
Vol.:(0123456789)1 3

Brain Topography
https://doi.org/10.1007/s10548-022-00935-8

ORIGINAL PAPER

fMRIflows: A Consortium of Fully Automatic Univariate
and Multivariate fMRI Processing Pipelines

Michael P. Notter1 · Peer Herholz2,3 · Sandra Da Costa4 · Omer F. Gulban5,6 · Ayse Ilkay Isik7 · Anna Gaglianese1,8 ·
Micah M. Murray1,4,8

Received: 10 July 2022 / Accepted: 18 December 2022
© The Author(s) 2022

Abstract
How functional magnetic resonance imaging (fMRI) data are analyzed depends on the researcher and the toolbox used. It
is not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code transparency, quality
control and objective analysis pipelines are important for improving reproducibility in neuroimaging studies. Toolboxes, such
as Nipype and fMRIPrep, have documented the need for and interest in automated pre-processing analysis pipelines. Recent
developments in data-driven models combined with high resolution neuroimaging dataset have strengthened the need not
only for a standardized preprocessing workflow, but also for a reliable and comparable statistical pipeline. Here, we introduce
fMRIflows: a consortium of fully automatic neuroimaging pipelines for fMRI analysis, which performs standard preprocess-
ing, as well as 1st- and 2nd-level univariate and multivariate analyses. In addition to the standardized pre-processing pipelines,
fMRIflows provides flexible temporal and spatial filtering to account for datasets with increasingly high temporal resolution
and to help appropriately prepare data for advanced machine learning analyses, improving signal decoding accuracy and
reliability. This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure and access, and
lastly validates the toolbox by comparing it to other neuroimaging processing pipelines such as fMRIPrep, FSL and SPM.
This validation was performed on three datasets with varying temporal sampling and acquisition parameters to prove its
flexibility and robustness. fMRIflows is a fully automatic fMRI processing pipeline which uniquely offers univariate and
multivariate single-subject and group analyses as well as pre-processing.

Keywords  Python · Neuroimaging · Data processing · Pipeline · Reproducible research

Introduction

Functional magnetic resonance imaging (fMRI) is a well-
established neuroimaging method used to analyze activa-
tion patterns in order to understand brain function. A full

Michael P. Notter and Peer Herholz have made equal contributions
to this work.

Handling Editor: Christoph Michel.

 *	 Michael P. Notter
	 michaelnotter@hotmail.com

 *	 Micah M. Murray
	 micah.murray@chuv.ch

1	 The Laboratory for Investigative Neurophysiology (The
LINE), Department of Radiology, Lausanne University
Hospital and University of Lausanne, Lausanne, Switzerland

2	 International Laboratory for Brain, Music and Sound
Research, Université de Montréal & McGill University,
Montreal, Canada

3	 McConnell Brain Imaging Centre, Montréal Neurological
Institute, McGill University, Montreal, Canada

4	 CIBM Center for Biomedical Imaging, Lausanne,
Switzerland

5	 Department of Cognitive Neuroscience, Maastricht
University, Maastricht, The Netherlands

6	 Brain Innovation B.V., Maastricht, The Netherlands
7	 Department of Neuroscience, Max Planck Institute

for Empirical Aesthetics, Frankfurt, Germany
8	 The Sense Innovation and Research Center,

Lausanne and Sion, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-022-00935-8&domain=pdf

	 Brain Topography

1 3

fMRI analysis includes preprocessing of the data, followed
by statistical analysis and inference on the results, usually
separated into 1st-level analysis (the statistical analysis
within subjects) and 2nd-level analysis (the group analysis
between subjects). The goal of preprocessing is to identify
and remove nuisance sources, measure confounds, apply
temporal and spatial filters and to spatially realign and nor-
malize images to make them spatially conform (Caballero-
Gaudes and Reynolds 2017). A good preprocessing pipeline
should improve the signal-to-noise ratio (SNR) of the data,
ensure validity of inference and interpretability of results
(Ashburner 2009), reduce false positive and false negative
errors in the statistical analysis and therefore improve the
statistical power.

Even though the consequences of inappropriate pre-
processing and statistical inference are well documented
(Strother 2006; Power et al. 2017b), most fMRI analysis
pipelines are still established ad-hoc, subjectively cus-
tomized by researchers to each new dataset (Carp 2012).
This usage can be explained by the circumstance that most
researchers, by habit or lack of time, stick with the neuro-
imaging software at-hand or reuse and modify scripts and
code snippets from colleagues and previous projects, and
do not always adapt their processing pipelines to the newest
standard in neuroimaging processing. Rehashing processing
pipelines is associated with problems like persisting bugs in
the code and delays in updating individual analysis steps to
the most recent standards. This can lead to far reaching con-
sequences. Of course, the constant updating of pipelines to
newest standards and softwares also bears the risk of intro-
ducing new bugs and might lead to the pitfall of blindly
trusting new untested procedures.

One solution to tackle this issue will require code trans-
parency, good quality control and a collective development
of well-tested objective analysis pipelines (Gorgolewski
et al. 2016). Recent years have brought some important ref-
ormations to the neuroimaging community that go in this
direction.

First, the introduction of Nipype (Gorgolewski et al.
2011) made it easier for researchers to switch between dif-
ferent neuroimaging toolboxes, such as AFNI (Cox and
Hyde 1997), ANTs (Avants et al. 2011), FreeSurfer (Fischl
2012), FSL (Jenkinson et al. 2012), and SPM (Friston et al.
2006). Nipype together with other software packages such
as Nibabel (Brett et al. 2018) and Nilearn (Abraham et al.
2014) opened up the whole Python ecosystem to the neuro-
imaging community. Code can be shared between research-
ers via online services such as GitHub (https://​github.​com),
and the whole neuroimaging software ecosystem can be run
on any machine or server through the use of container soft-
ware such as Docker (https://​www.​docker.​com) or Singu-
larity (https://​www.​sylabs.​io). Combined with a continuous
integration service such as CircleCI (https://​circl​eci.​com)

or TravisCI (https://​travis-​ci.​org), this allows the creation of
easy-to-read, transparent, shareable and continuously tested
open-source neuroimaging processing pipelines.

Second, the next major advancement in the neuroimaging
field was the introduction of a common dataset standard,
such as the NIfTI standard (https://​nifti.​nimh.​nih.​gov/). This
was important for the formatting of neuroimaging data. The
neuroimaging community gathered together in a consortium
to define a standard format for the storage of neuroimaging
datasets, the so-called brain imaging data structure (BIDS;
Gorgolewski et al. 2016). A common data structure format
facilitates the sharing of datasets and makes it possible to
create universal neuroimaging toolboxes that work out-of-
the-box on any BIDS conforming dataset. Additionally,
through services like OpenNeuro (Gorgolewski et al. 2017),
a free online platform for sharing neuroimaging data, one
can test the robustness and flexibility of a new neuroimaging
toolbox on hundreds of different datasets.

Software toolboxes like MRIQC (Esteban et al. 2017) and
fMRIPrep (Esteban et al. 2019) have shown how fruitful this
new neuroimaging ecosystem can be and have highlighted
the importance and need of good quality control and high-
quality preprocessing workflows with consistent results from
diverse datasets. Given the recent developments in the field
of data-driven analyses to decode brain states from fMRI
time-series, there is an increased need for reliable and repro-
ducible statistical analysis of fMRI data, the fundamental
input of more advanced machine learning methods, such as
multi-voxel pattern analysis (MVPA) and convolutional neu-
ronal networks (CNNs). Here, we build from the fMRIPrep
workflow to expand it to a fully automated pipeline for uni-
variate and multivariate individual and group analyses.

fMRIflows provides flexible temporal and spatial filter-
ing, to account for two recent findings in the data-driven
model field. First, flexible spatial filtering can become of
importance when performing multivariate analysis, as it has
been shown that the correct spatial band-pass filtering can
improve signal decoding accuracy (Sengupta et al. 2018).
Second, correct temporal filtering during pre-processing
is important and can lead to improved SNR, especially for
fMRI datasets with a temporal sampling rate below one sec-
ond (Viessmann et al. 2018), but only if the filter is applied
orthogonally to the other filters during pre-processing to
ensure that previously removed noise is not reintroduced into
the data (Hallquist et al. 2006; Lindquist et al. 2019). Due
to technical improvements in imaging recording through
acceleration techniques such as GRAPPA (Griswold et al.
2002) and simultaneous multi-slice/multiband acquisitions
(Feinberg et al. 2010; Moeller et al. 2010; Feinberg and Set-
sompop 2013), faster sampling rates became possible, to the
point that respiratory and cardiac signals can be sufficiently
sampled in the BOLD signal. This creates new challenges
for the pre-processing of functional images, especially when

https://github.com
https://www.docker.com
https://www.sylabs.io
https://circleci.com
https://travis-ci.org
https://nifti.nimh.nih.gov/

Brain Topography	

1 3

the external recording of those physiological sources cannot
be readily achieved.

fMRIflows presents a consortium of fully automatic neu-
roimaging pipelines for fMRI analysis, performing standard-
ized pre-processing, as well as 1st- and 2nd-level statistical
analyses for univariate and multivariate analysis, with the
additional creation of informative quality-control figures.
fMRIflows is predicated on the insights and code base of
MRIQC (Esteban et al. 2017) and fMRIPrep (Esteban et al.
2019), extending their functionality with regard to the fol-
lowing aspects: (a) flexible temporal and spatial filtering of
fMRI data, i.e. low- or band-pass filtering allowing for the
exclusion of high-frequency oscillations introduced through
physiological noise (Viessmann et al. 2018); (b) accessible
and modifiable code base; (c) automatic computation of 1st-
level contrasts for univariate and multivariate analysis; and
(d) automatic computation of 2nd-level contrasts for univari-
ate and multivariate analysis.

In this paper, we (1) describe the different pipelines
included in fMRIflows and illustrate the different process-
ing steps involved, (2) explain the software structure and
setup, and (3) validate fMRIflows’ performance by compar-
ing it to other widely used neuroimaging toolboxes, such as
fMRIPrep (Esteban et al. 2019), FSL (Jenkinson et al. 2012)
and SPM (Friston et al. 2006).

Materials and Methods

fMRIflows’ Processing Pipelines

The complete code base of fMRIflows is open access and
stored conveniently in six different Jupyter Notebooks on
https://​github.​com/​miyka​el/​fmrif​lows. The first notebook
does not contain any processing pipeline, but rather serves as
a user input document that helps to create JSON files, which
will contain the execution specific parameters for the five
processing pipelines contained in fMRIflows: (1) anatomi-
cal preprocessing, (2) functional preprocessing, (3) 1st-level
analysis, (4) 2nd-level univariate analysis and (5) 2nd-level
multivariate analysis. Each of these five pipelines stores its
results in a sub hierarchical folder, specified as an output
folder by the user. In the following section, we explain the
content of those six Jupyter Notebooks.

Specification Preparation

Each fMRIflows processing pipeline needs specific input
parameters to run. Those parameters range from subject ID
and number of functional runs per subject, to requested voxel
resolution after image normalization, etc. Each notebook
will read the relevant specification parameters from a prede-
fined JSON file that starts with the prefix “fmriflows_spec”.

There is one specification file for the anatomical and func-
tional preprocessing, one for the 1st and 2nd level univariate
analysis, and one for the 2nd-level multivariate analysis. For
an example of these three JSON files, see Supplementary
Note 1. The first notebook contained in fMRIflows, called
01_spec_preparation.ipynb, can be used to create those
JSON files, based on the provided dataset and some stand-
ard default parameters. It does so by using Nibabel v2.3.0
(Brett et al. 2018), PyBIDS v0.8 (Yarkoni et al. 2019) and
other standard Python libraries. It is up to the user to change
any potential processing parameter should they be different
from the used default values.

Anatomical Preprocessing

The anatomical preprocessing pipeline is contained within
the notebook 02_preproc_anat.ipynb and uses the JSON
file fmriflows_spec_preproc.json for parameter specifica-
tion such as voxel resolution. If a specific value is not set,
fMRIflows normalizes to an isometric voxel resolution of
1 mm3 by default. However, the user can also choose an
anisometric voxel resolution that varies in all three dimen-
sions. Additionally, the user can decide to have a fast or
precise normalization. The precise normalization can take up
to eight times as long as the fast approach, but can provide
a more precise alignment. Visual inspection on performed
normalization is always desirable since both normalization
algorithms may fail in case of a noisy dataset or undetected
artifacts. For an example of the JSON file content, see Sup-
plementary Note 1.

The anatomical preprocessing pipeline only depends on
the subject specific T1-weighted (T1w) anatomical images
as input files. The individual processing steps are visual-
ized in Fig. 1 and consist of: (1) image reorientation, (2)
cropping of field of view (FOV), (3) correction of intensity
non-uniformity (INU), (4) image segmentation, (5) brain
extraction and (6) image normalization. For a more detailed
description of the steps involved in this processing pipeline,
see Supplementary Note 2.

Functional Preprocessing

The functional preprocessing pipeline is contained within
the notebook 03_preproc_func.ipynb and uses the JSON file
fmriflows_spec_preproc.json for parameter specification.
As specification parameters, users can indicate if slice-time
correction should be applied or not, and if so which refer-
ence timepoint should be used. The user can also indicate to
which isometric or anisometric voxel resolution functional
images should be sampled to, and if the sampling is into
subject or template space. For the template space, the ICBM
2009c nonlinear asymmetric brain template is used (Fonov
et al. 2011). Furthermore, users can specify possible values

https://github.com/miykael/fmriflows

	 Brain Topography

1 3

for low-, high- or band-pass filters in the temporal or spatial
domain. Additionally, to investigate nuisance regressors,
users can specify the number of CompCor (Behzadi et al.
2007) or independent component analysis (ICA) components
they want to extract and which threshold values they want
to use to detect outlier volumes. The implications of those
parameters will be explained in more details in the follow-
ing sections. For an example of the JSON file content, see
Supplementary Note 1.

The functional preprocessing pipeline depends as inputs
on the output files from the anatomical preprocessing pipe-
line, as well as the subject-specific functional images and
accompanying descriptive JSON file that contains informa-
tion about the temporal resolution (TR) and slice order of
the functional image recording. This JSON file is part of

the BIDS standard and therefore should be available in the
BIDS conform dataset. The individual processing steps are
schematized in Fig. 2 and consist of: (1) image reorienta-
tion, (2) non-steady-state detection, (3) creation of func-
tional brain mask, (4) slice time correction, (5) estimation
of motion parameters, (6) two-step estimation of coregistra-
tion parameters between functional and anatomical image,
(7) finalization of motion parameters, (8) single-shot spatial
interpolation applying motion correction, coregistration and
if specified normalizing images to the template image, (9)
construction and application of brain masks, (10) temporal
filtering and (11) spatial filtering. It is important to mention

Fig. 1   Depiction of fMRIflows’ anatomical preprocessing pipeline.
Arrows indicate dependency between the different processing steps
and data flow. Name of each node describes functionality, with the
corresponding software dependency mentioned in brackets

Fig. 2   Depiction of fMRIflows’ functional preprocessing pipeline.
Arrows indicate dependency between the different processing steps
and data flow. Name of each node describes functionality, with the
corresponding software dependency mentioned in brackets. Steps
that can be grouped into specific sections are contained within a red
box to facilitate understanding of the pipeline. Color of arrows indi-
cated if connection stays within a section (red) or not (blue). Nodes
depicted as gray boxes indicate that they can be run multiple times
with iterating input values, i.e. performing a spatial smoothing with
an FWHM value of 4 and 8 mm (Color figure online)

Brain Topography	

1 3

that the functional preprocessing is done for each functional
run separately to prevent inter-run contaminations. For a
more detailed description of the steps involved in this pro-
cessing pipeline, see Supplementary Note 3.

1st‑Level Analysis

The first level analysis pipeline is contained within the
notebook 04_analysis_1st-level.ipynb and uses the JSON
file fmriflows_spec_analysis.json for parameter specifica-
tion. As specification parameters, users can indicate which
nuisance regressors to include in the GLM, if outliers should
be considered, and if the data is already in template space
or if this normalization should be done after the estimation
of the contrasts. Users can also specify other GLM model
parameters, such as the high-pass filter value and the type
of basis function that should be used to model the hemody-
namic response function (HRF). Additionally, the users will
also specify a list of contrasts they want to be estimated, or
if they want to create specific contrasts for each stimulus
column in the design matrix, and/or for each session sepa-
rately, which then later might also be used for multivariate
analysis. For an example of the JSON file content, see Sup-
plementary Note 1.

The 1st-level analysis pipeline depends on a number of
outputs from the previous anatomical and functional pre-
processing pipelines, i.e. the TSV (tab separated value) file
containing motion parameters and confound regressors, a
text file indicating the number of non-steady-state volumes
removed from the functional image, and a text file con-
taining a list of indexes identifying outlier volumes. Addi-
tionally, the 1st-level analysis pipeline also requires BIDS
conform events files containing information on the applied
experimental design, including types of conditions and their
respective onsets and durations. The individual processing
steps included in the 1st-level analysis consist of: (1) collect-
ing preprocessed files and model relevant information, (2)
model specification and estimation, (3) univariate contrast
estimation, (4) optional preparation for multivariate analysis,
(5) optional spatial normalization of contrasts (Fig. 3). All
of the relevant steps, that is model creation, estimation and
contrast computation are performed with SPM version 12.
For a more detailed description of the steps involved in this
processing pipeline, see Supplementary Note 4.

2nd‑Level Univariate Analysis

The second level univariate analysis pipeline is contained
within the notebook 05_analysis_2nd-level.ipynb and uses
the JSON file fmriflows_spec_analysis.json for parameter
specification. Users can specify the probability value used
as a cutoff for the threshold of the GM probability tissue
map in template space that is later used during the model

estimation. Additionally, users can specify voxel- and
cluster-threshold topological thresholding of the statisti-
cal contrast, as well as relevant AtlasReader (Notter et al.
2019) parameters for the creation of the output tables and
figures.

Fig. 3   Depiction of fMRIflows’ 1st-level analysis pipeline. Arrows
indicate dependency between the different processing steps and data
flow. Name of each node describes functionality, with the correspond-
ing software dependency mentioned in brackets. Sections that can be
grouped into specific sections are contained within a red box to facili-
tate understanding of the pipeline. Color of arrows indicated if con-
nection stays within a section (red) or not (blue). Nodes depicted in
green are optional and can be run if spatial normalization was not yet
performed during preprocessing (Color figure online)

	 Brain Topography

1 3

The 2nd-level univariate analysis pipeline depends only
on the estimated contrasts from the 1st-level univariate anal-
ysis. No further contrast specification is required as fMRI-
flows currently only implements a simple one-sample t-test.
The individual processing steps included in the 2nd-level
univariate analysis consist of: (1) gathering of the 1st-level
contrasts, (2) creation and estimation of 2nd-level model, (3)
estimation of contrast estimation, (4) topological threshold-
ing of contrasts, (5) results creation with AtlasReader. As
for the 1st-level analysis, all of the relevant model creation,
estimation and contrast computation are performed with
SPM12. All results were corrected for false positive rate
(FPR). For a more detailed description of the steps involved
in this processing pipeline, see Supplementary Note 5.

2nd‑Level Multivariate Analysis

The second level multivariate analysis pipeline is contained
within the notebook 06_analysis_multivariate.ipynb and
uses the JSON file fmriflows_spec_multivariate.json for
parameter specification. Users can define a list of classifiers
to use for the multivariate analysis, the sphere radius and
step size of the searchlight approach. To perform a 2nd-level
analysis of searchlight results users can decide between a
classical GLM approach testing against chance level and a
more recommended permutation based method as described
in Stelzer et al. (2013) with the option of determining the
number of permutations. Additionally, users can specify
voxel- and cluster-threshold topological thresholding of the
statistical contrast, as well as relevant AtlasReader param-
eters for the creation of the output tables and figures.

The 2nd-level multivariate analysis pipeline depends
on the estimated contrasts from the 1st-level multivariate
analysis, the associated CSV file containing a list of the cor-
responding contrast labels and a list of binary classification
identifiers. In contrast to the other notebooks, this notebook
uses Python 2.7 to accommodate the requirements of PyM-
VPA v2.6.5 (Hanke et al. 2009). The individual processing
steps included in the 2nd-level multivariate analysis consist
of: (1) data preparation for the analysis with PyMVPA, (2)
searchlight classification, (3) computation of group analy-
sis using a t-test, (4) computation of group analysis accord-
ing to Stelzer et al. (2013), and (5) results creation with
AtlasReader. All results were corrected for FPR. For a more
detailed description of the steps involved in this processing
pipeline, see Supplementary Note 6.

Infrastructure and Access to fMRIflows

The source code of fMRIflows is available at GitHub
(https://​github.​com/​miyka​el/​fmrif​lows) and is licensed under
the BSD 3-Clause “New” or “Revised” License. The code
is written in Python v3.7.2 (https://​www.​python.​org), stored

in Jupyter Notebooks v4.4.0 (Kluyver et al. 2016) and dis-
tributed via Docker v18.09.2 (https://​docker.​com) contain-
ers that are publicly available via Docker Hub (https://​hub.​
docker.​com). The usage of Docker allows the user to run
fMRIflows on any major operating system, with the follow-
ing command:

docker run-it-p 9999:8888-v /home/user/ds001:/data
miykael/fmriflows.

The first flag -it indicates that the Docker container
should be run in interactive mode, while the second flag
-p 9999:8888 defines the port (here 9999) that we want to
use to access the Jupyter Notebooks via the web-browser.
The third flag, -v /home/user/ds001:/data tells fMRIflows
the location of the BIDS conform dataset that should be
mounted in the Docker container, here located at /home/
user/ds001. Once the docker container is launched, the
interactive Jupyter Notebooks can be accessed through the
web-browser.

fMRIflows uses many different software packages for
the individual processing steps. The neuroimaging software
that are used are: Nipype v1.1.9 (Gorgolewski et al. 2011),
FSL v5.0.9 (Smith et al. 2004), ANTs v2.2.0 (Avants et al.
2011), SPM12 v7219 (Penny et al. 2011), AFNI v18.0.5
(Cox and Hyde 1997), Nilearn v0.5 (Abraham et al. 2014),
Nibabel v2.3.0 (Brett et al. 2018), PyMVPA v2.6.5 (Hanke
et al. 2009), Convert3D v1.1 (https://​sourc​eforge.​net/p/​c3d),
AtlasReader v0.1 (Notter et al. 2019) and PyBIDS v0.8
(Yarkoni et al. 2019). In addition to some standard Python
libraries, fMRIflows also uses Numpy (Oliphant 2007),
Scipy (Jones et al. 2001), Matplotlib (Hunter 2007), Pandas
(McKinney et al. 2010) and Seaborn (http://​seabo​rn.​pydata.​
org).

With every new pull request pushed to the GitHub Repos-
itory of fMRIflows, a test instance on CircleCI (https://​circl​
eci.​com) is deployed to test the complete code base for
execution errors. This framework allows the continuous
integration of new code to fMRIflows, and guarantees the
general functionality of the software package. Outputs are
not controlled for their correctness.

Validation of fMRIflows

fMRIflows was validated in two phases. In Phase 1, we
validated the proficiency of the toolbox by applying it on
different kinds of fMRI datasets conforming to the BIDS
standard (Gorgolewski et al. 2016) available via OpenNeuro.
org (Gorgolewski et al. 2017). Insights during this phase
allowed us to improve the code base and make fMRIflows
robust to a diverse set of datasets. In Phase 2, we compared
the performance of the toolbox to similar neuroimaging
preprocessing pipelines such as fMRIPrep, FSL, and SPM.
To better understand where fMRIflows overlaps or diverges
from comparable processing pipelines, we investigated the

https://github.com/miykael/fmriflows
https://www.python.org
https://docker.com
https://hub.docker.com
https://hub.docker.com
https://sourceforge.net/p/c3d
http://seaborn.pydata.org
http://seaborn.pydata.org
https://circleci.com
https://circleci.com

Brain Topography	

1 3

preprocessing, subject-level and group-level outcomes for
all four toolboxes, run on three different datasets.

Phase 1: Proficiency Validation

To investigate the capabilities and flaws of the initial imple-
mentation of the toolbox, fMRIflows was run on different
datasets, either available publicly via OpenNeuro.org or
available privately to the authors. Such an approach allowed
the exploration of datasets with different temporal and spa-
tial resolutions, SNRs, FOVs, numbers of slices, scanner
characteristics, and other sequence parameters, such as
acceleration factors and flip angles.

Phase 2: Performance Validation

To validate the performance of fMRIflows, we used three
different task-based fMRI datasets and compared its pre-
processing to the three neuroimaging processing pipelines
fMRIPrep, FSL and SPM. Comparison was done on pre-
processing, subject-level and group-level outputs. Because
of differences in how FSL and SPM perform subject- and
group-level analyses and due to the lack of such routines in
fMRIPrep, all subject- and group-level analyses for the per-
formance validation were performed using identical Nistats
(Abraham et al. 2014) routines.

The three datasets (see Table 1) were all acquired on
scanners with a magnetic field strength of 3 T and differ in
many sequence parameters, most notably in the temporal
resolution with which they were recorded. This is especially
important as we aim to highlight that the right handling of
temporal filtering is crucial for datasets with a temporal
resolution below 1000 ms.

Dataset TR2000 has a comparably low temporal sam-
pling and spatial resolution. It serves as a standard dataset,
recorded with a standard EPI scan sequence. The dataset and
paradigm are described in more details in Notter et al. (under
review). In short, participants performed a continuous recog-
nition task and indicated for each image whether it is old or
new. When the image was presented for the first time (new)
it was either presented with no sound (unisensory visual
context) or together with a sound (multisensory context).

Dataset TR1000 has a rather high temporal sampling
and spatial resolution and serves as an advanced dataset,
recorded with a scan sequence using a multiband accelera-
tion technique. The dataset and paradigm are described in
more detail in Botvinik-Nezer et al. (2019). In short, par-
ticipants performed a mixed gambling task in which they
were asked to either accept or reject a possible monetary
gain or loss.

Dataset TR600 has a very high temporal sampling with a
moderate spatial resolution and serves as an extreme dataset,
recorded with scan sequences using a simultaneous multi-
slice (SMS) acceleration technique (Feinberg et al. 2010).
This dataset was collected for another project. In short, par-
ticipants were shown auditory, visual or audiovisual stimuli
containing either an animal (as an image or sound), pure
noise or both together. Participants performed a discrimina-
tion task in which they had to indicate if they perceived a
stimuli with an animal in it or not, independent of the stimuli
modality. The stimuli were either presented in a unisensory
or multisensory context.

All participants of the Datasets TR2000 and TR600
have been included in the performance validation, while
only the first 20 out of the 120 total participants of the
Dataset TR1000 was used in order to reduce computation

Table 1   Overview of the datasets used to validate fMRIflows

Dataset TR2000 TR1000 TR600

Temporal resolution (ms) 2000 1000 600
Spatial resolution 3.5 × 3.5 × 3.3 2.0 × 2.0 × 2.4 3.0 × 3.0 × 3.0
Number of slices 36 64 24
Slice Order Descending Unknown Interleaved
Coverage Whole brain Whole brain Slab
Volumes per run 275 453 600
Number of runs 4 4 6
Acceleration factor None 4 3
Magnetic strength (T) 3 3 3
Number of subjects 12 20 17
Sequence type 2D-EPI Multi-band SMS
Task Audio–visual memory task Mixed gamble task Audio–visual observation task
Data availability OpenNeuro.org (ds001345, v 1.0.1) OpenNeuro.org

(ds001734, v.1.0.4)
OpenNeuro.org (will be made available

after publication of experimental
work)

	 Brain Topography

1 3

time and make this dataset comparable to the other two.
Datasets TR2000 and TR1000 are already publicly avail-
able through the OpenNeuro platform. Dataset TR600 is in
preparation to be published on OpenNeuro as well. Until
then, this dataset is available upon request.

The pre-processing pipelines with fMRIf lows,
fMRIPrep, FSL and SPM were based on the default param-
eters and only differed in the following points from their
standard implementations: (1) Functional images were
resampled to an isometric voxel resolution according to
the dominant resolution dimension within a dataset; (2)
Spatial smoothing of the functional images is applied after
preprocessing of the images, using a Nilearn routine and
a smoothing kernel with a full width at half maximum
(FWHM) of 6 mm, in order to keep the approaches compa-
rable, as spatial smoothing is not included in the fMRIPrep
workflow; (3) Anatomical images in the FSL pipeline were
first cropped to a standard FOV, followed by brain extrac-
tion using FSL’s BET before FSL’s FEAT was launched;
(4) In the case of FSL, the normalization from structural
to standard space was done using a non-linear warping
approach with 12 degrees of freedom and a spline interpo-
lation model; (5) In the case of SPM, the template brain for
the normalization was its standard tissue probability brain
TPM, while for fMRIflows, fMRIPrep and FSL, the ICBM
2009c nonlinear asymmetric brain template was used.

The statistical inference was not performed on any of
the investigated toolboxes to prevent the introduction of a
software specific bias. The 1st- and 2nd-level analysis was
performed using Nistats, Nilearn and other Python tool-
boxes and only differed between the toolboxes in the fol-
lowing ways: (1) the estimated motion parameters added to
the design matrix during the 1st-level analysis differed for
each toolbox as they were based on the software-specific
preprocessing routine; (2) the number of volumes per run
used during the 1st-level analysis of fMRIflows might dif-
fer slightly from the other approaches, as the fMRIflows
routine removes non-steady state volumes during the pre-
processing; (3) SPM used its own tissue probability map
to create a binary mask restricted to gray matter voxels
during the group analysis, while the other three toolboxes
used the ICBM 2009c gray matter probability map instead.

To compare the unthresholded group statistic maps
between the toolboxes, we created for each pairwise com-
bination of preprocessing approach a Bland–Altman 2D
histogram plot, as described by (Bowring et al. 2018).
These plots show the difference between the statistic value
(y-axis), against the mean statistic value (x-axis) for all
voxels within the intersection of the respective brain mask.
In other words, it summarized in a 2D histogram plot, for
each voxel how much higher the statistical value in tool-
box B is (y-axis), in comparison to toolbox A’s statistical
value (x-axis).

The complete lists of parameters, the scripts to perform
preprocessing, 1st- and 2nd-level analysis and the scripts to
create individual figures can be found on fMRIflows GitHub
page (https://​github.​com/​miyka​el/​fmrif​lows/​tree/​master/​
paper). Derivatives generated for the validation in phase
2 can be inspected and downloaded on NeuroVault (Gor-
golewski et al. 2015) under the following links: (1) Stand-
ard deviation maps of temporal averages after preprocessing
(https://​ident​ifiers.​org/​neuro​vault.​colle​ction:​5645), (2) tem-
poral SNR maps after preprocessing (https://​ident​ifiers.​org/​
neuro​vault.​colle​ction:​5713), (3) binarized 1st-level activa-
tion count maps (https://​ident​ifiers.​org/​neuro​vault.​colle​ction:​
5647), (4) 2nd-level activation maps (https://​ident​ifiers.​org/​
neuro​vault.​colle​ction:​5646).

Results

Summary of Outputs Obtained by fMRIflows’
Processing Pipelines

Output Generated After Executing the Anatomical
Preprocessing Pipeline

After the execution of the anatomical preprocessing pipeline,
the following files are generated for each subject: (1) image
of the inhomogeneity-corrected full head image, (2) image
of the extracted brain, (3) binary mask used for the brain
extraction, (4) individual tissue probability maps for gray
matter (GM), white matter (WM), cerebrospinal fluid (CSF),
skull and head, (5) normalized anatomical image in template
space, (6) reverse-normalized template image in subject
space, (7) plus the corresponding transformation matrices
used for output 5 and 6. Each anatomical preprocessing out-
put folder also contains (8) the ICBM 2009c brain template
used for the normalization, sampled to the requested voxel
resolution.

In addition to these files, the following three informa-
tive figures are generated: (1) tissue segmentation, (2) brain
extraction and (3) spatial normalization of the anatomical
image. A shortened version of those three figures, as well
as their explanation are shown in Fig. 4.

Output Generated After Executing the Functional
Preprocessing Pipeline

After the execution of the functional preprocessing pipe-
line, the following files are generated separately for each
subject, each functional run and each temporal filtering: (1)
text file indicating which volumes were detected as outli-
ers, (2) tabular separated (TSV) file containing all extracted
confound regressors, (3) text file containing the six motion
parameter regressors according to FSL’s output scheme, (4)

https://github.com/miykael/fmriflows/tree/master/paper
https://github.com/miykael/fmriflows/tree/master/paper
https://identifiers.org/neurovault.collection:5645
https://identifiers.org/neurovault.collection:5713
https://identifiers.org/neurovault.collection:5713
https://identifiers.org/neurovault.collection:5647
https://identifiers.org/neurovault.collection:5647
https://identifiers.org/neurovault.collection:5646
https://identifiers.org/neurovault.collection:5646

Brain Topography	

1 3

binary masks for the brain, (5) masks for anatomical and
functional component based noise correction, (6) functional
mean image, and (7) completely preprocessed functional
images, separated by spatial smoothing approaches. Each
subject folder also contains (8) one text file per functional
run indicating the number of non-steady-state volumes at
the beginning of run.

The following is a more detailed description of the mul-
tiple confounds fMRIflows estimates during functional
preprocessing:

Confounds based on motion parameters: in addition
to the head motion parameters created during preprocess-
ing, fMRIflows also computes (1) 24-parameter Volterra
expansion of the motion parameters (Friston et al. 1996)
using custom scripts and (2) Framewise Displacement (FD)
component (Power et al. 2012) using Nipype.

Confounds based on global signal: functional images
before spatial smoothing were used to compute confound
regressors, such as (1) DVARS, which represents the spatial
standard deviation of the signal after temporal differencing,
to identify motion-affected frames (Power et al. 2012), using
Nipype and (2) four global signal curves representing the
average signal in the total brain volume (TV), GM, WM and
CSF, using Nilearn.

Detection of outlier volumes: the user can specify
which of the six signal curves for FD, DVARS and aver-
age signal in TV, GM, WM and CSF to use to identify
outlier volumes (see Fig. 5A). Those are volumes that have
larger fluctuations in the signal values in a given volume,
compared to the z-scored standard deviation throughout

the time course. The exact threshold for each curve can be
adapted by the user, but its default value is set to a z-value
of 3.27, representing 99%, for the FD, DVARS and TV
signal. The identification number of each outlier volume is
stored in a text file that might be used in the 1st-level pipe-
line during the GLM model estimation to remove the effect
of those volumes from the overall analysis, also known as
censoring (Caballero-Gaudes and Reynolds 2016).

Confounds based on signal components: using the
temporal filtered functional images, two different kinds
of approaches are performed to extract components that
could be used for denoising or dimensionality reduction
of the data. The first approach is called CompCor (Behzadi
et al. 2007) and uses principal component analysis (PCA)
to estimate the main sources of noise within specific con-
found regions. Regions are either defined by their tempo-
ral or anatomical characteristics. The temporal CompCor
approach (tCompCor) considers the 2% most variable
voxels within the confound brain mask as sources of con-
founds. The anatomical CompCor approach (aCompCor),
considers voxels within twice eroded WM and CSF brain
masks as sources of confounds. The user can specify how
many aCompCor and tCompCor components should be
computed, but the default value is set to five each. The
second approach uses independent component analysis
(ICA) to perform source separation in the signal (Fig. 6).
Using Nilearn’s CanICA routine, fMRIflows computes by
default the top ten independent components throughout
the confound masks. The number of confounds to extract
can be adjusted by the user. It is the user's responsibility to

Fig. 4   Summary of output figures generated by fMRIflows after exe-
cuting the anatomical preprocessing pipeline. (Top) coronal view of
the image segmentation output, showing gray matter tissue in green,
white matter tissue in beige, cerebrospinal fluid in blue. (Middle)
sagittal view of the brain extraction output, showing the extracted
brain image in red, and the original anatomical image in gray. (Bot-

tom) axial view of the spatial normalization output, showing the nor-
malized brain image highlighted in yellow, overlaid over the ICBM
2009c brain template in gray. Regions in red and blue show negative
and positive deformation discrepancy between the normalized subject
image and the template (Color figure online)

	 Brain Topography

1 3

evaluate appropriately whether residual artifacts are pre-
sent and need to be removed.

Storage of confound information: all of the confound
curves computed after functional preprocessing are stored
in a TSV file to allow for easy access.

Diverse set of overview figures: to allow for visual inspec-
tion of the numerous outputs generated after the execution
of the functional preprocessing pipeline, fMRIflows creates
many informative overview figures. These overviews cover
the motion parameters used for head motion correction, the
anatomical and temporal CompCor components, FD, DVARS,
average signal in TV, GM, WM and CSF, and the ICA compo-
nents. fMRIflows also creates a brain overview figure show-
ing the extent of the different masks applied during functional

preprocessing, a spatial correlation map between the ICA
components and the individual voxel signal, and a carpet plot
according to Power (2017) and Esteban et al. (2019). To better
visualize underlying structures in the carpet plot the time series
traces are sorted by their correlation coefficients to the average
signal within a given region, allowing for a positive or negative
time lag of 2 volumes. A shortened version of all these figures,
as well as their explanations are shown in Figs. 5, 6 and 7.

Output Generated After Executing the 1st‑Level Analysis
Pipeline

After the execution of the 1st-level analysis, the following
files are generated for the univariate analysis: (1) contrasts

Fig. 5   Example of general output figures generated by fMRIflows
after executing the functional preprocessing pipeline. The dataset
used to generate these figures was recorded with a TR of 600 ms and
had a total of 600 volumes per run. Preprocessing included a low-pass
filter at 0.2 Hz. Distribution plots on the right side of the figures in
part A and B represent value frequency in y-direction. A Depiction
of the nuisance confounds FD, DVARS and TV. Detected outlier vol-

umes are highlighted with vertical black bars. B Estimation of trans-
lation head motion after application of low-pass filtering at 0.2 Hz in
color, and before temporal filtering in light gray. C Depiction of brain
masks used to compute DVARS (red), and temporal (green) and ana-
tomical (blue) CompCor confounds, overlaid on the mean functional
image (grey) (Color figure online)

Brain Topography	

1 3

and statistical map of the specified contrasts, (2) SPM.mat
file containing the information relevant for the model, (3)
visualization of the design matrix used in the 1st-level model
depicting the regressor for the stimuli, motion and con-
founds, and (4) glass brain plot for each estimated contrast
thresholded at the top 2% of positive and negative values
created with AtlasReader (Notter et al. 2019) to provide a
general overview of the quality of contrasts. The multivari-
ate analysis part of this notebook creates: (1) one contrast
image per condition and session which later can be used as
samples for the multivariate analysis, and (2) a label file
identifying the condition of each contrast.

Output Generated After Executing the 2nd‑Level Analysis
Pipeline

After the execution of the 2nd-level univariate analysis, the
following files are generated, individually for each contrast
and spatial and temporal filter that was applied: (1) con-
trasts and statistical map of one-sample t-test contrast, (2)

SPM.mat file containing the information relevant for the
model, (3) thresholded statistical maps with corresponding
AtlasReader outputs (i.e. glass brain plot to provide a result
overview, cross section plot showing each significant clus-
ter individually, informative tables concerning the peak and
cluster extent of each cluster).

After the execution of the 2nd-level multivariate analysis,
the following files are generated, for each specified com-
parison individually: (1) subject-specific permutation files
needed for correction according to Stelzer et al. (2013), (2)
group-average prediction accuracy maps as well as cor-
responding feature-wise maps representing chance level
acquired via bootstrapping approach (Stelzer et al. 2013),
(3) group-average prediction accuracy maps after correc-
tion for multiple comparisons and (4) thresholded statistical
result maps with corresponding AtlasReader outputs (i.e.
glass brain plot to provide a result overview, cross section
plot showing each significant cluster individually, informa-
tive tables concerning the peak and cluster extent of each
cluster).

Fig. 6   Example of ICA output figures generated by fMRIflows after
executing the functional preprocessing pipeline. The dataset used to
generate these figures was recorded with a TR of 600 ms and had a
total of 600 volumes per run. A Correlation between the first three
ICA components and the functional image over time (left) and the
corresponding power density spectrum with frequency on the x-axis

(right). First component most likely depicts respiration at 0.6 Hz,
while third component is most likely visual activation induced by the
visual stimulation task during data acquisition. B Correlation strength
between a given ICA component and the location in the brain volume
for the first three ICA components

	 Brain Topography

1 3

Results of Phase 1: Proficiency Validation

Due to differences in scanner hardware, scan protocols,
research requirements and expertise of the person who
records the images, fMRI datasets can come in many differ-
ent shapes and forms. We ran fMRIflows on several datasets
to make sure that it is capable of dealing with differences
inherent to each of them. In this section, we summarize the
main issues we encountered during this process and describe
how we tackled each of them.

Image Orientation

fMRIflows reorients all anatomical and functional images
at the beginning of the preprocessing pipeline to the neuro-
logical convention RAS (right, anterior, superior) to prevent
failures of coregistration between anatomical and functional
images due to orientation mismatches within subjects.

Image Extent

Some datasets have unusually large image coverage along
the inferior–superior axis, which means that their anatomi-
cal images also often contain part of the participant’s neck.
This can lead to unwanted outcomes in certain neuroimaging
routines, as they were not tested for such additional tissue
coverage. This is most pronounced in the case of FSL’s BET
routine, which has difficulty finding the center and extent
of the brain, or SPM’s segmentation routine that depends
on the distribution of the voxel intensities within the whole

volume. To prevent these and other unforeseen behaviors,
fMRIflows uses FSL’s robustfov routine to restrict all ana-
tomical images to the same spatial extent.

Image Inhomogeneity

Depending on the scan sequence protocol or the scanner
hardware itself, some datasets can contain strong image
intensity inhomogeneities, caused by an inhomogeneous
bias field during data acquisition. This can have a nega-
tive effect on many different neuroimaging routines, most
pronounced in brain extraction and image segmentation. To
tackle this issue, fMRIflows uses ANTs’ N4BiasFieldCor-
rection routine, which allows the analysis of datasets with
even low image quality and strong image inhomogeneity. In
the anatomical preprocessing pipeline, inhomogeneity cor-
rection is applied to improve the final output image. In the
functional preprocessing pipeline, inhomogeneity correction
is only applied to improve the estimation and extraction of
different tissue types, but does not directly change the values
in the final output image.

Brain Extraction

Different brain extraction routines were explored to ensure:
(1) that the extraction is sufficiently robust to handle differ-
ent kinds of datasets, (2) that it is neither too conservative
nor liberal with the removal of non-brain tissues, and (3)
that it has an overall reasonably fast computation time. The
best and most consistent results were achieved using SPM’s

Fig. 7   Example of a carpet plot figure generated by fMRIflows after
executing the functional preprocessing pipeline. The dataset used to
generate this figure was recorded with a TR of 600 ms and had a total
of 600 volumes per run. This panel shows the signal after preproc-
essing for every other voxel (y-axis), over time in volumes (x-axis).

The panel shows voxels in the gray matter (top part), white matter
(between blue and red line) and CSF (bottom section). The data was
standardized to the average signal, and ordered within a given region
according to the correlation coefficient between a voxel and to the
average signal of this region

Brain Topography	

1 3

image segmentation routine, followed by a specific thresh-
olding and merging of the GM, WM and CSF probability
maps. FSL’s BET routine was not robust enough to lead to
stable results on all tested datasets. While ANTs’ Atropos
routine led to comparably good results, we went with SPM
because of the much faster computation time.

Image Interpolation

For the single-shot spatial interpolation during normaliza-
tion, we used ANTs and explored NearestNeighbor, BSpline
and LanczosWindowedSinc (Lanczos 1964) interpolation.
NearestNeighbor interpolation led to unnatural looking
voxel-to-voxel value transitions. BSpline led in general to
good results, but had issues especially with datasets that did
not have full brain coverage and introduced some rippling
low value fluctuations at the borders of non-zero voxels.
LanczosWindowedSinc interpolation led to the best out-
come by minimizing the smoothing effects and preventing
the introduction of additional confounds reaffirming the
observations from fMRIPrep (Esteban et al. 2019).

Results of Phase 2: Performance Validation

The performance validation of fMRIflows was conducted
on three different task-based fMRI datasets, as described in
Table 1. The preprocessing of fMRIflows was compared to
other neuroimaging processing pipelines such as fMRIPrep,
FSL and SPM. We tested fMRIflows’ preprocessing pipe-
line with and without a temporal low-pass filter of 0.2 Hz
to better understand performance differences between tool-
boxes and to stress the importance of adequate temporal fil-
tering when processing fMRI datasets with high temporal
resolution.

Estimated Spatial Smoothness After Functional
Preprocessing

Each preprocessing step that resamples a functional image,
such as slice time correction, motion correction, spatial or
temporal interpolation has the potential to increase the spa-
tial smoothness in the data. The less smoothness is intro-
duced during preprocessing, the closer the data are to their
initial version. We used AFNI’s 3dFWHMx to estimate the
average spatial smoothness (FWHM) of each functional
image after preprocessing to compare the amount of data
manipulation that was applied to the raw data (see Fig. 8).
As this FWHM value depends on the voxel resolution of a
given dataset, we normalized it by the volume of the voxel
to achieve a common FWHM value per 1 mm3.

Overall, the estimated spatial smoothness after preproc-
essing with fMRIflows (without low-pass filter) is compa-
rable to the one with fMRIPrep, while SPM’s is in general

significantly lower and FSL’s is slightly higher. All results
in Fig. 8 are corrected with the Tukey multiple comparison
test. The differences with respect to SPM are probably due
to the fewer numbers of resampling steps involved in SPM’s
preprocessing pipeline. The differences with respect to FSL
are probably due to the interpolation method used during
image resampling. While the FSL preprocessing pipeline
uses the spline interpolation, fMRIflows and fMRIPrep use
the LanczosWindowedSinc interpolation, which is known
to minimize the smoothing during interpolation. The appli-
cation of a temporal low-pass filter at 0.2 Hz during fMRI-
flows’ preprocessing leads to a significantly higher spatial
smoothness for the TR600 dataset when compared with the
other approaches. This effect might also be present for the
TR1000 dataset. However, there the difference between the
fMRIflows preprocessing with and without low-pass filter-
ing is not significant. This increased spatial smoothness for
the approach that uses a low-pass filter makes sense, as the
goal of the temporal low-pass filter itself is to smooth the
time series values. This temporal smoothing forcibly also
increases the spatial smoothness at each individual time
point.

Performance Check of Spatial Normalization

We computed the standard deviation map for each popula-
tion, based on the temporal average map of each preproc-
essed functional image, to compare the performance of spa-
tial normalization of the different preprocessing methods on
the three different datasets (see Fig. 9).

The averaged standard deviation maps after fMRIflows’
and fMRIPrep’s preprocessing are very similar, which is not
surprising as fMRIflows uses the same ANTs normalization
routine with very similar parameters. The main difference
lies in the fact that fMRIflows applies a brain extraction on
the functional images as well, which is not performed with
fMRIPrep.

Temporal Signal‑to‑Noise Ratio (tSNR) After Preprocessing

We computed the voxel-wise temporal SNR according
to Smith et al. (2013) to assess the amount of informa-
tive signal contained in the data after preprocessing. This
measurement serves as a rough estimate to compare dif-
ferent preprocessing methods, but did not allow a direct
comparison between datasets, as the tSNR value is a
relative measurement that depends highly on the para-
digm presented, the initial spatial and temporal resolu-
tion of the functional images, as well as the MRI scan
sequence specific parameters such as acceleration factors
(Smith et al. 2013). Using Nipype’s TSNR routine, we
first removed 2nd-degree polynomial drifts in each func-
tional image, and estimated tSNR maps by computing

	 Brain Topography

1 3

each voxel’s temporal mean, dividing it by its temporal
standard deviation, and multiplying it by the square root
of the number of time points recorded in a given run.
By averaging the tSNR maps over the population, we get
a general tSNR map per preprocessing method for each
dataset (see Fig. 10).

In general, preprocessing with fMRIflows without tem-
poral low-pass filter led to similar average tSNR maps
as preprocessing with fMRIPrep. Overall, preprocessing
with FSL led to slightly increased average tSNR values,
while preprocessing with SPM led to slightly decreased
average tSNR maps. The additional application of a low-
pass filter at 0.2 Hz in all three datasets led to increased
tSNR values after preprocessing with fMRIflows. This
effect was more pronounced for higher temporal resolu-
tion (as in Dataset TR1000 and TR600). The scales in
Fig. 10 were set manually so that the fMRIflows (without
low-pass filter) approach shows comparable intensities for
the three datasets.

Performance Check After 1st‑Level Analysis

To investigate the effect of the different preprocessing
methods on the 1st-level analysis, we carried out within-
subject statistical analysis using Nistats. The activation
maps were estimated using a general linear model (GLM).
The GLM included a constant term, the stimuli regressors
convolved with a double-gamma canonical hemodynamic
response function, six motion parameters (three translation
and three rotation), and a high pass filter at 100 Hz, repre-
sented by a set of cosine functions, and no temporal deriv-
atives. The input data were smoothed using a kernel with
a FWHM of 6 mm, using a Nilearn routine. The analysis
pipelines between the preprocessing methods and datasets
were kept as identical as possible, and differed only in the
number of time points contained in the dataset and the
estimated motion parameters. The statistical map for each
participant was binarized at z = 3.09, which corresponds to

Fig. 8   Investigation of estimated spatial smoothness after functional
preprocessing of three different datasets, processed with varying
approaches. The five different preprocessing approaches fMRI-
flows with (blue) and without (orange) a low-pass filter at 0.2 Hz,
fMRIPrep (green), FSL (red) and SPM (violet) are plotted separately
for the dataset TR2000 (left), TR1000 (middle) and TR600 (right).
The violin plots indicate the overall distribution of the normalized
smoothness estimates of each functional image (depicted in individ-

ual dots: TR2000 = 48 dots, TR1000 = 80 dots, TR600 = 102 dots).
The red horizontal line represents the median value, while the hori-
zontal black lines indicate the 25 and 75 percentiles of the value dis-
tribution respectively. Two-sided t-test were computed for each pair
of approaches used and each dataset. Significant differences between
groups are indicated with *p < 0.05 and ***p < 0.001. All results
are corrected with the Tukey multiple comparison test (Color figure
online)

Brain Topography	

1 3

a one-sided test value of p < 0.001. The population average
of these maps is shown in Fig. 11.

The results show that the thresholded activation count
maps between the fMRIflows approach without a low-pass
filter, fMRIPrep, FSL and SPM do not differ too much
between each other, for all three datasets. In contrast to the
other preprocessing methods, however, the preprocessing
with fMRIflows with a low-pass filter at 0.2 Hz drastically
increased the size and fraction value of the thresholded
activation count maps, for the datasets TR1000 and TR600.
Thus, appropriate temporal filtering increased the statistics
for datasets with higher temporal resolution remarkably. For
a more detailed comparison between all the toolboxes, see
Supplementary Note 7.

Performance Check After 2nd‑Level Analysis

To investigate the effect of the different preprocessing
methods on the 2nd-level analysis, we carried out between-
subject statistical analysis using Nistats and computed one-
sample t-test for each preprocessing method and dataset. The
unthresholded group-level T-statistic maps of each analysis
were then compared to each other on a voxel-by-voxel level
using Bland–Altman 2D histograms (Bowring et al. 2018),
see Fig. 12.

The results shown in Fig. 12 indicate no pronounced dif-
ferences between the preprocessing with fMRIflows with
a low-pass filter at 0.2 Hz and the other four approaches
for the analysis of the TR2000 dataset. An increased vari-
ability in the y-direction indicated a decrease in voxel-to-
voxel correspondence, which might be explained by differ-
ent spatial normalization implementations. The fact that the
average horizontal density value (dashed line) is close to
the zero line (horizontal solid line) indicated that the differ-
ent preprocessing methods led to comparable group-level
results with the TR2000 dataset. The Bland–Altman plots
for the TR1000 and TR600 datasets showed a clear increase
of t-statistic when the preprocessing was done with fMRI-
flows with a low-pass filter at 0.2 Hz, compared to any other
method. This effect was stronger for higher t-values. For
a more detailed comparison between all the toolboxes, see
Supplementary Note 8.

Discussion

fMRIflows is a fully automatic fMRI analysis pipeline,
which can perform state-of-the-art preprocessing, includ-
ing 1st-level and 2nd-level univariate analyses as well as
multivariate analyses. The goal of such an autonomous

Fig. 9   Depiction of standard
deviation maps of the temporal
averages of three different data-
sets, after multiple functional
preprocessing approaches.
Preprocessing was done with
fMRIflows (with a temporal
low-pass filter at 0.2 Hz; with-
out low-pass filter looks identi-
cal), fMRIPrep, FSL and SPM
(from top to bottom) separated
for the TR2000 (left), TR1000
(middle) and TR600 (right)
dataset. Color value represents
the standard deviation value
over all subjects. Color scale is
the same within a dataset and
was set manually to highlight
the border effects in gray matter
regions. Regions with high
inter-subject variability are
shown in yellow, while regions
with low inter-subject variabil-
ity are shown in blue. Outline of
the brain and subcortical white
matter regions is delineated in
red and is based on the ICBM
2009c brain template, except for
the analysis with SPM where
it is based on SPM’s tissue
probability map template (Color
figure online)

	 Brain Topography

1 3

approach is to improve objectiveness of the analyses, maxi-
mize transparency, facilitate ease-of-use, and provide acces-
sible and updated analysis approaches to every researcher,
including users outside the field of neuroimaging. While
the predefined analysis pipelines help to reduce the number
of error-prone manual interventions to a minimum, it also
has the advantage of decreasing the number of analytical
degrees of freedom available to a user to its minimum (Carp
2012). This constraint in flexibility is important as it helps to
control the variability in data processing and analysis (Bot-
vinik-Nezer et al. 2020). fMRIPrep showed a clear need for
such analysis-agnostic approaches and was therefore cho-
sen to provide much of the groundwork for fMRIflows. Our
pipeline provides a reliable methodological framework for
analyzing fMRI data and for obtaining statistical results that
are comparable across different scanners/laboratories and
experimental designs. fMRIflows achieves: (1) high SNR
after preprocessing, (2) reproducible within-subject t-statis-
tics, and (3) reproducible between-subject t-statistics. The
flexibility for the user to perform both spatial and temporal
filtering is particularly important in the context of datasets
that had a temporal sampling equal to or below 1000 ms or

if the statistical output will be used for more advanced analy-
ses, such as MVPA. fMRIflows also improved the overall
computation time needed to perform preprocessing and 1st
and 2nd-level analyses. Indeed, Nipype provides a parallel
execution feature of processing pipelines, which is not yet
possible with FSL or SPM. fMRIPrep uses the same boost of
parallelism but is overall much slower if the default execu-
tion of FreeSurfer’s recon-all routine is performed. However,
fMRIflows does not yet support parallel computation via a
job scheduler on a computation cluster, which is currently
possible with fMRIPrep.

In comparison with other neuroimaging software/pipe-
lines like fMRIPrep, FSL and SPM, fMRIflows achieved
comparable or improved results in (1) SNR after preprocess-
ing, (2) within-subject t-statistics, and (3) between-subject
t-statistics. These results were more obvious in the context
of datasets that had a temporal sampling equal to or below
1000 ms, and if a low-pass filter at 0.2 Hz was applied.

The inclusion of many informative visual reports allows a
direct quality control and verification of the performed pro-
cessing steps, as fMRIflows’ outputs provide a general qual-
ity assessment even though it is not as detailed and rigorous

Fig. 10   Depiction of temporal
signal-to-noise ratio maps of
three different datasets, after
multiple functional preprocess-
ing approaches. Preprocessing
was done with fMRIflows (with
and without a temporal low-pass
filter at 0.2 Hz), fMRIPrep, FSL
and SPM (from top to bottom)
separated for the TR2000 (left),
TR1000 (middle) and TR600
(right) dataset. Color value
represents the tSNR value as
computed with the Nipype rou-
tine TSNR. Color scale was set
manually and differs between
datasets, but is held constant
between different preprocessing
methods (Color figure online)

Brain Topography	

1 3

as MRIQC (Esteban et al. 2017). In contrast to other soft-
ware packages, fMRIflows uses an adapted visualization of
the carpet plot proposed by Power (2017) to highlight under-
lying temporal structure and voxel-to-voxel correlations
within different brain tissue regions and/or throughout the
brain. Such approaches help to observe general signal trends
and sudden abrupt signal changes throughout the brain, but
the exact implications of these modified carpet plots need to
be further investigated.

Being an open-source project, shared via GitHub, facili-
tates the transparency in the development of fMRIflows.
Users can inspect the complete history of the changes and
have access to all discussions connected to the software.
Code adaptations and additional support to new usage will
be proposed by the user community, which will make the
adaptation to newest standards easy and straightforward. In
addition to the version-controlled system used on GitHub,
a continuous integration scheme with CircleCi will ensure
continuous functionality.

Results of fMRIflows’ validation phase 1 suggests that the
software is capable of analyzing different types of datasets,
independently of the extent of head coverage, original image
orientation, spatial or temporal resolution. By increasing the
user base and testing fMRIflows on many more datasets,
new adaptations might be required and hidden bugs could
emerge. Users can observe any changes done to the software
in the future directly on GitHub and are encouraged to state
any questions or comments in connection with the software
on the community driven neuroinformatics forum Neuro-
Stars (https://​neuro​stars.​org).

Further development of the software will involve (1)
moving away from an SPM dependency for the 1st and 2nd-
level modeling, (2) using the more flexible FitLins toolbox
(https://​github.​com/​poldr​acklab/​fitli​ns) conforming the
results with the BIDS statistical models proposal (BEP002),
and (3) implementing an fMRIflows BIDS-App to further
improve the toolbox’s accessibility.

Fig. 11   Depiction of binarized
1st-level activation count maps,
thresholded at p < 0.001, after
multiple functional preprocess-
ing approaches. Preprocessing
was done with fMRIflows (with
and without a temporal low-pass
filter at 0.2 Hz), fMRIPrep, FSL
and SPM (from top to bottom)
separated for the TR2000 (left),
TR1000 (middle) and TR600
(right) dataset. Activation count
maps were normalized to the
ICBM 2009c brain template.
Color code represents the frac-
tion of participants that show
significant activation above a
p-value threshold at 0.001 and
corrected for false positive rate
(FPR) (Color figure online)

https://neurostars.org
https://github.com/poldracklab/fitlins

	 Brain Topography

1 3

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10548-​022-​00935-8.

Acknowledgements  We thank the creator of fMRIPrep for providing
an excellent starting point and inspiration in the development of fMRI-
flows. We also thank the developers of PyMVPA, Nilearn, Nibabel and
Nistats for bringing the neuroimaging domain into the Python universe,
and the developer of Nipype and BIDS for creating a clear framework
to execute processing pipelines, as well as the whole neuroimaging
open source and science community with its numerous contributors.

Author contributions  MPN: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Writing, Visualiza-
tion, Project administration; PH: Conceptualization, Methodology,
Software, Validation, Writing; SDC: Methodology, Supervision, Writ-
ing—Review and Editing, Validation; OFG: Writing—Reviewing and
Editing, Validation; AII: Writing—Review and Editing, Validation;
AG: Writing—Reviewing and Editing, Validation; MMM: Supervision,
Writing—Reviewing and Editing, Funding acquisition.

Funding  Open access funding provided by University of Lausanne.
This work was supported by the Swiss National Science Foundation
(Grant Numbers 320030-169206 to M.M.M.) and research funds from
the Radiology Service at the University Hospital in Lausanne (CHUV).
P.H. was supported in parts by funding from the Canada First Research
Excellence Fund, awarded to McGill University for the Healthy Brains
for Healthy Lives Initiative, the National Institutes of Health (NIH)
NIH-NIBIB P41 EB019936 (ReproNim), the National Institute Of
Mental Health of the NIH under Award Number R01MH096906, as
well as by a Research Scholar Award from Brain Canada, in partnership
with Health Canada, for the Canadian Open Neuroscience Platform
Initiative. A. G. was supported by the Marie Curie Fellowship Grant
Funding, Grant Number DVL-894612.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

Fig. 12   Bland–Altman 2D histograms of three different datasets,
comparing unthresholded group-level T-statistic maps between mul-
tiple processing approaches. Datasets TR2000 (top), TR1000 (mid-
dle) and TR600 (bottom) were used for the comparison. Density plots
show the relationship between average T-statistic value (horizontal)
and difference of T-statistic values (vertical) at corresponding vox-
els for different pairwise combinations of toolboxes. The difference
of T-statistics was always computed in contrast to a preprocessing
with fMRIflows using a low-pass filter at 0.2 Hz, while the average

T-statistics in horizontal direction investigated the preprocessing with
(from left to right) fMRIflows without a low-pass filter, fMRIPrep,
FSL and SPM. Distribution plots next to x- and y-axis depict occur-
rence of a given value in this domain. Color code within the figure
indicates the number of voxels at this given overlap, from a few (blue)
to many (yellow). Yellow horizontal line at zero indicates no value
differences between corresponding voxels. Red dashed line depicts
horizontal density average (Color figure online)

https://doi.org/10.1007/s10548-022-00935-8

Brain Topography	

1 3

included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kos-
saifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine
learning for neuroimaging with scikit-learn. Front Neuroinform
8:14

Ashburner J (2009) Preparing fMRI data for statistical analysis. In:
fMRI techniques and protocols. Springer, New York, pp 151–178

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A
reproducible evaluation of ANTs similarity metric performance in
brain image registration. Neuroimage 54:2033–2044

Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise
correction method (CompCor) for BOLD and perfusion based
fMRI. Neuroimage 37:90–101

Botvinik-Nezer R, Iwanir R, Holzmeister F, Huber J, Johannesson M,
Kirchler M, Dreber A, Camerer CF, Poldrack RA, Schonberg
T (2019) fMRI data of mixed gambles from the Neuroimaging
Analysis Replication and Prediction Study. Sci Data 6:106

Botvinik-Nezer R et al (2020) Variability in the analysis of a single
neuroimaging dataset by many teams. Nature 582:84–88

Bowring A, Maumet C, Nichols T (2018) Exploring the impact of
analysis software on task fMRI results. BioRxiv:285585

Brett M et al (2018) NiBabel: access a cacophony of neuro-imaging
file formats, version 2.3.0

Caballero-Gaudes C, Reynolds RC (2016) Methods for cleaning the
BOLD fMRI signal. Neuroimage 154:128–149

Caballero-Gaudes C, Reynolds RC (2017) Methods for cleaning the
BOLD fMRI signal. Neuroimage 154:128–149

Carp J (2012) The secret lives of experiments: methods reporting in
the fMRI literature. Neuroimage 63:289–300

Cox RW, Hyde JS (1997) Software tools for analysis and visualiza-
tion of fMRI data. NMR Biomed 10:171–178

Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gor-
golewski KJ (2017) MRIQC: advancing the automatic predic-
tion of image quality in MRI from unseen sites. PLoS ONE
12:e0184661

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erra-
muzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H,
Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ
(2019) fMRIPrep: a robust preprocessing pipeline for functional
MRI. Nat Methods 16:111–116

Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human
brain with simultaneous multi-slice imaging. J Magn Reson
229:90–100

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S,
Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E
(2010) Multiplexed echo planar imaging for sub-second whole
brain fMRI and fast diffusion imaging. PLoS ONE 5:e15710

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781
Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins

DL (2011) Unbiased average age-appropriate atlases for pedi-
atric studies. Neuroimage 54:313–327

Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996)
Movement-related effects in fMRI time-series. Magn Reson
Med 35:346–355

Friston K, Penny W, Ashburner J, Kiebel S, Nichols T (2006) Sta-
tistical parametric mapping: the analysis of functional brain
images. Elsevier, Amsterdam

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO,
Waskom ML, Ghosh SS (2011) Nipype: a flexible, lightweight
and extensible neuroimaging data processing framework in
python. Front Neuroinform 5:13

Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS,
Maumet C, Sochat VV, Nichols TE, Poldrack RA, Poline J-B,
Yarkoni T, Margulies DS (2015) NeuroVault.org: a web-based
repository for collecting and sharing unthresholded statistical
maps of the human brain. Front Neuroinform 9:8

Gorgolewski KJ et al (2016) The brain imaging data structure, a
format for organizing and describing outputs of neuroimaging
experiments. Sci Data 3:160044

Gorgolewski K, Esteban O, Schaefer G, Wandell B, Poldrack R
(2017) OpenNeuro—a free online platform for sharing and
analysis of neuroimaging data. Organization for Human Brain
Mapping, Vancouver, p 1677

Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V,
Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating
partially parallel acquisitions (GRAPPA). Magn Reson Med
47:1202–1210

Hallquist MN, Hwang K, Luna B (2006) The nuisance of nuisance
regression: spectral misspecification in a common approach to
resting-state fMRI preprocessing reintroduces noise and obscures
functional connectivity. Neuroimage 82:208–225

Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Poll-
mann S (2009) PyMVPA: A Python toolbox for multivariate
pattern analysis of fMRI data. Neuroinformatics 7:37–53

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput
Sci Eng 9:90–95

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM
(2012) FSL Neuroimage 62:782–790

Jones E, Oliphant T, Peterson P et al (2001) {SciPy}: open source
scientific tools for {Python}

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M,
Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P,
Avila D, Abdalla S, Willing C (2016) Jupyter Notebooks—a
publishing format for reproducible computational workflows. In:
Positioning and power in academic publishing: players, agents
and agendas. IOS Press, Amsterdam, pp 87–90

Lanczos C (1964) Evaluation of noisy data. J Soc Ind Appl Math
B 1:76–85

Lindquist MA, Geuter S, Wager TD, Caffo BS (2019) Modular pre-
processing pipelines can reintroduce artifacts into fMRI data.
Hum Brain Mapp 40(8):2358–2376

McKinney W et al (2010) Data structures for statistical computing
in Python. In: Proceedings of the 9th Python in science confer-
ence, 2010, pp 51–56

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N,
Uğurbil K (2010) Multiband multislice GE-EPI at 7 Tesla, with
16-fold acceleration using partial parallel imaging with appli-
cation to high spatial and temporal whole-brain fMRI. Magn
Reson Med 63:1144–1153

Notter M, Gale D, Herholz P, Markello R, Notter-Bielser M-L,
Whitaker K (2019) AtlasReader: a Python package to generate
coordinate tables, region labels, and informative figures from
statistical MRI images. J Open Source Softw 4:1257

Oliphant TE (2007) Python for scientific computing. Comput Sci
Eng 9(3):10–20

Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011)
Statistical parametric mapping: the analysis of functional brain
images. Elsevier, Amsterdam

Power JD (2017) A simple but useful way to assess fMRI scan quali-
ties. Neuroimage 154:150–158

http://creativecommons.org/licenses/by/4.0/

	 Brain Topography

1 3

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE
(2012) Spurious but systematic correlations in functional con-
nectivity MRI networks arise from subject motion. Neuroimage
59:2142–2154

Power JD, Plitt M, Laumann TO, Martin A (2017b) Sources and
implications of whole-brain fMRI signals in humans. Neuroim-
age 146:609–625

Sengupta A, Pollmann S, Hanke M (2018) Spatial band-pass filtering
aids decoding musical genres from auditory cortex 7 T fMRI.
F1000Res 7:142

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,
Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Ste-
fano N, Brady JM, Matthews PM (2004) Advances in functional
and structural MR image analysis and implementation as FSL.
Neuroimage 23(Suppl 1):S208–S219

Smith SM et al (2013) Resting-state fMRI in the Human Connectome
Project. Neuroimage 80:144–168

Stelzer J, Chen Y, Turner R (2013) Statistical inference and multi-
ple testing correction in classification-based multi-voxel pattern
analysis (MVPA): random permutations and cluster size control.
Neuroimage 65:69–82

Strother SC (2006) Evaluating fMRI preprocessing pipelines. IEEE
Eng Med Biol Mag 25:27–41

Viessmann O, Möller HE, Jezzard P (2018) Dual regression physiologi-
cal modeling of resting-state EPI power spectra: effects of healthy
aging. Neuroimage 187:68–76

Yarkoni T et al (2019) PyBIDS: Python tools for BIDS datasets. J Open
Source Softw 4:1294

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines
	Abstract
	Introduction
	Materials and Methods
	fMRIflows’ Processing Pipelines
	Specification Preparation
	Anatomical Preprocessing
	Functional Preprocessing
	1st-Level Analysis
	2nd-Level Univariate Analysis
	2nd-Level Multivariate Analysis

	Infrastructure and Access to fMRIflows
	Validation of fMRIflows
	Phase 1: Proficiency Validation
	Phase 2: Performance Validation

	Results
	Summary of Outputs Obtained by fMRIflows’ Processing Pipelines
	Output Generated After Executing the Anatomical Preprocessing Pipeline
	Output Generated After Executing the Functional Preprocessing Pipeline
	Output Generated After Executing the 1st-Level Analysis Pipeline
	Output Generated After Executing the 2nd-Level Analysis Pipeline

	Results of Phase 1: Proficiency Validation
	Image Orientation
	Image Extent
	Image Inhomogeneity
	Brain Extraction
	Image Interpolation

	Results of Phase 2: Performance Validation
	Estimated Spatial Smoothness After Functional Preprocessing
	Performance Check of Spatial Normalization
	Temporal Signal-to-Noise Ratio (tSNR) After Preprocessing
	Performance Check After 1st-Level Analysis
	Performance Check After 2nd-Level Analysis

	Discussion
	Acknowledgements
	References

