∏
t=1

N∑
i=1

W i
t−1wt

i . (4.17)

Adaptive proposal scale

In the K MCMC steps used to approximate each power posterior, the proposed models
obtained from symmetric proposal distributions are accepted or rejected according to the
Metropolis rule (Metropolis et al., 1953). This rule states that the probability to accept the
proposed candidate model θp over the current one θc is:

Γ(θp ,θc ) = mi n

(
1,
π(θp )p(y|θp )

π(θc )p(y|θc )

)
. (4.18)

We consider candidate particle states θp that are generated by adding zero-mean and uncor-
related random Gaussian perturbations to the current state θc . The standard deviation of the
proposal distribution is chosen to be proportional to the standard deviation of the prior, with
the constant of proportionality φ determining the proposal scale. An important advantage
of ASMC is that φ can be tuned throughout the run to ensure that the acceptance rate AR is
kept within a suitable range without violating detailed balance conditions, as would be the
case for MCMC algorithms.
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4.2.4 ASMC with surrogate updates

Performing ASMC inversion with surrogate modeling offers the opportunity to enhance the
exploration, compared to standard MCMC, while also significantly reducing computational
times when using ASMC with high-fidelity solvers only. However, when a high-fidelity forward
solver is replaced with a low-fidelity solver, the resulting posterior PDF is different and this is
to be avoided. As the inverse temperature reduces the influence of the likelihood, the errors
induced by a low-fidelity forward model are less significant at the early stages of the ASMC
algorithm, implying that a less accurate surrogate can be sufficient to direct the particles
towards the posterior. We propose to build a sequence of power posteriors that combines
inverse temperature increments with updates of increasingly more accurate surrogate models
as needed when the inverse temperature rises. In this way, we aim to decrease the difference
between the posterior PDF-estimates obtained with high-fidelity forward modeling and those
obtained by surrogate modeling.

If we consider a sequence of surrogate solver updates s j , with j ∈ [1, J ] and J the number

of total surrogate updates, for a power posterior γ
s j

t , the likelihood is computed using the
surrogate solver M̂ s j (θ) and the covariance accounting for the three error sources in equation
4.10. The covariances associated with the data noise Cy and the PCA projection CPC A are
then constant throughout the inversion, while the covariance associated to the PCE CPC E is
re-calculated for each update of the surrogate model. Each time the surrogate is updated, we
introduce an IS step to account for the transition between surrogates. In this case, the IS step
is performed to account for the change in the forward operator and CPC E . If the surrogate s j

with covariance C
s j

PC E is replaced with the updated surrogate s j+1 with covariance C
s j+1

PC E , then
the incremental weight resulting from the IS step will be:

w[s j , s j+1]i
t =

γ
s j+1

t (θi
t−1|y)

γ
s j

t−1(θi
t−1|y)

. (4.19)

Similarly to before, the αt of the following power posterior in the sequence γ
s j+1

t can be
optimized based on the C ESS. The algorithm selects from a range of αt = Fαt−1 with F ∈
[0.1,2], the one that provides the highest C ESS. The incremental weights in equation 4.19
contribute to the particle importance weights and evidence in the same way as the standard
ASMC incremental weights in equation 4.12. In contrast to those IS steps, we have often
that αt is smaller than αt−1, because there is likely a reduction of the modeling errors when
updating the surrogate.

To gain intuition about the impact of these different IS steps, it is useful to consider the multi-
plication of the incremental weights following Neal (2001) (their equation 5). If we consider
an ASMC inversion in which the surrogate s0 is unchanged, the sequence of incremental
weight ratios (equation 4.12) for a particle is:
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Figure 4.2: Modified schematic diagram of ASMC (Figure 4.1) with surrogate updating (ASMC-
SURR). The black-dashed lines represent a re-training of the surrogate together with the
corresponding importance sampling step to transition from one surrogate to the following
one. The change in the color denotes a change of surrogate, whereas the change of the color
tone denotes a change of temperature when keeping the surrogate solver fixed.
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where we have removed the particle index i to simplify the notation. Equation 4.20 illustrates
the bridge created by the IS steps; the sequence starts with the prior γ0 as an importance
distribution and ends with the posterior γT as the target distribution. When considering
surrogate updates, the sequence will also include the corresponding IS steps, for example:

T∏
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, (4.21)

where the third and sixth ratio are associated with the transition between different surrogates
(equation 4.19). To update the surrogate, we collect samples of the high-fidelity response
as the ASMC sequence progresses. These samples are used to re-train the PCE surrogate
after a pre-defined number of inverse temperature updates Tup . The training set grows as
the samples are added to the previous training set. As ASMC targets power posteriors that
gradually approach the posterior PDF, the sampling gets more focused in high-likelihood
regions of the parameter space. Consequently, the surrogate will not only perform better due
to the increased size of the training set, but it will also become more accurate in regions of
the parameter space having significant posterior probabilities. A schematic representation of
ASMC incorporating surrogate updates can be found in Figure 4.2; we refer to this method as
ASMC-SURR.
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4.2.5 Multifidelity modeling by transitioning to the high-fidelity solver

The ASMC-SURR algorithm progresses while improving the surrogate until αt = 1. At this
point, it provides an approximation of the posterior PDF and the evidence associated with the
last surrogate used in the sequence. One can finish the inversion with these approximations
(that is, the ASMC-SURR method), or go further by considering a switch to the original high-
fidelity solver (indicated in the following by HF). The incremental weight resulting from this
step considering one particle is:

w[s J , HF ]i
t =

γHF
t (θt−1|y)

γ
s J
t−1(θt−1|y)

, (4.22)

where s J is the last surrogate of the sequence. In this step the inverse temperature αt−1,
corresponding to the power posterior in the denominator γ

s J
t−1 is equal to 1. The inverse

temperature αt associated to γHF
t can again be optimized. We seek an optimal value from

αt = FHFαt−1 with FHF ∈ [0.1,1], such that it provides the highest possible C ESS. We refer
to FHF as the α-correction. Subsequently, the ASMC algorithm proceeds with high-fidelity
updates until αt = 1 is reached. We refer to this algorithm as ASMC-SURR-HF. This is a
multifidelity inversion method in the sense of Peherstorfer et al. (2018), in that it targets the
same posterior and evidence as if one would always use the high-fidelity solver. A flow chart
describing the basics of both ASMC-SURR and ASMC-SURR-HF are found in Figure 4.3. A
detailed description of the two algorithms is given in Appendix A.

4.2.6 Performance assessment

In our considered test cases, performing one iteration using surrogate solvers compared
to using the high-fidelity solver implies a gain in computational time of 10 to 1000 times.
To assess the computational demand of the ASMC-SURR inversions, we assume that the
dominant parameter is the required number of simulations using the high-fidelity solver (HF
sim) and that the computational cost of the surrogate solver is negligible. We consider also
the relative number of HF sim required for ASMC-SURR compared to the number of HF sim
required when always using the high-fidelity solver (HF sim relative).

To evaluate the accuracy of the posterior estimates, we rely on the logarithmic scoring
rule (Good, 1992; Krüger et al., 2021). For each estimated parameter, the logarithmic score
is the negative logarithm of the estimated posterior PDF evaluated at a reference (true)
value. When comparing two posterior estimates, the one with the lower scores is preferred.
A kernel density estimate of the posterior samples is used to approximate the posterior
univariate distributions; we employ a Gaussian kernel with a bandwidth smoothing window
calculated using the Scott’s rule (Scott, 2015). We consider as a performance metric the
average logarithmic score of the model parameters (Mean log-score). We also present the
structural similarity index measure (SSIM, Wang et al. (2004)), that quantifies the similarity
between two images (it can vary between -1 to 1, with 1 being the highest similarity). We
consider the SSIM with respect to the posterior mean model of the full high-fidelity inversion.
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Figure 4.3: Simplified flow chart representing the main steps to perform ASMC inversion with sur-
rogate updates with (ASMC-SURR-HF) and without (ASMC-SURR) transitioning to the high-fidelity
solver. After the initialization, the sampling of the adaptive sequence of power posteriors at grad-
ually increasing αs starts, with importance sampling steps performed between consecutive power
posteriors (see section 4.2.3). The surrogate can be updated followed by an importance sampling
step to transition between surrogates (see section 4.2.4). If the ESS falls below the threshold ESS∗,
resampling is performed (see section 4.2.3). The particle normalized weights and evidence (see section
4.2.3) are updated after the importance sampling steps. When α= 1, we can chose between finishing
the run (ASMC-SURR) or transitioning to the high-fidelity solver (ASMC-SURR-HF, see section 4.2.5).
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Figure 4.4: (a) Reference model and (b) its 100-PCA representation back-projected into the
relative permittivity domain. The GPR sources are represented in (a) with black stars and the
receivers with black circles.

On the output domain, we compute the weighted mean root-mean-squared-error between
the data and the output of the final particle states (RMSE output).

4.3 Results

4.3.1 Test case

To evaluate the ASMC-SURR and the ASMC-SURR-HF methods, we consider a synthetic
GPR crosshole tomography problem similar to Meles et al. (2022) with subsurface relative
dielectric permittivity ϵr variations and constant electrical conductivity (Figure 4.4(a)). The
dimension of the ϵr models is 125×250 with a cell discretization of d x = d z = 0.04 m, which
results in 5×10 m models. The simulated GPR first-arrival travel times are obtained using 9
sources and 9 receivers spaced 4.6 m apart in the x-direction and 0.6 m in the z-direction.
Only observations for which the angle between sources and receivers is lower than 45◦

are considered (Peterson, 2001) such that the data set is composed of 69 first-arrival travel
times. The covariance structure is based on the 2-D Matérn geostatistical model (Dietrich
and Newsam, 1997; Laloy et al., 2015) with a mean of 15, a standard deviation of 2.45, an
anisotropy ratio of 0.3, an anisotropy angle of 85◦, an integral scale of the major axis of 10 m
and a shape parameter of 1.15.
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Figure 4.5: (a)-(d) Random samples obtained with the generative prior model and (e)-(h)
their 100-PCA representation back-projected into the relative permittivity domain.
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PCA representation

Following Meles et al. (2022), the PCA decomposition is learned from a set of 1000 samples
drawn from the generative prior model. Figures 4.5(a-d) show random realizations of the
generative model. The number of principal components defines the resolution and the
maximum achievable level of reconstruction of the original features. The dimension of the
inverse problem is reduced as the inversion is performed in the PCA domain. We rely on
100 principal components to parameterize the input domain; these type of models are in
what follows indicated as 100-PCA. The back-projection of the 100-PCA representation of
the reference model is shown in Figure 4.4(b). Figures 4.5(e-h) show the resulting 100-PCA
projection of the model realizations in Figures 4.5(a-d), back projected into the relative
permittivity domain.

4.3.2 ASMC setting

We perform ASMC inversions using N = 50 particles, K = 500 MCMC steps to approximate
each power posterior and an optimal conditional effective sample size of C ESSop /N = 0.99.
When the acceptance rate gets lower than ARmi n = 15% at αt−1, the proposal scale φ is
reduced a factor of f = 20% for αt . Resampling is performed when ESS/N < 0.3 (Del Moral
et al., 2006; Amaya et al., 2022).

To evaluate the performance of ASMC-SURR and ASMC-SURR-HF, we first explore cases
for which the high-fidelity solver is an eikonal forward solver. This choice is made as it
is then computationally feasible to estimate its posterior PDF and the evidence using the
high-fidelity solver only, thereby, allowing for comparisons with a reference solution. This
reference solution is termed ASMCeikonal and it uses the time2d algorithm by Podvin and
Lecomte (1991) for forward computations; a finite-difference approximation of the eikonal
equation. We then consider the case when we train a surrogate solver using exclusively
model realizations drawn from the prior and their corresponding high-fidelity eikonal sim-
ulations (ASMCeikonal-SURRprior). This configuration is also evaluated in the multifidelity
setting (ASMCeikonal-SURRprior-HF). We compare these results to those obtained when four
re-training steps of the surrogate are performed (ASMCeikonal-SURRupdate) and with a sub-
sequent transition to the high-fidelity solver (ASMCeikonal-SURRupdate-HF). To allow for a
fair comparison, we consider an equal total budget of high-fidelity simulations for training
regardless if prior training only or re-training is allowed. The final number of high-fidelity sim-
ulations needed for ASMCeikonal-SURRprior-HF and ASMCeikonal-SURRupdate-HF after switch-
ing to the high-fidelity solver depends on the resulting optimized α-correction FHF (see
section 4.2.5). Finally, we consider results obtained when the high-fidelity forward solver is
made up of a computationally much more expensive finite-difference time-domain solver
(the simulations take 1000 times more time than for the PCE). Table 4.1 shows the resulting
number of power posteriors, high-fidelity and surrogate evaluations for each test.
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4.3.3 PCE surrogate training

The PCE surrogates are trained to learn the relationships between the PCA coefficients and
the high-fidelity first-arrival travel times. The inversion is performed over the 100 principal
components used to parametrize the input domain. Hence, the training set for the PCEs is
composed of input models in the 100-PCA space and the corresponding eikonal first-arrival
travel times computed on the 100-PCA back-projected relative permittivity models as output.
In ASMCeikonal-SURRprior, a set of 1000 prior input-output pairs are used to train the surrogate.
In ASMCeikonal-SURRupdates, the same total budget of 1000 high-fidelity simulations is used.
From these 1000, a set of τ0 = 200 prior input-output pairs are used to train the initial
surrogate s0. We consider four surrogate updates (s1, s2, s3, s4) re-trained at regular intervals
of Tup = 35 inverse temperatures. To reach the 1000 high-fidelity budget, 200 new high-
fidelity input-output pairs are gathered and appended to the training set matrices during
each interval, such that the increasing training set sizes of the four surrogate updates are
τk = 400,600,800,1000 (see Appendix B for details on the implementation).

4.3.4 Covariance matrices

The data used for the various inversions are obtained by simulating the high-fidelity first-
arrival travel times of the full reference model (Figure 4.4(a)), and then contaminating them
with uncorrelated Gaussian noise with a standard deviation of σ = 0.5 ns. We consider a
Gaussian likelihood function (equation 4.8) with a covariance matrix that incorporates the
different error sources (equation 4.9). Figures 4.6(a) and (b) show the data error covariance
matrix Cy and the PCA projection error covariance matrix CPC A , respectively. The covariance
matrix used in the likelihood calculation is the sum of the contributions Cy and CPC A in
the cases cases when the forward simulations are performed using the high-fidelity solver
(ASMCeikonal). Figure 4.6(c) shows the covariance matrix of the PCE errors CPC E for the surro-
gate used in AMSCeikonal-SURRprior. When performing simulations using the PCE surrogate,
we assume the covariance matrix in the likelihood function to be the sum of the three contri-
butions Cy , CPC A and CPC E . The diagonals of the covariance matrices for this case are shown
in Figure 4.6(d).

4.3.5 High-fidelity reference solution with eikonal solver

The inversion using the high-fidelity forward solver (ASMCeikonal) resulted in L = 192 power
posteriors, a total number of 4.8 million high-fidelity forward simulations and two resampling
steps (Table 4.1). Figures 4.7(a) and (h) show the corresponding weighted posterior mean and
standard deviation, respectively, while Figure 4.8(a) shows the logarithmic score values on the
relative permittivity domain. Table 4.1 provides the performance metrics: the SSIM equals
one as we consider this posterior mean as the reference for the following tests, the mean of
the standard deviation Mean σ, the Mean log-score, the RMSE output and the Log-evidence
estimation. The RMSE output is 0.516 ns, which is close to the 0.5 ns data noise level (Figure
4.6). The evidence estimation is −110.81.
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Figure 4.6: (a) Data error covariance matrix, (b) PCA projection error covariance matrix, (c)
PCE surrogate modelling error covariance matrix for a surrogate trained using 1000 prior
samples, and (d) their diagonal elements.
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Figure 4.7: Posterior weighted mean model and standard deviation in, respectively, (a) and
(f) ASMCeikonal, (b) and (g) ASMCeikonal-SURRprior, (c) and (h) ASMCeikonal-SURRprior-HF,
(d) and (i) ASMCeikonal-SURRupdate, (e) and (j) ASMCeikonal-SURRupdates-HF. Note that the
standard deviations only consider those associated with the first 100 PCA components that
are considered in the inversions (see Meles et al. (2022)).

Figure 4.8: Logarithmic score values for (a) ASMCeikonal, (b) ASMCeikonal-SURRprior, (c)
ASMCeikonal-SURRprior-HF, (d) ASMCeikonal-SURRupdates, (e) and (l)ASMCeikonal-SURRupdates-
HF
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Table 4.1: Lengths of the ASMC runs and their performance metrics. The total number of
iterations per particle is given by L, the number of power posteriors (inverse temperatures)
arising from the adaptive nature of the algorithm (section 4.2.3), multiplied by the K MCMC
iterations used to approximate each power posterior. All runs are performed using N = 50,
C ESSop /N = 0.99, and K = 500 (except for the reduction to K = 50 in the high-fidelity stage
of ASMCFDTD-SURRupdates-HF).

ASMCeikonal ASMCeikonal- ASMCeikonal- ASMCeikonal- ASMCeikonal- ASMCFDTD- ASMCFDTD-

SURRprior SURRprior-HF SURRupdates SURRupdates-HF SURRupdates SURRupdates-HF

L 192 173 251 180 203 178 191

HF sim[×103] 4̃800 1 1950 1 576 1 33.5

HF sim relative 100% 0.02% 40.63% 0.02% 12% - -

PCE sim[×103] 0 4325 4325 4500 4500 4450 4450

Resampling 2 2 4 2 3 2 3

SSIM 1 0.84 0.92 0.91 0.93 - -

Mean σ 0.82 0.83 0.82 0.81 0.78 0.86 0.68

Mean log-score 1.46 1.73 1.50 1.60 1.52 1.23 1.09

RMSE output 0.52 ns 0.84 ns 0.48 ns 0.65 ns 0.49 ns 0.72 ns 0.55 ns

Log-evidence -110.8 -121.3 -123.7 -114.3 -116.5 -122.7 -132.1

4.3.6 Surrogate-based ASMC solutions with eikonal high-fidelity solver

Figures 4.7(b-e) and (g-j) show the posterior means and standard deviations for the consid-
ered ASMC-SURR and ASMC-SURR-HF runs. The logarithmic score values are shown in
Figures 4.8(b-e). The resemblance among the mean images and with respect to the reference
solution suggest that the posterior mean approximations are overall of similar quality. By
focusing on the metrics of Table 4.1, we see for the surrogate-only inversions (ASMC-SURR)
that updating the surrogates during the inversion (ASMCeikonal-SURRupdate) outperforms the
case when the surrogate is based on prior realizations only (ASMCeikonal-SURRprior). Compar-
ing these two cases, it is seen that the SSIM is 0.91 vs. 0.84, the Mean log-score 1.6 vs. 1.73 and
the RMSE output 0.65 ns vs. 0.84 ns. Both runs underestimate the evidence when compared
to the high-fidelity inversion, but the ASMCeikonal-SURRupdate approximation is closer to
the reference (-114.3 vs. -121.3). For an equal budget, this suggests that when high-fidelity
simulations are only used to train the surrogate, there is a notable improvement offered
by re-training the surrogate as the ASMC inversion progresses instead of only performing
training using samples from the prior.

When considering the multifidelity approach involving a transition to the high-fidelity solver
(ASMC-SURR-HF), Table 4.1 shows that there are significant improvements in the values of
SSIM, Mean log-score and RMSE output compared to the ASMC-SURR results (e.g., the RMSE
output decreases from 0.84 ns to 0.48 ns, and from 0.65 ns to 0.49 ns). On the other hand,
the metrics in Table 4.1 suggest that ASMCeikonal-SURRprior-HF and ASMCeikonal-SURRupdate-
HF results are very similar. The main difference between the two inversions is that the
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Figure 4.9: Conditional effective sample size over the number of particles (C ESS/N ) vs.
inverse temperature index for (a) ASMCeikonal, (b) ASMCeikonal-SURRprior-HF, (c) ASMCeikonal-
SURRupdate-HF and (d) ASMCFDTD-SURRupdate-HF. The low values correspond to C ESS-
decreases occuring when updating the surrogate model or when transitioning to the high-
fidelity forward solver.

α-correction factor is FHF = 0.53 for ASMCeikonal-SURRupdate-HF compared to FHF = 0.15 for
ASMCeikonal-SURRprior-HF. This implies that the high-fidelity stage of the inversion starts at
α= 0.53 and α= 0.15, respectively. This translates in a computing cost of the high-fidelity
stage that is more than three times higher for ASMCeikonal-SURRprior-HF, as many more
high-fidelity solutions are needed to reach α = 1. This clearly shows that the price to pay
for transitioning to the high-fidelity forward solver with a poor surrogate is reflected in the
α-correction factor FHF . Hence, updating the surrogate sequence results in a smoother
transition to the high-fidelity solver requiring less computing time.

Figures 4.9(a-c) show the evolution of C ESS/N (equation 4.14) for ASMCeikonal, ASMCeikonal-
SURRprior-HF, and ASMCeikonal-SURRupdate-HF, respectively. The values are close to the op-
timal C ESSop = 0.99 except for the IS steps used to transition between forward solvers for
which the C ESS/N is much lower. The diagonal elements of the modeling error covariance
matrix CPC E is shown in Figure 4.10(a). As the training set grows in ASMCeikonal-SURRupdate-
HF, the mean error level in the CPC E diagonals decreases. After the third update, the surrogate
presents a lower error level than the surrogate trained using prior samples.
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Figure 4.10: Evolution of the diagonal of the covariance modelling error matrix CPC E for the
four surrogate updates in (a) ASMCeikonal-SURRupdate and (b) ASMCFDTD-SURRupdate. The
initial surrogate s0 is trained using 200 samples, and 200 more are added to the training set
in each update, such that the fourth surrogate update s4 is trained using 1000 samples. The
blue horizontal line corresponds to the diagonal of the data error covariance matrix Cy , and
the black-dashed line in (a) is the CPC E diagonal of the eikonal surrogate trained with 1000
prior samples used in ASMCeikonal-SURRprior.
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4.3.7 Surrogate-based ASMC solutions with FDTD high-fidelity solver

To demonstrate the gain offered when considering more realistic and computationally more
expensive high-fidelity forward solvers than the eikonal solver, we consider now a high-fidelity
two-dimensional finite-difference time-domain (FDTD) forward solver simulating propaga-
tion in the transverse-electric mode (Irving and Knight, 2006). Following Meles et al. (2022),
automatic determination of travel times is performed by applying a threshold based on the
relative maximum amplitude of each source-receiver pair. Running the ASMC inversion using
always this expensive solver would require several months of computing (one parallelized
simulation of 50 particles takes around 3.5-5 minutes); see also (Hunziker et al., 2019). We
test our proposed method using FDTD as the high-fidelity solver (ASMCFDTD-SURRupdate)
while keeping the same ASMC inversion setting as for the ASMCeikonal-SURRupdate case. The
inversion needed 178 power posteriors and two resampling steps (Table 4.1). The correction
FHF for the transition to the high-fidelity stage is 0.73, which resulted in only 13 extra inverse
temperatures (ASMCFDTD-SURRupdate-HF). Performing K = 500 Markov steps to approximate
the 13 power posteriors is still very computationally demanding. In ASMC it is possible
to decrease the K , at the cost of having a less accurate approximation of the importance
distributions. The reduction to K = 50 for the steps involving HF makes it feasible to run
the high-fidelity stage of the inversion. Figure 4.11 shows the posterior weighted mean,
standard deviation and logarithmic score values for ASMCFDTD-SURRupdate and ASMCFDTD-
SURRupdate-HF. Figure 4.10(b) shows the evolution of the covariance matrices in the PCE
updates and Figure 4.14 the C ESS/N values with the low values corresponding to transi-
tions between forward solvers, respectively. The performance metrics in Table 4.1 show the
improvement achieved by adding the high-fidelity stage. For example, the Mean log-score
decreases from 1.23 to 1.09, and the RMSE output from 0.72 ns to 0.55 ns. Even if the results
are not completely comparable with the eikonal cases, as we are using different data and
forward solver, the metrics are close and even better than for the eikonal reference test (e.g,
the SSIM for ASMCFDTD-SURRupdate-HF is 0.638 compared to 0.62 for ASMCeikonal and the
Mean log-score is 1.09 compared to 1.46).

4.4 Discussion

Over the past 20 years, surrogate modeling has emerged as a prominent computational
paradigm due to the massive reduction in computational costs achieved by approximat-
ing complex forward models with simple and easy-to-estimate functions. The accuracy of
surrogate modeling critically depends on the training set used to learn the input-output rela-
tionship, and should ideally be lower than the data noise level. The construction of a globally
accurate surrogate applicable to any prior realization can be challenging. However, surrogate
accuracy can be refined in regions of high posterior probability that can be identified by
low-fidelity models, whose inaccuracies are accounted for by the corresponding modeling
error covariance operator (Li and Marzouk, 2014; Hansen et al., 2014; Wagner et al., 2021;
Rossat et al., 2022). We show that the quality of the results obtained by combining ASMC with
surrogate solvers in the ASMC-SURR method is enhanced when updating the surrogate com-
pared to training the surrogate only from the prior. With ASMC-SURR there is an outstanding
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Figure 4.11: Posterior weighted mean model for (a) ASMCFDTD-SURRupdate and (d)
ASMCFDTD-SURRupdate-HF, posterior standard deviation for (b) ASMCFDTD-SURRupdate and
(e) ASMCFDTD-SURRupdate-HF, and logarithmic score value for (c) ASMCFDTD-SURRupdate

and (f) ASMCFDTD-SURRupdate-HF. Note that the standard deviations only consider those
associated with the first 100 PCA components (see Meles et al. (2022))
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speed-up compared to inversion based on the high-fidelity solver. By accounting for the
modelling error in the likelihood function, we obtain less informative, but still reliable results
that recover the main features of the reference model. The ASMC-SURR algorithm can then
be used to quickly obtain posterior estimations for applications that do not require highest
degree of accuracy or for poorly-informative acquisition configurations. The multifidelity
inversion ASMC-SURR-HF provides more accurate results, while still achieving a substantial
decrease of the computational effort. If the application requires an accurate estimation of
the posterior PDF, it is recommended to incorporate the transition to high-fidelity. In this
multifidelity setting, we have demonstrated the importance of having a high quality surrogate
when performing the transition, such that less time is spent on the resulting high-fidelity
stage. In our example, the resulting overall computational gain due to the surrogate updates
exceeds a factor of three. For this reason, re-training the surrogate is preferred over training
only with prior samples.

We have assessed the computational gain by only considering the number of high-fidelity
simulations as the evaluation of the high-fidelity solver represents the main source of com-
putational demand. Nevertheless, training costs must also be taken into account, which
will vary according to the desired accuracy (and thus, the truncation scheme used), the
dimensionality of the input and output domains, and the size of the training set. For our
examples (100-dimensional input and 69 output parameters), the training cost for 1000 and
200 training sets was approximately one hour and 30 minutes, respectively. Each output (in
this contribution the travel time for any given source-receiver pair) requires its own PCE
model, with the training cost for each PCE depending nonlinearly on the sample size. Note
that PCA can also be applied in the output domain, thus reducing the number of PCEs to
be trained and, hence, alleviate the overall computational burden (Meles et al., 2022). The
relevance of the PCE training cost as compared to that of the whole inversion depends on the
length of the ASMC process and the computational burden of high-fidelity modeling. In our
ASMC-SURR-HF examples, the training represented less than 10% of the total time of the run.

The ASMC parameters were chosen based on manual testing. It is challenging to provide
recommendations for choosing appropriate parameter values as they depend on the problem
and the computational resources available. Unlike K , the impact of C ESSop on the total
number of forward simulations is nonlinear and challenging to predict in advance. For this
reason, it is recommended to initially select a sufficiently large C ESSop and then adjust the
value of K , with C ESSop exceeding 0.99N (Amaya et al., 2021). In this study we decided
to start with this minimum recommended C ESSop and increase K in order to increase the
quality of the resulting power posterior approximations. On the other hand, the more complex
the posterior distribution, the more particles are needed. The simulations of the trained PCEs
are vectorized, meaning that regardless of the number of particles the PCE simulation time
will be almost the same. Therefore, the advantage of using PCEs within ASMC inversions is
not only the computing time reduction compared to the high-fidelity solvers, but also the
less resources needed, as the high-fidelity solvers (ideally) require to run in parallel as many
cores as the number of particles.

The surrogate updates based on regular intervals led to improvements compared to training
based on prior samples only. The design of alternative and more elaborate surrogate re-
training schemes is a topic for future research. In general terms, the better the surrogate

106



emulates the high-fidelity response, the more accurate the inversion estimations are and
the lower the price to pay (in computing time) when transitioning to the high-fidelity solver.
We considered samples gathered in a cumulative way yielding a training set that grows
with each update. This approach was chosen for two reasons. First, it makes use of the
information given by all high-fidelity simulations created for training purposes. Second,
maintaining the previous samples in the training reduces the difference in the estimated PCE
error covariance matrices between surrogate updates, thereby, lowering the variance of the
incremental weights in the IS-based surrogate transitions of the ASMC algorithm.

ASMC estimations are sensitive to the quality of the intermediate importance-based sampling
steps as reflected in the variance of the importance weights. When the importance sampling
steps are of poor quality, fewer particles contribute to the estimations. The quality of the
importance sampling steps, when transitioning between forward solvers, is less controlled
compared to the gradual increments of the inverse temperatures. The importance sampling
distribution should be ideally more disperse than the target and centered on the same values
(Geweke, 1989). However, when transitioning between solvers, enough overlap between
the importance and target distribution is difficult to ensure. Moreover, it is challenging to
accurately estimate the model errors associated with the surrogates as we do not know with
certainty how a surrogate will perform in a different region of the parameter space than
the one used for training. The errors in the intermediate normalizing ratios used to update
the evidence accumulate throughout the run and this can explain why the evidences are
underestimated.

Even if adaptive SMC schemes have shown to be advantageous and convenient, there is
concern regarding bias (decreasing asymptotically with the number of particles) that arises
from the adaptive selection of temperatures (Latz et al., 2018; Beskos et al., 2016). When
the computational resources are available and the study requires ascertained unbiased
evidence estimations, one alternative is to perform a second non-adaptive ASMC run using
the temperature sequence obtained in the first one (Dai et al., 2022). In Appendix B, we
provide the metrics obtained when re-running the eikonal tests with the previously optimized
tempering schedule. For our considered cases, there appear to be no significant bias caused
by the adaptive selection of temperatures (c.f., Tables 4.1 and 4.2).

The ASMC results vary slightly because of the stochastic nature of the algorithm, implying that
multiple ASMC runs with the same setting should be performed to get a detailed assessment
of the errors (e.g., Amaya et al. (2021)). In this study, we focus on the relative improvement and
computational gain of the proposed method employing multiple surrogates and multifidelity,
compared to standard approaches where either only the high-fidelity solver is used, or
surrogates are trained only with prior samples. We tested the method on a GPR travel-time
tomography problem relying on surrogates obtained through polynomial chaos expansion
and with parameter dimensionality-reduction offered by PCA. Nevertheless, the proposed
method is not limited to these choices and it can be extended to other types of problems (e.g.,
interferometric seismic noise tomography (Nicolson et al., 2012) and alternative surrogate
models (e.g., Gaussian process regression (Santner et al., 2003; Rasmussen, 2004) or deep
learning (Jin et al., 2020)).
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4.5 Conclusion

Using a GPR crosshole tomography example, we demonstrate that surrogate modeling can
accelerate the ASMC inversion by orders of magnitude while still providing results that are
highly similar to those obtained when using the high-fidelity solver only. We demonstrate
that a multifidelity approach combining surrogate modeling with a transition to a final high-
fidelity stage improves the accuracy of the posterior estimates further while still achieving
a substantial reduction of computational cost. The choice of including the high-fidelity
stage or not, for a given problem, will in practice depend on the computing budget and the
demands in terms of accuracy. When using surrogates only and considering the same high-
fidelity budget for training, we show that re-training the surrogate as the ASMC inversion
progresses provides better estimates than training from the prior only. When incorporating
the transition to the high-fidelity stage, the advantage of re-training the surrogate leads to
a substantial reduction of the computational cost. The evidences estimated with surrogate
updating were found to be more accurate than the ones obtained when training only with
prior samples. We emphasize that the method is not limited to PCE-based surrogate models,
PCA parameterizations or GPR examples, but that it can be adapted to other surrogates,
model parameterizations and geophysical problem settings.

4.6 Appendix B

Full ASMC-SURR-HF algorithm

Algorithm 1 describes our proposed method for estimating the posterior PDF and the evi-
dence. To update the PCE surrogate, the high-fidelity solver responses for the N particles
states are computed after every T f p inverse temperatures, and the models together with the
responses are saved. The PCE surrogate is re-trained at regular intervals of Tup inverse tem-
peratures. During an interval between surrogate updates, a total amount of τ0 = N⌊Tup /T f p⌋
are collected. The initial surrogate s0 is trained using τ0 prior samples and their high-fidelity
solver responses. The training set for the surrogate sequence is cumulative, that is, to train the
s j surrogate, the training set size will be τ j = ( j +1)τ (includes τ0). In this way, the algorithm
takes advantage of all the available high-fidelity evaluations, while the new samples enlarge
the training set by focusing progressively on parameter regions of significant posterior proba-
bility mass. The leave-one-out modeling error covariance matrix CPC E is obtained from the
calculated coefficients and the training set, and is updated in the inversion together with the
surrogate. After the transition to the high-fidelity solver, CPC E is set to zero, as no modeling
errors are assumed.
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Algorithm 1: ASMC-SURR

The part concerning the ASMC section is adapted from Zhou et al. (2016) (their algorithm 4).

Variables to pre-define:

Number of particles (N ), optimal CESS (C ESSop ), ESS threshold (ESS∗),

number of MCMC iterations at each intermediate distribution (K ), minimal acceptance rate (ARmi n),

percentage of change ( f ) of the proposal scale φ,

period for evaluating and saving high-fidelity forward simulations for surrogate update (T f p ),

period of surrogate re-training (Tup ).

Initialization: Set t = 0

Train initial surrogate s j = s0

Set α= 0

Sample θ0 from the prior π(θ) N times

Set the N -dimensional vector of normalized weights W0 = [ 1
N ; 1

N ; ...; 1
N ]

Set evidence π(y) = 1

Set t f p = 0

Set tup = 0

Iteration : Set t = t +1

t f p = t f p +1,

tup = tup +1.

Do K MCMC iterations for each of the N particles (chains):

Propose moves θp and accept or reject based on acceptance criterion (equation 4.18).

Tune proposal scale

If acceptance rate AR < ARmi n then decrease proposal scale factor: φ=φ∗ (1− f
100 )

If φ<φmi n then φ=φmi n .

Search for next power posterior

If tup < Tup do binary search for the increment ∆α that gives the CESS (equation 4.14) that is the closest to C ESSop

Update α= mi n(1,α+∆α) and define the following power posterior.

Perform the IS step: compute the weight increments wt (equation 4.12),

update and save the normalized weights W i
t (equation 4.13) and the evidence π(y) (equation4.17)

Evaluate high-fidelity - Update surrogate

If t f p = T f p compute the N current high-fidelity forward responses and save them for training, set t f p = 0.

If tup = Tup , re-train surrogate and replace, update covariance matrix (equation 4.9 and 4.10), set tup = 0.

Search for the α that yields the highest C ESS.

Perform IS step to transition to the updated surrogate solver, compute the weight increments w[s j , s j+1]i
t (equation 4.19),

update and save the normalized weights W i
t (equation 4.13) and the evidence π(y) (equation4.17).

Resampling

Calculate ESS (equation 4.15), if ESS < ESS∗ do resampling: re-organize the particle states and update Wt = [ 1
N ; 1

N ; ...; 1
N ]

Repeat until α=1

Algorithm 1 extension: ASMC-SURR-HF

Transition to the high-fidelity solver

Search for the α that yields the highest C ESS.

Perform IS step to transition to the high-fidelity forward solver, compute weight increments w[s j , HF ]i
t (equation4.22 ).

Update and save the normalized weights W i
t (equation 4.13) and the evidence π(y) (equation4.17).

Update covariance matrix.

Continue -Iteration- loop using the high-fidelity solver without Evaluate high-fidelity - Update surrogate step, until α=1.
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Table 4.2: Resulting length of the ASMC runs and performance metrics of the re-runs using the
eikonal solver as high-fidelity. In these runs the sequence of temperatures is not calculated
adaptively, but fixed from the first round of runs (Table 4.1).

ASMCeikonal ASMCeikonal- ASMCeikonal- ASMCeikonal- ASMCeikonal-

SURRprior SURRprior-HF SURRupdates SURRupdates-HF

L 192 173 251 180 203

HF sim[×103] 4̃800 1 1950 1 576

HF sim relative 100% 0.02% 40.63% 0.02% 12%

PCE sim[×103] 0 4325 4325 4500 4500

Resampling 1 1 3 3 4

SSIM 1 0.84 0.93 0.89 0.91

Mean σ 0.83 0.83 0.80 0.84 0.80

Mean log-score 1.43 1.76 1.52 1.58 1.45

RMSE output 0.50 ns 0.84 ns 0.49 ns 0.65 ns 0.49 ns

Log-evidence -111.2 -121.6 -121.6 -113.4 -114.5

4.7 Appendix C

Re-runs with fixed inverse temperature sequence

As the adaptivity of the temperature sequence can not ensure unbiadness on the evidence
estimations, we provide a set of re-runs (Table 4.2) in which we keep fixed the adaptively-
determined sequence of αs of the eikonal runs of Table 4.1. Comparing the metrics in the
two tables, there are no significant differences in the performance metrics suggesting that
bias due to the adaptivity is small compared to the inherent variability in the results due to
the stochastic nature of the algorithm.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

Interpreting geophysical and hydrogeological inversion results obtained without considering
uncertainty and inherent non-uniqueness can lead to inaccurate and misleading findings.
On the other hand, performing Bayesian inversions that properly account for uncertainties
and successfully sample the posterior distribution is often a difficult task. Two key current
challenges in geophysical and hydrogeological inverse problems are (i) to account for prior
geological realism, and (ii) to reduce the computing time associated with expensive high-
fidelity forward solver. In this thesis, we have found that ASMC enhances the efficiency and
freedom of exploration by sequentially sampling power posteriors at decreasing temperatures.
Both deep generative models and MPS were used to encode and sample complex prior
information in Bayesian inversions, something that is impossible to achieve using traditional
geostatistical techniques. On the other hand, the ASMC method was combined with adaptive
surrogate modeling strategies that significantly reduced the computing time while obtaining
a comparable accuracy as for applications relying on high-fidelity solvers only.

In Chapter 2, ASMC showed to be more efficient and reliable in estimating the posterior
PDF than a state-of-the art adaptive MCMC algorithm in a GPR crosshole tomography test
case. The non-linearity of the inverse problem was enhanced by the use of deep generative
networks that encode a geologically-realistic prior in its latent space. Both the ASMC-derived
evidence and posterior estimation were insensitive to the model proposal schemes tested.
Moreover, the evidence estimation was found to be robust with respect to ASMC parameters,
and comparable in a high-noise setting with the unbiased Brute Force Monte Carlo estimator.
When assessing the uncertainty in the evidence estimations, we found that our proposed
single-run estimator is only reliable when enough intermediate Markov steps are used. The
results of this chapter suggest that ASMC is particularly advantageous to solve non-linear
geophysical problems for which MCMC approaches struggle.
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In Chapter 3, we evaluated ASMC in a high-dimensional and bimodal hydrogeological in-
version relying on an MPS-based prior and proposal scheme. For a similar computational
budget, ASMC was more effective in locating the two high-probability regions of the posterior
and fitted the data better than parallel tempering, a state-of-the-art MCMC-based tempering
method. The adaptive nature of the ASMC algorithm reduces the complications and efforts
of tuning the temperature and proposal scale needed in parallel tempering. The results
indicate that further increasing the ASMC computational budget improves the balance on the
sampling of the two modes. We also showed that intermediate ASMC estimations associated
to the power posteriors can be related to higher noise assumptions in the observations, which
can be useful in real applications when the data error level is unknown. This study highlights
the potential of ASMC to target multimodal posterior distributions.

In Chapter 4, we explore the combination of ASMC with surrogate modeling in a GPR cross-
hole tomography example. The PCE surrogate solvers successfully emulated the behavior of
eikonal and FDTD high-fidelity solvers, drastically reducing the computational times com-
pared to the full high-fidelity inversions. Re-training the surrogate as the inversion progresses
was advantageous compared to training the surrogate using only prior samples. Depending
on the accuracy needed and purposes of a given study, the inversion can be performed using
only surrogates or it can be extended to a multifidelity scheme by incorporating a final high-
fidelity stage. We conclude that using an updated surrogate scheme in a multifidelity ASMC
framework substantially reduces both the computing resources needed for the original inver-
sion (otherwise very difficult or even impossible to be solved given realistic computational
times) and the loss of accuracy associated to inversions using surrogate solvers only.

In these studies (Chapters 2-4), the ASMC method has shown to be efficient in estimating
the posterior PDF and the evidence. It manifested a remarkable ability to explore the pos-
terior, outperforming widely used MCMC inversion methods. The resampling steps play
an important role in explaining ASMC performance, as they limit weight degeneracy and
focus the sampling on high-likelihood regions. Without these steps, the particles would
very likely spend long times sampling very low-likelihood regions, making the process much
less efficient. Overall, the method is attractive not only due to its efficiency, robustness
and versatility, but also because of its ease of implementation. ASMC reduces the work and
tuning needed to find proper algorithmic settings that often plague standard approaches.
Moreover, its highly-parallelizable nature makes it convenient for computationally efficient
implementations.

It is essential to develop and improve mathematical and statistical techniques that can
effectively handle the challenges posed by complex modern hydrogeological and geophysical
problems. ASMC has only recently been introduced in geophysics and hydrogeology and
its use in these scientific fields is still limited. Through our studies, we conclude that ASMC
is a powerful and practical method, that can be used especially when non-linearity, high-
dimensionality or multi-modality challenge state-of-the-art MCMC-based approaches.
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5.2 Limitations and Outlook

Even if the ASMC algorithm decreases the need of manual intervention through its adaptive
strategies, choosing a suitable set of inversion parameters requires testing and tuning (Dai
et al., 2022). Providing guidance concerning the algorithmic parameter values to use is tricky,
as it depends on the problem at hand. In Chapters 2-4, we provide practical recommenda-
tions that can help constrain and guide the choices. In this thesis, we relied on systematic
resampling, but future studies could compare the performance of alternative resampling
schemes (Douc and Cappé, 2005). It is important to keep in mind that estimations obtained
with ASMC inversions are reliable as long as the intermediate power posteriors are well ap-
proximated. Generally, in Bayesian inversions, performing enough forward simulations such
that the high-likelihood regions are well explored is computationally demanding, thereby,
motivating future research in how to better integrate surrogate modeling.

As it is not trivial to build appropriate surrogate updating schemes within ASMC, it would be
interesting to study how alternative strategies perform. Adaptive schemes to decide when
to update the forward solver should be explored (Latz et al., 2018), for example, based on
the correspondence of the surrogate accuracy level with the tempering level (Catanach et al.,
2020). A better understanding of the trade-off between computational effort and accuracy
could lead to more efficient choices and particular recommendations concerning updating
schemes. It would also be useful to explore ASMC with other types of surrogate models than
PCE based on, for example, Gaussian process regression (Santner et al., 2003; Rasmussen,
2004) or deep learning (Jin et al., 2020). On the other hand, we know that approximations of
the surrogate modeling error in the inversion can lead to inaccurate estimations. Therefore,
it is important to dedicate more effort to assess strategies to derive reliable estimations of the
modeling error, for example, using neural networks (Levy et al., 2021).

Developing robust and efficient inversion algorithms that can face the increasingly complex
inverse problems arising in hydrogeology and geophysics is crucial. Realistic geophysical and
hydrogeological inverse problems often involve models with a high number of parameters.
As SMC methods have manifested their ability to explore high-dimensional posteriors (Jasra
et al., 2011; Schäfer and Chopin, 2013; Kantas et al., 2014), they can be well-suited for tackling
these problems. In this thesis, the ASMC method has shown to successfully address complex
inverse problems in synthetic settings. The natural next step would be to test the method
in real-case geophysical and hydrogeological scenarios. It would be interesting to assess
the performance in particularly challenging problems with large data sets and/or three-
dimensional models, for which the value and limitations of ASMC are still unknown. We also
encourage using ASMC in model selection studies and compare the quality and speed of
evidence computations with other state-of-the-art numerical methods. Even if standard SMC
evidence estimations are unbiased (Del Moral, 2004), the impact of the adaptive strategies in
the evidence estimations should be further explored, to better understand the extent of the
bias induced by them (Beskos et al., 2016).

Incorporating geologically-realistic priors in Bayesian inversions can significantly enhance
the reliability and usefulness of the inferred subsurface properties and system predictions.
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The integration of complex priors into Bayesian inversion is challenging, in this thesis we have
tested methods based in categorical training images within ASMC. We would like to stress
that continuous training images could be used as well, and conditioning data and further
sources of information could be accounted for when training deep generative networks or
included within the MPS algorithms. The development of realistic priors that can easily
encode complex information without compromising the efficiency of inverse algorithms is a
challenge where further progress would be highly useful in geophysics and hydrogeology.

Since SMC methods were originally intended for data assimilation, studies relying on data
sets that become available progressively in time could also be considered. These methods
can naturally handle such time-series because of their sequential nature, making them well-
suited for this type of problems. The ASMC method could be tested in real-time geophysical
and hydrogeological data assimilation problems, for example for monitoring and making
real-time decisions.

Finally, we would like to highlight that the complexity of the statistical and numerical methods
needed to tackle modern inverse problems can be a limitation for its application and popu-
larity. It is important to link the problems for which these complex methods would be useful
with the right algorithms to tackle them. It is relevant then, to dedicate effort in converting
the algorithms into practical tools than can be easily accessed by the public. Simplifying their
use, explaining their basic functioning and proving guidelines on how to properly address
particular problems are key factors to facilitate and broaden their applicability.

114



Bibliography

Agapiou, S., O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart (2017), Importance sam-
pling: Intrinsic dimension and computational cost, Statistical Science, 32(3), 405–431.

Alcolea, A., and P. Renard (2010), Blocking moving window algorithm: Conditioning multiple-
point simulations to hydrogeological data, Water Resources Research, 46(8), W08511.

Amaya, M., N. Linde, and E. Laloy (2021), Adaptive sequential Monte Carlo for posterior
inference and model selection among complex geological priors, Geophysical Journal
International, 226(2), 1220–1238.

Amaya, M., N. Linde, and E. Laloy (2022), Hydrogeological multiple-point statistics inversion
by adaptive sequential monte carlo, Advances in Water Resources, 166, 104252.

Angluin, D., and C. H. Smith (1983), Inductive inference: theory and methods, ACM Comput-
ing Surveys (CSUR), 15(3), 237–269.

Arridge, S. R. (1999), Optical tomography in medical imaging, Inverse Problems, 15(2), R41.

Bai, Y., R. V. Craiu, and A. F. Di Narzo (2011), Divide and conquer: a mixture-based approach
to regional adaptation for MCMC, Journal of Computational and Graphical Statistics, 20(1),
63–79.

Bailer-Jones, C. (2015), A general method for bayesian time series modelling, Technical report,
Max Planck Institute for Astronomy, Heidelberg.

Bayes, T. (1763), An essay towards solving a problem in the doctrine of chances, Philosophical
Transactions, 53(1763), 370–418.

Bergen, K. J., P. A. Johnson, V. Maarten, and G. C. Beroza (2019), Machine learning for data-
driven discovery in solid Earth geoscience, Science, 363, eaau0323.

Beskos, A., A. Jasra, N. Kantas, and A. Thiery (2016), On the convergence of adaptive sequential
Monte Carlo methods, The Annals of Applied Probability, 26(2), 1111–1146.

Blatman, G. (2009), Adaptive sparse polynomial chaos expansions for uncertainty propaga-
tion and sensitivity analysis, Ph.D. thesis, Clermont-Ferrand 2.

Blatman, G., and B. Sudret (2011), Adaptive sparse polynomial chaos expansion based on
least angle regression, Journal of Computational Physics, 230(6), 2345–2367.

115



Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm,
Geophysical Journal International, 178(3), 1411–1436.
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