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Abstract
How functional magnetic resonance imaging (fMRI) data are analyzed depends on the researcher and the toolbox used. It 
is not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code transparency, quality 
control and objective analysis pipelines are important for improving reproducibility in neuroimaging studies. Toolboxes, such 
as Nipype and fMRIPrep, have documented the need for and interest in automated pre-processing analysis pipelines. Recent 
developments in data-driven models combined with high resolution neuroimaging dataset have strengthened the need not 
only for a standardized preprocessing workflow, but also for a reliable and comparable statistical pipeline. Here, we introduce 
fMRIflows: a consortium of fully automatic neuroimaging pipelines for fMRI analysis, which performs standard preprocess-
ing, as well as 1st- and 2nd-level univariate and multivariate analyses. In addition to the standardized pre-processing pipelines, 
fMRIflows provides flexible temporal and spatial filtering to account for datasets with increasingly high temporal resolution 
and to help appropriately prepare data for advanced machine learning analyses, improving signal decoding accuracy and 
reliability. This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure and access, and 
lastly validates the toolbox by comparing it to other neuroimaging processing pipelines such as fMRIPrep, FSL and SPM. 
This validation was performed on three datasets with varying temporal sampling and acquisition parameters to prove its 
flexibility and robustness. fMRIflows is a fully automatic fMRI processing pipeline which uniquely offers univariate and 
multivariate single-subject and group analyses as well as pre-processing.
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Introduction

Functional magnetic resonance imaging (fMRI) is a well-
established neuroimaging method used to analyze activa-
tion patterns in order to understand brain function. A full 
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fMRI analysis includes preprocessing of the data, followed 
by statistical analysis and inference on the results, usually 
separated into 1st-level analysis (the statistical analysis 
within subjects) and 2nd-level analysis (the group analysis 
between subjects). The goal of preprocessing is to identify 
and remove nuisance sources, measure confounds, apply 
temporal and spatial filters and to spatially realign and nor-
malize images to make them spatially conform (Caballero-
Gaudes and Reynolds 2017). A good preprocessing pipeline 
should improve the signal-to-noise ratio (SNR) of the data, 
ensure validity of inference and interpretability of results 
(Ashburner 2009), reduce false positive and false negative 
errors in the statistical analysis and therefore improve the 
statistical power.

Even though the consequences of inappropriate pre-
processing and statistical inference are well documented 
(Strother 2006; Power et al. 2017b), most fMRI analysis 
pipelines are still established ad-hoc, subjectively cus-
tomized by researchers to each new dataset (Carp 2012). 
This usage can be explained by the circumstance that most 
researchers, by habit or lack of time, stick with the neuro-
imaging software at-hand or reuse and modify scripts and 
code snippets from colleagues and previous projects, and 
do not always adapt their processing pipelines to the newest 
standard in neuroimaging processing. Rehashing processing 
pipelines is associated with problems like persisting bugs in 
the code and delays in updating individual analysis steps to 
the most recent standards. This can lead to far reaching con-
sequences. Of course, the constant updating of pipelines to 
newest standards and softwares also bears the risk of intro-
ducing new bugs and might lead to the pitfall of blindly 
trusting new untested procedures.

One solution to tackle this issue will require code trans-
parency, good quality control and a collective development 
of well-tested objective analysis pipelines (Gorgolewski 
et al. 2016). Recent years have brought some important ref-
ormations to the neuroimaging community that go in this 
direction.

First, the introduction of Nipype (Gorgolewski et al. 
2011) made it easier for researchers to switch between dif-
ferent neuroimaging toolboxes, such as AFNI (Cox and 
Hyde 1997), ANTs (Avants et al. 2011), FreeSurfer (Fischl 
2012), FSL (Jenkinson et al. 2012), and SPM (Friston et al. 
2006). Nipype together with other software packages such 
as Nibabel (Brett et al. 2018) and Nilearn (Abraham et al. 
2014) opened up the whole Python ecosystem to the neuro-
imaging community. Code can be shared between research-
ers via online services such as GitHub (https://​github.​com), 
and the whole neuroimaging software ecosystem can be run 
on any machine or server through the use of container soft-
ware such as Docker (https://​www.​docker.​com) or Singu-
larity (https://​www.​sylabs.​io). Combined with a continuous 
integration service such as CircleCI (https://​circl​eci.​com) 

or TravisCI (https://​travis-​ci.​org), this allows the creation of 
easy-to-read, transparent, shareable and continuously tested 
open-source neuroimaging processing pipelines.

Second, the next major advancement in the neuroimaging 
field was the introduction of a common dataset standard, 
such as the NIfTI standard (https://​nifti.​nimh.​nih.​gov/). This 
was important for the formatting of neuroimaging data. The 
neuroimaging community gathered together in a consortium 
to define a standard format for the storage of neuroimaging 
datasets, the so-called brain imaging data structure (BIDS; 
Gorgolewski et al. 2016). A common data structure format 
facilitates the sharing of datasets and makes it possible to 
create universal neuroimaging toolboxes that work out-of-
the-box on any BIDS conforming dataset. Additionally, 
through services like OpenNeuro (Gorgolewski et al. 2017), 
a free online platform for sharing neuroimaging data, one 
can test the robustness and flexibility of a new neuroimaging 
toolbox on hundreds of different datasets.

Software toolboxes like MRIQC (Esteban et al. 2017) and 
fMRIPrep (Esteban et al. 2019) have shown how fruitful this 
new neuroimaging ecosystem can be and have highlighted 
the importance and need of good quality control and high-
quality preprocessing workflows with consistent results from 
diverse datasets. Given the recent developments in the field 
of data-driven analyses to decode brain states from fMRI 
time-series, there is an increased need for reliable and repro-
ducible statistical analysis of fMRI data, the fundamental 
input of more advanced machine learning methods, such as 
multi-voxel pattern analysis (MVPA) and convolutional neu-
ronal networks (CNNs). Here, we build from the fMRIPrep 
workflow to expand it to a fully automated pipeline for uni-
variate and multivariate individual and group analyses.

fMRIflows provides flexible temporal and spatial filter-
ing, to account for two recent findings in the data-driven 
model field. First, flexible spatial filtering can become of 
importance when performing multivariate analysis, as it has 
been shown that the correct spatial band-pass filtering can 
improve signal decoding accuracy (Sengupta et al. 2018). 
Second, correct temporal filtering during pre-processing 
is important and can lead to improved SNR, especially for 
fMRI datasets with a temporal sampling rate below one sec-
ond (Viessmann et al. 2018), but only if the filter is applied 
orthogonally to the other filters during pre-processing to 
ensure that previously removed noise is not reintroduced into 
the data (Hallquist et al. 2006; Lindquist et al. 2019). Due 
to technical improvements in imaging recording through 
acceleration techniques such as GRAPPA (Griswold et al. 
2002) and simultaneous multi-slice/multiband acquisitions 
(Feinberg et al. 2010; Moeller et al. 2010; Feinberg and Set-
sompop 2013), faster sampling rates became possible, to the 
point that respiratory and cardiac signals can be sufficiently 
sampled in the BOLD signal. This creates new challenges 
for the pre-processing of functional images, especially when 

https://github.com
https://www.docker.com
https://www.sylabs.io
https://circleci.com
https://travis-ci.org
https://nifti.nimh.nih.gov/


Brain Topography	

1 3

the external recording of those physiological sources cannot 
be readily achieved.

fMRIflows presents a consortium of fully automatic neu-
roimaging pipelines for fMRI analysis, performing standard-
ized pre-processing, as well as 1st- and 2nd-level statistical 
analyses for univariate and multivariate analysis, with the 
additional creation of informative quality-control figures. 
fMRIflows is predicated on the insights and code base of 
MRIQC (Esteban et al. 2017) and fMRIPrep (Esteban et al. 
2019), extending their functionality with regard to the fol-
lowing aspects: (a) flexible temporal and spatial filtering of 
fMRI data, i.e. low- or band-pass filtering allowing for the 
exclusion of high-frequency oscillations introduced through 
physiological noise (Viessmann et al. 2018); (b) accessible 
and modifiable code base; (c) automatic computation of 1st-
level contrasts for univariate and multivariate analysis; and 
(d) automatic computation of 2nd-level contrasts for univari-
ate and multivariate analysis.

In this paper, we (1) describe the different pipelines 
included in fMRIflows and illustrate the different process-
ing steps involved, (2) explain the software structure and 
setup, and (3) validate fMRIflows’ performance by compar-
ing it to other widely used neuroimaging toolboxes, such as 
fMRIPrep (Esteban et al. 2019), FSL (Jenkinson et al. 2012) 
and SPM (Friston et al. 2006).

Materials and Methods

fMRIflows’ Processing Pipelines

The complete code base of fMRIflows is open access and 
stored conveniently in six different Jupyter Notebooks on 
https://​github.​com/​miyka​el/​fmrif​lows. The first notebook 
does not contain any processing pipeline, but rather serves as 
a user input document that helps to create JSON files, which 
will contain the execution specific parameters for the five 
processing pipelines contained in fMRIflows: (1) anatomi-
cal preprocessing, (2) functional preprocessing, (3) 1st-level 
analysis, (4) 2nd-level univariate analysis and (5) 2nd-level 
multivariate analysis. Each of these five pipelines stores its 
results in a sub hierarchical folder, specified as an output 
folder by the user. In the following section, we explain the 
content of those six Jupyter Notebooks.

Specification Preparation

Each fMRIflows processing pipeline needs specific input 
parameters to run. Those parameters range from subject ID 
and number of functional runs per subject, to requested voxel 
resolution after image normalization, etc. Each notebook 
will read the relevant specification parameters from a prede-
fined JSON file that starts with the prefix “fmriflows_spec”. 

There is one specification file for the anatomical and func-
tional preprocessing, one for the 1st and 2nd level univariate 
analysis, and one for the 2nd-level multivariate analysis. For 
an example of these three JSON files, see Supplementary 
Note 1. The first notebook contained in fMRIflows, called 
01_spec_preparation.ipynb, can be used to create those 
JSON files, based on the provided dataset and some stand-
ard default parameters. It does so by using Nibabel v2.3.0 
(Brett et al. 2018), PyBIDS v0.8 (Yarkoni et al. 2019) and 
other standard Python libraries. It is up to the user to change 
any potential processing parameter should they be different 
from the used default values.

Anatomical Preprocessing

The anatomical preprocessing pipeline is contained within 
the notebook 02_preproc_anat.ipynb and uses the JSON 
file fmriflows_spec_preproc.json for parameter specifica-
tion such as voxel resolution. If a specific value is not set, 
fMRIflows normalizes to an isometric voxel resolution of 
1 mm3 by default. However, the user can also choose an 
anisometric voxel resolution that varies in all three dimen-
sions. Additionally, the user can decide to have a fast or 
precise normalization. The precise normalization can take up 
to eight times as long as the fast approach, but can provide 
a more precise alignment. Visual inspection on performed 
normalization is always desirable since both normalization 
algorithms may fail in case of a noisy dataset or undetected 
artifacts. For an example of the JSON file content, see Sup-
plementary Note 1.

The anatomical preprocessing pipeline only depends on 
the subject specific T1-weighted (T1w) anatomical images 
as input files. The individual processing steps are visual-
ized in Fig. 1 and consist of: (1) image reorientation, (2) 
cropping of field of view (FOV), (3) correction of intensity 
non-uniformity (INU), (4) image segmentation, (5) brain 
extraction and (6) image normalization. For a more detailed 
description of the steps involved in this processing pipeline, 
see Supplementary Note 2.

Functional Preprocessing

The functional preprocessing pipeline is contained within 
the notebook 03_preproc_func.ipynb and uses the JSON file 
fmriflows_spec_preproc.json for parameter specification. 
As specification parameters, users can indicate if slice-time 
correction should be applied or not, and if so which refer-
ence timepoint should be used. The user can also indicate to 
which isometric or anisometric voxel resolution functional 
images should be sampled to, and if the sampling is into 
subject or template space. For the template space, the ICBM 
2009c nonlinear asymmetric brain template is used (Fonov 
et al. 2011). Furthermore, users can specify possible values 

https://github.com/miykael/fmriflows
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for low-, high- or band-pass filters in the temporal or spatial 
domain. Additionally, to investigate nuisance regressors, 
users can specify the number of CompCor (Behzadi et al. 
2007) or independent component analysis (ICA) components 
they want to extract and which threshold values they want 
to use to detect outlier volumes. The implications of those 
parameters will be explained in more details in the follow-
ing sections. For an example of the JSON file content, see 
Supplementary Note 1.

The functional preprocessing pipeline depends as inputs 
on the output files from the anatomical preprocessing pipe-
line, as well as the subject-specific functional images and 
accompanying descriptive JSON file that contains informa-
tion about the temporal resolution (TR) and slice order of 
the functional image recording. This JSON file is part of 

the BIDS standard and therefore should be available in the 
BIDS conform dataset. The individual processing steps are 
schematized in Fig. 2 and consist of: (1) image reorienta-
tion, (2) non-steady-state detection, (3) creation of func-
tional brain mask, (4) slice time correction, (5) estimation 
of motion parameters, (6) two-step estimation of coregistra-
tion parameters between functional and anatomical image, 
(7) finalization of motion parameters, (8) single-shot spatial 
interpolation applying motion correction, coregistration and 
if specified normalizing images to the template image, (9) 
construction and application of brain masks, (10) temporal 
filtering and (11) spatial filtering. It is important to mention 

Fig. 1   Depiction of fMRIflows’ anatomical preprocessing pipeline. 
Arrows indicate dependency between the different processing steps 
and data flow. Name of each node describes functionality, with the 
corresponding software dependency mentioned in brackets

Fig. 2   Depiction of fMRIflows’ functional preprocessing pipeline. 
Arrows indicate dependency between the different processing steps 
and data flow. Name of each node describes functionality, with the 
corresponding software dependency mentioned in brackets. Steps 
that can be grouped into specific sections are contained within a red 
box to facilitate understanding of the pipeline. Color of arrows indi-
cated if connection stays within a section (red) or not (blue). Nodes 
depicted as gray boxes indicate that they can be run multiple times 
with iterating input values, i.e. performing a spatial smoothing with 
an FWHM value of 4 and 8 mm (Color figure online)
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that the functional preprocessing is done for each functional 
run separately to prevent inter-run contaminations. For a 
more detailed description of the steps involved in this pro-
cessing pipeline, see Supplementary Note 3.

1st‑Level Analysis

The first level analysis pipeline is contained within the 
notebook 04_analysis_1st-level.ipynb and uses the JSON 
file fmriflows_spec_analysis.json for parameter specifica-
tion. As specification parameters, users can indicate which 
nuisance regressors to include in the GLM, if outliers should 
be considered, and if the data is already in template space 
or if this normalization should be done after the estimation 
of the contrasts. Users can also specify other GLM model 
parameters, such as the high-pass filter value and the type 
of basis function that should be used to model the hemody-
namic response function (HRF). Additionally, the users will 
also specify a list of contrasts they want to be estimated, or 
if they want to create specific contrasts for each stimulus 
column in the design matrix, and/or for each session sepa-
rately, which then later might also be used for multivariate 
analysis. For an example of the JSON file content, see Sup-
plementary Note 1.

The 1st-level analysis pipeline depends on a number of 
outputs from the previous anatomical and functional pre-
processing pipelines, i.e. the TSV (tab separated value) file 
containing motion parameters and confound regressors, a 
text file indicating the number of non-steady-state volumes 
removed from the functional image, and a text file con-
taining a list of indexes identifying outlier volumes. Addi-
tionally, the 1st-level analysis pipeline also requires BIDS 
conform events files containing information on the applied 
experimental design, including types of conditions and their 
respective onsets and durations. The individual processing 
steps included in the 1st-level analysis consist of: (1) collect-
ing preprocessed files and model relevant information, (2) 
model specification and estimation, (3) univariate contrast 
estimation, (4) optional preparation for multivariate analysis, 
(5) optional spatial normalization of contrasts (Fig. 3). All 
of the relevant steps, that is model creation, estimation and 
contrast computation are performed with SPM version 12. 
For a more detailed description of the steps involved in this 
processing pipeline, see Supplementary Note 4.

2nd‑Level Univariate Analysis

The second level univariate analysis pipeline is contained 
within the notebook 05_analysis_2nd-level.ipynb and uses 
the JSON file fmriflows_spec_analysis.json for parameter 
specification. Users can specify the probability value used 
as a cutoff for the threshold of the GM probability tissue 
map in template space that is later used during the model 

estimation. Additionally, users can specify voxel- and 
cluster-threshold topological thresholding of the statisti-
cal contrast, as well as relevant AtlasReader (Notter et al. 
2019) parameters for the creation of the output tables and 
figures.

Fig. 3   Depiction of fMRIflows’ 1st-level analysis pipeline. Arrows 
indicate dependency between the different processing steps and data 
flow. Name of each node describes functionality, with the correspond-
ing software dependency mentioned in brackets. Sections that can be 
grouped into specific sections are contained within a red box to facili-
tate understanding of the pipeline. Color of arrows indicated if con-
nection stays within a section (red) or not (blue). Nodes depicted in 
green are optional and can be run if spatial normalization was not yet 
performed during preprocessing (Color figure online)
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The 2nd-level univariate analysis pipeline depends only 
on the estimated contrasts from the 1st-level univariate anal-
ysis. No further contrast specification is required as fMRI-
flows currently only implements a simple one-sample t-test. 
The individual processing steps included in the 2nd-level 
univariate analysis consist of: (1) gathering of the 1st-level 
contrasts, (2) creation and estimation of 2nd-level model, (3) 
estimation of contrast estimation, (4) topological threshold-
ing of contrasts, (5) results creation with AtlasReader. As 
for the 1st-level analysis, all of the relevant model creation, 
estimation and contrast computation are performed with 
SPM12. All results were corrected for false positive rate 
(FPR). For a more detailed description of the steps involved 
in this processing pipeline, see Supplementary Note 5.

2nd‑Level Multivariate Analysis

The second level multivariate analysis pipeline is contained 
within the notebook 06_analysis_multivariate.ipynb and 
uses the JSON file fmriflows_spec_multivariate.json for 
parameter specification. Users can define a list of classifiers 
to use for the multivariate analysis, the sphere radius and 
step size of the searchlight approach. To perform a 2nd-level 
analysis of searchlight results users can decide between a 
classical GLM approach testing against chance level and a 
more recommended permutation based method as described 
in Stelzer et al. (2013) with the option of determining the 
number of permutations. Additionally, users can specify 
voxel- and cluster-threshold topological thresholding of the 
statistical contrast, as well as relevant AtlasReader param-
eters for the creation of the output tables and figures.

The 2nd-level multivariate analysis pipeline depends 
on the estimated contrasts from the 1st-level multivariate 
analysis, the associated CSV file containing a list of the cor-
responding contrast labels and a list of binary classification 
identifiers. In contrast to the other notebooks, this notebook 
uses Python 2.7 to accommodate the requirements of PyM-
VPA v2.6.5 (Hanke et al. 2009). The individual processing 
steps included in the 2nd-level multivariate analysis consist 
of: (1) data preparation for the analysis with PyMVPA, (2) 
searchlight classification, (3) computation of group analy-
sis using a t-test, (4) computation of group analysis accord-
ing to Stelzer et al. (2013), and (5) results creation with 
AtlasReader. All results were corrected for FPR. For a more 
detailed description of the steps involved in this processing 
pipeline, see Supplementary Note 6.

Infrastructure and Access to fMRIflows

The source code of fMRIflows is available at GitHub 
(https://​github.​com/​miyka​el/​fmrif​lows) and is licensed under 
the BSD 3-Clause “New” or “Revised” License. The code 
is written in Python v3.7.2 (https://​www.​python.​org), stored 

in Jupyter Notebooks v4.4.0 (Kluyver et al. 2016) and dis-
tributed via Docker v18.09.2 (https://​docker.​com) contain-
ers that are publicly available via Docker Hub (https://​hub.​
docker.​com). The usage of Docker allows the user to run 
fMRIflows on any major operating system, with the follow-
ing command:

docker run-it-p 9999:8888-v /home/user/ds001:/data 
miykael/fmriflows.

The first flag -it indicates that the Docker container 
should be run in interactive mode, while the second flag 
-p 9999:8888 defines the port (here 9999) that we want to 
use to access the Jupyter Notebooks via the web-browser. 
The third flag, -v /home/user/ds001:/data tells fMRIflows 
the location of the BIDS conform dataset that should be 
mounted in the Docker container, here located at /home/
user/ds001. Once the docker container is launched, the 
interactive Jupyter Notebooks can be accessed through the 
web-browser.

fMRIflows uses many different software packages for 
the individual processing steps. The neuroimaging software 
that are used are: Nipype v1.1.9 (Gorgolewski et al. 2011), 
FSL v5.0.9 (Smith et al. 2004), ANTs v2.2.0 (Avants et al. 
2011), SPM12 v7219 (Penny et al. 2011), AFNI v18.0.5 
(Cox and Hyde 1997), Nilearn v0.5 (Abraham et al. 2014), 
Nibabel v2.3.0 (Brett et al. 2018), PyMVPA v2.6.5 (Hanke 
et al. 2009), Convert3D v1.1 (https://​sourc​eforge.​net/p/​c3d), 
AtlasReader v0.1 (Notter et al. 2019) and PyBIDS v0.8 
(Yarkoni et al. 2019). In addition to some standard Python 
libraries, fMRIflows also uses Numpy (Oliphant 2007), 
Scipy (Jones et al. 2001), Matplotlib (Hunter 2007), Pandas 
(McKinney et al. 2010) and Seaborn (http://​seabo​rn.​pydata.​
org).

With every new pull request pushed to the GitHub Repos-
itory of fMRIflows, a test instance on CircleCI (https://​circl​
eci.​com) is deployed to test the complete code base for 
execution errors. This framework allows the continuous 
integration of new code to fMRIflows, and guarantees the 
general functionality of the software package. Outputs are 
not controlled for their correctness.

Validation of fMRIflows

fMRIflows was validated in two phases. In Phase 1, we 
validated the proficiency of the toolbox by applying it on 
different kinds of fMRI datasets conforming to the BIDS 
standard (Gorgolewski et al. 2016) available via OpenNeuro.
org (Gorgolewski et al. 2017). Insights during this phase 
allowed us to improve the code base and make fMRIflows 
robust to a diverse set of datasets. In Phase 2, we compared 
the performance of the toolbox to similar neuroimaging 
preprocessing pipelines such as fMRIPrep, FSL, and SPM. 
To better understand where fMRIflows overlaps or diverges 
from comparable processing pipelines, we investigated the 
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preprocessing, subject-level and group-level outcomes for 
all four toolboxes, run on three different datasets.

Phase 1: Proficiency Validation

To investigate the capabilities and flaws of the initial imple-
mentation of the toolbox, fMRIflows was run on different 
datasets, either available publicly via OpenNeuro.org or 
available privately to the authors. Such an approach allowed 
the exploration of datasets with different temporal and spa-
tial resolutions, SNRs, FOVs, numbers of slices, scanner 
characteristics, and other sequence parameters, such as 
acceleration factors and flip angles.

Phase 2: Performance Validation

To validate the performance of fMRIflows, we used three 
different task-based fMRI datasets and compared its pre-
processing to the three neuroimaging processing pipelines 
fMRIPrep, FSL and SPM. Comparison was done on pre-
processing, subject-level and group-level outputs. Because 
of differences in how FSL and SPM perform subject- and 
group-level analyses and due to the lack of such routines in 
fMRIPrep, all subject- and group-level analyses for the per-
formance validation were performed using identical Nistats 
(Abraham et al. 2014) routines.

The three datasets (see Table 1) were all acquired on 
scanners with a magnetic field strength of 3 T and differ in 
many sequence parameters, most notably in the temporal 
resolution with which they were recorded. This is especially 
important as we aim to highlight that the right handling of 
temporal filtering is crucial for datasets with a temporal 
resolution below 1000 ms.

Dataset TR2000 has a comparably low temporal sam-
pling and spatial resolution. It serves as a standard dataset, 
recorded with a standard EPI scan sequence. The dataset and 
paradigm are described in more details in Notter et al. (under 
review). In short, participants performed a continuous recog-
nition task and indicated for each image whether it is old or 
new. When the image was presented for the first time (new) 
it was either presented with no sound (unisensory visual 
context) or together with a sound (multisensory context).

Dataset TR1000 has a rather high temporal sampling 
and spatial resolution and serves as an advanced dataset, 
recorded with a scan sequence using a multiband accelera-
tion technique. The dataset and paradigm are described in 
more detail in Botvinik-Nezer et al. (2019). In short, par-
ticipants performed a mixed gambling task in which they 
were asked to either accept or reject a possible monetary 
gain or loss.

Dataset TR600 has a very high temporal sampling with a 
moderate spatial resolution and serves as an extreme dataset, 
recorded with scan sequences using a simultaneous multi-
slice (SMS) acceleration technique (Feinberg et al. 2010). 
This dataset was collected for another project. In short, par-
ticipants were shown auditory, visual or audiovisual stimuli 
containing either an animal (as an image or sound), pure 
noise or both together. Participants performed a discrimina-
tion task in which they had to indicate if they perceived a 
stimuli with an animal in it or not, independent of the stimuli 
modality. The stimuli were either presented in a unisensory 
or multisensory context.

All participants of the Datasets TR2000 and TR600 
have been included in the performance validation, while 
only the first 20 out of the 120 total participants of the 
Dataset TR1000 was used in order to reduce computation 

Table 1   Overview of the datasets used to validate fMRIflows

Dataset TR2000 TR1000 TR600

Temporal resolution (ms) 2000 1000 600
Spatial resolution 3.5 × 3.5 × 3.3 2.0 × 2.0 × 2.4 3.0 × 3.0 × 3.0
Number of slices 36 64 24
Slice Order Descending Unknown Interleaved
Coverage Whole brain Whole brain Slab
Volumes per run 275 453 600
Number of runs 4 4 6
Acceleration factor None 4 3
Magnetic strength (T) 3 3 3
Number of subjects 12 20 17
Sequence type 2D-EPI Multi-band SMS
Task Audio–visual memory task Mixed gamble task Audio–visual observation task
Data availability OpenNeuro.org (ds001345, v 1.0.1) OpenNeuro.org 

(ds001734, v.1.0.4)
OpenNeuro.org (will be made available 

after publication of experimental 
work)
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time and make this dataset comparable to the other two. 
Datasets TR2000 and TR1000 are already publicly avail-
able through the OpenNeuro platform. Dataset TR600 is in 
preparation to be published on OpenNeuro as well. Until 
then, this dataset is available upon request.

The pre-processing pipelines with fMRIf lows, 
fMRIPrep, FSL and SPM were based on the default param-
eters and only differed in the following points from their 
standard implementations: (1) Functional images were 
resampled to an isometric voxel resolution according to 
the dominant resolution dimension within a dataset; (2) 
Spatial smoothing of the functional images is applied after 
preprocessing of the images, using a Nilearn routine and 
a smoothing kernel with a full width at half maximum 
(FWHM) of 6 mm, in order to keep the approaches compa-
rable, as spatial smoothing is not included in the fMRIPrep 
workflow; (3) Anatomical images in the FSL pipeline were 
first cropped to a standard FOV, followed by brain extrac-
tion using FSL’s BET before FSL’s FEAT was launched; 
(4) In the case of FSL, the normalization from structural 
to standard space was done using a non-linear warping 
approach with 12 degrees of freedom and a spline interpo-
lation model; (5) In the case of SPM, the template brain for 
the normalization was its standard tissue probability brain 
TPM, while for fMRIflows, fMRIPrep and FSL, the ICBM 
2009c nonlinear asymmetric brain template was used.

The statistical inference was not performed on any of 
the investigated toolboxes to prevent the introduction of a 
software specific bias. The 1st- and 2nd-level analysis was 
performed using Nistats, Nilearn and other Python tool-
boxes and only differed between the toolboxes in the fol-
lowing ways: (1) the estimated motion parameters added to 
the design matrix during the 1st-level analysis differed for 
each toolbox as they were based on the software-specific 
preprocessing routine; (2) the number of volumes per run 
used during the 1st-level analysis of fMRIflows might dif-
fer slightly from the other approaches, as the fMRIflows 
routine removes non-steady state volumes during the pre-
processing; (3) SPM used its own tissue probability map 
to create a binary mask restricted to gray matter voxels 
during the group analysis, while the other three toolboxes 
used the ICBM 2009c gray matter probability map instead.

To compare the unthresholded group statistic maps 
between the toolboxes, we created for each pairwise com-
bination of preprocessing approach a Bland–Altman 2D 
histogram plot, as described by (Bowring et al. 2018). 
These plots show the difference between the statistic value 
(y-axis), against the mean statistic value (x-axis) for all 
voxels within the intersection of the respective brain mask. 
In other words, it summarized in a 2D histogram plot, for 
each voxel how much higher the statistical value in tool-
box B is (y-axis), in comparison to toolbox A’s statistical 
value (x-axis).

The complete lists of parameters, the scripts to perform 
preprocessing, 1st- and 2nd-level analysis and the scripts to 
create individual figures can be found on fMRIflows GitHub 
page (https://​github.​com/​miyka​el/​fmrif​lows/​tree/​master/​
paper). Derivatives generated for the validation in phase 
2 can be inspected and downloaded on NeuroVault (Gor-
golewski et al. 2015) under the following links: (1) Stand-
ard deviation maps of temporal averages after preprocessing 
(https://​ident​ifiers.​org/​neuro​vault.​colle​ction:​5645), (2) tem-
poral SNR maps after preprocessing (https://​ident​ifiers.​org/​
neuro​vault.​colle​ction:​5713), (3) binarized 1st-level activa-
tion count maps (https://​ident​ifiers.​org/​neuro​vault.​colle​ction:​
5647), (4) 2nd-level activation maps (https://​ident​ifiers.​org/​
neuro​vault.​colle​ction:​5646).

Results

Summary of Outputs Obtained by fMRIflows’ 
Processing Pipelines

Output Generated After Executing the Anatomical 
Preprocessing Pipeline

After the execution of the anatomical preprocessing pipeline, 
the following files are generated for each subject: (1) image 
of the inhomogeneity-corrected full head image, (2) image 
of the extracted brain, (3) binary mask used for the brain 
extraction, (4) individual tissue probability maps for gray 
matter (GM), white matter (WM), cerebrospinal fluid (CSF), 
skull and head, (5) normalized anatomical image in template 
space, (6) reverse-normalized template image in subject 
space, (7) plus the corresponding transformation matrices 
used for output 5 and 6. Each anatomical preprocessing out-
put folder also contains (8) the ICBM 2009c brain template 
used for the normalization, sampled to the requested voxel 
resolution.

In addition to these files, the following three informa-
tive figures are generated: (1) tissue segmentation, (2) brain 
extraction and (3) spatial normalization of the anatomical 
image. A shortened version of those three figures, as well 
as their explanation are shown in Fig. 4.

Output Generated After Executing the Functional 
Preprocessing Pipeline

After the execution of the functional preprocessing pipe-
line, the following files are generated separately for each 
subject, each functional run and each temporal filtering: (1) 
text file indicating which volumes were detected as outli-
ers, (2) tabular separated (TSV) file containing all extracted 
confound regressors, (3) text file containing the six motion 
parameter regressors according to FSL’s output scheme, (4) 

https://github.com/miykael/fmriflows/tree/master/paper
https://github.com/miykael/fmriflows/tree/master/paper
https://identifiers.org/neurovault.collection:5645
https://identifiers.org/neurovault.collection:5713
https://identifiers.org/neurovault.collection:5713
https://identifiers.org/neurovault.collection:5647
https://identifiers.org/neurovault.collection:5647
https://identifiers.org/neurovault.collection:5646
https://identifiers.org/neurovault.collection:5646
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binary masks for the brain, (5) masks for anatomical and 
functional component based noise correction, (6) functional 
mean image, and (7) completely preprocessed functional 
images, separated by spatial smoothing approaches. Each 
subject folder also contains (8) one text file per functional 
run indicating the number of non-steady-state volumes at 
the beginning of run.

The following is a more detailed description of the mul-
tiple confounds fMRIflows estimates during functional 
preprocessing:

Confounds based on motion parameters: in addition 
to the head motion parameters created during preprocess-
ing, fMRIflows also computes (1) 24-parameter Volterra 
expansion of the motion parameters (Friston et al. 1996) 
using custom scripts and (2) Framewise Displacement (FD) 
component (Power et al. 2012) using Nipype.

Confounds based on global signal: functional images 
before spatial smoothing were used to compute confound 
regressors, such as (1) DVARS, which represents the spatial 
standard deviation of the signal after temporal differencing, 
to identify motion-affected frames (Power et al. 2012), using 
Nipype and (2) four global signal curves representing the 
average signal in the total brain volume (TV), GM, WM and 
CSF, using Nilearn.

Detection of outlier volumes: the user can specify 
which of the six signal curves for FD, DVARS and aver-
age signal in TV, GM, WM and CSF to use to identify 
outlier volumes (see Fig. 5A). Those are volumes that have 
larger fluctuations in the signal values in a given volume, 
compared to the z-scored standard deviation throughout 

the time course. The exact threshold for each curve can be 
adapted by the user, but its default value is set to a z-value 
of 3.27, representing 99%, for the FD, DVARS and TV 
signal. The identification number of each outlier volume is 
stored in a text file that might be used in the 1st-level pipe-
line during the GLM model estimation to remove the effect 
of those volumes from the overall analysis, also known as 
censoring (Caballero-Gaudes and Reynolds 2016).

Confounds based on signal components: using the 
temporal filtered functional images, two different kinds 
of approaches are performed to extract components that 
could be used for denoising or dimensionality reduction 
of the data. The first approach is called CompCor (Behzadi 
et al. 2007) and uses principal component analysis (PCA) 
to estimate the main sources of noise within specific con-
found regions. Regions are either defined by their tempo-
ral or anatomical characteristics. The temporal CompCor 
approach (tCompCor) considers the 2% most variable 
voxels within the confound brain mask as sources of con-
founds. The anatomical CompCor approach (aCompCor), 
considers voxels within twice eroded WM and CSF brain 
masks as sources of confounds. The user can specify how 
many aCompCor and tCompCor components should be 
computed, but the default value is set to five each. The 
second approach uses independent component analysis 
(ICA) to perform source separation in the signal (Fig. 6). 
Using Nilearn’s CanICA routine, fMRIflows computes by 
default the top ten independent components throughout 
the confound masks. The number of confounds to extract 
can be adjusted by the user. It is the user's responsibility to 

Fig. 4   Summary of output figures generated by fMRIflows after exe-
cuting the anatomical preprocessing pipeline. (Top) coronal view of 
the image segmentation output, showing gray matter tissue in green, 
white matter tissue in beige, cerebrospinal fluid in blue. (Middle) 
sagittal view of the brain extraction output, showing the extracted 
brain image in red, and the original anatomical image in gray. (Bot-

tom) axial view of the spatial normalization output, showing the nor-
malized brain image highlighted in yellow, overlaid over the ICBM 
2009c brain template in gray. Regions in red and blue show negative 
and positive deformation discrepancy between the normalized subject 
image and the template (Color figure online)
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evaluate appropriately whether residual artifacts are pre-
sent and need to be removed.

Storage of confound information: all of the confound 
curves computed after functional preprocessing are stored 
in a TSV file to allow for easy access.

Diverse set of overview figures: to allow for visual inspec-
tion of the numerous outputs generated after the execution 
of the functional preprocessing pipeline, fMRIflows creates 
many informative overview figures. These overviews cover 
the motion parameters used for head motion correction, the 
anatomical and temporal CompCor components, FD, DVARS, 
average signal in TV, GM, WM and CSF, and the ICA compo-
nents. fMRIflows also creates a brain overview figure show-
ing the extent of the different masks applied during functional 

preprocessing, a spatial correlation map between the ICA 
components and the individual voxel signal, and a carpet plot 
according to Power (2017) and Esteban et al. (2019). To better 
visualize underlying structures in the carpet plot the time series 
traces are sorted by their correlation coefficients to the average 
signal within a given region, allowing for a positive or negative 
time lag of 2 volumes. A shortened version of all these figures, 
as well as their explanations are shown in Figs. 5, 6 and 7.

Output Generated After Executing the 1st‑Level Analysis 
Pipeline

After the execution of the 1st-level analysis, the following 
files are generated for the univariate analysis: (1) contrasts 

Fig. 5   Example of general output figures generated by fMRIflows 
after executing the functional preprocessing pipeline. The dataset 
used to generate these figures was recorded with a TR of 600 ms and 
had a total of 600 volumes per run. Preprocessing included a low-pass 
filter at 0.2 Hz. Distribution plots on the right side of the figures in 
part A and B represent value frequency in y-direction. A Depiction 
of the nuisance confounds FD, DVARS and TV. Detected outlier vol-

umes are highlighted with vertical black bars. B Estimation of trans-
lation head motion after application of low-pass filtering at 0.2 Hz in 
color, and before temporal filtering in light gray. C Depiction of brain 
masks used to compute DVARS (red), and temporal (green) and ana-
tomical (blue) CompCor confounds, overlaid on the mean functional 
image (grey) (Color figure online)
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and statistical map of the specified contrasts, (2) SPM.mat 
file containing the information relevant for the model, (3) 
visualization of the design matrix used in the 1st-level model 
depicting the regressor for the stimuli, motion and con-
founds, and (4) glass brain plot for each estimated contrast 
thresholded at the top 2% of positive and negative values 
created with AtlasReader (Notter et al. 2019) to provide a 
general overview of the quality of contrasts. The multivari-
ate analysis part of this notebook creates: (1) one contrast 
image per condition and session which later can be used as 
samples for the multivariate analysis, and (2) a label file 
identifying the condition of each contrast.

Output Generated After Executing the 2nd‑Level Analysis 
Pipeline

After the execution of the 2nd-level univariate analysis, the 
following files are generated, individually for each contrast 
and spatial and temporal filter that was applied: (1) con-
trasts and statistical map of one-sample t-test contrast, (2) 

SPM.mat file containing the information relevant for the 
model, (3) thresholded statistical maps with corresponding 
AtlasReader outputs (i.e. glass brain plot to provide a result 
overview, cross section plot showing each significant clus-
ter individually, informative tables concerning the peak and 
cluster extent of each cluster).

After the execution of the 2nd-level multivariate analysis, 
the following files are generated, for each specified com-
parison individually: (1) subject-specific permutation files 
needed for correction according to Stelzer et al. (2013), (2) 
group-average prediction accuracy maps as well as cor-
responding feature-wise maps representing chance level 
acquired via bootstrapping approach (Stelzer et al. 2013), 
(3) group-average prediction accuracy maps after correc-
tion for multiple comparisons and (4) thresholded statistical 
result maps with corresponding AtlasReader outputs (i.e. 
glass brain plot to provide a result overview, cross section 
plot showing each significant cluster individually, informa-
tive tables concerning the peak and cluster extent of each 
cluster).

Fig. 6   Example of ICA output figures generated by fMRIflows after 
executing the functional preprocessing pipeline. The dataset used to 
generate these figures was recorded with a TR of 600 ms and had a 
total of 600 volumes per run. A Correlation between the first three 
ICA components and the functional image over time (left) and the 
corresponding power density spectrum with frequency on the x-axis 

(right). First component most likely depicts respiration at 0.6  Hz, 
while third component is most likely visual activation induced by the 
visual stimulation task during data acquisition. B Correlation strength 
between a given ICA component and the location in the brain volume 
for the first three ICA components
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Results of Phase 1: Proficiency Validation

Due to differences in scanner hardware, scan protocols, 
research requirements and expertise of the person who 
records the images, fMRI datasets can come in many differ-
ent shapes and forms. We ran fMRIflows on several datasets 
to make sure that it is capable of dealing with differences 
inherent to each of them. In this section, we summarize the 
main issues we encountered during this process and describe 
how we tackled each of them.

Image Orientation

fMRIflows reorients all anatomical and functional images 
at the beginning of the preprocessing pipeline to the neuro-
logical convention RAS (right, anterior, superior) to prevent 
failures of coregistration between anatomical and functional 
images due to orientation mismatches within subjects.

Image Extent

Some datasets have unusually large image coverage along 
the inferior–superior axis, which means that their anatomi-
cal images also often contain part of the participant’s neck. 
This can lead to unwanted outcomes in certain neuroimaging 
routines, as they were not tested for such additional tissue 
coverage. This is most pronounced in the case of FSL’s BET 
routine, which has difficulty finding the center and extent 
of the brain, or SPM’s segmentation routine that depends 
on the distribution of the voxel intensities within the whole 

volume. To prevent these and other unforeseen behaviors, 
fMRIflows uses FSL’s robustfov routine to restrict all ana-
tomical images to the same spatial extent.

Image Inhomogeneity

Depending on the scan sequence protocol or the scanner 
hardware itself, some datasets can contain strong image 
intensity inhomogeneities, caused by an inhomogeneous 
bias field during data acquisition. This can have a nega-
tive effect on many different neuroimaging routines, most 
pronounced in brain extraction and image segmentation. To 
tackle this issue, fMRIflows uses ANTs’ N4BiasFieldCor-
rection routine, which allows the analysis of datasets with 
even low image quality and strong image inhomogeneity. In 
the anatomical preprocessing pipeline, inhomogeneity cor-
rection is applied to improve the final output image. In the 
functional preprocessing pipeline, inhomogeneity correction 
is only applied to improve the estimation and extraction of 
different tissue types, but does not directly change the values 
in the final output image.

Brain Extraction

Different brain extraction routines were explored to ensure: 
(1) that the extraction is sufficiently robust to handle differ-
ent kinds of datasets, (2) that it is neither too conservative 
nor liberal with the removal of non-brain tissues, and (3) 
that it has an overall reasonably fast computation time. The 
best and most consistent results were achieved using SPM’s 

Fig. 7   Example of a carpet plot figure generated by fMRIflows after 
executing the functional preprocessing pipeline. The dataset used to 
generate this figure was recorded with a TR of 600 ms and had a total 
of 600 volumes per run. This panel shows the signal after preproc-
essing for every other voxel (y-axis), over time in volumes (x-axis). 

The panel shows voxels in the gray matter (top part), white matter 
(between blue and red line) and CSF (bottom section). The data was 
standardized to the average signal, and ordered within a given region 
according to the correlation coefficient between a voxel and to the 
average signal of this region
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image segmentation routine, followed by a specific thresh-
olding and merging of the GM, WM and CSF probability 
maps. FSL’s BET routine was not robust enough to lead to 
stable results on all tested datasets. While ANTs’ Atropos 
routine led to comparably good results, we went with SPM 
because of the much faster computation time.

Image Interpolation

For the single-shot spatial interpolation during normaliza-
tion, we used ANTs and explored NearestNeighbor, BSpline 
and LanczosWindowedSinc (Lanczos 1964) interpolation. 
NearestNeighbor interpolation led to unnatural looking 
voxel-to-voxel value transitions. BSpline led in general to 
good results, but had issues especially with datasets that did 
not have full brain coverage and introduced some rippling 
low value fluctuations at the borders of non-zero voxels. 
LanczosWindowedSinc interpolation led to the best out-
come by minimizing the smoothing effects and preventing 
the introduction of additional confounds reaffirming the 
observations from fMRIPrep (Esteban et al. 2019).

Results of Phase 2: Performance Validation

The performance validation of fMRIflows was conducted 
on three different task-based fMRI datasets, as described in 
Table 1. The preprocessing of fMRIflows was compared to 
other neuroimaging processing pipelines such as fMRIPrep, 
FSL and SPM. We tested fMRIflows’ preprocessing pipe-
line with and without a temporal low-pass filter of 0.2 Hz 
to better understand performance differences between tool-
boxes and to stress the importance of adequate temporal fil-
tering when processing fMRI datasets with high temporal 
resolution.

Estimated Spatial Smoothness After Functional 
Preprocessing

Each preprocessing step that resamples a functional image, 
such as slice time correction, motion correction, spatial or 
temporal interpolation has the potential to increase the spa-
tial smoothness in the data. The less smoothness is intro-
duced during preprocessing, the closer the data are to their 
initial version. We used AFNI’s 3dFWHMx to estimate the 
average spatial smoothness (FWHM) of each functional 
image after preprocessing to compare the amount of data 
manipulation that was applied to the raw data (see Fig. 8). 
As this FWHM value depends on the voxel resolution of a 
given dataset, we normalized it by the volume of the voxel 
to achieve a common FWHM value per 1 mm3.

Overall, the estimated spatial smoothness after preproc-
essing with fMRIflows (without low-pass filter) is compa-
rable to the one with fMRIPrep, while SPM’s is in general 

significantly lower and FSL’s is slightly higher. All results 
in Fig. 8 are corrected with the Tukey multiple comparison 
test. The differences with respect to SPM are probably due 
to the fewer numbers of resampling steps involved in SPM’s 
preprocessing pipeline. The differences with respect to FSL 
are probably due to the interpolation method used during 
image resampling. While the FSL preprocessing pipeline 
uses the spline interpolation, fMRIflows and fMRIPrep use 
the LanczosWindowedSinc interpolation, which is known 
to minimize the smoothing during interpolation. The appli-
cation of a temporal low-pass filter at 0.2 Hz during fMRI-
flows’ preprocessing leads to a significantly higher spatial 
smoothness for the TR600 dataset when compared with the 
other approaches. This effect might also be present for the 
TR1000 dataset. However, there the difference between the 
fMRIflows preprocessing with and without low-pass filter-
ing is not significant. This increased spatial smoothness for 
the approach that uses a low-pass filter makes sense, as the 
goal of the temporal low-pass filter itself is to smooth the 
time series values. This temporal smoothing forcibly also 
increases the spatial smoothness at each individual time 
point.

Performance Check of Spatial Normalization

We computed the standard deviation map for each popula-
tion, based on the temporal average map of each preproc-
essed functional image, to compare the performance of spa-
tial normalization of the different preprocessing methods on 
the three different datasets (see Fig. 9).

The averaged standard deviation maps after fMRIflows’ 
and fMRIPrep’s preprocessing are very similar, which is not 
surprising as fMRIflows uses the same ANTs normalization 
routine with very similar parameters. The main difference 
lies in the fact that fMRIflows applies a brain extraction on 
the functional images as well, which is not performed with 
fMRIPrep.

Temporal Signal‑to‑Noise Ratio (tSNR) After Preprocessing

We computed the voxel-wise temporal SNR according 
to Smith et al. (2013) to assess the amount of informa-
tive signal contained in the data after preprocessing. This 
measurement serves as a rough estimate to compare dif-
ferent preprocessing methods, but did not allow a direct 
comparison between datasets, as the tSNR value is a 
relative measurement that depends highly on the para-
digm presented, the initial spatial and temporal resolu-
tion of the functional images, as well as the MRI scan 
sequence specific parameters such as acceleration factors 
(Smith et al. 2013). Using Nipype’s TSNR routine, we 
first removed 2nd-degree polynomial drifts in each func-
tional image, and estimated tSNR maps by computing 
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each voxel’s temporal mean, dividing it by its temporal 
standard deviation, and multiplying it by the square root 
of the number of time points recorded in a given run. 
By averaging the tSNR maps over the population, we get 
a general tSNR map per preprocessing method for each 
dataset (see Fig. 10).

In general, preprocessing with fMRIflows without tem-
poral low-pass filter led to similar average tSNR maps 
as preprocessing with fMRIPrep. Overall, preprocessing 
with FSL led to slightly increased average tSNR values, 
while preprocessing with SPM led to slightly decreased 
average tSNR maps. The additional application of a low-
pass filter at 0.2 Hz in all three datasets led to increased 
tSNR values after preprocessing with fMRIflows. This 
effect was more pronounced for higher temporal resolu-
tion (as in Dataset TR1000 and TR600). The scales in 
Fig. 10 were set manually so that the fMRIflows (without 
low-pass filter) approach shows comparable intensities for 
the three datasets.

Performance Check After 1st‑Level Analysis

To investigate the effect of the different preprocessing 
methods on the 1st-level analysis, we carried out within-
subject statistical analysis using Nistats. The activation 
maps were estimated using a general linear model (GLM). 
The GLM included a constant term, the stimuli regressors 
convolved with a double-gamma canonical hemodynamic 
response function, six motion parameters (three translation 
and three rotation), and a high pass filter at 100 Hz, repre-
sented by a set of cosine functions, and no temporal deriv-
atives. The input data were smoothed using a kernel with 
a FWHM of 6 mm, using a Nilearn routine. The analysis 
pipelines between the preprocessing methods and datasets 
were kept as identical as possible, and differed only in the 
number of time points contained in the dataset and the 
estimated motion parameters. The statistical map for each 
participant was binarized at z = 3.09, which corresponds to 

Fig. 8   Investigation of estimated spatial smoothness after functional 
preprocessing of three different datasets, processed with varying 
approaches. The five different preprocessing approaches fMRI-
flows with (blue) and without (orange) a low-pass filter at 0.2  Hz, 
fMRIPrep (green), FSL (red) and SPM (violet) are plotted separately 
for the dataset TR2000 (left), TR1000 (middle) and TR600 (right). 
The violin plots indicate the overall distribution of the normalized 
smoothness estimates of each functional image (depicted in individ-

ual dots: TR2000 = 48 dots, TR1000 = 80 dots, TR600 = 102 dots). 
The red horizontal line represents the median value, while the hori-
zontal black lines indicate the 25 and 75 percentiles of the value dis-
tribution respectively. Two-sided t-test were computed for each pair 
of approaches used and each dataset. Significant differences between 
groups are indicated with *p < 0.05 and ***p < 0.001. All results 
are corrected with the Tukey multiple comparison test (Color figure 
online)
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a one-sided test value of p < 0.001. The population average 
of these maps is shown in Fig. 11.

The results show that the thresholded activation count 
maps between the fMRIflows approach without a low-pass 
filter, fMRIPrep, FSL and SPM do not differ too much 
between each other, for all three datasets. In contrast to the 
other preprocessing methods, however, the preprocessing 
with fMRIflows with a low-pass filter at 0.2 Hz drastically 
increased the size and fraction value of the thresholded 
activation count maps, for the datasets TR1000 and TR600. 
Thus, appropriate temporal filtering increased the statistics 
for datasets with higher temporal resolution remarkably. For 
a more detailed comparison between all the toolboxes, see 
Supplementary Note 7.

Performance Check After 2nd‑Level Analysis

To investigate the effect of the different preprocessing 
methods on the 2nd-level analysis, we carried out between-
subject statistical analysis using Nistats and computed one-
sample t-test for each preprocessing method and dataset. The 
unthresholded group-level T-statistic maps of each analysis 
were then compared to each other on a voxel-by-voxel level 
using Bland–Altman 2D histograms (Bowring et al. 2018), 
see Fig. 12.

The results shown in Fig. 12 indicate no pronounced dif-
ferences between the preprocessing with fMRIflows with 
a low-pass filter at 0.2 Hz and the other four approaches 
for the analysis of the TR2000 dataset. An increased vari-
ability in the y-direction indicated a decrease in voxel-to-
voxel correspondence, which might be explained by differ-
ent spatial normalization implementations. The fact that the 
average horizontal density value (dashed line) is close to 
the zero line (horizontal solid line) indicated that the differ-
ent preprocessing methods led to comparable group-level 
results with the TR2000 dataset. The Bland–Altman plots 
for the TR1000 and TR600 datasets showed a clear increase 
of t-statistic when the preprocessing was done with fMRI-
flows with a low-pass filter at 0.2 Hz, compared to any other 
method. This effect was stronger for higher t-values. For 
a more detailed comparison between all the toolboxes, see 
Supplementary Note 8.

Discussion

fMRIflows is a fully automatic fMRI analysis pipeline, 
which can perform state-of-the-art preprocessing, includ-
ing 1st-level and 2nd-level univariate analyses as well as 
multivariate analyses. The goal of such an autonomous 

Fig. 9   Depiction of standard 
deviation maps of the temporal 
averages of three different data-
sets, after multiple functional 
preprocessing approaches. 
Preprocessing was done with 
fMRIflows (with a temporal 
low-pass filter at 0.2 Hz; with-
out low-pass filter looks identi-
cal), fMRIPrep, FSL and SPM 
(from top to bottom) separated 
for the TR2000 (left), TR1000 
(middle) and TR600 (right) 
dataset. Color value represents 
the standard deviation value 
over all subjects. Color scale is 
the same within a dataset and 
was set manually to highlight 
the border effects in gray matter 
regions. Regions with high 
inter-subject variability are 
shown in yellow, while regions 
with low inter-subject variabil-
ity are shown in blue. Outline of 
the brain and subcortical white 
matter regions is delineated in 
red and is based on the ICBM 
2009c brain template, except for 
the analysis with SPM where 
it is based on SPM’s tissue 
probability map template (Color 
figure online)
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approach is to improve objectiveness of the analyses, maxi-
mize transparency, facilitate ease-of-use, and provide acces-
sible and updated analysis approaches to every researcher, 
including users outside the field of neuroimaging. While 
the predefined analysis pipelines help to reduce the number 
of error-prone manual interventions to a minimum, it also 
has the advantage of decreasing the number of analytical 
degrees of freedom available to a user to its minimum (Carp 
2012). This constraint in flexibility is important as it helps to 
control the variability in data processing and analysis (Bot-
vinik-Nezer et al. 2020). fMRIPrep showed a clear need for 
such analysis-agnostic approaches and was therefore cho-
sen to provide much of the groundwork for fMRIflows. Our 
pipeline provides a reliable methodological framework for 
analyzing fMRI data and for obtaining statistical results that 
are comparable across different scanners/laboratories and 
experimental designs. fMRIflows achieves: (1) high SNR 
after preprocessing, (2) reproducible within-subject t-statis-
tics, and (3) reproducible between-subject t-statistics. The 
flexibility for the user to perform both spatial and temporal 
filtering is particularly important in the context of datasets 
that had a temporal sampling equal to or below 1000 ms or 

if the statistical output will be used for more advanced analy-
ses, such as MVPA. fMRIflows also improved the overall 
computation time needed to perform preprocessing and 1st 
and 2nd-level analyses. Indeed, Nipype provides a parallel 
execution feature of processing pipelines, which is not yet 
possible with FSL or SPM. fMRIPrep uses the same boost of 
parallelism but is overall much slower if the default execu-
tion of FreeSurfer’s recon-all routine is performed. However, 
fMRIflows does not yet support parallel computation via a 
job scheduler on a computation cluster, which is currently 
possible with fMRIPrep.

In comparison with other neuroimaging software/pipe-
lines like fMRIPrep, FSL and SPM, fMRIflows achieved 
comparable or improved results in (1) SNR after preprocess-
ing, (2) within-subject t-statistics, and (3) between-subject 
t-statistics. These results were more obvious in the context 
of datasets that had a temporal sampling equal to or below 
1000 ms, and if a low-pass filter at 0.2 Hz was applied.

The inclusion of many informative visual reports allows a 
direct quality control and verification of the performed pro-
cessing steps, as fMRIflows’ outputs provide a general qual-
ity assessment even though it is not as detailed and rigorous 

Fig. 10   Depiction of temporal 
signal-to-noise ratio maps of 
three different datasets, after 
multiple functional preprocess-
ing approaches. Preprocessing 
was done with fMRIflows (with 
and without a temporal low-pass 
filter at 0.2 Hz), fMRIPrep, FSL 
and SPM (from top to bottom) 
separated for the TR2000 (left), 
TR1000 (middle) and TR600 
(right) dataset. Color value 
represents the tSNR value as 
computed with the Nipype rou-
tine TSNR. Color scale was set 
manually and differs between 
datasets, but is held constant 
between different preprocessing 
methods (Color figure online)
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as MRIQC (Esteban et al. 2017). In contrast to other soft-
ware packages, fMRIflows uses an adapted visualization of 
the carpet plot proposed by Power (2017) to highlight under-
lying temporal structure and voxel-to-voxel correlations 
within different brain tissue regions and/or throughout the 
brain. Such approaches help to observe general signal trends 
and sudden abrupt signal changes throughout the brain, but 
the exact implications of these modified carpet plots need to 
be further investigated.

Being an open-source project, shared via GitHub, facili-
tates the transparency in the development of fMRIflows. 
Users can inspect the complete history of the changes and 
have access to all discussions connected to the software. 
Code adaptations and additional support to new usage will 
be proposed by the user community, which will make the 
adaptation to newest standards easy and straightforward. In 
addition to the version-controlled system used on GitHub, 
a continuous integration scheme with CircleCi will ensure 
continuous functionality.

Results of fMRIflows’ validation phase 1 suggests that the 
software is capable of analyzing different types of datasets, 
independently of the extent of head coverage, original image 
orientation, spatial or temporal resolution. By increasing the 
user base and testing fMRIflows on many more datasets, 
new adaptations might be required and hidden bugs could 
emerge. Users can observe any changes done to the software 
in the future directly on GitHub and are encouraged to state 
any questions or comments in connection with the software 
on the community driven neuroinformatics forum Neuro-
Stars (https://​neuro​stars.​org).

Further development of the software will involve (1) 
moving away from an SPM dependency for the 1st and 2nd-
level modeling, (2) using the more flexible FitLins toolbox 
(https://​github.​com/​poldr​acklab/​fitli​ns) conforming the 
results with the BIDS statistical models proposal (BEP002), 
and (3) implementing an fMRIflows BIDS-App to further 
improve the toolbox’s accessibility.

Fig. 11   Depiction of binarized 
1st-level activation count maps, 
thresholded at p < 0.001, after 
multiple functional preprocess-
ing approaches. Preprocessing 
was done with fMRIflows (with 
and without a temporal low-pass 
filter at 0.2 Hz), fMRIPrep, FSL 
and SPM (from top to bottom) 
separated for the TR2000 (left), 
TR1000 (middle) and TR600 
(right) dataset. Activation count 
maps were normalized to the 
ICBM 2009c brain template. 
Color code represents the frac-
tion of participants that show 
significant activation above a 
p-value threshold at 0.001 and 
corrected for false positive rate 
(FPR) (Color figure online)

https://neurostars.org
https://github.com/poldracklab/fitlins
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10548-​022-​00935-8.
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Fig. 12   Bland–Altman 2D histograms of three different datasets, 
comparing unthresholded group-level T-statistic maps between mul-
tiple processing approaches. Datasets TR2000 (top), TR1000 (mid-
dle) and TR600 (bottom) were used for the comparison. Density plots 
show the relationship between average T-statistic value (horizontal) 
and difference of T-statistic values (vertical) at corresponding vox-
els for different pairwise combinations of toolboxes. The difference 
of T-statistics was always computed in contrast to a preprocessing 
with fMRIflows using a low-pass filter at 0.2 Hz, while the average 

T-statistics in horizontal direction investigated the preprocessing with 
(from left to right) fMRIflows without a low-pass filter, fMRIPrep, 
FSL and SPM. Distribution plots next to x- and y-axis depict occur-
rence of a given value in this domain. Color code within the figure 
indicates the number of voxels at this given overlap, from a few (blue) 
to many (yellow). Yellow horizontal line at zero indicates no value 
differences between corresponding voxels. Red dashed line depicts 
horizontal density average (Color figure online)
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