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Preface

Insurance is a contract represented by a policy where the insured person or poli-
cyholder (individual or entity) pays a �xed amount to safeguard against uncertain
losses that could be quite signi�cant �nancially and where the insurer agrees to cover
these losses in case they occur. The underlying risks can be of very di�erent nature,
but they are traditionally divided into the areas of life and non-life insurance. This
thesis is dedicated to various aspects of the latter and contains results in the area of
modeling and assessing risks of insurance portfolios. It is based on three papers that
have either been published or submitted for publication in peer-reviewed journals.

Chapter 1 describes some basic concepts and contains classical results that are used
in subsequent chapters. Chapter 2 presents a non-stationary extension of the Cox
process methodology with Lévy subordinators presented in Selch and Scherer [169],
by enabling trends and seasonal behavior in the underlying subordinator. This ap-
proach allows to keep all the advantages of the Selch-Scherer model, taking into ac-
count non-stationary behavior, and leads to a �exible, yet parsimonious continuous-
time model for claim counts that considers both clustering and non-stationary prop-
erties. In the context of heavy-tail modeling, Chapter 3 generalizes earlier results of
Meerschaert et al. [145] and Raschke [157] by considering the tempering of a Pareto-
type distribution with a general Weibull distribution in a peaks-over-threshold ap-
proach. The result provides a relevant rather general model for claim sizes where
the Pareto behavior only sets in after a certain threshold and where such a behav-
ior does not extend inde�nitely due to truncation or tempering e�ects in the data.
Finally, within the setup of a compound Poisson risk model, we consider in Chapter
4 the problem of �nding bounds for the ruin probability when only limited infor-
mation about the claim size distribution is available. We consider random initial
surplus, leading to considerably more amenable expressions for the ruin probability.
Under that framework, we explore the resulting computational advantages, and we
further show how the solution to the problem with deterministic initial surplus can
be approximated via random initial surplus.
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Chapter 1

Introduction

An insurance policy is a contract between an insurance company and a policyholder
in which the former agrees to compensate the latter for certain unpredictable losses
during a period of time against a fee, the premium. The insurance company pools
similar risks whose individual insurance claims are unknown at the beginning of the
insurance period and hence they need to be treated within the framework of proba-
bility theory and statistics. In other words, the insurance risks can be described by
sequences of (often independent) random variables representing the random amount
of money that the insurance company will have to pay out to indemnify the poli-
cyholder for the consequences of the occurrence of the insured risk. Therefore, in
order for the insurance company to guarantee its contractual obligations, and its own
success, determining an adequate amount for the premium becomes a fundamental
necessity.

In non-life insurance, traditional actuarial methods to calculate the premium rely
on statistical models using the company's own data on insurance policies and claims
for the portfolio. Under the assumption of independence between the number of
occurrences (claim frequency) and the size of the insured losses (claim severity),
the pure insurance premium is calculated as the product of the claim severity and
the claim frequency, and hence two models need to be calibrated. Furthermore,
in situations where a large amount of data is available, especially at a policyholder
level, it is possible to rate policyholders according to their individual characteristics,
or risk factors, using covariate-based methods such as generalized linear models (cf.
Ohlsson and Johansson [152]) or even more sophisticated data-driven methods such
as trees and neural networks (cf. Denuit et al. [80, 79]). Once the pure premium is
set, the actuarial premium can be obtained by applying a safety loading according
to some premium principle (cf. Bühlmann [48, Ch.4], Gerber [102, Ch. 5], Dickson
[88, Ch. 3], Kaas et al. [124, Ch. 5]) and optimized according to the policyholder,
shareholder, and/or market demands (see also Parodi [154] for a survey on insurance
pricing from a practitioner's perspective).

The insurance company needs to constantly monitor the insurance portfolio solvency
and its regulatory capital requirements. Recently, the focus of solvency and capital
requirements has shifted towards risk measures like Value-at-Risk (VaR) and con-
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2 CHAPTER 1. INTRODUCTION

ditional tail expectation (CTE). In the actuarial literature, traditionally the focus
was on (�nite-time) ruin probabilities which provide a measure of the behavior of
an insurance portfolio through time. In particular, it serves as an assessment of
the strength of the insurer's premium and claim process in relation to the available
capital. A high probability of ruin should trigger suitable risk management actions
to avoid undesirable �nancial outcomes. The event of ruin rarely occurs in practice,
so the probability of ruin has only a limited absolute meaning. However, it enables
one to compare portfolios concerning the solvency aspect and is a classical object of
study in actuarial science.

In this introductory chapter we provide some theoretical foundations in the research
areas to which the later chapters of this thesis aim to contribute. In that regard,
Section 1.1 will give a brief introduction to claim frequency modeling that will
later constitute the backbone of the model presented in Chapter 2. In relation
to Chapter 3, Section 1.2 provides a brief introduction to claim severity modeling
and in particular to extreme value theory. Furthermore, Section 1.3 cites the basic
results of the classic theory of ruin probabilities, and Section 1.4 brie�y touches
upon stochastic orders, which will also be needed in Chapter 4. Finally, the main
contributions of this thesis are outlined in Section 1.5.

This chapter provides references relevant to the research areas of this thesis. Due to
the vast amount of work in these �elds, the overview can by no means be exhaustive
and only touches upon several important aspects. Many further references will be
given throughout the later chapters of the thesis.

1.1 Claim frequency modeling

Claim frequency modeling is about estimating the number of claims per time unit.
In insurance practice one frequently has annual claim counts available. Hence, if
the time unit under consideration and the risk exposure of the portfolio is �xed,
one �ts discrete positive random variables to these insurance data. The most pop-
ular distributions being the binomial, Poisson and negative binomial ones. These
distributions not only have properties that are suitable to model insurance data,
but also form part of the (a, b, 0)-class of distributions which is based on a simple
recursion needed to obtain a recursive algorithm for the calculation of the aggregate
claim amount (cf. Panjer [153], Sundt-Jewel, [175], Klugman et al. [130], Johnson
and Kotz [120]). Here we present these three distributions.

Binomial distribution. Given that the number of claims in an insurance portfolio
can be thought of as each policyholder being subject to a random experiment with
a binary outcome (claim, no claim), the binomial distribution arises naturally in
claim number modeling. Moreover, it is particularly useful in situations were the
insurance data show underdispersion (sample variance is smaller than the sample
mean).
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We say that N has a binomial distribution, N ∼ Bin(n, p), if

P(N = k) =

(
n

k

)
pk(1− p)n−k, 0 < p < 1, k = 0, 1, 2, . . . , n.

The �rst two moments of the binomial distribution are given by

E(N) = np, Var(N) = np(1− p).

Poisson distribution. The Poisson distribution is frequently used to count the
number of events that occur in a certain time interval or spatial area. It was �rst
introduced by the French mathematician Siméon Denis Poisson in 1838. We say
that N has a Poisson distribution, N ∼ Poisson(λ), if

P(N = k) =
λk

k!
e−λ, λ > 0, k = 0, 1, 2, . . . .

The �rst two moments of the Poisson distribution are given by

E(N) = λ, Var(N) = λ,

so that it is equidispersed (the variance equals the mean). It arises as the limit
of the binomial distribution for n large, p small and np := λ �xed. The latter
is sometimes referred to as the law of small numbers. In an insurance portfolio
the insurer will pool a su�ciently large number of risks in order to balance the
aggregate risk. Each individual risk is likely to have a small probability to occur
and under independence the Poisson distribution can then be a good approximation.
Furthermore, the Poisson distribution is a good model for the number of events under
the assumption that the time in between claim arrivals is exponentially distributed.
This distribution is the backbone of the Poisson process introduced later and further
extended in Chapter 2.

Negative binomial distribution. We say that N has a negative binomial distri-
bution, N ∼ NBin(r, p), if

P(N = k) =

(
r + k − 1

k

)
pk (1− p)r, 0 < p < 1, r > 0, k = 0, 1, 2, . . . .

It can be obtained as an extension of the Poisson distribution when the formerly
constant parameter λ is assumed to be a Gamma random variable (i.e., it is a par-
ticular mixed Poisson distribution). The �rst two moments of the negative binomial
distribution are given by

E(N) =
rp

1− p
, Var(N) =

rp

(1− p)2
,

so that � as any mixed Poisson distribution � it is overdispersed (the variance is
larger than the mean).

While the above distributions are convenient and simple models, they do not capture
how the number of claims evolves over time. In this thesis we focus on continuous
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time modeling of claim occurrences, which can be a more �exible and tractable tool
that allows the implementation of stylized features in a transparent and elegant way.
To provide the necessary background, we now give some basic de�nitions of counting
processes and stochastic processes based on Poisson processes. Standard references,
where more mathematical details and derivations can be found, are Grandell [109],
Mikosch [146], Rolski et al. [161], Denuit et al. [87] and Albrecher et al. [7, Ch.5].

De�nition 1.1.1. A counting process {N(t); t ≥ 0} is a stochastic process that
counts the number of claims up to particular point in time t and satis�es the following
properties:

i) It is non-negative.

ii) It is integer-valued.

iii) It is non-decreasing, i.e., if s < t, then N(s) ≤ N(t).

iv) For s < t, N(t)−N(s) denotes the number of claims in the interval (s, t].

1.1.1 Homogeneous Poisson process

When modeling count data using counting processes, the homogeneous Poisson pro-
cess is the benchmark model. Though often not �exible enough, its attractive the-
oretical properties make it the most popular claim number process in the actuarial
literature. A formal de�nition of a homogeneous Poisson process is now given.

De�nition 1.1.2. A homogeneous Poisson processes {Ñλ(t); t ≥ 0} with intensity
λ > 0 is a stochastic process with the following properties:

i) Starts at zero, i.e. Ñλ(0) = 0 a.s.

ii) Independent increments: for any 0 ≤ t1 < t2 < . . . < tn < ∞, n ∈ N, the
increments Ñλ(ti)− Ñλ(ti−1) are mutually independent for i = 1, . . . n.

iii) Poisson increments: for any 0 ≤ s < t <∞

Ñλ(t)− Ñλ(s) ∼ Poisson(λ(t− s)).

iv) Ñλ has càdlàg paths a.s.

From Property iii) it follows that the increments are stationary. In other words, the
intensity of the process depends only upon the length of the time interval and not
upon its position: Ñλ(t)− Ñλ(s) =d Ñλ(t− s) for any 0 ≤ s < t <∞. Furthermore,

E(Ñλ(t− s)) = Var(Ñλ(t− s)) = λ(t− s) 0 ≤ s < t <∞.

The homogeneous Poisson processes has several desirable properties, some of them
are summarized in the following. The technical details of this can be found in
Mikosch [146, Ch. 2.1.4 to 2.1.6] and Rolski et al. [161, Ch. 5.2.1]. De�ne the claim
arrival times

Tj := inf{t > 0 : Ñλ(t) ≥ j}, j ∈ N.
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i) The inter-arrival times Wj := Tj −Tj−1, j ∈ N where T0 := 0, are independent
and identically distributed (i.i.d.) exponential random variables with mean
1/λ :

FWj
(x) = 1− exp(−λx), j ∈ N+, x ≥ 0.

From this property it follows the memoryless property. Namely, the distribu-
tion of the time until the next arrival is independent of the time t we have
already been waiting for that arrival:

P (Wj > t+ y | Wj > t) = P (Wj > y) for all y, t ≥ 0.

ii) Order statistics property: the conditional distribution of (T1, . . . , Tn) given

{Ñλ(t) = n} for some n ∈ N equals the distribution of the order statistics
U1,n ≤ U2,n ≤ . . . ≤ Un,n of independent uniform (0, t) distributed random
variables.

iii) Jump sizes: as t ↓ 0

P(Ñλ(t) = k) =


1− λt+ o(t), if k = 0
λt+ o(t), if k = 1
o(t), otherwise

where o(t) is a function that tends to 0 faster than the identity, i.e., limt→0 o(t)/t
= 0. Intuitively, this means that in a su�ciently small time interval, the prob-
ability of two or more claim arrivals is negligible when compared to the prob-
ability of zero or one arrival. Hence, at any point in time, no more than one
claim can occur with positive probability.

Property iii) gives the homogeneous Poisson process a special role among all claim
number processes and may be seen as one of the main reasons for its popularity
from a modeling perspective. Furthermore, the homogeneous Poisson process can
be constructed based on the arrivals of its independent and exponentially distributed
inter-arrival times, that is,

Ñλ(t) =
∞∑
j=1

1{W1+...+Wj≤t}.

Note that the latter construction together with Property i) provides the basis to
simulate sample paths of a Poisson process. Alternatively, one can take advantage
of Property iii). For a discussion on simulating Poisson processes see for example
Korn et al. [131, Ch. 6.2] or Schoutens [166, Ch. 8.1.2].

The homogeneous Poisson process plays a major role in ruin theory also. In the
classical Cramér-Lundberg model it is assumed that the claims in the portfolio arrive
according an homogeneous Poisson processes with rate λ. Hence, the evolution of
the aggregate claims amount of the insurance portfolio is modeled by means of a
compound Poisson process. A de�nition of the latter follows.



6 CHAPTER 1. INTRODUCTION

De�nition 1.1.3. Let {Ñλ(t); t ≥ 0} be a homogeneous Poisson process with in-
tensity λ > 0. Let X be a random variable and X1, X2, . . . be i.i.d. copies of X
independent of Ñλ(t). Then the process

S(t) =

Ñλ(t)∑
i=i

Xi, t ≥ 0,

is called a compound Poisson process.

Section 1.3 will provide further insights about its role in the surplus process of the
insurance company.

1.1.2 Inhomogeneous Poisson process

One restriction of the homogeneous Poisson process is its stationary property. One
can de�ne a more general Poisson process to deal with the latter:

De�nition 1.1.4. A Poisson processes {Nµ(t); t ≥ 0} with mean-value function µ
is a stochastic process de�ned by the following properties:

i) Starts at zero, i.e. Nµ(0) = 0 a.s.

ii) Independent increments: for any 0 ≤ t1 < t2 < . . . < tn < ∞, n ∈ N, the
increments Nµ(ti)−Nµ(ti−1) are mutually independent for i = 1, . . . n.

iii) Poisson increments: for a non-decreasing càdlàg function µ : [0,∞)→ [0,∞)
with µ(t) <∞ for all 0 ≤ s < t <∞

Nµ(t)−Nµ(s) ∼ Poisson(µ(t)− µ(s))).

iv) Nµ has càdlàg paths a.s.

Note that a Poisson process with linear mean value function µ(t) = λt, t ≥ 0 for
some λ > 0 is a homogeneous Poisson process. Moreover, from the properties of the
Poisson distribution one gets

E(Nµ(t)−Nµ(s)) = Var(Nµ(t)−Nµ(s)) = µ(t)− µ(s), 0 ≤ s < t <∞.

In fact, there is a strong connection between both processes. Namely, an inhomo-
geneous Poisson processes can be de�ned through a deterministic time-change of a
homogeneous process. Let µ be a mean-value function according to the de�nition
above and Ñ1 a standard homogeneous Poisson process with intensity parameter
λ = 1. Then, the process de�ned by {Ñ1(µ(t)); t ≥ 0} is an inhomogeneous Poisson
process with mean-value function µ. Moreover, the process {Nµ(µ(t)); t ≥ 0} is a
standard homogeneous Poisson process. For this reason, µ can be considered as
the operational time of the counting process N(t): whereas time runs linearly for
a homogeneous Poisson process, it accelerates or decelerates according to µ for an
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inhomogeneous Poisson process (cf. Bühlmann [48, Ch. 2.2.3], see Albrecher [2] for
a general account of the concept of operational time).

If the inverse function µ−1 exists, i.e. µ is continuous, strictly increasing and limt→∞
µ(t) = ∞, then the inhomogeneous Poisson process can be converted back to a
homogeneous Poisson process with intensity 1 by the time change µ−1 (cf. Mikosch
[146, Ch. 2.1.3]).

In many applications it is assumed that µ is absolutely continuous and has an
intensity function λ, i.e., there exists a nonnegative measurable function λ(·) such
that for any s < t the increment µ(t)− µ(s) has representation

µ(t)− µ(s) =

∫ t

s

λ(z)dz, s < t.

Although the inhomogeneous Poisson process is no longer stationary, given that
the Poisson distribution has a mean to variance ratio of 1, it fails to explain the
variability often present in insurance data sets. Also, the deterministic nature of
the intensity function is not always suitable when modeling counting phenomena.
Thus, one way to create greater �exibility is randomizing the intensity parameter
(or the mean-value function).

1.1.3 Mixed Poisson process

The mixed Poisson process was introduced to actuaries by Dubourdieu [89] and
plays an important role in actuarial practice given its connection with the negative
binomial distribution. Mixed Poisson processes generalize the Poisson process when
replacing the intensity parameter λ by a positive random variable Λ with distribution
function FΛ.

The randomization of the intensity function increases the �exibility of the model,
and at the same time preserves some nice properties of the homogeneous Poisson
process, for example the order statistics property. Namely, conditional on ÑΛ(t) = n,
the occurrence times of the n claim events are uniformly distributed on (0, t) (cf.
Grandell [109]). Frequently, the randomization of the intensity function approach is
motivated by addressing heterogeneity within the insured population. For example,
in a portfolio of car insurance policies we can think of Λ representing di�erent factors
of in�uence on the claim arrivals of the portfolio such as policyholders' driving
behaviors, driving skills, age, etc.

A general de�nition of mixed Poisson processes is given in the following:

De�nition 1.1.5. Let {Ñ1(t); t ≥ 0} be a standard homogeneous Poisson process
and µ a valid mean value function of a Poisson process. Furthermore, let Λ > 0 a.s.
be a random variable independent of Ñ1(t). Then the process

ÑΛ(t) = {Ñ1(Λ · µ(t)); t ≥ 0},

is said to be a mixed Poisson process with mixing variable Λ.
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The mean value function µ(t) plays a central role in insurance applications. While
the random variable Λ will explain the heterogeneity, it is through the mean value
function µ(t) that one captures the non-stationary behavior often present in the
data. For example, it might describe the evolution of the number of insured persons,
number of policies, or number of risks through time.

In this work (as at many other places in the literature), we restrict ourselves to the
case µ(t) = t. For any s > 0 and 0 ≤ t <∞, the probability that k events occur in
the time interval (t, t+ s] is given by

P(ÑΛ(t+ s)− ÑΛ(t) = k) =

∫ ∞
0

(λs)k

k!
exp(−λs)dFΛ(λ).

Therefore, for a non-degenerated mixing variable, a mixed Poisson process no longer
has independent increments (but conditionally independent ones). However, condi-
tional to the outcome of the mixing variable, a mixed Poisson process becomes a
homogeneous Poisson process.

From the tower property of the conditional expectation and the law of total variance,
it follows that

E(ÑΛ(t)) = tE(Λ) and Var(ÑΛ(t)) = tE(Λ) + t2Var(Λ),

(cf. Grandell [109, Proposition 2.1]). Hence, unless Λ is a degenerate random vari-
able, the variance exceeds the mean, i.e., the process is overdispersed. It is immediate
to see that the index of dispersion equals

IÑΛ(t) = 1 + t
E(Λ)

Var(Λ)
> 1.

When the mixing distribution is a Gamma random variable with probability density
function

fΛ(λ) =
ηα

Γ(α)
λα−1e−ηλ, λ > 0, α, η > 0,

the resulting mixed Poisson process is referred to as a Pólya process. Elementary
calculations show that the resulting distribution of the number of claims up to time
t is a negative binomial distribution with probability mass function

P(ÑΛ(t) = k) =

(
α + k − 1

k

)(
η

t+ η

)α(
t

t+ η

)k
.

As one has two parameters here, there is greater modeling �exibility than for the
homogeneous Poisson process, and this model is used a lot when modeling overdis-
persed count data.

We do not discuss the mixed Poisson process further, but we refer to the reader to
Grandell [109] for a thorough treatment. Further references in the actuarial �eld are
Klugman et al. [129, Ch. 7.2], Denuit et al. [87, Ch. 1.4] and Albrecher et al. [7, Ch.
5.2.3], where other particular cases relevant for actuarial practice are described.
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1.1.4 Doubly-stochastic Poisson process

A richer class of Poisson processes can be constructed by randomizing the entire
mean-value function of an inhomogeneous Poisson process. In that regard, Cox [57]
introduced doubly-stochastic Poisson processes, which can be de�ned as follows:

De�nition 1.1.6. Let {Λ(t); t ≥ 0} a stochastic process with Λ(0) = 0 a.s., Λ(t) <

∞ for each t <∞ and non-decreasing càdlàg paths. Independently, let {Ñ1(t); t ≥ 0}
be a standard homogeneous Poisson process. Then the counting process

NΛ(t) = {Ñ1(Λ(t)); t ≥ 0},

is said to be a doubly-stochastic Poisson process, or Cox process1.

If a non-negative stochastic process {Θ(s); t ≥ 0} exists such that {Λ(t); t ≥ 0} has
the representation

Λ(t) =d

∫ t

0

Θ(s)ds, t ≥ 0,

then Θ(s) is called the intensity process. As remarked in Grandell [108], in some
applications it is more natural to de�ne a Cox process by specifying Θ(·) rather than
Λ(t). Moreover, the stochastic intensity function can, for example, be interpreted as
variations in the environment of the modeled phenomena over time.

From De�nition 1.1.5 we can see that a mixed Poisson process is a particular case
of a Cox process with Λ(t) ≡ Λ · t.
Given a sample path, say, λ(t) of Λ(t), for s < t we get

P(NΛ(t)−NΛ(s) = k |Λ(t) = λ(t),Λ(s) = λ(s)) =
(λ(t)− λ(s))k

k!
exp(−(λ(t)−λ(s))).

In other words, conditional on a sample path of the intensity process, a Cox process
is an inhomogeneous Poisson process. Furthermore, we do not need information
concerning the full path of Λ between s and t, but rather the values at the bound-
aries. This is di�erent when the conditioning is in terms of the intensity processes
{Θ(t); t ≥ 0}. Namely,

P(NΛ(t)−NΛ(s) = k |Θ(u) = θ(u), s ≤ u ≤ t) =
1

k!

(∫ t

s

θ(u)du

)k
exp

(
−
∫ t

s

θ(u)du

)
.

Using the two properties above, it follows that

E(NΛ(t)−NΛ(s)|Θ(u) = θ(u), s ≤ u ≤ t) =

∫ t

s

θ(u)du,

Var(NΛ(t)−NΛ(s)|Θ(u) = θ(u), s ≤ u ≤ t) =

∫ t

s

θ(u)du,

1To avoid confusion among de�nitions we reserve the ÑΛ notation for mixed Poisson processes,

while we reserve NΛ for Cox processes. In the former case Λ denotes the mixing random variable,

whereas in the latter it denotes the stochastic process {Λ(t); t ≥ 0}.
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as expected from the conditional properties of the Cox processes. Moreover, using
the tower property of the conditional expectation and the law of total variance

E(NΛ(t)−NΛ(s)) =

∫ t

s

E(Θ(u))du,

Var(NΛ(t)−NΛ(s)) =

∫ t

s

E(Θ(u))du+ Var

(∫ t

s

Θ(u)du

)
,

from which the overdispersion for Cox processes follows (cf. Cox and Isham [58]).
Furthermore, Grandell [107, Ch. 1.6] showed that for t > 0, h ≥ 0,

Cov(NΛ(t+ h), NΛ(t)) = E
(∫ t+h

t

Θ(u)du

)
+ Cov

(∫ t+h

0

Θ(u)du,

∫ t

0

Θ(u)du

)
,

from which the autocorrelation function can be obtained.

Cox processes �nd several �elds of application such as �nancial time series (Chavez-
Demoulin et al. [53]), credit risk modeling (Lando [136]), risk theory (Björk and
Grandell [39]; Asmussen [21]; Albrecher and Asmussen [6]), catastrophe modeling
(Dassios and Jang [59]; Schmidt [164]), insurance claims reserving (Avanzi et al.
[28, 27, 26]; Badescu et al. [31, 30]); reinsurance pricing (Dassios and Jang [60])
and operational risk modeling (Fung et al. [100]). In the following we describe three
types of Cox processes that are particularly relevant in the actuarial literature.

Doubly-stochastic Poisson process directed by Lévy subordinators

Chapter 3 of this work will build upon Cox processes directed by a Lévy subordina-
tor. This model is a classic tool in mathematical �nance (cf. Schoutens [166], Cont
and Tankov [55] and Kyprianou [133]). As a model of insurance claim counts it has
�rst been suggested by Selch and Scherer [169].

Let us start with the de�nition, some basic facts, and properties about Lévy pro-
cesses that are needed later.

De�nition 1.1.7. A càdlàg stochastic process X = {X(t); t ≥ 0} is called a Lévy
process, if it satis�es the following properties:

(i) X(0) = 0 a.s.

(ii) Independent increments: for any 0 ≤ t0 < t1 < . . . < tn < ∞, the increments
∆X(ti) := X(ti)−X(ti−1) are mutually independent for i = 1, . . . , n.

(iii) Stationary increments: for any 0 ≤ s < t and h ≥ 0, the increments satisfy
X(t)−X(s) =d X(t+ h)−X(s+ h).

(iv) Stochastic continuity: for all t ≥ 0 and ε > 0, one has lims→t P(|X(t)−X(s)| >
ε) = 0.
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General references on mathematical details of Lévy processes are for example in
Sato [162], Bertoin [37], Applebaum [20], Kyprianou [133]. Property iii) allows one
to de�ne a new version of the process X(t) with cádlág sample paths (cf. Sato [162,
Ch. 2]). Therefore, one can assume the càdlàg property. One prime example of a
Lévy process is the Brownian motion, which in addition to properties ii) and iii) has
normally distributed increments. However, here we focus our attention on increasing
Lévy processes, i.e., with almost surely non-decreasing paths (like the homogeneous
Poisson process and the compound Poisson process). These processes are also called
subordinators because they can be used as time changes for other Lévy process.
In this thesis Lévy subordinators are denoted by L(t). A formal de�nition of Cox
process directed by a Lévy subordinator follows.

De�nition 1.1.8. Let {Ñλ(t); t ≥ 0} be a homogeneous Poisson process with inten-
sity λ > 0 and {L(t); t ≥ 0} a Lévy subordinator. The counting process NL(t) :=

{Ñλ(L(t)); t ≥ 0} is a Cox process directed by a Lévy subordinator.

The advantage of this counting process is that the Lévy subordinator acts as a
random operational time, also referred to as a stochastic clock. Then, the random
time jumps produced by the subordinator L(t) extend the basic Poisson model
to allow for simultaneous claim arrivals in physical time. However, due to the
subordinator jumps, the paths are not continuous and hence no random intensity
function Θ(·) exists for such processes.

Classical examples of subordinators are the homogeneous Poisson process, the Gamma
process and the inverse Gaussian process (cf. [169, Ch. 2]). In particular, when L(t)
is a Gamma process, one gets that the increments of NL(t) are independent and
negative binomially distributed, which is a popular assumption for claim counts
in insurance practice. This shows how the Gamma process embeds time into the
negative binomial count model in a natural way.

One advantage of Cox processes, and in particular Lévy subordinated ones, is that
they lead to natural multivariate models, where the dependence between di�erent
lines of business is introduced by sharing the same realization of the subordinator
for otherwise independent Poisson processes (cf. Scherer and Selch [169] for details).

To that end, let {Nj(t); t ≥ 0} count the claims arriving in each line of business
(or portfolio) j = 1, . . . , d up to time t ≥ 0. The multivariate Cox process N =
(N1, . . . , Nd) is de�ned through

N = Ñλ(L(t))

=
{(
Ñ1,λ1(L(t)), . . . , Ñd,λd(L(t))

)
; t ≥ 0

}
.

Note that we allow for d di�erent marginal intensities λj, while the common L(t)
introduces dependence between the d lines of business. In particular, this construc-
tion can now lead to simultaneous claim arrivals within and between the individual
portfolios in the time-changed process. Selch and Scherer [169, Sec. 4.2.3.] provide
other alternatives to introduce dependency between components, one of them being
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constructing multivariate Lévy subordinators from univariate subordinators using
Lévy copulas.

We refer the reader to the excellent monograph by Selch and Scherer [169] for exten-
sive details about Cox processes directed by Lévy subordinators. In order to allow
for non-stationarity, but still maintaining the analytical tractability of the model,
in Chapter 2 of this thesis we replace the Lévy subordinator L(t) by an additive
process M(t) (see for instance Sato [162] and Cont et al. [55]). That allows to con-
sider simultaneous claim arrivals and to incorporate other features such as trends
and seasonal behavior in the underlying subordinator.

Cox processes with shot noise intensity

Let the intensity process be of the form

Θ(t) = κ+ ν(t) +

Ñρ(t)∑
j=1

h(t− Tj, Yj), t ≥ 0,

where κ > 0 is assumed to be constant; ν(t) ≥ 0 represents initial conditions of the
process, independent of

∑∞
j=1 h(t−Tj, Yj); and T1, T2, . . . represent the arrival times

of the shots resulting from a homogeneous Poisson process Ñρ(t) with intensity ρ.
Furthermore Y1, Y2, . . . is a sequence of i.i.d. positive random variables independent
of the Poisson process, and h is some decay function with h(t, y) = 0 for t < 0.
Dassios and Jang [59] give the following interpretation: In addition to the occur-
rence of claims described by the homogeneous Poisson process with rate κ, there are
additional claims independently triggered by external events (e.g., natural catastro-
phes) occurring at times T1, T2, . . .. The model captures the e�ect that these events
lead to a signi�cant increase of the number of claims. Due to reporting lags of the
claims that originate from such external events, the resulting increase in intensity
will develop according to the function h.

One possible parametric speci�cation of the function h that has been used in the
literature is h(t, y) = y · exp(−r t) (see Avanzi et al. [28]), leading to

Θ(t) = Θ(0)e−r t +

Ñρ(t)∑
j=1

Yje
−r(t−Tj).

In this setup, the intensity jumps at times Tj with magnitudes Yj and the e�ects
decay exponentially over time at rate r, and the resulting claim number process in
this case stays in fact Markovian. Liu [140] provides a nice overview of shot noise
Cox processes. Moreover, Avanzi et al. [27] provide a multivariate extension of this
concept, where the dependency structure is introduced via a multivariate shot noise
intensity process with the help of a Lévy copula. See also Jang and Oh [118] for a
recent review of the distributional properties of Cox, Hawkes and dynamic contagion
processes and their compound processes.
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Markov-modulated Poisson process

This type of process belongs to the general family of Hidden Markov models. In
this case, the intensity process Θ(t) is controlled by a continuous-time Markov chain
X(t), which is typically assumed to have a �nite state space. This modeling frame-
work has applications in a variety of �elds. In queuing theory, the intensity of
service may �uctuate due to random breakdowns in components, in credit risk mod-
eling the intensity of defaults may �uctuate due to changes in business cycles, or
in rainfall data environmental weather conditions that generate di�erent levels of
precipitation. Intuitively, the �hidden� states of the underlying Markov model pro-
vide a representation for unobservable circumstances allowing the model to transit
through di�erent intensity levels.

We write the intensity as Λ(t) =
∫ t

0
g(X(s))ds, where the function g(·) determines

the intensity structure depending on the continuous-time Markov chain X(t). For
example, Avanzi et al. [26] considered g = λX(t) · γ(t), where λX(t) is a constant
intensity conditional on the state of the underlying Markov chain at time t, and
γ(t) represents the known exogenous volume or exposure process. See also Guillou
et al. [110, 111] and Badescu et al. [31, 30] for further insurance applications and
additional variants of this model.

1.2 Claim severity modeling

Due to the nature of the insured losses the focus in claim severity modeling is to
consider risks using positive skew random variables such as the exponential distribu-
tion or its generalization the gamma distribution. Often particular attention has to
be given to events that are rare in occurrence, but can have tremendous (�nancial)
consequences. The resulting probability distributions have �heavier� tails than an
exponentially decaying tail. Given their rare nature, not many observations of such
events might be available and hence there is a need for modeling techniques that
can di�er subtantially from classic statistical methods.

Extreme value theory (EVT) provides a solid theoretical basis and statistical frame-
work to deal with such extreme events and leads to estimators for relevant quantities
in insurance practice, such as the Value-at-Risk. In this section, we brie�y summa-
rize some facts from extreme value analysis (EVA) with the aim of de�ning the
Pareto-type models needed for Chapter 3 of this thesis. Standard references in the
�eld are Embrechts et al. [94], Coles [54], Beirlant et al. [35], de Haan and Ferreira
[64] and Reiss and Thomas [158].

1.2.1 Extreme value analysis

The prime interest in extreme value theory is the study of rare/extreme events, and
to �nd general rules and connections that apply not only to one speci�c model but
rather to entire classes of models. A fundamental result in EVT is the one describing
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the limit behavior of the normalized partial maxima of i.i.d. random variables. More
speci�cally, to identify a non-degenerate distribution function G for which there exist
sequences of constants an > 0 and bn ∈ R such that for all real x

P

(
Xn,n − bn

an
≤ x

)
→ G(x), (1.1)

as n→∞. This is provided by the so-called Fisher-Tippett theorem (cf. Fisher and
Tippet [96], Gnedenko [104] and later de Haan [63]).

Theorem 1.2.1. (cf. [94, Theorem 3.2.3]) Let X1, X2, . . . be a sequence of i.i.d.
random variables. If there exists some non-generate distribution function G and

some constants an > 0, bn ∈ R such that a−1
n (Xn,n − bn)

d−→ G, then G has to be of
one of the following types:

Weibull : Ψα(x) =

{
exp(−(−x)α), x ≤ 0

1, x > 0
α > 0.

Gumbel : Λ(x) = exp(−e−x), x ∈ R.

Fréchet-Pareto : Φα(x) =

{
0, x ≤ 0

exp(−x−α), x > 0
α > 0.

In other words, when the sample maxima can be stabilized by suitable constants,
the corresponding normalized variable converges in distribution to a random variable
having a distribution function of one of the three families above. This theorem can
be restated in terms of the so-called generalized extreme value distribution (cf. von
Mises [180] and Jenkinson [119]), by combining these three parametric families into
a single family of models having a distribution function of the form

Gγ(x) = exp(−(1 + γx)−1/γ) for 1 + γ x > 0,

and γ ∈ R. The real parameter γ is called the extreme value index (EVI), which
is the key quantity in extreme value analysis. Furthermore, if there exist sequences
an > 0 and bn such that the rescaled sample maxima converge in distribution to
Gγ, we say that the distribution F of the random sample X1, X2, . . . , is in the
max-domain of attraction of Gγ (MDA(γ)).

The sign of the EVI governs the right-tail of the distribution and one distinguishes
between three cases.

� The (extremal) Weibull case (γ < 0): The distributions in the max-domain of
attraction are bounded above (have a �nite right endpoint). Examples include
the uniform, the Beta and the reverse Burr distribution.

� The Gumbel case (γ = 0): This class is rather extensive and contains a great
amount of light-tailed distributions, such as the exponential and the Gamma
distribution. Also, the Weibull and the lognormal distribution are contained
in this class.
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� The Fréchet-Pareto case (γ > 0): This class contains heavy-tailed distributions
like Pareto, Fréchet and Burr distributions.

Beirlant et al. [36, Ch. 3] and Albrecher et al. [7, Ch. 3.3] provide a nice summary
of distributions in each class. In Chapter 3 of this thesis, we will deal with the
Fréchet-Pareto extreme value distributions which correspond to the Pareto-type
distributions.

So far, we gave examples of distributions of each case. However there is still the
question of how to characterize the distributions F satisfying (1.1) for a given Gγ,
which constitutes the domain of attraction problem. The class of distributions in
the maximum domain of attraction (MDA) can be determined in terms of the tail
quantile function. For a given distribution function F, the quantile function and tail
quantile function are de�ned as

Q(p) := inf{x : F (x) ≥ p}, p ∈ (0, 1) and U(t) = Q

(
1− 1

t

)
, t > 1.

It can be shown that if F is a distribution function with tail quantile function U(t),
the distribution F belongs to the MDA(γ) if there is a positive function a such that
for x > 0,

lim
x→∞

U(xu)− U(x)

a(x)
=: hγ(u) =

uγ − 1

γ
, (1.2)

where for γ = 0 the expression on the right reads log(u). Moreover, the weak con-
vergence (1.1) holds with bn = U(n) and an = a(n) (cf. [64, Theorem 1.1.6]). If
(1.2) holds, then it often said in the literature that the underlying distribution F
satis�es the extreme value condition Cγ(a) with the auxiliary function a.

In the speci�c case γ > 0, i.e. for the Pareto-Fréchet domain of attraction, the
extreme value condition Cγ corresponds to asking for U to be regularly varying,
which means U(x) = xγ `(x), where ` is a slowly varying function. The latter is
de�ned as a measurable and ultimately positive function that satis�es

`(tx)

`(t)
→ 1 as x→∞,

for every t > 0 (cf. [35, Ch. 2.3]). An extensive treatment of regularly and slowly
varying functions is given in Bingham et al. [38].

In de Haan [63] it was shown that the extreme value condition Cγ can be equivalently
stated in terms of F , namely that there exists a function h such that

1− F (t+ uh(t))

1− F (t)
→ (1 + γu)−γ

−1

, as t→ x+, (1.3)

for all u for which 1 + γu > 0, where x+ = sup{x : F (x) < 1}. For γ = 0 the
expression in the middle equals e−u. Also, it holds with h(t) = a(1/(1− F (t))) (cf.
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[64, Theorem 1.1.6]). In the case γ > 0, the latter condition also tells us that the
class Cγ equals the class of Pareto-type distributions de�ned by

1− F (x) ∼ x−α`(x), (1.4)

as x → ∞. Here ∼ denotes asymptotic equivalence, i.e., the ratio between the two
expressions is 1 in the limit x → ∞. Furthermore, α = 1/γ and ` is slowly varying
as above. Then 1− F is regularly varying with index −α. In the exact Pareto case
`(x) = 1.

Condition (1.4) is equivalent to

P
(
X

t
> u

∣∣∣X > t

)
→ u−α, (1.5)

as t→∞, for every u > 1. The latter shows that after a certain threshold t, Pareto-
type models exhibit an exact Pareto behavior. The latter expression is relevant for
the estimation of the tail index in a peaks-over-threshold (POT) approach.

It is clear from (1.5) that the accuracy of the right-hand side used as an approxi-
mation for a given t depends on the slowly varying function `. In the literature the
following sub-class of the Pareto-type distributions is often considered:

1− F (x) = Ax−α(1 +Dxρ(1 + o(1))), as x→∞,

where A > 0 is the scale parameter, ρ < 0 and D are the second-order shape and
scale parameters. The notation o(1) here means f(x)→ 0 as x→∞ (this class was
introduced by Hall [112], see also [35, Ch. 3.3]). This assumption allows to derive
speci�c approximations for the bias and variance of the tail-index estimators.

In Chapter 3 of this thesis, we will study the tempering of Pareto-type tails by a
general Weibull distribution. This is motivated by the fact that often the power-law
behavior does not extend inde�nitely due to some truncation or tapering e�ects.
In fact, in the context of truncation (see Beirlant et al. [33, 34]), tempering can
be considered as an interpolation between pure Pareto tails and their truncated
counterparts. We will also discuss the statistical estimation of the tail index α and
other relevant parameters using a POT approach.

1.3 The Cramér-Lundberg model

In the actuarial literature, a criterion to analyze the solvency of an insurance portfo-
lio is to consider the insurer's surplus process C(t) as a function of time. Classically,
one starts by decomposing C(t) into three main components. First, assume that
the insurer starts at time zero with a positive working capital, or initial surplus,
C(0) = u. Then, the insurer collects premiums according to a certain premium
process during the lifetime of the portfolio. Finally, the company will pay the poli-
cyholders' losses. Then, the safety of an insurance portfolio is measured by whether
at some point in time the insurer may not be able to pay the claims occurred in the
portfolio with the existing surplus level.
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The traditional model for C(t) is based on the early work of Filip Lundberg, who
introduced the compound Poisson risk process in his famous doctoral thesis in 1903.
Later, Harald Cramér mentioned the importance of Lundberg's ideas and incorpo-
rated them into the theory of stochastic processes. The resulting model is hence
often referred to as Cramér-Lundberg model and it is one of the classical building
blocks of Risk Theory.

The study of ruin probabilities has attracted enormous attention in the literature on
applied probability theory, see for example Bühlmann [48], Seal [167, 168], Gerber
[102], Grandell [108], Daykin et al. [61], De Vylder [68], Dickson [88], Rolski et al.
[161] and Asmussen and Albrecher [22] for surveys. In the following section we cite
some results that are standard in the ruin theory literature, and that are relevant
for subsequent chapters of the this thesis.

In the Cramér-Lundberg model it is assumed that the premium income is continuous
and that in any time interval it is proportional to the length of this interval. The
aggregate claims follow a compound Poisson process S(t) with Poisson parameter
λ. The surplus process of the insurance portfolio is then given by

C(t) = u+ ct− S(t), t ≥ 0,

with initial surplus C(0) = u. Here c is the premium income per unit of time, and the
claim sizes modeled by positive i.i.d. random variables with cumulative distribution
function FX(x) and �nite mean µ > 0.

In reality the mean number of claims in a time interval will not be constant through-
out time. In fact, it might be periodic over time or more generally vary according
to a function λ(t). Moreover, both the number of claims and premium income will
also depend on the volume of the portfolio at time t, say υ(t). In other words, the
claim number process is an inhomogeneous Poisson process with mean value func-
tion µ(t) =

∫ t
0
λ(s)υ(s)ds with inverse function µ−1(t). Then, from Section 1.1.2

we know that Ñ(µ−1(t)) is a standard homogeneous Poisson process. Also, let the
premium income vary with time such that the premium income in the interval (0, t]

is cµ(t) for some constant c. Then, consider the process C̃(t) = C(µ−1(t))

C̃(t) = u+ cµ(µ−1(t))−
Ñ(µ−1(t))∑

i=1

Xi = u+ ct−
Ñ1(t)∑
i=1

Xi,

which is also a Cramér-Lundberg process. Therefore, we should not consider time
to be real time but operational time.

It is important for an insurance company that C(t) stays above a certain level given
by internal or legal requirements. By adjusting the initial surplus it is no loss of
generality to consider the level 0, and ruin is de�ned as the event that C(t) drops
below zero for the �rst time, i.e., when the total of incurred claims are larger than
the initial surplus u plus the earned premiums. De�ne the ruin time

τ(u) = inf{t > 0 : C(t) < 0}.
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Figure 1.1: Sample path of the risk process C(t) with initial surplus u. Ruin occurs
at τ(u) = W4.

The probability of (ultimate) ruin is then de�ned as

ψ(u) = P
(

inf
t>0

C(t) < 0
)

= P(τ(u) <∞), (1.6)

and φ(u) = 1−ψ(u) is the survival probability. Note that τ(u) is a defective random
variable. It is often more convenient to work with the loss process R(t) = S(t)− ct,
for t ≥ 0 and its maximum L = supt≥0R(t). The ruin probability can alternatively
be written as ψ(u) = P(L > u). Denote the claim times by W1,W2, . . . with the
convention that W0 = 0. Figure 1.1 shows a sample path of the Cramér-Lundberg
surplus process that is ruined at the fourth claim arrival.

In order to avoid ψ(u) = 1 for all u, one requires that the surplus process satis�es
the net pro�t condition c − λµ > 0 (see, for example Asmussen and Albrecher [22,
Ch. 4.1, Corollary 1.4]). In other words, the premium received per time unit need to
exceed the expected claim payments per time unit. A further related basic quantity
is the safety loading

θ =
c− λµ
λµ

> 0

de�ned as the relative amount by which the premium income c exceeds the average
amount of claim per unit of time.

1.3.1 An integro-di�erential equation

By taking advantage of the Markovian structure of the surplus process one can
obtain a renewal equation for the survival probability. Conditioning on the time of
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the �rst claim arrival, one obtains, noting that φ(u) = 0 for u < 0,

φ(u) = e−λhφ(u+ ch) +

∫ h

0

λe−λt
∫ u+ct

0

φ(u+ ct− x)dFX(x)dt.

Intuitively, the �rst term on the right-side of the equation describes the case where
no claim occurs on (0, h] : due to the Markov property of the process, a new Cramér-
Lundberg process then starts at the higher surplus u+ch. The second term describes
the situation where a claim indeed occurs at some point t ∈ (0, h], so that one is
either ruined if the claim amount exceeds the available surplus u + ct at time t or
one restarts the evaluation at a new surplus u+ ct− x.
It is possible to show that φ(u) is continuous and di�erentiable everywhere on [0,∞)
with the exception of the countable set where FX(x) is not continuous (see Rolski
et al. [161, Ch. 5.3]). Using these results, at the continuity points of FX(x) one can
therefore write

φ′(u) =
λ

c
φ(u)− λ

c

∫ u

0

φ(u− x)dFX(x), (1.7)

along with the boundary condition limu→∞ φ(u) = 1. The latter is due to the positive
drift of the process imposed by the net pro�t condition. Integrating both sides over
the interval (0, u] and doing the corresponding algebraic manipulations one obtains
an integral equation for the ruin probability (see [161, Theorem 5.3.2]). Furthermore,
given the boundary condition it follows that

ψ(0) =
λµ

c
=

1

1 + θ
.

This result is quite remarkable: for zero initial surplus the ruin probability depends
on the claim size distribution only through its mean and is independent of the
speci�c form of the claim size distribution FX(x). Furthermore, one sees that it only
depends on the safety loading θ.

1.3.2 The Laplace transform and the Pollaczek-Khintchine
formula

Consider the Laplace transform of the survival probability de�ned as

φ̂(s) =

∫ ∞
0

e−suφ(u) du, for s > 0.

Multiplying (1.7) by e−su and then integrating, one obtains

c

∫ ∞
0

e−suφ′(u)du− λ
∫ ∞

0

e−suφ(u)du+ λ

∫ ∞
0

∫ u

0

e−suφ(u− x)dFX(x)du = 0,

for s > 0. By rearranging the third term of the integral and noting that the convo-
lution of two functions is the product of their Laplace transforms, it follows that∫ ∞

0

∫ u

0

e−sufX(x)φ(u− x)dxdu = φ̂(s) ·MX(−s),
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where MX(−s) is the Laplace transform of the claim size distribution.

Thus one obtains the equation

c(sφ̂(s)− φ(0))− λφ̂(s) + λφ̂(s)MX(−s) = 0,

which has solution

φ̂(s) =
cφ(0)

cs− λ(1−MX(−s))
=

c− λµ
cs− λ(1−MX(−s))

=
1

s

θ
1+θ

1− 1
1+θ

(
1−MX(−s)

sµ

) .
(1.8)

The Laplace transform of the ruin probability can be easily expressed as

ψ̂(s) =

∫ ∞
0

ψ(u)e−sudu =
1

s
− φ̂(s).

From (1.8) one easily obtains a representation formula for ψ(u) (the celebrated
Pollaczeck-Khinchine formula, cf. [161, Theorem 5.3.4])

ψ(u) = P(L > u) =
θ

1 + θ

∞∑
k=0

(
1

1 + θ

)k
F
∗k
XI

(u), (1.9)

where F
∗n
XI

denotes the n-th fold convolution of the survival distribution of the
integrated tail distribution of X given by FXI (x) = µ−1

∫ x
0

(1 − FX(x))dx, x ≥ 0,

and Laplace transform MXI (−s) = 1−MX(−s)
sµ

.

Thus, expression (1.9) represents L as a geometric compound random variable (cf.
[22, Ch. III.5]) and may be written as L =

∑M
k=1 Li, with M being the number

of record highs and Li (i = 1, 2, . . .) the respective overshoots. Moreover, M has a
geometric distribution with parameter ψ(0) = 1/(1 + θ) and FLi(x) = FXI (x) (cf.
[22, Ch. IV.3a, Corollary 3.1]). Figure 1.2 illustrates the latter on the claim surplus
process.

1.3.3 Extensions of the classical risk model

Over the years many extensions of the Cramér-Lundberg model have been proposed,
and we brie�y comment on some of those (we refer the enthusiastic reader to As-
mussen and Albrecher [22] for a detailed overview).

In order to generalize the Cramér-Lundberg model, modern risk theory now often
uses more general Lévy risk processes. One motivation is to directly model the
aggregate claims by in�nitely divisible distributions rather than compound the single
claims as in the Cramér-Lundberg model. Early references of this approach are
Dufresne et al. [91] where the compound Poisson process is replaced by a Gamma
process, Dufresne and Gerber [90] who added a di�usion component or Morales and
Schoutens [148]. This direction of research has seen a tremendous growth in recent
years, see Asmussen and Albrecher [22, Ch. 11] and Kyprianou [133, 134] for details.
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Figure 1.2: Sample path of the risk process R(t) with initial surplus u. Ruin occurs
at τ(u) = W4. Also, the quantities L,L1, L2 and L3 are depicted.

Since de Finetti's work [62], it has also been of interest to consider decision rules
under which the insurance company pays dividends to its shareholders and more
precisely to specify the optimal strategy to pay dividends over the life time of the
insurance portfolio, see Gerber [101], Avanzi [25], Albrecher and Thonhauser [16]
or Azcue and Muler [29] for overviews. Other extensions of the classical model
include stochastic investment returns (cf. Delbaen and Haezendonck [73]), taxes (cf.
Albrecher and Hipp [12]) or reinsurance (see e.g. Schmidli [163]). Similar to dividend
strategies, adding such features introduces decision theoretical aspects, such as how
much to dynamically invest in risky assets in a surplus-dependent way or what is
the optimal reinsurance cover to purchase.

As mentioned in Section 1.1, the homogeneous Poisson model is often not a good
description of reality and more realistic models are needed to model the claim arrival
process. In that regard, the renewal risk model, also known as the Sparre-Anderson
model (cf. [172]), replaces the exponential distribution of the time in between ar-
rivals by a more general distribution. This extension introduces a certain degree
of contagion into the model, as the lack-of-memory property of the claim arrival in
the Cramér-Lundberg model is lost. More generally, as discussed in the beginning,
one can introduce inhomogeneity into the process by means of an intensity function
λ(t) describing diverse �uctuations over time in order to account for e�ects such
as seasonality, insurance cycles, etc. A natural way to achieve this is by means of
an inhomogeneous Poisson model or, more generally, a Cox process. For example,
Björk and Grandell [39] assume a risk process with a Cox process for counting claim
arrivals. Using a martingale approach they gave extensions of the classical Lundberg
inequality. Nevertheless, Cox processes are too general and therefore one needs more
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concrete assumptions. For example, Albrecher and Asmussen [6] considered a claim
arrival process that is a superposition of a homogeneous Poisson process and a Cox
process with a Poisson shot noise intensity process. As described in Section 1.1.4,
Markov-modulated Poisson processes are another appealing way to allow for inho-
mogeneity. Asmussen [21] considered risk processes with the property that the rate
λ of the Poisson arrival process and claim size distribution F are not �xed in time
but depend on the state of an underlying Markov jump process {J(t); t ≥ 0} with a
�nite state space such that λ = λi and F = Fi when J(t) = i. Thus, J(t) describes
the environmental conditions for the risk process, see Asmussen and Albrecher [22,
Ch. VII] for a comprehensive treatment of risk theory in a Markovian environment.

When no closed-form solutions are available for the ruin probability, several numeri-
cal methods are available, for example Laplace transform inversion, matrix-analytic
methods or numerical solutions of di�erential and integral equations (cf. [22, Ch.
I.4]). Another classical approach is to use approximations for the ruin probabil-
ity for large values of the initial surplus. The Cramér-Lundberg approximation
ψ(u) ∼ C · e−Ru, u→∞ is one of the most celebrated results of risk theory, where
C = (c − λµ)/(λM ′

X(R) − c) and R > 0 is the solution of the Lundberg equa-
tion λ(MX(R) − 1) − cR = 0 provided that MX(R) exists. This approximation is
renowned for being quite accurate for intermediate values of u already and not only
for large initial surplus. It holds for exponentially bounded claim distributions and
has generalizations to some more general surplus processes. Various approximations
exist for the ruin probability in the compound Poisson model (cf. Asmussen and
Albrecher [22, Ch. IV.7]). In particular, if information about the claim arrivals
intensity, claim size moments, and premium rate is available, one idea introduced
in De Vylder [65] is the following. Given the explicit ruin probability formula for

exponential claims, one can approximate C(t) by a surplus process C̃(t) with ex-
ponentially distributed claims by matching the observed available information and
the theoretical moments under this assumption. That approximation has proved
to be quite accurate for light-tail claim distributions. Extensions of the latter to
approximations with more general claim distributions can be found, for example,
in Badescu and Standford [32]. Moreover, Gerber et al. [103] study an extension
of this approximation to study the e�ects of external mechanisms such as dividend
payments. If on the other hand FXI (x) is sub-exponential, one has the so-called
large claim approximation ψ(u) ∼ λµ

c−λµ(1 − FXI (u)). Some of the early references

on such approximations are Teugels and Veraverbeke [177], von Bahr [179] and Em-
brechts and Veraverbeke [95]. Stronger results under additional assumptions on the
tail of the distribution can for instance be found in Ramsay [156] and Albrecher
and Kortschak [15] for Pareto claim sizes, and Burr claim sizes are studied in Ko-
rtschak and Albrecher [132]. In Albrecher et al. [13] higher-order expansions for ruin
probabilities in renewal risk models with sub-exponential claim sizes are obtained.
Moreover, Kalashnikov [128] provides upper bounds for the survival probability in
the presence of heavy tails.

If only partial information about the surplus process is known (for example, as
mentioned above, information about the claim arrival intensity or moments of the
individual claim sizes), besides approximations one often tries to �nd bounds for
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the ruin probability. In Chapter 4, we explore this situation and provide upper and
lower bounds for the ruin probability when only information about the �rst moments
of the claim size distribution is available.

1.4 Stochastic orders

A particular task of actuarial practice is to compare the attractiveness of di�erent
portfolios of risks, which often boils down to ordering of risks. One �rst criterion
could be to compare the resulting ruin probability (or some other risk measure).
Often such assignment has to be carried out with only partial knowledge about the
underlying random variables. For instance, information about the mean and the
variance, or maybe higher order moments, of the claim size may be available, but
not a full description of the risks under examination. Hence, there is a need for
stochastic ordering relations, which can lead to bounds on the risk measures under
consideration. As argued in Brockett [47], if confronted with several portfolio of
risks, given an initial surplus and safety loading, the actuary might opt for the one
with the smallest ruin probability. However, if encountered with incomplete available
information, the decision needs to be made based on lower and upper bounds for
the ruin probability.

The derivation of stochastic bounds is an active area of research and has found
applications in various �elds. Stochastic order relations constitute an important tool
in the analysis of actuarial problems. For instance, they can be used to compare
complex models possibly leading to more conservative decisions. In an actuarial
context, stochastic orderings were �rst described in the seminal papers by Borch
[41], Bühlmann et al. [49] and Goovaerts et al. [105]. Classic additional references
are Shaked and Shantikumar [170, 171] and Müller and Stoyan [149]; see also Kaas
et al. [126] and Denuit et al. [77] for an actuarial context.

Given the natural connection between stochastic ordering and utility theory, in the
actuarial literature most of the order relations have an integral form. Namely, given
two random variables X and Y and a class of measurable functions G, we say that X
precedes Y in the ≤G-sense (X ≤G Y ) if and only if E(φ(X)) ≤ E(φ(Y )) for all the
functions φ ∈ G. The function φ can be thought of as the preferences of an economic
agent (its utility function). In this thesis we do not pursue interpretations of the
latter kind, however we do make use of certain types of stochastic order relationships
of the integral form and in this section we brie�y comment on three of them that
will be relevant in Chapter 4.

We say that a random variable X precedes a random variable Y in stop-loss order if
the X has less weight in the tail than Y, in the sense that the expected value above
a certain deductible d (stop-loss premium) is larger for Y than for X, and this is
true for each possible d. A formal de�nition of the latter is as follows.

De�nition 1.4.1. A random variable X precedes a random variable Y in stop-loss
order (X ≤sl Y ), if their stop-loss premiums are ordered uniformly:

E((X − d)+) ≤ E((Y − d)+),
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for all deductibles (or retentions) d ≥ 0, where z+ = max(z, 0).

Stop-loss order has great appeal to actuaries given that it re�ects the common risk
preferences of all risk averse decision makers, i.e. economic agents with concave
increasing utility functions. Furthermore, stop-loss order is preserved under many
important mathematical operations relevant for actuarial purposes. For example, it
is preserved under convolution, compounding, and mixing (cf. [77, Ch. 3.2.2]).

Denuit [75] studied the class of functions φ(x) = 1 − e−sx where s is a positive
number. This class of functions give rise to the Laplace transform order, which can
be de�ned as follows:

De�nition 1.4.2. Given two non-negative random variables X and Y , X precedes
Y in Laplace transform order (X ≤Lt Y ) if

E(exp(−sX)) ≤ E(exp(−sY )),

holds for all s ≥ 0.

Moreover, as argued in [75], X ≤Lt Y can be interpreted as a preferred income X
over an income Y by all decision makers with an exponential utility function. An
extensive treatment of the Laplace transform order can be found in Shaked and
Shantikumar [171, Ch. 5].

As mentioned before, in many situations the actuary only has access to certain
moments of the distribution, hence a great amount of research has been devoted to
the derivation of upper and lower bounds on quantities in the integral form E(ν(X)),
for some function ν, and X belonging to a certain class of functions satisfying some
moment constraints. Early examples of this are De Vylder [66, 67], De Vylder and
Goovaerts [71], Kaas and Goovaerts [125] and Hürlimann [116] where bounds for
functions of random variables under integral constraints were analyzed.

In that regard, Denuit et al. [85, 76] introduced the concept of m-convex orders,
which is formally de�ned as follows.

De�nition 1.4.3. Let S be a subinterval of the real line (in this thesis closed inter-
vals). For a positive integer m, consider the classMm−cx of all functions φ : S → R
whose m-th derivative φ(m) exists and satis�es φ(m)(x) ≥ 0, for all x ∈ S, or which
are limits of sequences of functions whose m-th derivative is continuous and non-
negative on S.
Let X and Y be two random variables that take on values in S. Then, X is said to
be smaller than Y in the m-convex order (X ≤m−cx Y ) if E(φ(X)) ≤ E(φ(Y )) for
all functions φ ∈Mm−cx provided the expectations exist.

For a comprehensive treatment of the theory of m-convex orders and e�ective meth-
ods for deriving the support points and associated probabilities of the stochastic
extrema, we refer to the reader to Denuit et al. [86], Shaked and Shantikumar [171,
Sec. 3.1] and the references therein. The reader interested in how to approximate
theoretical premium calculation principles using m-convex extrema is referred to
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Denuit [74]. Denuit et al. [84] applies decision theory using the concept of m-convex
pain functions. Here pain functions are de�ned as υ(x) = −u(x) for x ∈ R, with
u(·) being a non-decreasing utility function for a decision-maker. Then, υ(x) might
be viewed as the pain associated with a debt of amount x monetary units. For a
more recent application to assess the di�erence in payment between an agent in-
curred loss and the compensation from a structured risk transfer mechanism such
as index-based insurance or reinsurance contracts see Lefèvre et al. [138], where an
Enterprise Risk Management framework is de�ned to asses these hedging imper-
fections. The concept of m-convex orderings for comparing arithmetic risks was
developed in Denuit and Lefèvre [82] and Denuit et al. [83]. In these contributions,
given a non-degenerate moment space with �xed m moments, explicit formulas for
the discrete m-convex extremal distribution were derived for m = 1, 2, 3. Further-
more, Courtois et al. [56] extended the previous references by proposing a method
for deriving expressions for general non-negative integer m.

1.5 Main contributions of this thesis

This thesis contains results in the area of modeling and assessing risk of insurance
portfolios, which are structured in three chapters. The results of Chapter 2 have
already been published in the North American Actuarial Journal, the content of
Chapter 3 is accepted for publication in ASTIN Bulletin and Chapter 4 is submitted
for publication.

Motivated by Selch and Scherer [169], in Chapter 2 we propose a non-stationary
extension of the construction principle of Lévy-subordinated Poisson processes for
claim frequency modeling, introduced in the before-mentioned reference, by enabling
trends and seasonal behavior in the underlying subordinator. Furthermore, we ar-
gue that this will allow to keep all the advantages of the Selch-Scherer model, but
in addition account for non-stationary behavior, leading to a �exible, yet parsimo-
nious continuous-time model for claim counts that accounts for both clustering and
non-stationarities. This is particularly relevant in insurance practice where claims
often occur in clusters and their arrivals may depend on various external and time-
dependent factors. Also, by means of a case study we show how the incorporation of
such non-stationarities can accommodate characteristics of real data such as changes
is policy volumes over time.

Chapter 3 deals with heavy-tail modeling. In particular, it provides a model for
claim sizes where the Pareto behavior only sets in after a certain threshold and such
a behavior does not extend inde�nitely due to truncation or tempering e�ects in
the data. In that regard, it generalizes earlier results of Meerschaert et al. [145]
and Raschke [157] by considering the tempering of a Pareto-type distribution with
a general Weibull distribution in a peaks-over-threshold approach. This provides a
relevant model for insurance applications where often the Hill plot shows a sharp
increase when considering a small number of order statistics only, as the data become
less heavy-tailed further out in the tails. For example, claim payments are in�uenced
by claim management and claims may for instance be subject to a higher level of
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inspection at highest damage levels leading to weaker tails than apparent from modal
claims.

Finally, Chapter 4 deals with ruin theory under incomplete information, namely in
the circumstances where only limited information about the claim size distribution is
available. This is in fact a classical problem posed many years ago by the Swiss Ac-
tuary Hans Schmitter. To revisit this classical problem from a fresh perspective, we
consider random initial surplus, leading to considerably more amenable expressions
for the ruin probability in the Cramér-Lundberg model. We show that the com-
putational simpli�cation that is obtained by randomizing the initial surplus allows
to connect the problem to m-convex ordering to obtain analytical bounds for the
randomized ruin probability. In addition, we show that the solution to the classical
problem with deterministic initial surplus level can conveniently be approximated
via Erlang(k)-distributed initial surplus for a large k.



Chapter 2

Fitting non-stationary Cox processes:

An application to �re insurance data

This chapter is based on the following article:[4]

H. Albrecher, J.C. Araujo-Acuna, and J. Beirlant. Fitting nonstationary Cox pro-
cesses: An application to �re insurance data. North American Actuarial Journal.
To appear, 2020.

Abstract. In insurance practice, claims often occur in clusters and their arrivals may

depend on various external and time-dependent factors. In this article, we propose a

statistical approach for modeling claim arrivals by considering clustered arrivals and non-

stationarity simultaneously. To this end, we extend the Cox process methodology with

Lévy subordinators presented in Selch and Scherer [169] relaxing the stationarity of incre-

ments assumption. A particular special case of the proposed approach is a dynamic and

�exible model of negative binomially distributed claim numbers with trends and seasonal

variations of the parameters. For illustration purposes, we �t the model to a �re insurance

portfolio and show that it allows the modeling of cluster occurrences in a seasonal pattern

while preserving overdispersion, which is frequently observed in claim count data. We illus-

trate its use in forecasting and Value-at-Risk and Expected Shortfall computations of the

aggregate insurance risk. Finally, we provide a multivariate extension of the model, where

simultaneous cluster arrivals in di�erent components are generated by a non-stationary

common subordinator.

27
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2.1 Introduction

Modelling the occurrence of insurance claims has a long history in actuarial sci-
ence (see e.g. Denuit et al. [87]). In practice one often has annual claim counts
available and, correspondingly, the focus has traditionally been on �tting discrete
positive random variables to these data, with Poisson and negative binomial models
(re�ecting over-dispersion) being particularly popular, even today. If more re�ned
information on the time of claim occurrences is available, then one can naturally
use the �ne structure of the data to test and challenge such simple model assump-
tions, and in a number of cases it turns out that counting processes can considerably
improve the understanding of the underlying mechanisms of claim occurrence and
their consequences for insurance risk management.

If one has access to an even more comprehensive record of the claim history and
individual characteristics of the policyholders, then the claim counts of insureds can
also be analyzed using count regression techniques. Starting with the contribution
of Jorgenson [121] and the development of Generalized Linear Models (GLMs) (cf.
[151]), the development of models for count data has advanced at great pace. In
this context, one usually starts with Poisson, or negative binomial, regression as a
building block and aims to identify risk factors to predict the expected occurrence of
insurance claims based on the policyholders' risk characteristics. Standard references
for this type of models are Gourieroux et al. [106], Hausman et al. [113], Machado
and Santos Silva [142] and comprehensive treatments are given byWinkelmann [183],
Frees [97], Cameron and Trivedi [51] and most recently Denuit et al. [78]. In recent
decades and with advances in technological developments, insurance companies have
been collecting policyholders' information for several years, which motivated the in-
troduction of longitudinal data models in actuarial science in order to exploit this
panel data structure. For example, by including random or subject-speci�c e�ects
in the structure for the mean, GLMs can be extended to Generalized Linear Mixed
Models (GLMMs), and these random e�ects can model the correlation structure
between observations on the same subject and take account of heterogeneity among
subjects; cf. Frees et al. [98, 99] and Antonio and Beirlant [18] who discuss GLMMs
and their applications in ratemaking. Moreover, if the actuary has strong reasons
to believe that nonlinear e�ects of continuous covariates are present, then one can
explore Generalized Additive Models (GAMs), in which continuous covariates are
included into the model in a semiparametric additive predictor; see, for example,
Denuit and Lang [81] and Antonio and Valdez [19] for a comprehensive survey of
statistical tools for risk classi�cation used in insurance. Furthermore, Boucher et al.
[42] provide an extensive selection of panel data models based on Poisson and nega-
tive binomial distributions, which allow for time dependences between observations.

This article, however, deals with a general modeling situation without such detailed
additional information but with the goal to provide a �exible stochastic process
framework for the description of the counting procedure over time in a portfolio.
Though the Poisson distribution for annual claim counts is naturally embedded in
Poisson processes, the analogue for negative binomial claim counts is somewhat
trickier. Indeed, it is well-known that randomizing the rate of a Poisson random
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variable according to a gamma distribution leads to a negative binomial random
variable. However, rather than the often suggested mixed Poisson process, it is a
Poisson process subordinated by a gamma process that embeds the negative bino-
mial claim count model into a corresponding model in a natural way. The concept
of subordination was only introduced recently in a concise way into the actuarial
literature by Selch and Scherer [169]; see also Albrecher et al. [7, Ch.V] for a detailed
discussion. A particular advantage of the subordination construction is that, in con-
trast to the ordinary Poisson process, it allows for clusters of claim arrivals, which are
often observed in the data. Another advantage is that the subordination construc-
tion leads to intuitive multivariate models, where a vector of initially independent
Poisson processes becomes dependent by means of a common time transformation of
each component; see e.g. Selch and Scherer [169]. However, the Lévy subordinator
construction proposed in [169] cannot capture possible non-stationarity in the data,
which can be an important feature in datasets.

In this article we propose a non-stationary extension of the construction principle
of Lévy-subordinated Poisson processes for claim frequency modeling introduced in
Selch and Scherer [169], by enabling trends and seasonal behavior in the underlying
subordinator. This will preserve all of the advantages of the Selch-Scherer model,
but also account for non-stationary behavior, leading to a �exible yet parsimonious
continuous-time model for claim counts that accounts for both clustering and non-
stationarity. In Section 2.2 we start by motivating the approach for a concrete
dataset of Dutch �re insurance claims. Section 2.3 introduces the model in detail and
discusses simulation aspects that are used later in the implementation. Section 2.4
presents a maximum likelihood procedure for the estimation of the model parameters
from data. In Section 2.5, we then apply the model to the Dutch �re insurance
dataset together with an analysis of the impact of the new model on risk measures
computations of the aggregate insurance risk. Section 2.6 discusses a multivariate
extension and illustrates its performance on the well-known multivariate Danish �re
insurance dataset. Section 2.7 concludes.

2.2 A motivating example

Let us revisit a dataset used in Albrecher et al. [7, Sec.1.3.2] on Dutch �re insurance
claims over the period 2000-2014, containing the exact date of each �re incident and
the building type. We will focus here on the sub-portfolio of commercial buildings.
An interesting feature of the latter are the daily cluster sizes for the aggregate
process, ranging from zero to four. Figure 2.1 depicts the aggregate process and
Figure 2.2 shows the cluster arrivals. The semi-annual moving averages (given in
red) already suggest that non-stationarity may be present in the data.

The homogeneous Poisson process commonly acts as a starting point of any statis-
tical analysis of a claim count process when the claim arrival data are su�ciently
speci�c, see Mikosch [146], Rolski et al. [161], Grandell [109], or Albrecher et al. [7,
Ch.V] for more details. Figure 2.1 depicts asymptotic 95% con�dence intervals for
a homogeneous Poisson assumption, suggesting a rejection of the latter. One can
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Figure 2.1: Dutch �re insurance data: aggregate claim number as a function of time
together with 95% con�dence intervals under a homogeneous Poisson assumption.
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Figure 2.2: Dutch �re insurance data: daily cluster sizes and semi-annual moving
average (solid line) of claim numbers against time.

perform a suitably adapted Kolmogorov-Smirnov test for uniformity for the claim
arrivals over the considered time interval (see [7, p.173]), which indeed rejects a
homogeneous Poisson process, with a P-value of 0.00093. See also Figure 2.3, which
depicts the pairs (j, Tj), j = 1, . . . , n, where Tj denotes the time of the claim arrival
of the jth claim, and the resulting plot deviates considerably from linearity that
would be required to ful�ll the uniform distribution assumption of the arrival times
under a homogeneous Poisson process.
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Figure 2.3: Dutch �re insurance data: time points (j, Tj), j = 1, . . . , n (left); mov-
ing average of the estimated intensity function (h = 20) (dots) together with the
reciprocal of the annual expected inter-arrival times (piecewise constant solid line),
the intensity estimate of a homogeneous Poisson process (dashed line) together with
95% con�dence intervals (dotted lines) (right).
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Figure 2.4: Dutch �re insurance data: transformed time points (j, µ(Tj)), j =
1, . . . , n (left); moving average of the estimated intensity function (h = 50) after
time transformation together with 95% con�dence intervals (dotted lines) (right).

In order to describe how the intensity λ varies over time, one can consider, for
example, a moving average of the waiting times Wj = Tj − Tj−1, plotting

1/λ̂i =
1

min(n, i+ h)−max(1, i− h) + 1

min(n,i+h)∑
j=max(1,i−h)

Wj (2.1)
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Figure 2.5: Dutch �re insurance data: histogram of the claim arrival days within
the year of occurrence.

against i (i = 1, . . . , n) for some bandwidth 2h (cf. Mikosch [146]). Though for a
homogeneous Poisson process no trends should be visible in such a plot, the right-
hand-side in Figure 2.3 clearly indicates time variation (note that this plot slightly
di�ers from Figure 5.6 (top left and top right) in [7, Sec.5], because we only consider
the portfolio of commercial buildings).

A natural next step may then be to suspect an inhomogeneous Poisson model for
the arrival of claims; see, for instance, Lu and Garrido [141], Mikosch [146, Sec.2.1.7]
or Albrecher et al. [7, Sec.5.5.2]. We estimate the respective mean value function
µ(t) =

∫ t
0
λ(s)ds using (2.1). If one then transforms the observation times Tj to µ(Tj)

and renormalizes, under the assumption of an inhomogeneous Poisson process the
new claim arrival process should again follow a homogeneous Poisson process. Figure
2.3 (right) gives the estimated yearly average intensity value (piecewise constant
solid line). Time transforming according to the latter, the mean value function
µ is piecewise linear with di�erent slopes for each year. Figure 2.4 (left) shows
that the resulting time-changed arrival times agree nicely with a linear pattern as
required for a homogeneous Poisson process. However, the Shapiro-Wilk test for
exponentiality for the time-changed waiting times rejects a Poisson model with a
P-value of 0.007. Figure 2.4 (right) illustrates that the moving averages of the time-
changed process still contains some signi�cant structure. In addition, it is clear that
the multiple claim arrivals per day observed in Figure 2.2 could not be reproduced
by an inhomogeneous Poisson process with reasonable intensity patterns (see [7, Sec.
5.5.2] for a further discussion of this point). Finally, the histogram of claim arrivals
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as a function of the day within the year of occurrence in Figure 2.5 reveals a seasonal
pattern in the process. There is more activity in the middle of the year and in the
period December-January, which may be attributed to the dry summer season and
increased �rework activity during the holiday season at the end of the year.

Motivated by this example, we hence look for a general, yet parsimonious possibility
to incorporate both clustering and non-stationarity in the claim count model, which
we will pursue in the sequel.

2.3 The non-stationary Cox model

2.3.1 Poisson processes directed by a Lévy subordinator

Let Ñλ(t) denote a homogeneous Poisson process with intensity parameter λ and

let NL(t) := Ñλ(L(t)) be a doubly stochastic Poisson (Cox process) directed by
a Lévy subordinator L. The Lévy subordinator L acts as a random operational
time, also referred to as a stochastic clock. Ñλ(L(t)) is then again a Lévy process
with independent and stationary increments; cf. Cox [57] and Ammeter [17] for early
references and for applications of shot noise Cox processes into insurance claim count
modeling (Liu [140] and Avanzi et al. [28, 27]). The random time jumps produced
by the subordinator L leads to simultaneous claim arrivals in physical time. Though
subordinators are a classical modeling tool in �nance (see, for instance, Schoutens
[166] and Kyprianou [133]), their application for the modeling of insurance claim
counts has only been suggested recently by Selch & Scherer [169].

Assume that the process NL is observed at discrete points in time, 0 := t0 <
t1 < . . . < tn := T (n ∈ N) with T being a �nite time horizon. Further let
∆kj := kj − kj−1 and ∆L(ti) the increment of the process L in the interval (ti−1, ti].
The joint probability mass function (pmf) of NL at discrete time points is then
simply given by

P(NL(t1) = k1, . . . , NL(tn) = kn) =
n∏
i=1

E
(
e−λ(∆L(ti))

∆ki!

(
λ(∆L(ti))

)∆ki

)
:=

n∏
i=1

(−λ)∆ki

∆ki!
ϕ

(∆ki)
∆L(ti)

(λ), (2.2)

where ϕ
(k)
L(t)(λ) is the k-th derivative of the Laplace transform of L(t) (cf. [169]). If the

times are equidistant with ∆ti = h, then by the property of stationary increments,
the above expression can be further simpli�ed to

P(NL(t1) = k1, . . . , NL(tn) = kn) =
n∏
i=1

(−λ)∆ki

∆ki!
ϕ

(∆ki)
L(h) (λ).

In the particular case of a gamma subordinator with density

fL(t)(x) =
ηαt

Γ(αt)
xαt−1e−ηx, x > 0,
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for given parameters α, η > 0, one simply gets

ϕL(h)(u) =
(

1 +
u

η

)−αh
.

Figure 2.6 shows one sample path of a gamma subordinator with parameters α =
λ = 15 and T = 1.

t

0
1

0 1

L(t)

Figure 2.6: Sample path of a gamma subordinator with parameters α = λ = 15 and
T = 1.

In this case, the increments of NL(t) are independent and negative binomially dis-
tributed, which is a popular assumption for claim counts in insurance practice, with
two parameters α, η and resulting overdispersion (cf. Albrecher et al. [7, Sec.5.2.4] for
a more detailed discussion). As mentioned in Selch & Scherer [169, Sec. 2.1], some
subordinator models lead to well known families of mixed Poisson distributions; in
particular, they also exempli�ed the inverse Gaussian process as an alternative to
model the random operational time. In the sequel, however, we focus on the gamma
process and its extensions, given the prominent link with the negative binomial
distribution and the wide acceptance of the latter in insurance practice.

2.3.2 Poisson processes directed by an additive process

In order to allow for non-stationarity but still maintaining the analytical tractability
of the model, we now replace the Lévy subordinator L by an additive process M
(see, for instance, Sato [162] and Cont et al. [55]).

A càdlàg stochastic process M = {M(t); t ≥ 0} is called an additive process, if it
satis�es the following properties:
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(i) M(0) = 0 almost surely;

(ii) Independent increments: for any t0 < t1 < . . . < tn, the increments ∆M(ti) :=
M(ti)−M(ti−1) are mutually independent for i = 1, . . . , n;

(iii) Stochastic continuity: for all t ≥ 0 and ε > 0, one has lims→t P(|M(t)−M(s)| >
ε) = 0.

De�ne now the doubly stochastic Poisson process N(t) := Ñλ(M(t)) directed by an
additive process M . The pmf of N at some �xed time point t ≥ 0 is

P(N(t) = k) =
(−λ)k

k!
ϕ

(k)
M(t)(λ), k ≥ 0, (2.3)

where ϕ
(k)
M(t)(λ) denotes the k-th derivative of the Laplace transform ofM . Analogous

to the Lévy case, time is now directed by the process M ; we therefore require that
the directing additive process has almost surely non-decreasing paths. In this way it
is guaranteed that the process can only go forward in time. Note that a Lévy process
directed by an additive process is itself an additive process (for a related approach
in the construction of exchangeable exogenous shock models or in a mathematical
�nance context, together with some theoretical properties of additive subordination,
see Mai et al. [143, Sec. 3] and Li et al. [139], respectively). Correspondingly, by
the independent increments property we then have that the joint pmf of N is given
by

P(N(t1) = k1, . . . , N(tn) = kn) =
n∏
i=1

(−λ)∆ki

∆ki!
ϕ

(∆ki)
∆M(ti)

(λ), (2.4)

for any n ∈ N, 0 := t0 ≤ t1 ≤ . . . ≤ tn, and 0 := k0 ≤ k1 ≤ . . . ≤ kn for kj ∈ N,
j = 1, . . . , n.

We will now focus on the non-stationary gamma process with time-dependent pa-
rameter α(t) > 0 and constant parameter η > 0. M then has the density

fM(t)(x) =
η
∫ t
0 α(s)ds

Γ(
∫ t

0
α(s)ds)

x
∫ t
0 α(s)ds−1e−ηx, x > 0,

with Laplace transform

ϕM(t)(u) =
(

1 +
u

η

)− ∫ t
0 α(s)ds

.

Similar to the gamma process, the time-dependent parameter α(t) controls the in-
tensity of the jumps (or, essentially, the time scaling of the process), and the η
parameter �xes the decay rate of big jumps; cf. Cont and Tankov [55, Sec. 4.2.2].
The resulting marginal distribution of N(t) is then a negative binomial distribu-

tion with parameters
(∫ t

0
α(s)ds, λ

η+λ

)
. The derivatives of the Laplace transform

ϕ
(k)
M(t)(λ) are given by

ϕ
(k)
M(t)(λ) =

{
k∏
j=1

(∫ t

0

α(s)ds+ j − 1
)}( 1

η + λ

)k( η

η + λ

)∫ t
0 α(s)ds
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and thus

P(N(t) = k) =
(−λ)k

k!
ϕ

(k)
M(t)(λ) =

(∫ t
0
α(s)ds+ k − 1

k

)(
λ

η + λ

)k(
η

η + λ

)∫ t
0 α(s)ds

,(2.5)

which is indeed the negative binomial density.

Since in the sequel we will need to simulate from this processN(t), we brie�y describe
an e�cient way to do that. For a general reference on the Monte Carlo simulation
of Cox processes, see for instance Korn et al. [131]. It is not di�cult to adapt the
general methodology to the case of an additive process: Let ∆iM := M(ti)−M(ti−1)
denote the distribution of the jump size, where ti := iT/n, i = 0, . . . , n and ∆ti = 1

n
.

Simulation of M(t)

1: Set M(0) := 0.
2: for i = 0 to n do
3: Simulate a random number ∆iM from the distribution of M(ti) −M(ti−1),

independent of previous increments.
4: De�ne M(t) := M(ti−1) + ∆iM .
5: Set M(t) := M(ti−1) ∀t ∈ (ti−1, ti).

Given the sample path of {M̂(t)}t∈[0,T ] of M(t) generated above, a sample path

{N̂(t)}t∈[0,T ] of N(t) can now be simulated using the following algorithm, cf. Selch
& Scherer [169, Sec. 1.2].

Simulation of N(t)

1: i← 0;S ← 0
2: while S ≤ M̂(T ) do
3: Generate a random number Wi ∼ Exp(λ) independent of all previous such

random numbers.
4: i← i+ 1;S ← S +Wi

5: Compute claim arrival times according to

Ti := inf{t > 0 : W1 + . . .+Wi ≤ M̂(t)}, i ∈ N

6: Determine the sample path {N̂(t)}t∈[0,T ] from the sample claim arrival times
using

N̂(t) =
∞∑
i=1

1{W1+...+Wi≤M̂(t)}, t ≥ 0
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2.4 Parameter estimation

Let us now consider the estimation of the parameters λ of the underlying Poisson
process Ñλ and the parameter vector Θ of the additive subordinator M from histor-
ical claim occurrence times using maximum likelihood on the basis of (2.4). Assume
that N(t) is observed at �nite time instances 0 := t0 < t1 < . . . < tn := T , where
T is a �nite time horizon and n ∈ N. Let k̂i denote the observations of the process
N(t) at time ti for i = 1, . . . , n. Clearly, the increments ∆k̂i = k̂i− k̂i−1, i = 1, . . . , n
are independent.

Based on (2.3) and (2.4), the log-likelihood function can be written as

`(·; Θ) = log

{
n∏
i=1

P(∆N(ti) = ∆k̂i)

}
=

n∑
i=1

log

{
(−λ)∆k̂i

∆k̂i!
ϕ

(∆k̂i)
∆M(ti)

(λ; Θ)

}
(2.6)

=
n∑
i=1

∆k̂i log(λ)−
n∑
i=1

log(∆k̂i!) +
n∑
i=1

log
{

(−1)∆k̂iϕ
(∆k̂i)
∆M(ti)

(λ; Θ)
}
.

One observes that (2.6) depends on the derivatives of order ∆k̂i of the Laplace
transform of M(t). Whenever the latter are available, one can take the derivative
of ` with respect to each parameter to obtain the corresponding estimators. The
parameters of N(t) include λ of the Poisson process and the parameters (α(s), η) of
the gamma subordinator M . Note that the �nal number of parameters depends on
the speci�cation of the intensity function α(s), and the particular shape will depend
on the situation at hand.

For the �re insurance application of this paper, in view of Figure 2.5 we will consider
a trend function g(t) : [0,∞) → [0,∞) as well as seasonal terms around the mean;
that is,

α(t) = g(t) +
K∑
k=1

γk cos(2πωkt+ φk) (2.7)

where γk > 0, ωk > 0 and 0 < φk < 2π.

Naturally, one should be cautious for over-parametrization (e.g., with the above
speci�cation, our model has 2K + 3 parameters). For the concrete estimation pro-
cedure, the constraints λ > 0, η > 0, and

∫ ti
ti−1

α(s)ds > 0 for all i = 1, . . . , n have
to be taken into account.

Remark 1. For details on the moments of the process N(t) see Selch and Scherer
[169, Sec. 2.1, Theorem 2.3]. In particular, they show that the nth moment of the
process is given by

E(Nn(t)) =
n∑
k=0

S(n, k)E(M(t)k) · λk.
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For the nth central moment of the process, one then gets

E
({
N(t)− E(N(t))

}n)
=

n∑
k=0

(
n

k

)
(−1)k

{ n−k∑
j=0

S(n− k, j)E(M(t)j)λj
}

(E(N(t)))k,

where S(n, k) are the Stirling numbers of the second kind (here the existence of
higher moments of M(t) is required).

When considering a gamma subordinator for M(t), we get

E(N(t)) = λ

∫ t
0
α(s)ds

η
,

Var(N(t)) = λ

∫ t
0
α(s)ds

η
+ λ2

∫ t
0
α(s)ds

η2
,

E
(
{N(t)− E(N(t)}3

)
= λ

∫ t
0
α(s)ds

η
+ 3λ2

∫ t
0
α(s)ds

η2
+ 2λ3

∫ t
0
α(s)ds

η3
.

Remark 2. It is natural to use time normalization in the �tting procedure; that is,
to choose η as the solution of the equality

E(N(T )) = λT.

We hence get η = 1
T

∫ T
0
α(s)ds and the number of parameters is in fact reduced to

2K + 2.

Remark 3. In practice, claim count data often exhibit overdispersion. As in the
gamma-subordinated case of [169], we also get � for any choice of parameters �
overdispersion for the non-stationary gamma-subordinated model:

Disp(N(t)) :=
Var(N(t))

E(N(t))
=

(
1 + λ

η

)(
λ
η

∫ t
0
α(s)ds

)
(
λ
η

∫ t
0
α(s)ds

) = 1 +
λ

η
> 1. (2.8)

Remark 4. Selch and Scherer [169, Sec. 4.2.2] suggest that in case of time-
inhomogeneous patterns one could �rst (deterministically) time-change the process
to remove the inhomogeneity and then proceed with the Lévy subordination for the
transformed data. However, this approach would hinge on the speci�cation of the
deterministic inhomogeneity pattern and the following Cox process �t would be an
independent second step. In fact, Avanzi et al. [26] followed a similar approach where
�rst an exposure/volume component is calibrated according to the modelers domain
knowledge and data analysis, which represents the known information. Afterwards,
the values obtained from the exposure component serve as inputs to �t a Markov-
modulated Poisson process, which will, intuitively, capture any residual temporal
e�ect. The non-stationary Cox process approach suggested in this article o�ers a
�exible and direct way to incorporate time-inhomogeneity, and after agreeing on the
general shape of the parametric intensity function, all components in the model are
estimated at the same time.
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λ β0 β1 γ1 φ1 γ2 φ2 η Disp T

SS1 3.00 4.0000 2.0000 1.5000 4.0000 1.7500 5
SS2 2.00 5.0000 4.0000 2.0000 3.00 1.00 5.0000 1.4000 15
SS3 3.00 4.0000 0.0010 2.0000 1.0000 5.0950 1.5888 3
SS4 3.00 4.0000 0.0010 2.0000 1.0000 5.8250 1.5150 5
SS5 0.17 0.9000 0.0005 0.7400 0.5000 2.7250 1.0697 10

Table 2.1: Simulation studies summary SS1 to SS5. Disp = 1 + λ/η.

2.4.1 Simulation study

Here we assess the performance of the maximum likelihood estimation method intro-
duced above by means of a simulation study. Therefore, for di�erent parameter spec-
i�cations of the function α(t) = β0+β1s+γ1 cos(2πs/182.5+φ1)+γ2 cos(2πs/365+φ2)
and time horizons T , we generate m = 500 sample paths of the claim counting pro-
cess N(t) using the algorithm described in Section 2.3. For each sample path, the
model estimates were obtained using the MLE function described above using a
gamma subordinator. The sample paths of the seasonal process are discretized with
365 steps per time unit, corresponding to daily observations of the process over the
year, and the intensity functions are set such that the integrated intensity is strictly
positive. Table 2.1 summarizes the parameter settings for the simulation study.

Larger estimation errors come from the simulated model with the lowest dispersion
(model SS5). This can be attributed to the fact that when simulating from models
with dispersion coe�cient close to one, a reasonable number of paths will show
dispersion close to the unit value and therefore the MLE procedure has di�culties
to �t an overdispersed model (see Remark 2), which results in several outliers.
However, such drawback is not speci�c to the proposed non-stationary model, but
arises under any Lévy setup as well. Consequently, in practice one needs to be
cautious in the �tting procedure whenever the estimated dispersion is close to 1,
because a possibly large value of η can be a sign of model rejection. One should
validate the model using graphical methods as described in the case studies in the
next sections.

Given the presence of outliers in case of SS5, the simulation results for the model
parameters are summarized using the robust measures

λ̃ := m̂edian(λ̂1, λ̂2, . . . , λ̂m), m̂ad(λ̂) :=
m̂edian(|λ̂1 − λ̃|, |λ̂2 − λ̃|, . . . , |λ̂m − λ̃|)

Φ−1(3/4)

r̂bias(λ̂) :=
λ̃− λ
λ

, r̂mse
rob

(λ̂) :=
(

(λ̃− λ)2 + m̂ad(λ̂)2
)1/2

,

where Φ(·) denotes the cumulative normal distribution function, m̂ad stands for

median absolute deviation, r̂bias for robust bias, and r̂mse
rob

for robust root mean
squared error. For a detailed discussion on robust statistics, see Huber and Ronchetti
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[115]. In case of SS1 to SS4 the results turned out to be close to the corresponding
classical non-robust bias and RMSE measures.

The estimation results for the selected functions are summarized in Tables 2.2 to 2.6.
It was found that the intensity parameter λ was accurately estimated, as can be seen
from the given estimators: in all the cases the m̂ad values are small and the relative
bias stays below 0.15%. However, one notices that the parameters are typically
slightly underestimated. In models 1 to 4, the relative bias of the MLE estimates is
predominantly smaller than 2%; therefore, the medians of the estimators are close to
the true parameter values. The largest discrepancies occur for the sinusoidal phase
parameters φ when a linear trend and a short/medium time horizon are considered.

Both m̂ad and r̂mse
rob

show a consistent behavior across all simulated models.

λSS1 = 3.0 βSS1
0 = 4.0 γSS1

1 = 2.0 φSS1
1 = 1.5

m̂edian 2.99562 4.00111 2.005741 1.47057

m̂ad 0.053617 0.301535 0.182962 0.047360

r̂bias (%) -0.146119 0.02768 0.287013 -1.961781

r̂mse
rob

0.05380 0.30154 0.18305 0.05576

Table 2.2: Estimation results for SS1

λSS2 = 2.0 βSS2
0 = 5.0 γSS2

1 = 4.0 φSS2
1 = 2.0 γSS2

2 = 3.0 φSS2
2 = 1.0

m̂edian 2.00283 5.04887 4.04427 1.96437 3.01221 0.98313

m̂ad 0.02126 0.37337 0.30968 0.01806 0.2436 0.01637

r̂bias (%) 0.14155 0.97746 1.10673 -1.78141 0.40714 -1.68657

r̂mse
rob

0.02145 0.37656 0.31283 0.03995 0.24391 0.02351

Table 2.3: Estimation results for SS2

λSS3 = 3.0 βSS3
0 = 4.0 βSS3

1 = 0.001 γSS3
1 = 2.0 φSS3

1 = 1.0

m̂edian 2.99772 4.03477 0.00102 2.0072 0.96833

m̂ad 0.06499 0.56382 0.00022 0.31371 0.07644

r̂bias (%) -0.0761 0.86913 1.69191 0.35986 -3.16739

r̂mse
rob

0.06503 0.56489 0.00022 0.31379 0.08274

Table 2.4: Estimation results for SS3
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λSS4 = 3.0 βSS4
0 = 4.0 βSS4

1 = 0.001 γSS4
1 = 2.0 φSS4

1 = 1.0

m̂edian 2.99671 4.04403 0.00101 2.02431 0.96806

m̂ad 0.04793 0.48773 0.00014 0.26247 0.06522

r̂bias (%) -0.10959 1.10078 1.26307 1.21568 -3.19353

r̂mse
rob

0.04804 0.48971 0.00014 0.2636 0.07262

Table 2.5: Estimation results for SS4

λSS5 = 0.17 βSS5
0 = 0.90 βSS5

1 = 0.0005 γSS5
1 = 0.74 φSS5

1 = 0.50

m̂edian 0.18959 0.92758 0.00053 0.79266 0.4544

m̂ad 0.00731 0.39003 0.00022 0.34407 0.18411

r̂bias (%) -0.21629 3.06453 5.94046 7.11613 -9.11928

r̂mse
rob

0.00732 0.39100 0.00022 0.34807 0.18967

Table 2.6: Estimation results for SS5

2.5 Case study: Dutch �re insurance data

We now return to the Dutch �re insurance dataset described in Section 2.2. We have
seen there that both a homogeneous and inhomogeneous Poisson models did not lead
to satisfactory results. We therefore proceed �rst to the gamma-subordinated Pois-
son process for a benchmark, and then will illustrate how the non-stationarities
enabled by the model we proposed in this paper will lead to substantial improve-
ments of model performance.

2.5.1 Model (M0)

Let us �rst study as a reference model the stationary gamma subordinator model.
This choice among other Lévy subordinators is motivated by the resulting marginal
negative binomial distributions, which are very popular in market practice (for other
possible choices of Lévy subordinators cf. [169]). In this case the model parameters
are λ, α and η. Time normalization immediately entails α = η, and solving the
ML equations one obtains the parameters with log-likelihood `, Akaike information
criterion (AIC), and Bayesian information criterion (BIC) as given in Table 2.7.

One can construct con�dence bands for each point in time of the aggregate process
using Monte Carlo simulations of the process with the �tted parametric model.
Simulating 1000 paths from the gamma subordinator model over the considered 14-
year period and taking the 25-th and 975-th largest observations at each time t leads
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λ̂ α̂ = η̂ ` AIC BIC

0.151076 2.317070 -2'282.02 4'568.03 4'581.12

Table 2.7: Model M0

to the 95% con�dence band depicted in Figure 2.7. The observed process roughly
�ts within these bands. One observes, however, a systematic deviation around its
mean. Moreover, the histogram of arrival days per year of the observed process is
not re�ected in simulated paths of the �tted process (cf. Figure 2.8), and one sees a
need for incorporating seasonal e�ects.
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Figure 2.7: Dutch �re insurance data: observed process and simulated con�dence
band based on model (M0) with constant α.

2.5.2 Non-stationary models

In order to narrow down the non-stationarity of this dataset that we would like to
incorporate in the modeling, consider a moving average of the intensity function
with a window of 182 days, given in Figure 2.9, together with the over-all mean of
the process. The picture suggests a sudden drop in the intensity in 2003-2004, and
a positive trend after that. This may indicate the presence of a change-point. In
order to identify a possible candidate for the latter, we �t a regression model to the
waiting times Wj (that is, the times between subsequent claim arrivals) of the form

Wj = (A01 +B11 · j) · 1j<x0 + (A02 +B12 · j) · 1j≥x0 , (2.9)
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Figure 2.8: Dutch �re insurance data: histogram of the claim arrival days within
the year of occurrence for the observed process (top left) and three simulated claim
number processes following the �tted homogeneous gamma subordinator model (M0)
(top right and bottom).

where x0 is the possible change-point. We then �t a model for all possible choices
of x0 and identify the one that maximizes the adjusted R-squared (see, e.g., [9] for
a recent more general approach towards testing trends against change-points, and
[93] for a related quickest detection formulation of possible change-points). The
resulting estimated point x0 is claim number 217, which corresponds to September
2003, in line with the visual impression from Figure 2.9.1

The regression approach also indicates that B11 is not signi�cant, so that eventually
we may not include a linear trend in the �rst time interval. Figure 2.10 plots the
resulting regression �t. In addition to trends and change-points, Figure 2.5 suggests
seasonal time patterns. We allow these seasonalities to be di�erent before and after
the change-point. In order to narrow down the frequencies that we would like to
consider in the model, we perform an exploratory analysis using a mean-corrected
periodogram; see, e.g., Vere-Jones [178, Sec.3] for details. Figure 2.11 shows that

1In fact, reapproaching the data provider on this matter, they con�rmed that indeed due to

bad �re insurance results, the Dutch insurance companies collectively decided to reunderwrite and

clean up their �re portfolios at that point in time, with stricter acceptance criteria, tari� corrections

and intensi�ed attention for �re prevention, providing a causal reason for the change-point in the

dynamics.
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Figure 2.9: Dutch �re insurance data: moving average estimate of the intensity
function using a semi-annual bandwidth, together with the intensity estimate of a
homogeneous Poisson process (dashed line) together with 95% con�dence intervals
(dotted lines).
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Figure 2.10: Dutch �re insurance data: change-point identi�cation using (2.9).
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the semi-annual frequency dominates the periodogram by a large margin and it
is therefore reasonable to restrict the considered seasonality to such a semi-annual
frequency. We hence decided to consider the following parametric family of intensity
functions:

� Model (M1,1): seasonal e�ect without trend:

α1(t) = β01 + γ11 cos(2π(1/182.5)t+ φ11),

� Model (M1,2): seasonal e�ect with time trend:

α2(t) = β02 + β12t+ γ12 cos(2π(1/182.5)t+ φ12),
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Figure 2.11: Dutch �re insurance data: mean-corrected periodogram.

Figure 2.12 shows the resulting model �t together with con�dence bands separately
before (left) and after (right) the change-point. Clearly, Model (M1,1) seems to be
a satisfactory �t before the change-point, but not thereafter (in other words, the
linear trend is needed after the change-point). Conversely, Figure 2.13 illustrates
the model �t with trend (M1,2) separately for both time periods, and for the second
time period including a trend leads to a much better �t than without. For the �rst
time period, visually the �t also looks quite good in this case, but the AIC criterion
would still suggest leaving out the trend for this case. We hence choose the following
combination as the �nal model:

Model (M2) : αM2(t) = α1(t) · 1t<x0 + α2(s) · 1t≥x0 . (2.10)

Table 2.8 gives the �nal parameters estimated by maximum likelihood. One sees that
this model improves the AIC value by 46 points compared to the benchmark model
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Figure 2.12: Dutch �re insurance data: observed process and simulated con�-
dence band based on model (M1,1). Left: time period 2000�09/2003 (AIC=1252.25,
BIC=1273.07); Right: time period 09/2003�2013 (AIC=3292.17, BIC=3317.10)
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Figure 2.13: Dutch �re insurance data: observed process and simulated con�-
dence band based on model (M1,2). Left: time period 2000�09/2003 (AIC=1253.28,
BIC=1279.31); Right: time period 09/2003�2013 (AIC=3269.75, BIC=3300.92).

(M0). We also see that the semi-annual seasonal e�ect is slightly more pronounced
during the second period (γ̂11 < γ̂12).

Figure 2.14 then shows that the �nal �tted model is situated in the center of the
simulated con�dence band based on (M2) and Figure 2.15 shows cluster sizes of �ve
simulated paths from the latter model. The histograms of the claim arrival days
within the year of occurrence for some simulated processes from model (M2) now
correspond well with the seasonal pattern for the observed process; see Figure 2.16.

Remark. We compare the non-stationary Cox model �t with that of the inhomo-
geneous Poisson process with the same intensity function (2.10). Table 2.9 gives
the �nal parameters estimated by maximum likelihood. Consistent with the non-
stationary Cox model, we notice that the semi-annual seasonal e�ect is slightly more
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λ̂ β̂01 γ̂11 φ̂11 β̂02 β̂12 γ̂12 φ̂12

0.151375 2.681373 0.719005 0.049676 0.927540 0.000492 0.731791 0.322192

η̂ ` AIC BIC

2.561631 −2′252.85 4′521.69 4′574.02

Table 2.8: Model (M2)
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Figure 2.14: Dutch �re insurance data: simulated con�dence intervals and observed
aggregate data for Model (M2).

pronounced during the second period (γ̂11 < γ̂12).
Figure 2.17 shows that the �nal �tted model is situated in the center of the sim-
ulated con�dence band. When visually comparing the �ts, we notice that there is
no apparent di�erence when compared to Figure 2.14. However, when comparing
the cluster sizes, the inhomogeneous Poisson process underestimates the number
of clusters of size 4. In order to investigate this further, Table 2.10 compares the
cluster structure of the observed process with 500 paths coming from M2 and the
inhomogeneous Poisson �t. Both models show similar cluster behavior, but the
non-stationary Cox �t performs better in reproducing large clusters, as expected.
Appendix A provides a model comparison analysis similar as in Avanzi et al. [26,
Sec. 5.6].
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Figure 2.15: Dutch �re insurance data: Observed clusters (top left) versus clusters
of �ve di�erent simulated paths from M2.
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Figure 2.16: Dutch �re insurance data: histogram of the claim arrival days within
the years of occurrence for the observed process (top left) and three simulated claim
number processes following (M2) (top right and bottom).
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β̂01 γ̂11 φ̂11 β̂02 β̂12 γ̂12 φ̂12

0.159673 0.041847 0.037468 0.055816 0.000029 0.043245 0.320861

` AIC BIC

−2′257.06 4′528.12 4′573.89

Table 2.9: Estimation results for the inhomogeneous Poisson model
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Figure 2.17: Dutch �re insurance data: simulated con�dence intervals and observed
aggregate data for Model (Minh).

Number of claims (%) 2 3 4 5 ≥ 6
Observed 1.0959 0.1174 0.0391 0.0000 0.0000

Simulated inh. Poisson 1.0297 0.0592 0.0028 0.0001 0.0000
Simulated M2 1.2680 0.1137 0.0097 0.0009 0.0002

Table 2.10: Dutch �re insurance data: Percentage of number of claims per day in
the observed process versus cluster sizes from 500 paths simulated from (M2) and
the inhomogeneous Poisson process.



50 CHAPTER 2. FITTING NON-STATIONARY COX PROCESSES

2.5.3 Backtesting

In order to test the e�ciency of the given modeling approach in prediction of future
observations, we �t the model based on the data from the period January 2007 to
June 2013 only. We shall consider a non-stationary gamma model (M1,2), where
the intensity parameter has a linear component and one seasonal component. The
parameter estimates are given in Table 2.11.

λ̂ β̂0,2 β̂1,2 γ̂1,2 φ̂1,2

0.166948 4.108265 0.000431 1.551452 0.009816

` AIC BIC

−1′117.919 2′247.839 2′276.696

Table 2.11: Model (M1,2) applied to 01/2007 to 06/2013

The �gures reveal that the trend (with coe�cient β̂1,2) is negligible in this case,
whereas the semi-annual frequency given by γ̂1,2 is important (see also Figure 2.18(left)).
Moreover, the AIC value assessing the �t of this model shows a clear improvement
over the AIC and a modest one over the BIC values of (M0), which are 2′266.09 and
2′277.64, correspondingly, for that same period.

Predicting the observations for the last six months of the year 2013 based on Monte
Carlo simulation of the �tted model from Table 2.11 gives the con�dence bands in
Figure 2.18 (right). The observed process during these last six months stays nicely
within this con�dence band, and the predicted observations slightly underestimate
the observed counts.

2.5.4 Risk assessment based on Model (M2)

We now look into the impact of the di�erent model assumptions on risk measures
of the aggregate claim amount. Let us assume that the aggregate claim amount is
given by the collective model S(t) =

∑N(t)
i=1 Xi, where the individual claim sizes Xi

are independent and identically distributed with cumulative distribution function
FX (and independent of N(t)). Under the non-stationary Cox process assumption
for N(t) of this paper, one then has

FS(t)(x) := P(S(t) ≤ x) =
∞∑
n=0

{
(−λ)n

n!
ϕ

(n)
M(t)(λ)

}
F ∗nX (x), x ≥ 0. (2.11)

There are several techniques available to determine the distribution function of the
total claim size, for comprehensive recent surveys see, for example, Klugman et
al. [130, Ch. 9] and [129, Ch. 6] or Albrecher et al. [7, Ch.6]. Here we use the
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Figure 2.18: Dutch �re insurance data: simulated con�dence intervals for model
(M1,2) and observed data for 2007�06/2013 (left) and 6-month horizon Monte Carlo
forecast (right).

fast Fourier transform (FFT) method, which discretizes the claim sizes and then
numerically inverts in an e�cient way the characteristic function of S(t)

E(eizS(t)) = QN(t)(E(eizX)),

exploiting complex analysis techniques (see, e.g., [7, Sec.6.4] for details). Here, QN(t)

denotes the probability generating function of N(t), which in our context, for each
t, is the one of a negative binomial distribution with the form

QN(t)(z) =

(
η

η − λ(z − 1)

)∫ t
0 α(s)ds

, for |z| < 1 +
λ

η
.

In the present application, the discretization of the claim size X is based on the
approximative probability function fX(xj) = P (X = xj), j = 0, . . . ,M − 1, where
M = 2k for some integer k. For the individual claim size X, we choose here the
distribution identi�ed for this Dutch �re dataset in [7, Sec.4.3.2]. The discretization
is performed using the rounding method such that the true cdf passes through
the midpoints of the intervals [x − h/2, x + h/2) for x = x0 + h, . . . , xM−1 − h,
fX(x0) = FX(x0 + h/2) and step size h > 0. The procedure then �nally yields a
vector of dimension M with entries fS(t)(xj) = P (S = xj), j = 0, . . . ,M − 1.

The Value-at-Risk (VaR) and the conditional tail expectation (CTE) at signi�cance
level p of the aggregate claim amount are de�ned by

VaRp(S(t)) = inf{x|FS(t)(x) ≥ p},

and

CTEp(S(t)) = E
(
S(t)

∣∣∣∣S(t) > VaRp

(
S(t)

))
=

1

1− p

∫ ∞
VaRp(S(t))

xfS(t)(x)dx. (2.12)
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Once the vector with entries fS(t)(xj), j = 0, . . . ,M − 1, is available, one can
numerically estimate VaRp(S(t)) by �nding the p-quantile of the estimated cdf.
Subsequently, the CTE is then estimated by approximating the integral in (2.12)
numerically.

We estimated the 365-days VaR and CTE at the signi�cance levels of 95%, 99%,
and 99.5% for both the �tted models (M0) and (M2) for the beginning of each year
over the period 2000-2013. Table 2.12 and Table 2.13 present the VaR and CTE
values computed for some selected years of the observed period.

S(365) VaR95 VaR99 VaR99.5

M0 381'217'800.00 517'477'900.00 600'596'000.00
M2,2000 396'273'700.00 535'193'600.00 619'909'700.00
M2,2003 360'060'300.00 492'492'900.00 573'333'700.00
M2,2004 279'057'100.00 395'494'400.00 466'719'300.00
M2,2006 324'337'100.00 449'996'300.00 526'775'400.00
M2,2009 390'454'200.00 528'355'100.00 612'463'400.00
M2,2010 412'114'100.00 553'765'200.00 640'108'300.00
M2,2013 476'192'500.00 628'319'000.00 720'876'400.00

Table 2.12: VaR estimates for the aggregate claim amount using models (M0) and
(M2).

S(365) CTE95 CTE99 CTE99.5

M0 478'982'852.00 684'666'467.00 817'475'670.00
M2,2000 495'877'084.67 705'264'162.14 840'324'391.54
M2,2003 455'175'006.37 655'533'949.45 785'098'440.98
M2,2004 362'988'767.88 540'593'854.37 656'063'739.22
M2,2006 414'735'373.87 605'541'563.58 729'228'330.64
M2,2009 489'354'409.68 697'331'513.26 831'537'372.76
M2,2010 513'598'526.50 726'749'411.99 864'082'258.09
M2,2013 584'839'923.07 812'210'387.31 958'019'659.16

Table 2.13: CTE estimates for the aggregate claim amount using models (M0) and
(M2).

Figure 2.19 plots the 99.5% VaR and 99% CTE values for the entire 14-years period.
One sees that moving from the stationary to the non-stationary model has substan-
tial consequences on the respective risk measures (and correspondingly capital re-
quirements). In particular, the simpler model (M0) would substantially misspecify
the respective values.

In order to study the e�ect of seasonality within a given year we compute the VaR at
time t = 90, 100, . . . , 365 days for the year 2009 at signi�cance level 99.5% for both
models (M0) and (M2). Figure 2.20 (left) shows a linear pattern for the VaR values
under (M0), whilst for (M2) some variation is observed within the year. Figure 2.20
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(right) depicts the di�erence of VaR-values between the two models. Note that the
di�erences in the VaR values at the local minima at days t = 120 and t = 310 di�er.
One clearly sees the signature of both the trend and the semi-annual seasonality
term in the intensity function.
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Figure 2.19: Dutch �re insurance data: VaR99.5 and CTE0.99 for models (M0) and
(M2)

Figure 2.20: Dutch �re insurance data: VaR
(2009)
99.5 (t) for t = 90, . . . , 365 for models

(M0) and (M2) (left) and absolute di�erence in mio. Euro (right).
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2.6 A multivariate extension and case study

As outlined in the introduction, one advantage of subordinator Cox models is that
they lead to natural multivariate models, where the dependence between di�erent
lines of business is introduced by sharing the same realization of the subordinator
for otherwise independent Poisson processes (see Scherer and Selch [169] for details).
In this section, we would like to illustrate this idea in our non-stationary setup.

Let {Nj(t); t ≥ 0} count the claims arriving in each line of business (or portfolio)
j = 1, . . . , d up to time t ≥ 0. The multivariate Cox process N = (N1, . . . , Nd) is
de�ned through

N = Ñλ(M(t))

=
{(
Ñ1,λ1(M(t)), . . . , Ñd,λd(M(t))

)
; t ≥ 0

}
.

Note that we allow for d di�erent marginal intensities λj, while the common M(t)
introduces dependence between the d lines of business. In particular, this con-
struction can now lead to common jumps in several components at the same time.
Expression (2.4) for the �nite-dimensional distributions of N with time points

0 := t0 ≤ t1 ≤ . . . ≤ tn, and 0 := k0 ≤ k1 ≤ . . . ≤ kn for with ki = (k
(1)
i , . . . ,k

(d)
i ) ,

k
(j)
i ∈ N, i = 1, . . . , n, now generalizes to

P(N (t1) = k1, . . . ,N (tn) = kn) =
n∏
i=1

(−λ)|∆ki|

∆ki!
ϕ

(|∆ki|)
∆M(ti)

(|λ|), (2.13)

with ∆ki = (k
(1)
i −k

(1)
i−1, . . . , k

(d)
i −k

(d)
i−1), ∆ti = ti− ti−1 for i = 1, . . . , n. Here we use

the multi-index notation |x| = x1 + · · ·+ xk, k! = k1! · · · kd! and xk = xk1
1 · · ·x

kd
d .

For the estimation we again assume that the multivariate process N is observed up
to a time horizon T > 0 on a discrete time grid 0 := t0 ≤ t1 ≤ . . . ≤ tn = T .

Similar to the univariate case, we denote by k̂i = (k̂
(1)
i , . . . , k̂

(d)
i ) the observations

of the process N at time ti for i = 1, . . . , n. Since N has independent increments,
it follows that ∆k̂i = k̂i − k̂i−1, i = 1, . . . , n are i.i.d. observations of ∆N . Using
(2.13), the log-likelihood function is given by

`(·; Θ) =
n∑
i=1

|∆k̂i| log(λ)−
n∑
i=1

log(∆k̂i!) +
n∑
i=1

log
{

(−1)|∆k̂i|ϕ
|∆k̂i|
∆M(ti)

(|λ|; Θ)
}

=
d∑
j=1

k̂
(n)
j log(λj)−

d∑
j=1

n∑
i=1

log(k̂
(j)
i !) +

n∑
i=1

log
{

(−1)|∆k̂i|ϕ
|∆k̂i|
∆M(ti)

(|λ|; Θ)
}
.

(2.14)

Consequently, optimizing (2.14) with respect to the intensity parameter λ of the
underlying Poisson process and the parameter vector Θ of the additive subordinator
leads to the corresponding MLE estimators of the observed process. Note that the
second term of the second equation in (2.14) is independent of the parameters and
thus can be neglected in the optimization.
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(a) Daily cluster sizes for the building (top) and content (bottom) categories.

(b) Moving average of the estimated intensity function (h = 20) (dots) together with the
reciprocal of the annual expected inter-arrival times (piecewise constant solid line) and the
intensity estimate of a homogeneous Poisson process (dashed line) for the building (top)
and content (bottom) categories.

Figure 2.21: Danish �re: daily cluster sizes (top) and moving average of the esti-
mated intensity function (bottom).
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2.6.1 Case study: Danish �re insurance data.

We now illustrate the performance of the ML estimation of this multivariate process
with the well-known Danish �re data set; see McNeil [144]. For the present purpose,
we use the occurrence dates between 1980 and 1991 of the 2167 �re events for the
two subportfolios building and content. Figure 2.21a shows the cluster arrivals for
both building and content. As noted in Scherer and Selch [169, Sec 3.3], we observe
simultaneous cluster arrivals; as for example, at the start of 1987. A multivariate
Cox process with a common subordinator hence seems to be a reasonable model
for this data set. Figure 2.21b depicts (2.1) for both lines. One clearly observes
a similar trend for both components, which is an argument in favor of the model
discussed here.

Similar to Section 2.5, we consider the multivariate gamma-subordinated Poisson
process as a benchmark model. In this case the model parameters are λ1, λ2, α and
η. From time normalization we have α = η. Optimizing (2.14) one obtains the MLE
parameters with log-likelihood `, AIC and BIC as given in Table 2.14.

λ̂1 λ̂2 α̂ = η̂ ` AIC BIC

0.495611 0.418039 0.671440 -6'566.72 13'139.44 13'160.41

Table 2.14: Danish �re: Gamma subordinator �t.

From Figure 2.22 we see that the observed processes systematically deviates from
a linear increase of the Lévy subordinator. Therefore, one might consider a non-
stationary gamma process with intensity function

Model (MDan) : αMDan
(s) = β0 + β1s.

Table 2.15 and Figure 2.23 summarize the �t. When comparing the AIC and BIC
for both models, the non-stationary Cox model appears to be a better choice. The
estimated mean now closely describes the observed data. Figure 2.24 compares the
observed cluster arrivals with the one of three simulated paths from our model, and
one visually concludes that the model produces larger clusters than the observed
process. Table 2.17 compares observed and simulated simultaneous cluster sizes
quantitatively, from which one concludes that medium range simultaneous cluster
sizes are captured nicely with this model.

λ̂1 λ̂2 β̂0 β̂1 η̂

0.495658 0.418166 0.523972 8.06× 10−5 0.685756

` AIC BIC

−6′542.33 13′096.66 13′138.61

Table 2.15: Model (M sgs
Dan)
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Figure 2.22: Danish �re: observed process and �tted gamma subordinator (dotted
line) for each portfolio component.

Figure 2.23: Danish �re: observed process and �tted non-stationary gamma subor-
dinator (dotted line) for each portfolio component.

Remark. We also compare the �t of the non-stationary gamma Cox model with a
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Figure 2.24: Danish �re: observed process (top left) and cluster sizes of four sim-
ulated claim number process following the non-stationary Cox model from Table
2.15.

bivariate inhomogeneous Poisson process given by

N inh =
{(
Ñ1,λ1(µ(t)), Ñ2,λ2(µ(t))

)
; t ≥ 0

}
,

with a common intensity function µ(t) =
∫ t

0
(β0+β1s)ds. The resulting ML estimators

are summarized in Table 2.16. The plot analogous to Figure 23 results in the very
same shape, so we refrain from showing it here. In terms of AIC and BIC criteria,
this model also seems to be reasonable for the purpose. However, Figure 2.25 and
Table 2.17 illustrate that the observed cluster behavior in the data is much better
represented by the Cox model than by the inhomogeneous Poisson alternative.

λ̂1 λ̂2 β̂0 β̂1

0.492836 0.415844 0.757557 1.24× 10−4

` AIC BIC

−5′907.02 11′822.03 11′850.00

Table 2.16: Model (M inh
Dan)
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Cluster size 2 3 4 5 6 ≥ 7
Observed 4.757161 0.647572 0.099626 0.024907 0.000000 0.000000

Simulated (M inh
Dan) 0.462964 0.011905 0.000100 0.000000 0.000000 0.000000

Simulated (MDan) 1.397908 0.345205 0.089813 0.024010 0.006326 0.002192

Table 2.17: Danish �re: Percentage of simultaneous clusters arrivals for the observed
process and 500 simulated paths of the �tted multivariate inhomogeneous Poisson
process (M inh

Dan) and non-stationary Gamma subordinator (MDan).

Figure 2.25: Danish �re: observed process (top left) and cluster sizes of four simu-
lated claim number process of the �tted model (M inh

Dan).

2.7 Conclusion

We showed how to extend over-dispersed Cox models that account for cluster arrivals
in insurance claims modeling by seasonal patterns in a natural way. Concretely,
when the seasonality is introduced in the subordinator directly, one can estimate
all parameters conveniently at the same time. We exempli�ed the approach along-
side a concrete �re insurance dataset and illustrated how one can in a pre-analysis
step possibly formulate suitable parametric families for the time-dependent intensity
functions that are then used in the estimation procedure. The resulting parsimonious
non-stationary Cox process led to a substantial improvement in AIC and BIC values
when compared to the stationary model and allows capturing seasonal characteris-
tics that may be inherent in the data. Our approach to specify the parametric form
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of the intensity function allowed to preserve tractability, but clearly modi�cations of
that step may be required for other datasets. We also performed a rather promising
back-testing procedure. Whereas the focus in this paper was on gamma subordina-
tors leading to negative binomial marginal distributions for the claim counts, the
procedure can be applied to any other subordinator choice as well. We also illustrate
how such subordinator models can be used to formulate non-stationary multivariate
claim number processes, where the dependence is introduced by a common subor-
dinator, generating common cluster arrivals in its components as often observed in
insurance applications.
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2.8 Appendix A: Model comparison

Hom.
Poisson M0 Minh M2

Σ residuals 0.000000 0.000000 -0.364845 -1.527825

Σ absolute residuals 1'333.10 1'333.10 1'318.07 1'318.78

Σ residuals squared 827.37 827.37 818.54 818.55

L-B test p-value (lag = 91) 0.250472 0.250472 0.680661 0.680675

L-B test p-value (lag = 182) 0.682880 0.682880 0.987985 0.987986

L-B test p-value (lag = 365) 0.135887 0.135887 0.635085 0.634794

Runs test p-value 0.000142 0.000142 0.001273 0.001275

Table 2.18: Summary statistics for model comparison.

This Appendix provides a comparison between the four models considered in Sec-
tion 2.5. The comparison is done using the same tests as in Avanzi et al. [26, Sec.
5.6]2. For each of the models, the predicted mean per day and daily residuals were
calculated. Due to the time normalization assumption, the mean of the homoge-
neous Poisson model and the stationary gamma subordinator model (M0) is the
same. Moreover, the mean of the inhomogeneous Poisson model (Minh) and the
non-stationary Cox model (M2) also coincide. Therefore, for each pair the sample
residuals agree.

The summary statistics of the residuals are given in Table 2.18. Moreover, the latter
also gives the p-value for the Ljung-Box (L-B) test for autocorrelation for quarterly,
semi-annual, and annual lags. Also, the p-value for the Wolf-Waldowitz runs test
for randomness/persistence is given. As previously mentioned, the �rst two and last
two columns coincide given that the residuals for the stationary models are the same
and likewise for the non-stationary ones. Based on this analysis, we see that the
inhomogeneous Poisson and non-stationary gamma model produced a better �t to
the data, however the improvement does not seem to be signi�cant.

Figure 2.26 depicts the estimated daily mean for the gamma subordinator (�rst
row, left) and the corresponding sample residuals (�rst row, right). Also, the daily
mean for the non-stationary gamma model (third row, left) and its residuals (third
row, right) are included. Moreover, the second and fourth row depict the sample
autocorrelation (left) and partial autocorrelation (right) for the residuals of both
models. Furthermore, no serial correlation in revealed for any of the models.

2The code for this analysis was based on Avanzi and co-authors R code. The latter can be found

at: https://github.com/agi-lab/reserving-MMNPP
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Figure 2.26: Dutch �re insurance data: Predictions and residuals for modelM0 (top
2 rows) and model M2 (bottom 2 rows).



Chapter 3

Tempered Pareto-type modeling

using Weibull distributions

This chapter is based on the following article:[5]

H. Albrecher, J.C. Araujo-Acuna, and J. Beirlant. Tempered Pareto-type modeling
using Weibull distributions. ASTIN Bulletin. To appear, 2020.

Abstract. In various applications of heavy-tail modeling, the assumed Pareto behavior

is tempered ultimately in the range of the largest data. In insurance applications, claim

payments are in�uenced by claim management and claims may, for instance, be subject to

a higher level of inspection at highest damage levels leading to weaker tails than apparent

from modal claims. Generalizing earlier results of Meerschaert et al. [145] and Raschke

[157], in this paper we consider tempering of a Pareto-type distribution with a general

Weibull distribution in a peaks-over-threshold approach. This requires to modulate the

tempering parameters as a function of the chosen threshold. Modelling such a tempering

e�ect is important in order to avoid overestimation of risk measures such as the Value-at-

Risk (VaR) at high quantiles. We use a pseudo maximum likelihood approach to estimate

the model parameters, and consider the estimation of extreme quantiles. We derive basic

asymptotic results for the estimators, give illustrations with simulation experiments and

apply the developed techniques to �re and liability insurance data, providing insight into

the relevance of the tempering component in heavy-tail modeling.

63
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3.1 Introduction

Probability distributions with power-law tails are extensively used in various �elds
of applications including insurance, �nance, information technology, mining of pre-
cious stones and language studies (see e.g. [150] for a recent overview). In extreme
value methodology such applications are appropriately modeled using the concept
of Pareto-type models such that a variable X of interest satis�es

P(X > x) = x−α`(x), (3.1)

with α > 0 and some slowly varying function ` satisfying

`(tx)

`(t)
→ 1 as t→∞ for every x > 0. (3.2)

In addition to the (pure) Pareto distribution, further examples from this model are
the Burr, Fréchet, t and log-gamma distribution (see Beirlant et al. [36, Ch. 2] for an
overview). Often the power-law behavior does not extend inde�nitely due to some
truncation or tapering e�ects. In Beirlant et al. [33], estimation of truncated tails
was developed in a peaks-over-threshold (POT) approach for Pareto-type tails, and
other max-domains of attraction were dealt with in Beirlant et al. [34]. Inspired by
applications in geophysics and �nance, Meerschaert et al. [145] discussed parameter
estimation under exponential tempering of a simple Pareto law with survival function

P(X > x) = cx−αe−βx, (3.3)

where α, β > 0 and c > 0 is a scale parameter. In the context of insurance data,
Raschke [157] recently discussed the use of the more general Weibull tempering of
a simple power law with survival function

P(X > x) = cx−αe−(βx)τ , (3.4)

with c, α, β, τ > 0.

However, typically the power-law behavior only sets in from some threshold t on,
rather than from the lowest measurements as assumed when using the simple Pareto
model. The Pareto-type model (3.1) allows for �exible modeling of this behavior.
In this paper we therefore want to study Weibull tempered Pareto-type distributions
with survival function

P(X > x) = x−α`(x)e−(βx)τ , (3.5)

with ` a slowly varying function, α = 1/γ > 0 controlling the power-law tail with
extreme value index γ, and β, τ governing the Weibull tempering. Note that for
τ = 1 one recovers the exponential tempering. Moreover, for τ > 1 the Weibull
distribution has lighter tails than exponential and therefore one expects the tem-
pering to be quite strong, or closer to truncation. On the other hand, when τ < 1
the Weibull distribution has heavier tails than exponential and consequently the
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tempering is expected to be weaker.

We illustrate the need for such Weibull tempering of a Pareto-type tail with the
Norwegian �re insurance data set discussed in Beirlant et al. [36], which contains the
year of occurrence of the claim and the claim value (in thousand Krones) from 1972
until 1992, see also Brazauskas and Kleefeld [44, Sec. 2] for a detailed description
of the data. In Figure 3.1 these data are plotted by year of occurrence, next to a
log-log plot (Pareto QQ-plot)(

− log

(
1− j

n+ 1

)
, logXj,n

)
, j = 1, . . . , n,

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the ordered data from a sample of size
n. Strict Pareto behavior corresponds to an overall linear log-log plot, but linearity
only arises approximately at the top 5000 observations. Note also the bending at
the largest observations in the upper right corner in the log-log plot. This tapering
near the highest observations often occurs with insurance claim data and typically
is due to a stricter claim management policy for the larger claims or due to a policy
coverage limit or probable maximum loss. Nevertheless, under the assumption that
such upper bounds exist, truncated Pareto-type models might be more suitable.
This tapering is also visible when plotting the pseudo maximum likelihood estimator
α̂Hk = 1/Hk,n of α under (3.1) (cf. bottom plot in Figure 3.1), where Hk,n denotes
the Hill estimator [114]

Hk,n =
1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
. (3.6)

The latter can be considered as an estimator of the slope in the log-log plot when
restricting to the top k + 1 observations. In that sense, the statistics Hk,n can be
considered as derivatives of the Pareto QQ-plot at the top k observations. Here,
the values α̂k exhibit a stable area for 1000 ≤ k ≤ 5000 which expresses power-
law behavior beyond Xn−1000,n, and make a sharp increase at the smallest k values
due to tapering. This sharp increase behavior is referred to as �Hill horror plot�
in the literature (cf. Resnick [159]) and it arises from the di�culty that the Hill
estimator cannot correctly adjust non-Pareto-like tails. The latter often occur for
insurance data, since � due to truncation and tempering e�ects � the data become
less heavy-tailed further further out in the tails. Following the QQ- and derivative
plot methodology from Chapter 4 in Albrecher et al. [7], one can construct a Weibull
QQ-plot (log(− log(1− j

n+1
)), logXj,n), j = 1, . . . , n, and its derivative plot in order

to verify the Weibull nature of the tempering as proposed in (3.5). A Weibull tail is
observed when a linear behavior is apparent in that QQ-plot at some top portion of
the data, which can then be con�rmed by a constant derivative plot in that region.
For the present case, Figure 3.2 shows that the derivative plot becomes constant on
average when logX > 11, corresponding to a linear Weibull pattern in the QQ-plot
at the top observations with vertical coordinate larger than 11.

As a second example, a tapering e�ect is also observed in the Secura Belgian Re
data set from Beirlant et al. [36]. We refer the reader to Beirlant et al. [35, Sec. 1.3.3
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Figure 3.2: Norwegian Fire claim data: Weibull QQ-plot (left) and Weibull deriva-
tive plot (right).

& Sec. 6.2] for further details about the data set. The Pareto QQ-plot in Figure
3.3 shows a linear pattern from logX > 15, but bending is visible near the top
10 observations, leading to higher values of α̂Hk at k ≤ 10. The Weibull derivative
plot shows an ultimately decreasing behavior at the largest 10 observations. This
then could lead to truncated Pareto modeling rather than Weibull tempering of a
Pareto-type tail, as discussed in detail in Beirlant et al. [33].

In this paper, we complement the graphical and exploratory analysis of Weibull
tempering of Pareto-type tails as illustrated above with a mathematical analysis of
model (3.5). This can be considered as an alternative to the truncated Pareto-type
distributions X discussed in [33] which were de�ned by X =d Y |Y < T for some
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Figure 3.3: Secura Belgian Re claim data: log(Claim sizes) as a function of the
year of occurrence (top left), log-log plot (top right), α̂Hk estimates with 95% con�-
dence interval (middle), Weibull QQ-plot (bottom left) and Weibull derivative plot
(bottom right).
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high value of T and Y satisfying Pareto-type behaviour (3.1). Truncation also leads
to tapering and appears, for instance, in modeling of earthquake energy levels on the
basis of the Gutenberg-Richter law. From the viewpoint of truncation, model (3.5)
corresponds to X = min(Y,W ) with Y and W independent, Y being Pareto-type
distributed and W Weibull distributed with P(W > x) = e−(βx)τ . Such a model is
intended to describe situations where a gradual transit from a power-law decay to
an exponentially fast decay is observed as one goes further into the tail. In view of
the general nature of the Pareto-type models (3.1), this approach will not be able to
capture the characteristics over the whole range of the distribution but focuses rather
on the largest observations above some threshold Xn−k,n. However, if appropriate
such tempered tail �ts could be spliced with di�erent methods to describe the data
below the chosen Xn−k,n, as it was done before to obtain composed models with a
Pareto or generalized Pareto tail �t, see, for instance, Reynkens et al. [160] for mixed
Erlang compositions with Pareto tails, Brazauskas and Kleefeld [44] for log-normal
and Weibull models spliced with Pareto tail �ts, and Raschke [157] for Pareto-
Pareto or cascade Pareto modeling. Albrecher et al. [8] considered a parsimonious
and versatile family of distributions for the modeling of heavy-tailed risks using the
class of matrix Mittag-Le�er distributions.

In Section 3.2, we position the tempered Pareto-Weibull model in a POT approach
allowing β → 0 as the threshold t → ∞ and study pseudo-maximum likelihood
estimation providing basic asymptotic theory. We also discuss estimation of extreme
return levels and return periods. Proofs of mathematical results are deferred to the
Appendix. In Section 3.3 we provide simulation results, and in Section 3.4 we
complete the analysis of the Norwegian �re and the Belgian liability insurance data
sets based on the obtained results. Section 3.5 concludes.

3.2 Tempered Pareto-type modeling and estimation

Let X = min(Y,W ) with Y andW independent, where Y is Pareto-type distributed
following (3.1) and

P(W > x) = e−(βx)τ for x > 0.

The survival function of X is then given by

P(X > x) := F (x) = x−α`(x)e−(βx)τ .

For the POT distribution of X
t

∣∣X > t for some threshold t > 0, we obtain for x > 1

F t(x) := P(
X

t
> x|X > t)

=
P(X > tx)

P(X > t)

=
(tx)−α

t−α
`(xt)

`(t)

e−(βxt)τ

e−(βt)τ

= x−α
`(xt)

`(t)
e−(βt)τ (xτ−1).
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By de�nition `(xt)/`(t) ≈ 1 for large enough thresholds t. We then assume that at
some large values of t, the parameter β is inversely proportional to t, so that a simple
Pareto-Weibull model (3.4) provides an appropriate �t to the POTs X/t (X > t),
at least better than the simple Pareto �t with distribution function 1− x−α as used
in classical extreme value methodology for Pareto-type tails. In order to formalize
the above, one takes the limit for t → ∞ which necessarily requires β = βt ↓ 0 as
t ↑ ∞. The model considered in this paper is then formally given by

(M) The POT distribution F t satis�es

F t(x)→ Fα,β∞,τ (x) := x−αe−β
τ
∞(xτ−1), as t→∞ for every x > 1,

where

a) (rough tempering) β = βt satis�es βtt → β∞ > 0, with β∞ < ∞, corre-
sponding to the situation where the deviation from the Pareto behavior due
to Weibull tempering will be visible in the data from t on and the approxi-
mation of the POT distribution using the limit distribution Fα,β∞,τ appears
more appropriate than using Fα,0,τ = x−α, the simple Pareto distribution;

b) (light tempering) β = βt satis�es βtt→ 0, corresponding to

F t(x)→ x−α, x > 1,

in which case the tempering is hardly or not visible in the data above t. It
will then be practically impossible to discriminate light tempering from no
tempering.

In other words, under light tempering the tail index α can be estimated using the
traditional methods for Pareto-type tails, see for example Beirlant et al. [36, Ch.
2] or Beirlant et al. [35, Ch. 4] for a thorough description of classical methods
available or, for example, Bladt et al. [40] for a recent contribution using a trimmed
estimator. In this contribution we only discuss the situation where there is a clear
deviation from the pure Pareto behavior, i.e. rough tempering. Nevertheless, as
it will become apparent from the simulation studies in Section 3.3, under light-
tempering the methods proposed in this contribution provide similar results as the
traditional methods for Pareto-type tails.

3.2.1 Statistical estimation

Given a particular threshold t, the quasi-likelihood procedure consists of �tting the
limit distribution in (M) to the POT data

Xj

t
when Xj > t, j = 1, . . . , n.

We also use the notation λ = βτ∞, so that the limit distribution in (M) is given by

Fα,λ,τ (x) = x−αe−λ (xτ−1), x > 1.
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The log-likelihood is then given by

logL(α, λ, τ) = −(1 + α)
n∑
j=1

log

(
Xj

t

)
1(Xj>t) − λ

n∑
j=1

((
Xj

t

)τ
− 1

)
1(Xj>t)

+
n∑
j=1

log

(
α + λτ

(
Xj

t

)τ)
1(Xj>t).

(3.7)

In extreme value methodology the choice of a threshold t is an important matter.
A common practice is to select the (k + 1)-largest observation xn−k,n for some k ∈
{4, . . . , n− 1} as the threshold t, and to plot the resulting estimates as a function of
the inverse rank k. Many authors then suggest to �nd k in a stable portion of these
plots, if available. Data-driven choices of k are sometimes available minimizing the
asymptotic mean-squared error based on asymptotic results that describe the bias
and variance for intermediate k sequences. While an asymptotic result is presented
below in Theorem 2.1, we here present an approach focusing on the goodness-of-�t
of the tempering model to the POT data above the di�erent thresholds xn−k,n, using
a QQ-plot approach. Then, for a given value of τ , one �nds the least-squares line
that minimizes(

− log
(

1− F̂k (Vj,k)
)
, α log Vj,k + τβτ∞hτ (Vj,k)

)
, j = 1, . . . , k, (3.8)

with hτ (x) = (xτ − 1)/τ , the POT data Vj,k = Xn−j+1,n/Xn−k,n, j = 1, . . . , k, and

F̂k denoting the empirical distribution function based on those POTs. Therefore,
since F̂k (Vj,k) = j

k+1
, one is led to minimize

WLS(Vj,k;αk, δk, τk) :=
k∑
j=1

wj,k

(
1

α
log

k + 1

k − j + 1
− log Vj,k − δhτ (Vj,k)

)2

, (3.9)

with respect to α and δ = τβτ∞, where {wj,k, j = 1, . . . , k} are appropriate weights.
In particular, if wj,k = 1/ log

(
k+1
k−j+1

)
when δ ↓ 0, that is without tempering, we

recover the classical Hill estimator Hk,n.

Optimization using (3.9) also leads to an adaptive selection method for choosing
k which gives appropriate estimates for (α, τ, β∞), choosing the k for which the
weighted least-squares (WLS) value is minimal:

k̂ = arg min
k

SSk (3.10)

with

SSk =
k∑
j=1

1

log
(

k+1
k−j+1

) ( 1

α̂Wk
log

(
k + 1

k − j + 1

)
− log Vj,k − δ̂Wk hτ̂Wk (Vj,k)

)2

. (3.11)

Since for τ → 0 the parameters α and τ become non-identi�able, numerical is-
sues will arise during the statistical estimation procedure when directly optimizing
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Algorithm 1 Estimation of (α̂Wk , β̂
W
∞,k, τ̂

W
k ) and (α̂Mk , β̂

M
∞,k, τ̂

M
k )

1: set τ̃1 < τ̃2 < · · · < τ̃m, m ∈ N
2: for k = 1, 2, to n− 1 do
3: for i = 1, 2, to m do
4: Optimization step. Set(

α̂k,τ̃i , δ̂k,τ̃i

)
:= arg min

(α>0,δ>0)

WLS(Vj,k;α, δ, τ̃i)

5: ŴLSk,τ̃i ← WLS(Vj,k; α̂k,τ̃i , δ̂k,τ̃i , τ̃i)

6: λ̂k,τ̃i ← δk,τ̃i/τ̃i

7: l̂ogLk,τ̃i ← logL(Vj,k; α̂k,τ̃i , λ̂k,τ̃i , τ̃i)
8: Set

(α̂Wk , δ̂
W
k , τ̂

W
k ) := arg min

(α̂k,τ̃i ,δ̂k,τ̃i ,τ̃i)

{
ŴLSk,τ̃i ; i = 1, . . . ,m

}
9: β̂W∞,k ←

(
δ̂Wk /τ̃

W
k

)1/τ̃Wk

10: Set
(α̂Mk , λ̂

M
k , τ̂

M
k ) := arg max

(α̂k,τ̃i ,λ̂k,τ̃i ,τ̃i)

{
l̂ogLk,τ̃i ; i = 1, . . . ,m

}
11: β̂M∞,k ← (λ̂Mk )1/τ̃Mk

12: return (α̂Wk , β̂
W
∞,k, τ̂

W
k ) and (α̂Mk , β̂

M
∞,k, τ̂

M
k ), for k = 1, 2, . . . , n− 1.

the likelihood, or when minimizing (3.9). However, �xing a value of τ during the
calibration procedure reduces numerical instabilities. The optimization procedure
Algorithm 1 which is used in the simulations and cases, leads to WLS estimates
(α̂Wk , β̂

W
∞,k, τ̂

W
k ) and maximum likelihood estimates (α̂Mk , β̂

M
∞,k, τ̂

M
k ), starting from a

grid of m initial τ values τ̃1 < τ̃2 < · · · < τ̃m, m ∈ N.

3.2.2 Return periods and extreme quantiles

In order to estimate return periods of the type 1/P(X > z) for some large outcome
level z, we use the approximation

P(X > tx)

P(X > t)
≈ x−αe−λτhτ (x)

with t large, so that setting tx = z and t = xn−k,n for some k, we obtain the
estimators for P(X > z)

P̂W
z,k =

k + 1

n+ 1

(
z

xn−k,n

)−α̂Wk
exp

(
−λ̂kτ̂Wk hτ̂Wk (z/xn−k,n)

)
(3.12)

and similarly P̂M
z,k, where P(X > t) = P(X > xn−k,n) is estimated using the empirical

proportion (k + 1)/(n+ 1).
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The value z solving the equation

k + 1

n+ 1

(
z

xn−k,n

)−α̂Wk
exp

(
−λ̂Wk τ̂Wk hτ̂Wk (z/xn−k,n)

)
= p, (3.13)

for a given value p ≤ 1
n
, then yields an estimator Q̂W

p,k for the extreme quantile or
return level Q(1−p), and hence for Value-at-Risk (VaRp) at extreme quantile levels

1− p. Similarly, one obtains the estimator Q̂M
p,k.

3.2.3 Asymptotic distribution of the maximum likelihood
estimators

We end this section stating the asymptotic distribution of the maximum likelihood
estimators α̂t, λ̂t, τ̂t. The likelihood equations in (α, λ, τ) are given by

n∑
j=1

{
α + λτ

(
Xj

t

)τ}−1

1(Xj>t) =
n∑
j=1

log

(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ
α + λτ

(
Xj
t

)τ 1(Xj>t) =
n∑
j=1

hτ

(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ
log
(
Xj
t

)
α + λτ

(
Xj
t

)τ 1(Xj>t) =
n∑
j=1

(
Xj

t

)τ
log

(
Xj

t

)
1(Xj>t).

We further assume classical second-order slow variation

`(ty)

`(t)
= 1 +Dtρhρ(y), with D ∈ R, ρ < 0, (3.14)

and set θ̂t = (α̂t, λ̂t, τ̂t)
t and θ = (α, λ, τ)t.

Theorem 3.2.1. Under F (x) = x−α`(x)e−βx
τ
satisfying (M) with β∞ > 0 and `

satisfying (3.14), we have as n, t→∞ such that nF (t)→∞ and
√
nF (t)tρ → ν > 0

that

√
nF (t)

(
θ̂t − θ

)
→d N3

(
DνI−1b, I−1

)
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with I ∈ R3×3 symmetric and b ∈ R3×1 and

I1,1 =

∫ ∞
1

u−α−1e−λτhτ (u)

α + λτuτ
du,

I2,2 = τ 2

∫ ∞
1

u2τ−α−1e−λτhτ (u)

α + λτuτ
du,

I3,3 = λ

∫ ∞
1

{
log2(u)− 2 log u

α + λτuτ

+
λuτ (1 + 2τ log u)− ατ(log u)2

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

I1,2 = τ

∫ ∞
1

uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I1,3 = λ

∫ ∞
1

(1 + τ log u)
uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I2,3 =

∫ ∞
1

{
log u− α(1 + τ log u)

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

b1 =

∫ ∞
1

(
1

α + λτuτ
− log u

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du,

b2 =

∫ ∞
1

(
τuτ

α + λτuτ
− τhτ (u)

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du,

b3 = λ

∫ ∞
1

(
1 + τ log u

α + λτuτ
− log u

)
uτ−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du.

The derivation of this result is postponed to the Appendix A.

3.3 Simulation results

The �nite sample behavior of the estimators (α̂Wk , τ̂
W
k ) and (α̂Mk , τ̂

M
k ) and the re-

sulting tail probabilities P̂W
z,k, P̂

M
z,k and extreme quantiles Q̂W

p,k, Q̂
M
p,k resulting from

Algorithm 1, (3.12) and (3.13), respectively, have been studied through an exten-
sive Monte Carlo simulation procedure. For each setting, 500 runs with sample size
n = 500 were performed. The mean and root mean squared error (RMSE) of the
estimators are presented for the following models:

(a) Burr-Weibull(α, ξ, τ, β) model with Burr survival function is given by

1− FY (y) =
(
1 + y−ξα

)1/ξ
, y > 0, α > 0, ξ < 0.

Here (3.14) is satis�ed with ρ = ξα. We used (α, ξ, τ, β) = (2,−1, 1.50, 0.50)
and (2,−1, 0.50, 0.20).
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(b) Fréchet-Weibull(α, τ, β) model with the Fréchet survival function

1− FY (y) = exp(−y−α), y > 0, α > 0.

Here (3.14) is satis�ed with ρ = −α. We used (α, τ, β) = (2, 2, 0.50) and
(2, 0.50, 0.20).

(c) Pareto-Weibull(α, τ, β) model using the Pareto distribution

1− FY (y) = y−α, y > 1, α > 0.

Here `(x) = 1. We used (α, τ, β) = (1, 2, 0.20).

(d) In order to study the behavior of the estimators under Weibull tempering of
a heavy-tailed distribution outside the Pareto-type family we simulated from
a tempered log-normal distribution with parameters µ = 0 and σ = 10.

The plots of these simulation studies are collected in Appendix B.

In the plots concerning the estimation of α, we also plot the results for the Hill esti-
mator Hk,n, while in case of the tail quantile estimates Q̂W

p,k and Q̂
M
p,k we also provide

the results for the Weissman [181] estimator Q̂H
p,k = Xn−k,n

(
k
np

)1/α̂Hk
. Finally, we

also present the boxplots of the estimates when using the adaptive choice k̂ given
in (3.10) for k. The characteristics for the tail probability estimators P̂W

z,k, P̂
M
z,k are

quite comparable to those of the extreme quantiles, and are omitted here.

From the mean and RMSE plots one notes that the results for the MLE results
α̂M , τ̂M and Q̂M

p improve upon the weighted least squares-based results. Namely,
in most of the analyzed cases the MLE results show a smaller bias and RMSE when
compared to the weighted least squares based results. The results with the adaptive
choice k̂ of k are promising, and again best for the MLE results. In case τ > 1
(see Figures 3.4, 3.5, 3.8, 3.9, 3.12, 3.13, 3.14 and 3.15) when the tempering is quite
strong, the results for the proposed methods improve upon the classical estimators
Hk,n and Q̂H

p,k, which ignore the tempering in the simulated samples. Note that in
these cases the VaR estimates based on the MLE parameters taken at the adaptive
value k̂ show a rather small bias, even in case of the log-normal model which is
situated outside our Pareto-type model assumption.

In case τ < 1 (see Figures 3.6, 3.7, 3.10 and 3.11), hence under weaker tempering,
the bias and RMSE results are comparable with the classical estimators. The VaR
estimates at k̂ tend to overestimate the correct value. As will become clear from
the case studies in the next section, the Pareto and tempered Pareto �ts can lead
to quite di�erent extreme tail �ts per sample. Namely, even though the perfor-
mance of the methods presented here and the classical methods are similar under
weaker tempering, ignoring the tempering leads to over�tting tail probabilities and
quantiles.

We conclude that the use of classical estimators ignoring the tempering e�ect leads to
overestimation of the risk measures, while the proposed method provides reasonable
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VaR estimates especially for larger values of τ > 1. In case of smaller tempering
with a heavier Weibull tail, improvements can be made concerning the adaptive
choice of k. Another possibility is to search for bias reduced estimators as available
in the non-tempering literature (see, for instance, Chapters 3 and 4 in [35]).

3.4 Insurance cases

We now apply the presented methods to the Norwegian and the Secura Re Belgian
data sets introduced in Section 1. In addition, we contrast the tail index estimates
α̂Wk,n and α̂

M
k,n with the values obtained for the truncated Pareto-type model proposed

in Beirlant et al. [33], where α̂Tk,n is obtained as the solution to

Hk,n =
1

αTk,n
+
R
αTk,n
k,n log(Rk,n)

1−RαTk,n
k,n ,

with Rk,n = Xn−k,n/Xn,n. The latter estimator was �rst proposed in Aban et al.
[1] as the conditional MLE based on the k + 1 (0 ≤ k < n) largest order statistics
representing only the portion of the tail where the truncated Pareto approximation
holds, see also [7, Sec 4.2.3].
We then also measure the goodness-of-�t using QQ-plot (3.8) and the analogous
expression for the truncated model. The results are discussed here and the �gures
are presented in Appendix C.

For the Norwegian �re insurance data set, we �nd k̂ = 4920 from the plot of SSk
from (3.11) in Figure 3.16, where also the di�erent parameter estimates as a function
of k can be found. The log-log plot based on (3.8) at k = 4920 shows a good tail �t
for the tempered Pareto model, in contrast to the simple Pareto �t which will over�t
tail probabilities and quantiles. This can be seen from Figure 3.17 where for larger
k, the classical Weissman estimates Q̂H

1/(cn),k (c = 1, 2) lead to much larger estimates
than those based on the proposed tempering modeling. Only when k is really small,
that is, when restricting to the data situated in the bottom curved area of the log-log
plot, the classical linear Pareto �t is able to provide a reasonable representation of
the most extreme data. Finally, note from the log-log plot in Figure 3.16 that the
truncated Pareto �t follows the linear Pareto �t except for the two �nal extreme
points after which a sharp deviation is observed up to an estimated �nite truncation
point T estimated at T̂k̂ = 1, 211, 106, when using the estimation method proposed
in [33, Sec. 3, Eq. 19].

In order to illustrate the possibility of extending the proposed method in a time-
dependent regression context, we �tted the approach to 3-years sliding time windows.
The size of the windows was selected to have at least 300 observations at each point
in time. Figure 3.18 shows the estimated VaR at 99.5% (top) and 99.9% (bottom)
using the tempered Pareto approach with k̂ selected using the proposed adaptive
procedure, next to simple Pareto and truncated Pareto modeling. We also compare
with the observed quantiles obtained using the standard R function, which estimates
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the quantiles as weighted averages of consecutive order statistics. The VaR values
based on the tempered Pareto model are situated between the observed and the
Pareto and truncated Pareto �ts, from which one can conclude that the tempered
tail behavior observed for the complete data set in the bottom frame in Figure 3.16
is also present conditional on a time window, leading to overestimation when using
classical methods that ignore the proposed tempering. It is also worth noticing
that the VaR at 99.5% values exhibits an overall decreasing trend with some stable
behavior between 1979 and 1987. Figures 3.19 and 3.20 show the respective VaR
estimates for all values of k for some selected time windows.

In Figure 3.21, the respective results are given for the Secura Re Belgium data set.
Here the best tempered Pareto �t is found at k̂ = 147, with the corresponding
log-log plot given in the bottom �gure. Here the tempered Pareto WLS �t closely
follows the linear Pareto �t, while the MLE �t shows too much bending near the
largest data. Both the Pareto and WLS tempered Pareto �t do miss the deviation
at the top two data, which however is taken into account in the truncated Pareto
analysis with T̂k̂ = 8, 967, 620 = e16.009. While this deviation can be considered
as statistically non-signi�cant, it makes sense to consider the truncated Pareto �t
here since Belgian car insurance contracts do show explicit upper limits. Another
motivation for a truncated model is that the extreme quantile estimates Q̂M

1/(cn),k̂

hardly change from c = 1 to c = 2, namely around the value e16.

3.5 Conclusion

In this paper we addressed the �tting of Pareto-type distributions with a tempering
component of Weibull type at large values. We extend earlier results for exponential
tempering on strict Pareto tails, provide a Peaks over Threshold (POT) approach,
develop estimation procedures and provide asymptotic properties of the proposed
estimators. Finally, we present a simulation study and also apply the developed
methods to actual insurance data, discussing challenges in the implementation and
how to overcome them. The estimation of VaR values at extreme quantile levels
shows improvements compared to more classical extreme value estimation methods
that ignore the considered tempering e�ect. These improvements are more pro-
nounced with growing tempering e�ect.

Further research concerning the generalization to a regression context and the use
of tempered Pareto-Weibull models in composed or splicing models will be taken up
in the future.
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3.6 Appendix A: Proof of Theorem 3.2.1

Using Taylor expansions of the likelihood equations in θ̂t around the correct value
θ leads to the following system of three equations, with θ̃ = (α̃, λ̃, τ̃) situated in
between θ̂t and θ:√
nF (t)(α̂t − α)

1

nF (t)

n∑
j=1

1(
α̃ + λ̃τ̃(

Xj
t

)τ̃
)2 1(Xj>t)

+

√
nF (t)(λ̂t − λ)

1

nF (t)

n∑
j=1

τ̃(
Xj
t

)τ̃(
α̃ + λ̃τ̃(

Xj
t

)τ̃
)2 1(Xj>t)

+

√
nF (t)(τ̂t − τ)

1

nF (t)
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(
Xj
t

)τ̃ (1 + τ̃ log
Xj
t

)(
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Xj
t

)τ̃
)2 1(Xj>t)

=

√
nF (t)

(
1

nF (t)

n∑
j=1

{ 1

α + λτ(
Xj
t

)τ
− log

Xj

t

}
1(Xj>t)

)
(3.15)

√
nF (t)(α̂t − α)

1

nF (t)
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τ̃(
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The coe�cients of
√
nF (t)(α̂t − α),

√
nF (t)(λ̂t − λ) and

√
nF (t)(τ̂t − τ) on the

left hand sides of (3.15), (3.16) and (3.17) now converge in probability to the corre-
sponding elements of I. For instance for

I1,1,n,t(α, λ, τ) :=
1

nF (t)
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1(
α + λτ(

Xj
t
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as t → ∞ using the consistency of ML estimators and assumption (M). The
convergence of I1,1,n,t(α̃, λ̃, τ̃) to I1,1 then follows from

Var (I1,1,n,t(α, λ, τ)) = O
(
(nF (t))−1

)
and I1,1,n,t(α̃, λ̃, τ̃)− I1,1,n,t(α, λ, τ) = op(1)

as n, t→∞ using the consistency of the ML estimators.

Next the asymptotic normal distribution of the right hand sides of (3.15)-(3.17)√
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is derived.
Concerning the �rst component
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− log u
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with F t(u) = P(X/t > u|X > t) = u−α(1 + Dtρhρ(u))e−λ(uτ−1) using the second
order slow variation condition (3.14), so that

−dF t(u)

du
= u−α−1e−λ(uτ−1)(α+ λτuτ ) +Dtρ u−α−1e−λ(uτ−1){hρ(u)[α+ λτuτ ]− uρ}.
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Using partial integration one easily checks that∫ ∞
1

{ 1

α + λτuτ
− log u

}
u−α−1e−λ(uτ−1)(α + λτuτ )du = 0,

so that the expected value of the �rst component is given by Dtρ b1, leading to the
asymptotic bias expression of α̂t as given in Theorem 2.1, and similar calculations
lead to the bias of λ̂t and τ̂t.

So it remains to derive the asymptotic variances and covariances of the vector in
(3.18). The variance of the �rst component is derived from
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as n, t→∞. Using partial integration one �nds that
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1
( 2 log u
α+λτuτ

−(log u)2)du−αe−λ(uτ−1) =
0, so that the asymptotic variance of the �rst component in (3.18) equals I1,1. In the
same way one �nds that the asymptotic variance covariance matrix of (3.18) equals I.

Hence

(I + op(1))

√
nF (t)(θ̂t − θ) = N3 ((Dν)b, I) + op(1), (3.19)

from which the result follows.



80 CHAPTER 3. TEMPERED PARETO-TYPE MODELING

3.7 Appendix B: Simulation results
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Figure 3.4: Burr-Weibull(2.0,−1.0, 1.5, 0.5). Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right) of τ̂Wk
and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale).

Horizontal dashed lines indicate the real parameters.
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Figure 3.5: Burr-Weibull(2.0,−1.0, 1.5, 0.5): quantile estimates Q̂W
p,k, Q̂

M
p,k with p =

1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as a

function of k. Bottom line: boxplots of Q̂W
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, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.
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Figure 3.6: Burr-Weibull(2.0,−1.0, 0.5, 0.5). Top: Mean (left) and RMSE (right) of
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Figure 3.7: Burr-Weibull(2.0,−1.0, 0.5, 0.5): quantile estimates Q̂W
p,k, Q̂
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Figure 3.8: Fréchet-Weibull(2.0, 2.0, 0.2). Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right) of τ̂Wk
and τ̂Mk as a function of k; Bottom: Boxplots of α̂W
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Horizontal dashed lines indicate the real parameters.
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Figure 3.10: Fréchet-Weibull(2.0, 0.50, 0.5). Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right) of τ̂Wk
and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale).

Horizontal dashed lines indicate the real parameters.



3.7. APPENDIX B: SIMULATION RESULTS 87

2
.
0

3
.
0

4
.
0

5
.
0

0 100 200 300 400 500

k

lo
g
(
Q^

k
(
1

−
1

c
n
)
)

Frechet − Weibull(α = 2, τ = 0.5, β = 0.5) , n = 500 , runs = 500

c =  1

WLS

MLE

Weissman

2
.
0

3
.
0

4
.
0

5
.
0

0 100 200 300 400 500

k

lo
g
(
Q^

k
(
1

−
1

c
n
)
)

c =  2

WLS

MLE

Weissman

2
4

6
8

1
2

0 100 200 300 400 500

k

M
S

E

Frechet − Weibull(α = 2, τ = 0.5, β = 0.5) , n = 500 , runs = 500

c =  1

WLS

MLE

Weissman

4
6

8
1
0

1
4

0 100 200 300 400 500

k

M
S

E

c =  2

WLS

MLE

Weissman

1
.5

2
.0

2
.5

3
.0

3
.5

Frechet − Weibull(α = 2, τ = 0.5, β = 0.5) , n = 500 , runs = 500

WLS MLE

Estimators

lo
g
(Q

^
k
*(

1
−

1
c
n
))

c =  1

1
.5

2
.0

2
.5

3
.0

3
.5

WLS MLE

Estimators

lo
g
(Q

^
k
*(

1
−

1
c
n
))

c =  2

Figure 3.11: Fréchet-Weibull(2.0, 0.5, 0.5): quantile estimates Q̂W
p,k, Q̂

M
p,k with p = 1

cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as a function of

k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2 (right). Horizontal

dashed lines indicate the real parameters.
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Figure 3.12: Pareto-Weibull(1.0, 2.0, 0.2).Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right) of τ̂Wk
and τ̂Mk as a function of k; Bottom: Boxplots of α̂W
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Horizontal dashed lines indicate the real parameters.
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Figure 3.13: Pareto-Weibull(1.0, 2.0, 0.2): quantile estimates Q̂W
p,k, Q̂
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Figure 3.14: log-normal-Weibull(0.0, 100, 1.5, 0.5). Top left: α̂Wk , α̂Mk and Hk,n mean
estimates as a function of k. Middle left: τ̂Wk , τ̂Mk mean estimates as a function of

k. Right: quantile estimates Q̂W
p,k, Q̂

M
p,k with p = 1
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(middle). Bottom: boxplots of α̂W
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and τ̂M
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(log-scale). Horizontal dashed

lines indicate the real parameters.
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Figure 3.16: Norwegian �re insurance data: Top left: SSk from (3.11); Top right:
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Bottom: log-log plot with �t obtained from (3.8) with k = k̂ = 4915 using MLE
and WLS estimates, next to Pareto and truncated Pareto �t.
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Figure 3.18: Norwegian �re insurance data: log-V aR(99.5%) (top) and log-
V aR(99.5%) (bottom) at k̂ for tempered model (black and blue lines), Pareto (grey),
truncated Pareto (green) and observed values (x). For each time window, k̂ is dis-
played at the top margin.
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Figure 3.19: Norwegian �re insurance data: log V aR(99.5%) for tempered model
(black and blue lines), Pareto (grey) and truncated Pareto (green) for selected time
windows.
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Figure 3.20: Norwegian �re insurance data: log V aR(99.9%) for tempered model
(black and blue lines), Pareto (grey), truncated Pareto (green) for selected time
windows.
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Figure 3.21: Secura data set: Top left: SSk from (3.11); Top right: α̂Wk , α̂Mk , Hk,n

and α̂Tk ; Middle left: − log β̂W∞,k, − log β̂M∞,k; Middle right: τ̂Wk , τ̂Mk ; Bottom: log-log

plot with �t obtained from (3.8) with k = k̂ = 147 using MLE and WLS estimates,
next to Pareto and truncated Pareto �t.



3.8. APPENDIX C: INSURANCE CASES 97

1
5
.5

1
6
.5

1
7
.5

lo
g
(Q

^
k
(1

−
1

c
n
))

k
0 50 100 150 200 250 300 350

7.487 3 2.504 2.143 1.888 1.661 1.486 1.284

Threshold (mio. EUR)

c =  1
WLS
MLE
Weissman
TrPar

Q
^

147

W

= 9.976 mio.

1
5
.5

1
6
.5

1
7
.5

lo
g
(Q

^
k
(1

−
1

c
n
))

k
0 50 100 150 200 250 300 350

7.487 3 2.504 2.143 1.888 1.661 1.486 1.284

Threshold (mio. EUR)

c =  2
WLS
MLE
Weissman
TrPar

Q
^

147

W

= 12.057 mio.

Figure 3.22: Secura data set : Q̂W
p,k, Q̂

M
p,k and Q̂H

p,k quantile estimates with p = 1/n
(top) and p = 1/(2n) (bottom).



98 CHAPTER 3. TEMPERED PARETO-TYPE MODELING



Chapter 4

On the randomized Schmitter

problem

This chapter is based on the following article:[3]

H. Albrecher and J.C. Araujo-Acuna. On the randomized Schmitter problem. Sub-
mitted, 2020.

Abstract. We revisit the classical Schmitter problem in ruin theory and consider it for

randomly chosen initial surplus level U . We show that the computational simpli�cation

that is obtained for exponentially distributed U allows to connect the problem tom-convex

ordering, from which simple and sharp analytical bounds for the ruin probability are ob-

tained, both for the original (but randomized) problem and for extensions involving higher

moments. In addition, we show that the solution to the classical problem with determinis-

tic initial surplus level can conveniently be approximated via Erlang(k)-distributed U for

su�ciently large k, utilizing the computational advantages of the advocated randomization

approach.

4.1 Introduction

At the ASTIN Colloquium 1990 in Montreux, the Swiss actuary Hans Schmitter
presented an algorithm for the exact evaluation of the ruin probability ψ(u) of a
Cramér-Lundberg surplus process for an insurance portfolio with initial surplus u, for
the case when the claim amount distribution is discrete on a �nite range (Schmitter
[165]). Also inspired by Bowers [43], he then posed the following question: If the
individual claims are known to have mean µ and variance σ2, which claim size
distributions minimize or maximize the ruin probability for a given u, respectively?

99
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I.e.,

min/max ψ(u)
subject to X is a non-negative random variable,

with E(X) = µ and Var(X) = σ2,

where X is the random variable describing the individual claim sizes. This problem
was then further discussed by Brockett et al. [47] and taken up in Kaas [122], where
it was also extended to the related problem of �nding extremal values of stop-loss
premiums for compound Poisson distributions with similar moment restrictions.
Much later, De Vylder et al. [70, 72] provided a numerical solution to the Schmitter
problem based on a renewal equation that approximates the classical ruin model
using a discrete time grid and partially solved the original problem in [69].

While on the basis of these contributions the problem can be considered as quite
well understood, it was never solved in full generality. Correspondingly, despite the
considerable time that has passed since then and the gradual shift of criteria for
solvency considerations in insurance practice in the meantime, we would like to add
an additional layer of complexity and understanding of the Schmitter problem in
this paper by taking the perspective of a randomized initial surplus level.

Randomization as a principle has proven to be a very useful tool in risk theory lead-
ing to simpler expressions (see e.g. Albrecher et al. [10], Ivanovs [117]) or even unex-
pected identities (Albrecher and Ivanovs [14]), but particularly also to considerable
computational advantages (cf. Carr [52], Avram et al. [23], Albrecher and Go�ard
[11]). The idea for the latter computational approach is to replace a deterministic
quantity by a random variable with matching expected value, often with the ad-
vantage of smoothing the corresponding computational problem, leading to simpler
and amenable expressions. In a �nal step, if possible the variance of that random
variable is reduced considerably such that the resulting value can be an excellent
approximation of the original computationally complex problem (�Erlangization�).

From a practical viewpoint, the classical risk model can be interpreted in two di�er-
ent ways: either representing the surplus process, or from the accounting perspective
of assets and liabilities of the insurance company. According to the latter perspec-
tive, an insurance company has to regularly evaluate the value of its assets and its
liabilities. Then, the value of the assets minus the value of the liabilities gives the
available capital, or initial surplus. However, at the moment of valuation the exact
value of the total assets might not be known with certainty and hence it might be
thought of in terms of a random initial surplus.

In our setting, we replace the deterministic initial surplus level u by an exponentially
distributed random variable U with mean u. The expected value of the resulting
ruin probability can then be expressed in terms of the (simpler) Laplace transform
of the classical ruin probability under the Cramér-Lundberg model. At this level,
analytical lower and upper bounds for the ruin probability in the Schmitter problem
can then be established utilizing the strong results in the theory of m-convex orders
obtained by Denuit et al. [76, 85] (see also [138] for a recent application of this
ordering concept). In addition, the generality of the latter results in fact allows
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to give sharp upper and lower bounds for the ruin probability when more than two
moments of the underlying claim size distribution are speci�ed, which can be seen as
an extension of the Schmitter problem that naturally narrows the gap between the
upper and lower bound. For a comprehensive survey of stochastic orderings we refer
to the monographs by Kaas et al. [126], Shaked and Shanthikumar [170, 171] and
Müller and Stoyan [149]. More recent treatments in a speci�cally actuarial context
include Kaas et al. [124, Ch.7] and Asmussen and Ste�ensen [24, Ch.8].

Eventually, we are also interested in using these explicit expressions of the ran-
domized model to approximate the classical situation of deterministic initial surplus
level u. Developing the results further towards Erlang(k) distributed initial surplus,
for increasing k (maintaining the expected value at u) this provides increasingly
accurate approximations for the classical deterministic case, expressed through the
explicit formulas of the randomized model.

The remaining paper is structured as follows. First, Section 4.2 recapitulates the
model setting and summarizes relevant results from the existing literature. In Sec-
tion 4.3 we then analyze the problem for an exponentially distributed initial surplus
level U . We obtain an expression for the corresponding (expected) ruin probability
in terms of the Laplace transform of the classical ruin probability in the Cramér-
Lundberg model, and provide sharp lower and upper bounds for it when the claim
size is bounded. We also provide corresponding bounds in the case of more than
two pre-speci�ed moments of the claim size distribution. Moreover, we illustrate
the resulting interval for particular numerical parameters and place various con-
crete (truncated) claim size distributions within these bounds. In Section 4.4, we
expand the randomization idea towards Erlang(k)-distributed initial surplus, and in
the spirit of Asmussen et al. [23] we approximate the ruin probability with deter-
ministic surplus via Erlangization and Richardson extrapolation. We give numerical
illustrations which show that the known and somewhat curious kinks in the graphs
of the known optimal solutions of the classical Schmitter problem can be smoothly
approximated with this randomization approach. In some cases, a small value of
k is already su�cient for a good approximation, in others the value of k has to be
quite considerable. Section 4.5 concludes.

4.2 Preliminaries and previous results

Consider the classical Cramér-Lundberg model with surplus process

C(t) = u+ ct− S(t),

at time t ≥ 0, where u is the initial surplus level. Here, S(t) = X1 + · · · + XN(t)

denotes the aggregate claims up to time t, where the number of claims {N(t); t ≥ 0}
up to time t refers to a homogeneous Poisson process with rate λ > 0 and the
claim sizes Xi, i = 1, 2, . . . , are independent and identically distributed random
variables with distribution function FX and expected value E(X1) = µ, independent
of {N(t); t ≥ 0}. The premium income per unit of time is c = (1+θ)λµ, where θ > 0
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is the safety loading. De�ne the associated aggregate loss process as R(t) = S(t)−ct,
for t ≥ 0. The probability ψ(u) of ultimate ruin is the probability that the surplus
process C(t) ever drops below zero,

ψ(u) = P
(

inf
t≥0

C(t) < 0

)
= P

(
sup
t≥0

R(t) > u

)
.

The maximal aggregate loss L = supt≥0R(t) can be decomposed as the sum of
ladder heights, i.e. as the sum of the amounts by which record lows (here denoted
by L1, L2, . . .) in the insurer's surplus C(t) appear. Furthermore, the distribution of
the Li (i = 1, 2, . . .) is given by the integrated tail distribution FLi(x) = µ−1

∫ x
0

(1−
FX(z))dz, x > 0. It is well known that ψ(u) is given explicitly by the Pollaczeck-
Khinchine formula

ψ(u) =
θ

1 + θ

∞∑
k=0

(
1

1 + θ

)k
(1− F ∗kLi (u)), (4.1)

where F ∗kLi denotes the k-fold convolution of the ladder height distribution (see e.g.
[22, Th.IV.2.1]). The latter expression shows that L is a compound geometric ran-
dom variable and may be written as L =

∑M
k=1 Li, with M being the number of

ladder heights. It is easy to see thatM has a geometric distribution with parameter
ψ(0) = 1/(1 + θ) (see, for example [22, Cor.IV.3.1]). The Laplace transform of (4.1)
is well-known to be

ψ̂(s) =

∫ ∞
0

e−suψ(u)du =
1

s
− c− λµ
cs− λ(1−MX(−s)),

(4.2)

where MX(−s) =
∫∞

0
e−sxdFX(x) is the Laplace-Stieltjes transform of X (cf. [161,

Th.5.3.3] or [22, Cor.IV.3.4]).

For the case when the claim amount distribution has discrete support {x1, x2, . . . , xm}
(with probabilities p1, p2, . . . , pm), Schmitter [165] gave an explicit expression to com-
pute ψ(u) in the form

ψ(u) = 1− θ

1 + θ

∑
l1,··· ,lm

(−zm)l1+···lmezm
m∏
j=1

p
lj
j

lj!
,

where zm = (u− l1 · x1 − · · · − lm · xm)+/µ · (1 + θ) and z+ = max(z, 0).

In the context of the Schmitter problem, 2-point distributions for the claim size
play a special role. If X assumes the values x1 with probability p and x2 > x1 with
probability 1− p, then for �xed mean µ > 0 and variance σ2 > 0 we simply have

µ = x1 · p+ x2 · (1− p) and σ2 + µ2 = x2
1 · p+ x2

2 · (1− p),

or correspondingly

x1 = µ− σ2

x2 − µ
, x2 = µ+

σ2

µ− x1

and p =
σ2

σ2 + (µ− x1)2
, (4.3)
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Notice that x2 is increasing in x1. Moreover, one has the relationships

σ2

µ2 + σ2
≤ p < 1, 0 ≤ x1 < µ, and

µ2 + σ2

µ
≤ x2

(see e.g. Kaas et al. [126, Ch 10.2]). If we additionally assume that X ∈ [0, b],
naturally x2 ≤ b, and we have 0 ≤ µ ≤ b and 0 ≤ σ2 ≤ µ(b − µ). The following
two extremal cases will be particularly relevant later. Namely, X = {0, 0∗ :=
(µ2 +σ2)/µ} and so p = σ2/(σ2 +µ2) and X = {b∗ := µ+σ2/(µ− b), b}. In here, x∗

denotes the function that assigns to x the unique real number such that the random
variable X = {x, x∗} has mean µ and variance σ2. Note that if b is not bounded,
then as x1 ↑ µ, p ↑ 1 and x2 → ∞: while the probability mass at x2 becomes
arbitrarily small, it signi�cantly contributes to the variance.

For any non-negative loss variable X, the stop-loss premium πX is de�ned by

πX(d) = E((X − d)+) =

∫ ∞
d

(1− FX(z))dz, for d ≥ 0.

Note that there is a one-to-one relation between the integrated tail distribution of X
and its stop-loss premium, namely FLi(z) = 1−πX(z)/µ. One important concept in
the theory of risk ordering is the stop-loss order. Concretely, a random variable X is
said to be less risky than another random variable Y in stop-loss order (X ≤sl Y ) if
πX(d) ≤ πY (d) for all retentions d ≥ 0. The problem of �nding bounds for stop-loss
premiums is a classical topic in actuarial science, see for example Bühlmann et al.
[49], Kaas and Goovaerts [123] and Steenackers and Goovaerts [174]. For a study of
the relation between stop-loss premiums and their associated ruin probabilities as
well as general upper bounds for both stop-loss premiums and ruin probabilities see
Cai and Garrido [50] and the references therein.

A consequence of the above concept is that if for two Cramér-Lundberg risk processes
with equal premium per unit of time and claim intensity parameter, but di�erent
claim sizes, say X and Y , with X ≤sl Y we have ψX(u) ≤ ψY (u) for all u ≥ 0
(see [126, Ch.8.2,Th.2.1]). Correspondingly, the Schmitter problem may be seen as
being reduced to �nding extremal distributions in the stop-loss order in the class of
random variables in [0, b] with mean µ and variance σ2. However, as pointed out in
Brockett et al. [47] there are no extremal distributions in terms of stop-loss order in
such a class.

Nevertheless one can construct stop-loss transforms in the corresponding range
(bounded or not) with the given mean, but with minimal variance, larger than
the given one. For two given moments, the latter is achieved by constructing a poly-
nomial of degree 2 above the function (X − d)+ which is tangent to this function in
2 points. The abscissas of these points will be the mass points. For a comprehensive
description of this construction see Kaas et al. [126, Ch.10]. In the following we
brie�y state its main consequences.

For unbounded X with mean µ and variance σ2, the maximal stop-loss premium
at �xed retention d is attained by a random variable Z with support {r, r∗}, where
r, r∗ = d ∓

√
(µ− d)2 + σ2, and from (4.3) then P(X = r) = σ2/(σ2 + (µ − r)2).
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Note that {r, r∗} is the 2-point support that has d in the middle. If X ∈ [0, b], this
2-point distribution still gives an upper bound, but it is no longer always sharp.
Theorem 2.3 in [126, Ch.10] provides a sharp upper bound for stop-loss premiums
for X ∈ [0, b]: For given retention d, the maximal stop-loss premium is attained by
the distribution with the mass points

{0, 0∗} if 0 ≤ d ≤ 1

2
0∗,

{r, r∗} if
1

2
0∗ ≤ d ≤ 1

2
(b+ b∗),

{b∗, b} if
1

2
(b+ b∗) ≤ d ≤ b

with the notation introduced before. However, these results do not provide an
upper bound for the ruin probability in the Schmitter problem, because it is not the
same extremal distribution across all values of d, but the latter would be needed to
bequeath the dominance in terms of the stop loss premium from the integrated tail to
all its convolutions in (4.1). However, Kaas [122] showed that ifX has lower stop-loss
premiums than Y on the interval [0, u], then the same property holds for compound
sums with N terms of these random variables respectively, and ruin probabilities
with an initial surplus u are lower for X than for Y . That is, for values of u smaller
than 1

2
0∗, the ruin probability is maximized by the 2-point claim random variable

X = {0, 0∗}. Consequently, in terms of the upper bound the Schmitter problem is
solved for small values of the initial surplus u.

De Vylder and Marceau [72] and De Vylder et al. [70] provided numerical solutions to
the problem based on a renewal equation in a discretized risk model. By restricting
to lattice distributions, they used the method of linear combinations (see also Kaas
et al. [127, Sec.3]) to obtain optimal solutions to the problem. They noted that for
u� b the maximal ruin probability was given by the 2-point claim random variable
X = {b∗, b}. In fact, De Vylder et al. [69] then proved that there exists a constant
c > 0 such that for all u ≥ c the maximal ruin probability is given by that 2-point
claim random variable. However, the concrete value of c as well as the optimal result
for intermediate values of u seem to still not be settled up to this day.

The minimal stop-loss premium for risks X with mean µ is given by (µ− d)+ for all
retentions d ≥ 0, i.e. it is attained by the defective random variable Z concentrated
at µ, implying Z ≤sl X and therefore ψZ(u) ≤ ψX(u) for all u. However, Z does not
ful�ll the variance constraint, so that this is not a valid solution to the Schmitter
problem. It does provide a general lower bound for its solution though, and for
unbounded X the variance constraint can then be satis�ed by adding an ε (↓ 0)
mass at in�nity, see also [22, Cor. IV.8.4].
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4.3 Exponentially distributed initial surplus

Let us now replace the deterministic initial surplus u by a random variable U that
has an exponential distribution with parameter s > 0. The rede�ned surplus process
then is

CR(t) = U + ct− S(t), t ≥ 0,

where c and S(t) are de�ned as in the classical ruin model. Using the convenient
fact that this choice of U simply puts us in the framework of Laplace transforms,
due to (4.2) the ruin probability ψU(s) := P(CR(t) < 0 for some t > 0) is then given
by

ψU(s) := E(ψ(U)) =

∫ ∞
0

ψ(u)se−sudu = s · ψ̂(s) = 1− s · c− λµ
cs− λ(1−MX(−s))

.

(4.4)

Since the randomization of the initial surplus corresponds to a probability-weighted
averaging over situations with deterministic surplus, it is clear that this step leads
to a smoothing of the ruin probability shape. Figure 4.1 compares the ruin probabil-
ities ψ(u) for deterministic surplus u = {1.5, 4.5, 9.0} and θ = 0.5 (the parameters
from Kaas [122, Fig.1]) with the corresponding randomized quantities of the same
expected initial surplus E(U) = 1/s = u for 2-point distributions with given mean
µ = 3 and variance σ2 = 1. One observes that the sensitivity w.r.t. the choice of the
only free parameter x1 is substantially di�erent, and the somewhat curious shape
change for increasing u from the classical deterministic case is indeed evened out.

Let us now look at the randomized and extended Schmitter problem

min/max ψU(s)

subject to E(Xk) = µk, for k = 1, 2, . . . ,m

with possibly more than two �xed moments of the claims size distribution. Inspired
by Kaas [122], using the maximal aggregate loss L and assuming that the moments
of the claim size are �nite, one can express the ruin probability in terms of the claim
size moments, namely

ψU(s) =

∫ ∞
0

ψ(u)se−sudu =
∞∑
k=0

(−1)k
sk+1

k!

∫ ∞
0

ukψ(u)du

=
∞∑
k=0

(−1)k
sk+1

k!

∫ ∞
0

ukP(L > u)du =
∞∑
k=1

(−1)k−1 s
k

k!
E(Lk)

=
∞∑
k=1

(−1)k−1 s
k

k!
E

(
E

( ∑
l1+l2+···+lM=k

(
k

l1, l2, . . . , lM

) M∏
j=1

L
lj
j

∣∣∣M)) .
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Figure 4.1: Ruin probabilities as a function of x1 for µ = 3, σ2 = 1, θ = 0.5 for the
three deterministic surplus levels u = 1.5, 4.5, 9 (left column) and the randomized
counterpart with the same expected initial surplus level (right column).
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The �rst four terms of this series are given by

E(L) = E(M)E(L1) =
1

2θµ
E(X2)

E(L2) = E(M)E(L2
1) + E(M(M − 1))E2(L1) =

1

3θµ
E(X3) +

1

2θ2µ2
E(X2)

E(L3) =
1

4θµ
E(X4) +

1

θ2µ2
E(X3)E(X2) +

3

4θ3µ3
E3(X2)

E(L4) =
1

5θµ
E(X5) +

1

θ2µ2
E(X4)E(X2) +

2

3θ2µ2
E2(X3)

+
1

6θ3µ3
E(X3)E2(X2) +

3

2θ4µ4
E4(X2)

Hence, if the �rst m moments of X are given, then one can approximate

ψU(s) ≈ sE(L)− s2

2
E(L2) + · · ·+ (−1)m−1 s

m

m!
E(Lm) (4.5)

and investigate the behavior with respect to the highest moment. For example, for
m = 2

ψU(s) ≈ s
σ2 + µ2

2θµ
− s2

6θµ
E(X3)− s2 (σ2 + µ2)2

4θ2µ2
.

Therefore, distributions with large third moment will make ψU(s) small and vice
versa. For 2-point distributions, a simple calculation shows that, ∂

∂x1
E(X3) = σ2 +(

σ2

µ−x1

)2

> 0 and ∂2

∂x2
1
E(X3) = 2 σ2

(µ−x1)3 > 0. Thus, for x1 ∈ [0, µ), its third moment

is increasing and convex, so the maximum will be at x1 = 0 and the minimum
at x1 → µ. In fact, for deterministic surplus and 2-point distributions, Kaas [122]
argued that as

∫∞
0
ψ(u)du = E(L) does not depend on x1 and

∫∞
0
uψ(u)du = E(L2)

increases linearly with the third moment of the claim distribution, so that for small
u, the ruin probability will be large for x1 = 0.

While these considerations are intuitive, from (4.4) it becomes clear that for the
extremal values of the randomized ruin probability it su�ces to minimize (maximize)
the Laplace transform of the individual claim sizes, i.e. to �nd extremal random
variables in the Laplace transform order. The Laplace transform order has been
introduced by Rolski and Stoyan [176] to compare waiting times in queuing theory.
In actuarial science, Denuit [75] studied both univariate and multivariate versions
of the Laplace transform order and gave several actuarial applications. We can now
give sharp bounds for the randomized Schmitter problem for two given moments.

Proposition 4.3.1. Let X be a non-negative random variable with mean µ and
variance σ2. Then

1− s · c− λµ
cs− λ(1− e−sµ)

≤ ψU(s) ≤ 1− s · c− λµ
cs− λ(1− σ2

σ2+µ2 − µ2

σ2+µ2 e−s(µ+σ2/µ))
.
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Proof. Note that e−sµ is the Laplace transform of a random variable Z degenerate at
µ. Moreover, σ2

σ2+µ2 + µ2

σ2+µ2 e
−s(µ+σ2/µ) is the Laplace transform of a random variable

X with mean µ, variance σ2 and such that P(X = 0) = 1− P(X = (µ2 + σ2)/µ) =
σ2

σ2+µ2 . Therefore, as maximizing the Laplace transform of the individual claim sizes

minimizes ψU(s) and vice versa, it su�ces to show that X ≤Lt Y ≤Lt Z. The proof of
the latter can be found in Shaked and Shanthikumar [171, Ch. 5, Theorem 5.A.21].
2

It is worth noticing that the distribution maximizing the randomized ruin probability
coincides with the 2-point distribution that maximizes the ruin probability under
deterministic surplus for small values of u. This is rather intuitive, since ψU(s) is a
weighted average of ψ(u) with a lot of weight on small values of u.

If more moments of the claim sizeX in [0, b] are speci�ed, then one can obtain tighter
upper and lower bounds for the randomized ruin probability. In view of (4.4), this
reduces to the derivation of bounds for the Laplace transform of X in the moment
space BS([0, b];µ1, µ2, . . . , µm) of all risks X with range [0, b] such that E(Xk) = µk
for k = 1, 2, . . . ,m. Fortunately, our context �ts exactly into the framework of Denuit
et al. [76, 85] who constructed lower and upper stochastic bounds for a given set of
risks using m-convex stochastic orders. More precisely, consider the class Mm−cx
of all functions φ : [0, b] → R whose (m + 1)-th derivative φ(m+1)(x) exists and is
non-negative, for all x ∈ [0, b], or which are limits of sequences of functions whose
(m + 1)-th derivative is continuous and non-negative on [0, b]. De�ne the partial
order relation ≤m−cx among elements in BS as

X ≤m−cx Y if and only if E(φ(X)) ≤ E(φ(Y )) for all functions φ ∈Mm−cx, (4.6)

provided the expectations exists. It is then possible to determine two discrete risks
X

(m)
min and X

(m)
max, in BS([0, b];µ1, µ2, . . . , µm) with probability masses depending on

the moment set (µ1, µ2, . . . , µm) such that

X
(m)
min ≤m−cx X ≤m−cx X(m)

max for all X ∈ BS. (4.7)

Explicit descriptions for the distribution functions of the extrema up to m = 4 are
obtained in Denuit et al. [76, Table 1, Table 2]. Moreover, the latter reference also
provided the extrema with respect to the order ≤m−cx when not only the �rst m−1
moments and the support are given, but also when the density function of X is
known to be unimodal with a known mode.1

Let X ∈ [0, b], b > 0, with moments (µ1, µ2, . . . , µm). Since φ(x) = (−1)m+1e−sx

belongs toMm−cx for s > 0, we get from (4.6) and (4.7) that

M
X

(m)
max

(−s) ≤MX(−s) ≤M
X

(m)
min

(−s), for m+ 1 odd

M
X

(m)
min

(−s) ≤MX(−s) ≤M
X

(m)
max

(−s), for m+ 1 even,
(4.8)

which can then be translated to bounds for ψU(s). The bounds for the Laplace trans-
form using m−convex risks were already described in Denuit et al. [86], extending

1Note that in this paper we use the notation ≤m−cx to denote m-convexity whenever the �rst

m moments are available and not (m− 1) as it is standard in the m-convex risk literature.
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earlier work of Eckberg [92], Whitt [182] and Lefèvre et al. [137]. In particular, [92]
derived bounds for the Laplace transform up to the third moment using the theory
of Chebychev systems and applied the bounds to problems in queuing and tra�c
theory. Moreover, the latter reference provides bounds for the case where no upper
bound is known. We would also like to mention that, closely related to the theory
of m-convex stochastic orders, using Markov-Krein theory and the theory of Cheby-
chev systems, Brockett and Cox [45, 46] obtained similar upper and lower bounds
for the expected value of a function of some random variable with given moments.
Also, De Vylder [66, 67], De Vylder and Goovaerts [71], Kaas and Goovaerts [125]
and Hürlimann [116] examined related bounding problems.

Using (4.8) we can give explicit bounds for the ruin probability with exponentially
distributed initial surplus in terms of the given parameters. For reference, we re-
state here the respective bounds given in [76, Table 1, Table 2]) in terms of ruin
probabilities when up to 4 moments of X are given:

Case m = 1. If µ1 is given, then X
(1)
min is a random variable degenerate at µ1, and

X(1)
max =

{
0 with p = 1− µ1

b
,

b with 1− p = µ1

b
.

Therefore,

ψmin
U (s) = 1− s · c− λµ1

cs− λ(1− e−sµ1)
,

ψmax
U (s) = 1− s · c− λµ1

cs− λµ1

b
(1− e−sb)

.

Case m = 2. If µ1 and µ2 are given, then

X
(2)
min =

{
0 with p = 1− µ2

1

µ2
,

µ2

µ1
with 1− p =

µ2
1

µ2
,

X(2)
max =

{
bµ1−µ2

b−µ1
with p = (b−µ1)2

(b−µ1)2+µ2−µ2
1
,

b with 1− p =
µ2−µ2

1

(b−µ1)2+µ2−µ2
1
.

In this case, it can be seen that

ψmin
U (s) = 1− s · c− λµ1

cs− λ(1− (b−µ1)2

σ2+(b−µ1)2 e−s(µ1−σ2/(b−µ1)) − σ2

σ2+(b−µ1)2 e−sb)
,

ψmax
U (s) = 1− s · c− λµ1

cs− λµ2
1

σ2+µ2
1
(1− e−s(µ1+σ2/µ1))

.

Note that for b→∞ the above expressions indeed converge to the bounds given in
Proposition 4.3.1.
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Case m = 3. If µ1, µ2 and µ3 are given, then

X
(3)
min =

r+ =
µ3−µ1µ2+

√
(µ3−µ1µ2)2−4σ2(µ1µ3−µ2

2)

2σ2 with p = µ1−r−
r+−r− ,

r− =
µ3−µ1µ2−

√
(µ3−µ1µ2)2−4σ2(µ1µ3−µ2

2)

2σ2 with 1− p = 1− µ1−r−
r+−r− ,

X(3)
max =


0 with p3 = 1− p1 − p2,
µ3−bµ2

µ2−bµ1
with p1 = (µ2−bµ1)3

(µ3−bµ2)(µ3−2bµ2+b2µ1)
,

b with p2 =
µ1µ3−µ2

2

b(µ3−2bµ2+b2µ1)
.

Then, the bounds for the ruin probability are given by

ψmin
U (s) = 1− s · c− λµ1

cs− λ
(

1−
(

1− µ1−r−
r+−r−

)
e−sr− −

(
µ1−r−
r+−r−

)
e−sr+

) ,
ψmax
U (s) = 1− s · c− λµ1

cs− λ
(
p1

(
1− e−s

µ3−bµ2
µ2−bµ1

)
+ p2 (1− e−sb)

) .
Case m = 4. If µ1 and up to µ4 are given, then

X
(4)
min =


0 with 1− p+ − p−,

t+ =
µ1µ4−µ2µ3+

√
(µ1µ4−µ2µ3)2−4(µ1µ3−µ2

2)(µ2µ4−µ2
3)

2(µ1µ3−µ2
2)

with p+ = µ2−t−µ1

t+(t+−t−)
,

t− =
µ1µ4−µ2µ3−

√
(µ1µ4−µ2µ3)2−4(µ1µ3−µ2

2)(µ2µ4−µ2
3)

2(µ1µ3−µ2
2)

with p− = µ2−t+µ1

t−(t−−t+)
.

X(4)
max =


z+ =

(µ1−b)(µ4−bµ3)−(µ2−bµ1)(µ3−bµ2)+
√
ρ

2((µ1−b)(µ3−bµ2)−(µ2−bµ1)2)
with q+ = µ2−(b+z−)µ1+bz−

(z+−z−)(z+−b) ,

z− =
(µ1−b)(µ4−bµ3)−(µ2−bµ1)(µ3−bµ2)−√ρ

2((µ1−b)(µ3−bµ2)−(µ2−bµ1)2)
with q− = µ2−(b+z+)µ1+bz+

(z−−z+)(z−−b) ,

b with 1− q+ − q−.

Here,

ρ := ((µ1 − b)(µ4 − bµ3)− (µ2 − bµ)(µ3 − bµ2))2

− 4
(
(µ1 − b)(µ3 − bµ2)− (µ2 − bµ1)2

) (
(µ2 − bµ1)(µ4 − bµ3)− (µ3 − bµ2)2

)
As can easily be veri�ed,

ψmin
U (s) = 1− s · c− λµ1

cs− λ (1− q+e−sz+ − q−e−sz− − (1− q+ − q−)e−sb)
,

ψmax
U (s) = 1− s · c− λµ1

cs− λ (p+(1− e−st+) + p−(1− e−st−))
.

4.3.1 Numerical illustrations.

De Vylder [68, Sec.II, Ch.3] gives conditions for the class of all vectors (µ1, µ2, . . . , µm)
∈ Rm such that BS([0, b];µ1, µ2, . . . , µm) is not empty. In Denuit et al. [76, Sec.4.1],
this class of all possible moment sequences is denoted by Dm([0, b]). Moreover, they
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provided expressions for the topological interior, Dm ◦ ([0, b]), of Dm([0, b]) up to
m = 4. For completeness we cite the three cases relevant for our applications here,
namely:

D1 ◦ ([0, b]) = {µ1 ∈ R|0 < µ1 < b},
D2 ◦ ([0, b]) = {(µ1, µ2) ∈ R2|µ1 ∈ D1 ◦ ([0, b]) and µ2

1 < µ2 < µ1b},
D3 ◦ ([0, b]) = {(µ1, µ2, µ3) ∈ R3|(µ1, µ2) ∈ D2 ◦ ([0, b]) and

σ2

µ1

(σ2 − µ2
1)− 2µ3

1 + 3µ1µ2 < µ3 < (b− µ1)σ2 − σ4

b− µ1

− 2µ3
1 + 3µ1µ2}.

Figure 4.2 depicts the sharp bounds for the ruin probability with b = 100, θ = 0.5
and s = 2/5, i.e. E(U) = 2.5. The upper left �gure shows the bounds for µ1 = 3.95
as a function of µ2 satisfying (µ1, µ2) ∈ D2 ◦ ([0, b]). For this case, we also know
the upper bound solution of the Schmitter problem with deterministic surplus and
we can compare the two. It turns out that the upper bounds of the randomized
and the deterministic case are remarkably close. The upper right �gure shows the
sharp ruin probability bounds for three given moments as a function of µ3 satisfying
(3.95, 48.62, µ3) ∈ D3◦([0, b]). As remarked in the previous section, once sees that the
ruin probability decreases with increasing third moment. As expected, the bounds
are tighter as the knowledge of the second moment is incorporated. Finally, the
graph at the bottom depicts the bounds of the generalized randomized Schmitter
problem for given four moments of X as a function of µ4, leading to yet tighter
bounds. It is worth noticing, that in this numerical illustration the values of the �rst
three moments were selected in such a way that one �nds a feasible set of distribution
parameters for all of the distributions in the following numerical illustration.

In order to illustrate the performance of the bounds and how they improve with
the addition of moment information, we explicitly calculate ψU(s) for some chosen
claim size distribution in each case, suitably truncated so that it �ts into the model
setup:

� Case m = 1. Truncated Exponential(λ) model with distribution function
given by

FX(x) =
1− e−λx

1− e−λb
, 0 < x ≤ b, λ > 0,

and Laplace transform

MX(−s) =
λ

λ+ s

1− e−(λ+s)b

1− e−λb
.

� Case m = 2.

� Truncated Gamma(α, β) model with distribution function

FX(x) =
γ(α, βx)

γ(α, βb)
, 0 < x ≤ b, α, β > 0,
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Figure 4.2: Sharp bounds for the randomized ruin probability ψU(2/5), considered
as a function of µ2, µ3 and µ4 respectively.

and Laplace transform

MX(−s) =

(
β

β + s

)α
γ(α, (β + s)b)

γ(α, βb)
,

where γ(α, x) =
∫ x

0
zα−1e−zdz is the lower incomplete gamma function.

� Truncated US-Pareto(α, η) (Lomax) model with distribution function

FX(x) =
1−

(
η

η+x

)α
1−

(
η
η+b

)α , 0 ≤ x ≤ b, α, η > 0,

and Laplace transform

MX(−s) =
α(ηs)αeηs

1−
(

η
η+b

)α (Γ(−α, ηs)− Γ(−α, (η + b)s)) ,

where Γ(α, x) =
∫∞
x
zα−1e−zdz is the upper incomplete gamma function.
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� Case m = 3. Truncated generalized Gamma(α, β, τ) model with density and
distribution function given by

fX(x) =
τ xατ−1β−ατe−(x/β)τ

γ(α, (b/β)τ )
, FX(x) =

γ(α, (x/β)τ )

γ(α, (b/β)τ )
, 0 < x ≤ b, α, β τ > 0,

and Laplace transform

MX(−s) =
∞∑
k=0

(−βs)k

k!

γ(α + k/τ, (b/β)τ )

γ(α, (b/β)τ )
.

In each case, the distribution parameters were determined using the method of
moments for the given moment values set in the example above. For further details
on claim size distributions and truncation see, for example, [7, Sec.3.3 & Ch.4].

The results are given in Figure 4.3d where the exact ruin probabilities obtained using
(4.4) together with the general bounds are plotted as a function of the expected
initial surplus E(U) = 1/s for the same set of parameters as above. In particular,
b was selected in such a way that no strong truncation e�ect is present in the
distributions. One sees that, for �xed µ1 only, the truncated exponential case is
nicely between the sharp bounds. However, these bounds are very wide. When
information about the second moment of X is included, the tightness of the bounds
improves signi�cantly. From (4.5), one would expect that to be the case only for
small values of s where information about the �rst two moments provides a good
approximation for the ruin probability. However, we can see that even for large
values of s the improvement is considerable. The tightness of the interval for possible
ruin probabilities becomes even more remarkable when the �rst three moments are
�xed. This illustrates that in the context of ruin probabilities, the knowledge of the
�rst few moments of the claim size distribution already provides a very accurate
approximation. In a broader statistical context, for an account on reconstructions
of arbitrary distributions from given moments, see e.g. Mnatsakanov [147]. Finally,
for recent progress on the general probability level concerning criteria of moment-
determinacy of distributions, see Yarovaya et al. [184].
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(d) Ruin probabilities ψU (s) as a function of the expected initial surplus. Top left: Bounds
for ψU (s) together with the case of truncated exponential claims for given µ1. Top right:

Bounds for ψU (s) together with the case of truncated gamma and truncated US-Pareto
claims for given µ1 and µ2. Bottom: Bounds for ψU (s) together with truncated generalized
gamma claims when µ1, µ2 and µ3 are given.
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(g) Left: Magni�cation around E(U) = 2.5 of the ruin probabilities ψU (s) and the up-
per/lower bounds in Figure 4.3d (bottom). Right: Bounds for ψU (2/5), considered as a
function of µ3 (Figure 4.2 (top right)), with a vertical bar at µ3 = 1090.95 summarizing
the upper/lower bounds and ruin probabilities in Figure 4.3d at E(U) = 2.5.

Figure 4.3: Numerical illustration for bounds of ruin the ruin probability under
exponentially distributed initial capital.
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4.4 Erlang distributed initial surplus

A natural extension of exponentially distributed random surplus is now to consider
Erlang distributed initial surplus. Concretely, consider U to be an Erlang(k, s)
random variable Ek with density

fEk(x) =
1

(k − 1)!
skxk−1e−sx for k ≥ 1, s > 0, x > 0,

We then get

ψE(k, s) := E(ψ(Ek)) =

∫ ∞
0

ψ(u)
sk

(k − 1)!
uk−1e−sudu = 1 +

(−s)k

(k − 1)!

∂(k−1)

∂s(k−1)
φ̂(s).

Here φ̂(s) = 1/s− ψ̂(s) denotes the Laplace transform of the survival probability of
the classical Cramér-Lundberg risk process and we observe that its derivatives w.r.t.
the Laplace argument lead to an explicit expression for the case of random Erlang-
distributed initial surplus. We focus here on the classical Schmitter setting with
�xed mean and variance of the claim size distribution. In Figure 4.4 we depict the
ruin probabilities for Erlang(k, s) distributed initial surplus for 2-point distributions
as a function of x1 for a given mean and variance, for two expected surplus levels.
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Figure 4.4: Ruin probabilities for Erlang(k, k/u) distributed surplus as a function
of x1 for µ = 3, σ2 = 1, θ = 0.5 and E(U) as speci�ed.

In contrast to the exponential case (k = 1), there is unfortunately no direct rela-
tion between the optimization problem and the minimization (maximization) of the
Laplace transform of the ruin probability. What we obtain is in fact an expression
in terms of its (k − 1)-th derivative (with ∂(0)/∂s(0)φ̂(s) = φ̂(s)). For example, for
k = 2 we get

ψE(2, s) = 1 + s2 ∂

∂s
φ̂u(s) = 1 + s2 ∂

∂s

c− λµ
cs− λ(1−MX(−s))

= 1− s2 c+ λ ∂
∂s
MX(−s)

c− λµ

(
c− λµ

cs− λ(1−MX(−s))

)2

, s > 0.
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Thus, for a �xed parameter s, in order to maximize our ruin probability, we need to
minimize an expression that depends on both the Laplace transform of X and its
�rst derivative.

Since the variance of a Erlang distribution goes to 0 as k → ∞, one particular
motivation to consider Erlang distributed initial surplus is as a tool to approximate
the case of deterministic initial surplus, as in fact one has ψE(k, s) → ψ(u) as
k → ∞. The approximation ψ(u) ≈ ψE(k, s), or Erlang smoothing, was considered
in Asmussen et al. [23] as a numerical scheme to approximate the �nite horizon
ruin probability by replacing the deterministic time horizon T by an �standarized�
Erlang(k, k/T ) random variable, which for k →∞ becomes exact (see [22, Ch.IX.8]
for a more general discussion, as well as Stanford et al. [173], Carr [52] and Kyprianou
and Pistorius [135] for applications of this approach to other �elds). Concerning the
convergence rate with increasing k, for our context of random initial surplus one can
adapt Theorem 6 of Asmussen et al. [23] in a straight-forward way to obtain the
following result:

Proposition 4.4.1. Let u > 0 be the expected initial surplus and let Ek denote the
Erlang distribution with shape parameter k and mean u. Then ψE(k, s) → ψ(u) as
k →∞. More precisely, for some constant C

ψE(k, k/u) = ψ(u) +
C

k
+O(k−2). (4.9)

As already suggested in [23], a further improvement of accuracy for �xed k can be
obtained by Richardson extrapolation. This is a general method (see e.g. Press et
al. [155] for details) for computing an abstract quantity y (it could be an integral, a
derivative, etc.) accurately using a sequence yk → y for which the convergence rate
is known,

yk = y +
c1

k
+

c2

k1+ε
+ . . . ,

where c1 is typically unknown but can be eliminated. In fact, setting ỹk = (k +
1)yk+1 − kyk, we get that ỹk → y and one obtains an improved approximation of
convergence rate O(k−1−ε).

Translated into our context, we then get

ψ(u) ≈ (k + 1)ψE(k + 1, (k + 1)/u)− k ψE(k, k/u), (4.10)

with an error rate of order 1/k2.

For an illustration of the method, consider the same example as in Figure 4.1, namely
the set of 2-point distributions with mean µ = 3, variance σ2 = 1, and safety loading
θ = 0.5. Figure 4.5 shows the results of the approximation. One observes that the
approximation of the deterministic case via the randomized initial surplus is quite
satisfactory already for k = 11. The numerical approximation works well even for
intermediate values of the initial surplus for which the ruin probability (and its kink)
is di�cult to approximate. In order to also reproduce the particular shape of that
curve, higher values of k are however needed. It is worth to note the tremendous
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Figure 4.5: Ruin probabilities as a function of x1 for µ = 3, σ2 = 1, θ = 0.5 and
three levels of initial surplus u (expected surplus E(U) = 1/s, respectively).

improvement when employing Richardson extrapolation for larger values of u (cf.
the graph for u = 9).

Remark. Analogous to the exponential initial surplus case, one can obtain an
expression for the ruin probability in terms of moments of L. Concretely,

ψE(k, s) =

∫ ∞
0

ψ(u)
sk

(k − 1)!
uk−1e−sudu =

∫ ∞
0

ψ(u)
sk

(k − 1)!

(
(−1)k−1 ∂

k−1

∂sk−1
e−su

)
du

=
s(−s)k−1

(k − 1)!

∂k−1

∂sk−1

∫ ∞
0

ψ(u)e−sudu

=
s(−s)k−1

(k − 1)!

∂k−1

∂sk−1

∞∑
j=0

(−s)j

j!

∫ ∞
0

ujP(L > u)du

=
s(−s)k−1

(k − 1)!

∂k−1

∂sk−1

∞∑
j=0

(−s)j

(j + 1)!
E(Lj+1)

=
∑
j≥k−1

(−1)j+k−1 sj+1

(j + 1)!

(
j

k − 1

)
E(Lj+1).

Therefore, one might try to understand the behavior of the ψE(k, s) by analyzing
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the �rst, say, two terms of the previous series to obtain the approximation

ψE(k, s) ≈ sk

k!
E(Lk)− sk+1

(k + 1)!
kE(Lk+1).

In the exponential case k = 1, as the second moment of l involves the �rst three
moments of X, this means that for given µ1, µ2 one could infer about the behavior of
ψU(s) by simply analyzing the �rst non-given moment, i.e. µ3. We see that the same
line of reasoning applied to the Erlang(k) case needs the (k + 2)-th moment of X,
already for the above �rst two terms. This is unfortunate, as the deterministic ψ(u)
will only be obtained for k →∞, and we see that even in this simple approximation
higher-order moments of X already play a crucial role. This is in particular the case
for moderate values of E(U), and in those cases we have indeed seen in the graphs
above that a good approximation of the deterministic case needed large values of k.

4.5 Conclusion

In this paper we showed how randomization can be used to provide a solution to
the Schmitter problem in ruin theory and its extension to higher moments. Linking
this problem with established results in the theory of m-convex stochastic orders, we
provided sharp bounds for the ruin probability under the assumption of an exponen-
tial initial surplus. For the more general case of Erlang distributed initial surplus,
such analytical sharp bounds are not within reach. However, we showed how the
deterministic classical case can be approximated by the simple expressions of the
randomized case using Erlangization.
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