
Journal of Glaciology

Article

Cite this article: Irarrazaval I, Werder MA, Huss
M, Herman F, Mariethoz G (2021). Determining
the evolution of an alpine glacier drainage
system by solving inverse problems. Journal of
Glaciology 1–14. https://doi.org/10.1017/
jog.2020.116

Received: 12 June 2020
Revised: 16 December 2020
Accepted: 17 December 2020

Key words:
Glacier modelling; glaciological instruments
and methods; subglacial processes

Author for correspondence:
Inigo Irarrazaval,
E-mail: inigo.irarrazavalbustos@unil.ch

© The Author(s), 2021. Published by
Cambridge University Press.. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution-
NonCommercial-ShareAlike licence (http://
creativecommons.org/licenses/by-nc-sa/4.0/),
which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the same Creative Commons licence
is included and the original work is properly
cited. The written permission of Cambridge
University Press must be obtained for
commercial re-use.

cambridge.org/jog

Determining the evolution of an alpine glacier
drainage system by solving inverse problems

Inigo Irarrazaval1 , Mauro A. Werder2,3 , Matthias Huss2,3,4 ,

Frederic Herman1 and Gregoire Mariethoz1

1Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne,
Switzerland; 2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland; 3Swiss
Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland and 4Department of
Geosciences, University of Fribourg, Fribourg, Switzerland

Abstract

Our understanding of the subglacial drainage system has improved markedly over the last decades
due to field observations and numerical modelling. However, integrating data into increasingly
complex numerical models remain challenging. Here we infer two-dimensional subglacial chan-
nel networks and hydraulic parameters for Gorner Glacier, Switzerland, based on available field
data at five specific times (snapshots) across the melt season of 2005. The field dataset is one of
the most complete available, including borehole water pressure, tracer experiments and meteoro-
logical variables. Yet, these observations are still too sparse to fully characterize the drainage sys-
tem and thus, a unique solution is neither expected nor desirable. We use a geostatistical
generator and a steady-state water flow model to produce a set of subglacial channel networks
that are consistent with measured water pressure and tracer-transit times. Field data are used
to infer hydraulic and morphological parameters of the channels under the assumption that
the location of channels persists during the melt season. Results indicate that it is possible to
identify locations where subglacial channels are more likely. In addition, we show that different
network structures can equally satisfy the field data, which support the use of a stochastic
approach to infer unobserved subglacial features.

1. Introduction

Water flow at the ice/bedrock interface exerts controls on ice flow (e.g., Iken, 1981), glacier
erosion (e.g., Herman and others, 2011), sediment transport (e.g., Beaud and others, 2018),
as well as catchment hydrology (e.g., Verbunt and others, 2003). Hence, a significant scientific
effort has been dedicated to characterizing the spatial distribution of subglacial systems and
their temporal evolution by both field data acquisition and numerical modelling. Pioneer
work conceptualized the subglacial drainage system with two main components: a network
of subglacial channels with fast water flow (Röthlisberger, 1972; Nye, 1976) and a distributed
system with the slow flow (Lliboutry, 1968; Weertman, 1972). In addition, it has been observed
that areas of a subglacial drainage network can become temporally or permanently hydraulic-
ally disconnected, which can be described as the third component of subglacial systems (e.g.,
Iken and Truffer, 1997; Hoffman and others, 2016; Rada and Schoof, 2018).

The study of subglacial systems has focused on both field observations and numerical mod-
elling. Field techniques that have been employed include water level measurements in bore-
holes drilled into the glacier (e.g., Hubbard and others, 1995; Rada and Schoof, 2018),
dye-tracer tests in moulins (e.g., Nienow and others, 1998; Schuler and others, 2004;
Werder and others, 2009; Chandler and others, 2013) and glacial speleology expeditions to
survey portions of channel networks (e.g., Gulley and others, 2014). More recently, seismic
and other geophysical methods have also provided insights into the evolution and structure
of the subglacial systems (e.g., Gimbert and others, 2016; Church and others, 2019; Zhan,
2019; Lindner and others, 2020; Nanni and others, 2020).

In addition to field methods, a range of subglacial numerical models have been built, which
we divide here into two categories: (1) subglacial routing models and (2) subglacial evolution
models. Routing models need to make an assumption for the hydraulic potential to compute
the water flow direction. Most commonly, the water pressure is assumed equal to the ice over-
burden pressure to which the elevation potential is added to get the hydraulic potential, as was
first proposed by Shreve (1972). Then, a routing algorithm (e.g., O’Callaghan and Mark, 1984;
Tarboton, 1997) calculates a map of the upstream area or accumulated flow, where locations
with higher upstream areas are conceptualized as channels. Routing models have been widely
used to study subglacial systems, with applications including channel network topology deter-
mination (e.g., Richards and others, 1996), the occurrence of subglacial lakes (e.g., Livingstone
and others, 2013) and delineation of subglacial basins (e.g., Chu and others, 2016).
Furthermore, Banwell and others (2013) and Arnold and others (1998), constructed a channel
network structure based on routing methods on which they then calculated the water pressure
and channel radii evolution. One of the limitations of such routing models is that only one
single subglacial channel network is obtained and then further used for all numerical experi-
ments. Moreover, when combining the surface elevation and bedrock elevation, different
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sources and spatial scales must be either downscaled or upscaled
to reach a common resolution, which in turn adds uncertainties.
Efforts to explore the variability of the subglacial network struc-
tures have considered the effects of varying a spatially uniform
flotation factor in Shreve’s equation. They have found that chan-
nel topology and subglacial basin delineation are sensitive to the
choice of a flotation factor (e.g., Chu and others, 2016). A first
effort to consider a spatially two-dimensional (2-D) nonuniform
term which adds variability to the channel network was presented
in Irarrazaval and others (2019). However, it was tested in a syn-
thetic setup and used to infer the channel structure and hydraulic
properties rather than the actual channel location.

The second category of models represents, besides water flow,
the process of the evolution of the subglacial drainage system.
First, 1-D models represent the evolution of one subglacial chan-
nel, for example, for describing glacial lake outburst floods (e.g.,
Flowers and others, 2004). More recently, 2-D subglacial evolu-
tion models became capable of the spontaneous formation of
channel network structures as the outcome of simulating subgla-
cial drainage system equations. They successfully incorporated
many of the known physical processes, including channel opening
(by heat dissipation) and closing (by viscous-ice creep) allowing
the formation and evolution of channels and distributed systems
(e.g., Schoof, 2010; Hewitt, 2011; Werder and others, 2013; Rada
and Schoof, 2018). However, in real-world applications, such
approaches are difficult to be implemented and often cannot pro-
duce models that match observations. Exceptions include the
probabilistic inference of a lumped glacier hydrology model by
Brinkerhoff and others (2016), in addition to Koziol and
Arnold (2017) with uses an optimization approach to infer certain
model parameters from data.

However, the inversion is applied to a lumped (zero-
dimension) glacial hydrology model, and, hence, the channel net-
work is not explicitly modelled. In any case, it is not possible to
validate the produced channel networks due to the restricted
access to the subglacial drainage systems because these models
often require a high number of parameters whose uncertainty
cannot be fully constrained by observations (de Fleurian and
others, 2018).

The aim of the present paper is to infer, based on field obser-
vations and prior knowledge, the location of subglacial channel
networks and their hydraulic parameters at different snapshots
during the melt season. As information is scarce and contains
uncertainties, a unique solution is neither possible nor desirable,
and the model has to be formulated as an inverse problem using a
probabilistic approach based on Bayesian inference. The proposed
framework is based on a modified version of the method intro-
duced by Irarrazaval and others (2019). It allows inferring the
main characteristics and hydraulic parameters of subglacial chan-
nels from real data, in turn enabling the assessment of the
channel-network development across the melt season. The mod-
elling approach includes a parsimonious, statistics- and a physics-
based model which is computationally inexpensive, allowing us to
perform a large number of model runs and, thus, enabling uncer-
tainty quantification via Markov chain Monte Carlo methods.
The framework explores a range of different network structures
by including a spatially nonuniform perturbation of the hydraulic
potential used in the subglacial routing method. Comparison with
field data are achieved by using a water flow model that provides
water pressure and tracer-transit time.

The framework is applied to the trunk of the Gorner Glacier,
Switzerland, during the 2005 melt season. We consider five snap-
shots during which the hydraulic setting is considered constant in
terms of hydraulic conditions, meltwater input and topology of
the subglacial system. Our goal is to determine the subglacial
drainage system for each of these snapshots. For each of them,

water pressure from boreholes is used to condition the subglacial
system through an inversion procedure. In addition, tracer-transit
times from dye-tracer tests carried out from moulins are used to
constrain the water velocities in the subglacial channels to a phys-
ically reasonable range.

The remainder of this paper is organized as follows. Section 2
describes the model framework, which has its roots in Irarrazaval
and others (2019), however, incorporating new adaptations to fit
real-world applications. Section 3 describes the field site, datasets,
modelling choices and assumptions to apply the framework to the
Gorner Glacier. Section 4 shows a set of subglacial systems condi-
tioned to data across the melt season and parameter uncertainties
provided by the inversion. The last section discusses the contribu-
tion and limitations of a physical-geostatistical subglacial model
and trade-offs in integrating data in complex numerical models.

2. Methods

The methodology consists of four steps. First, we use a geostatis-
tical subglacial channel generator to produce a set of uncondi-
tioned subglacial systems states for a reference snapshot. The
subglacial channel generator approximates the hydraulic potential
by Shreve’s equation solely to produce channel networks based on
a flow routing approach (see Section 2.1). Second, we compute the
hydraulic potential and water discharge inside the unconditioned
subglacial systems, consisting of the above-generated network and
a homogeneous distributed system, by a water flow model. The
water flow model solves laminar/turbulent flow equations in
steady-state conditions to recover water pressure and discharge
in the channel network (see Section 2.2) and the distributed sys-
tem. Third, a formal parameter inversion is performed, which
enables assessing the misfit of the modelled water pressure and
tracer-transit times with field observations by a likelihood func-
tion. The outcome is a set of subglacial systems conditioned to
data for the reference snapshot (see Section 2.3). Lastly, for the
subsequent snapshots across the melt season, the temporal per-
sistence of the channel network throughout the season is guaran-
teed by allowing only small perturbations to the maximum
likelihood subglacial system of the reference snapshot. The out-
come is a set of subglacial systems honouring the observations
during each snapshot, which allow assessing the changes in the
system across the melt season (see Section 2.4). The core of the
methodology is based on Irarrazaval and others (2019), with
two significant improvements: (1) the subglacial channel gener-
ator has been expanded to account for channel location. (2)
The parameter inference strategy has been adapted and improved
to suit the application to a real-world dataset and to assess the
development of the channel network across the melt season.

2.1 Subglacial channel generator

The subglacial channel generator is a statistics- and physics-based
tool that creates a channel network embedded in a 2-D distributed
system (Irarrazaval and others, 2019). It depends on seven para-
meters whose values will be inferred in our inversion procedure.
The subglacial channel generator presented in this study incorpo-
rates two novelties: (1) channel location variability is incorporated
by extending the parametrization and adding a geostatistical par-
ameter. (2) The flotation factor f in Shreve’s equation (Shreve,
1972) is incorporated to add more variability to the channel
networks.

Note that the subglacial channel generator produces a set of
channel networks embedded in a distributed system. Water pressure
and flow speed in the subglacial systems is then computed by a sep-
arate model via flow equations and recharge forcing (Section 2.2).
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The subglacial systems are set up in a 2-D domain considering
pressurized water flow, where water follows the hydraulic poten-
tial defined by

f = fz + pw. (1)

Here pw is the water pressure and the ϕz = ρwgB is the elevation
potential with water density ρw, acceleration of gravity g and bed-
rock elevation B(x,y).

The first step is to generate the channel network topology or
channel architecture. Similar to previous studies based on routing
algorithms (e.g., Arnold and others, 1998; Chu and others, 2016),
Shreve’s approximation to the hydraulic potential (Shreve, 1972)
is obtained by setting pw = fpi in Eqn (1). Where pi = ρigH is the
ice overburden pressure considering an ice density ρi and ice
thickness H(x,y). The flotation factor f is usually set to 1 but
values ranging from 0.6 to 1.1 have been employed previously
(e.g., Chu and others, 2016). Here, we include a nonuniform
noise or perturbation field ϕR(x, y) which is added to Shreve’s
hydraulic potential to obtain an approximated hydraulic potential
field ϕ*,

f∗=rwgB+ f rigH + fR. (2)

The role of ϕR is key in determining channel location.
Flow routing can be highly sensitive to small variations in the
potential surface and a small perturbation could induce large
downstream deviations of hydraulic paths. In this study, ϕR is
modelled as a Gaussian random field (GRF). The GRF is a spa-
tially correlated random field generated from random white
noise and parametrized in terms of its variance and integral
scales. This is useful, as varying the variance, integral scales
and modifying the white noise allows for perturbations of dif-
ferent magnitude, correlation in space and location, which
influence the channel topology. However, one of the challenges
is to gradually modify the white noise to provide a continuous
transition between channel networks. To overcome this issue,
we create a larger GRF from which we crop ϕR by varying the
shift s of the cropping-region along the y dimension (Fig. 1).
Tests showed that the overall channel location probability is
not affected by the dimension along which s is varied. This is
expected as the GRF is isotropic and large enough to accommo-
date several independent cropping-regions or realization of ϕR.
The inclusion of s allows for a smoother deformation of the
network, useful when exploring the model space (see in
Supplementary material: Subglacial channel generator video
1). As an analogy, the variance, integral scales and shift can
be seen as changing the amplitude, wavelength and phase
shift of a periodic wave, which results in a simple paramet-
rization of the GRF. Note that Irarrazaval and others (2019)
found that a sufficient channel network variability can be
achieved with a fixed GRF variance. Here we chose a GRF vari-
ance of 0.0058 (MPa)2 equivalent to a standard deviation of
∼7.7 m water column. The selected value is similar to the
small-scale variations of ϕ, such that it influences ϕ* but does
not disrupt the large-scale trend. Then, the subglacial channel
generator considers three parameters that modify ϕ*: flotation
factor f, integral scales lxy and shift s, hereafter referred to as
the structural parameters of the subglacial channel generator.

Once the hydraulic potential is obtained, the D8 flow routing
algorithm (O’Callaghan and Mark, 1984) is computed over the
hydraulic potential ϕ* and the upstream contribution flow accu-
mulation is computed for each cell. In this step, the spatial varia-
tions in water recharge (i.e., moulins and water recharge by
tributary glaciers) are considered to compute the upstream flow
contribution. The flow paths with an accumulation higher than

threshold parameter c correspond to the channel network.
Parameter c is set to ensure that all moulins are connected to
the subglacial channels. Flow routing and channel structure are
computed using TopoToolbox 2 (Schwanghart and Kuhn, 2010;
Schwanghart and Scherler, 2014).

The last step is to assign radii to each of the channel network
segments ri. This is done computing the Shreve’s stream order ui
(Shreve, 1966) and transforming it to a radius using the following
equation (Borghi and others, 2016),

r(ui) = aeuib, (3)

where a and b are parameters determined in the inversion proced-
ure. Then, the channel network is embedded into the distributed
system modelled as a homogeneous 2-D layer with transmissivity
Td. Lastly, in order to model dye-tracer transit speeds, we account
for the moulins’ inflow modulation time. Inflow modulation time
corresponds to the time water spends in the englacial drainage
system until it reaches the subglacial channels. Moreover, inflow
modulation time, which has been shown to significantly affect
the overall tracer transit times (e.g., Werder and others, 2010),
could be estimated if the recharge hydrograph, subglacial water
pressure and moulin geometry are available. As these data are
unavailable for the study site, we include parameter τi which
accounts for the inflow modulation time where the subscript i
enumerates the moulins with tracer data.

In summary, the channel generator uses seven parameters.
Parameters a and b determine the channel radii and Td the trans-
missivity of the distributed system. The structural parameters lxy, s
and the flotation factor f control the channel location and/or net-
work topology. The first two modify the GRF, whereas the flota-
tion factor controls an overall trend on Shreve’s equation. Finally,
τi accounts for the inflow modulation time. All parameters are
inferred in the inversion procedure.

2.2 Water flow model

A water flow model is used to compute water pressure pw (Eqn
(1)) and water discharge inside previously generated subglacial
systems. Water flow is solved in steady-state conditions using
the finite element GROUNDWATER code (Cornaton, 2007)
based on the framework presented in Irarrazaval and others
(2019). The subglacial drainage system is modelled as two
coupled components: distributed and channelized. Both compo-
nents of the subglacial system are coupled using a finite-element
mesh with shared nodes, assuming continuity of the pressure
field. This allows water and mass exchanges between the distrib-
uted system and channels that are driven by the pressure
gradient.

The distributed system is modelled as a 2-D layer, discretized
in 25 m edge quadrangles and with homogeneous transmissivity
Td. Water mass is conserved assuming incompressibility and pres-
surized flow, then Darcy-laminar flow is considered under the
assumptions of a nondeformable porous medium and
vertically-integrated flow equations:

q = −Td∇f, (4)

with q the flux, Td the transmissivity of the distributed system and
∇f the gradient of the hydraulic potential.

The channelized system is modelled as a network of 1-D cylin-
drical elements of radius r. Note that the radii are fixed as we are
considering a snapshot model (no time derivatives). Discharge in
the channel network is computed using the nonlinear
Manning-Strickler empirical formulation for turbulent flow
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assuming mass conservation, incompressibility and pressurized
flow. The water flow inside channels Q is computed by

Q = −K∇f, (5)

with

K = a(ri/2)
2/3

nm
������|∇f|√ , (6)

where K corresponds to the channel hydraulic conductivity, with
a circular cross-section α = πri

2, and nm = 0.04 m−1/3s is the
Manning friction coefficient for subglacial channels (e.g., Gulley
and others, 2014).

The model is set up with prescribed water recharge from the
tributaries and moulins that enters via subglacial channels. In
addition, discharge at the glacier’s outlet is modelled as atmos-
pheric pressure Dirichlet boundary condition. The total residence
times of tracers are calculated in two steps. First, tracer-transit
times are computed by integrating the advective velocity along
the subglacial channels and secondly, by adding the inflow modu-
lation time (τi), which is a parameter to be inferred.

2.3 Parameter inversion strategy

The inversion aims to find the subglacial networks and hydraulic
parameters that enable the model to fit the observations. As data
are scarce and uncertain, we expect the solution to be highly non-
unique, meaning that many networks can honour the observa-
tions. Therefore, we use a maximum likelihood approach where
the goal is to explore the model space and find multiple condi-
tioned subglacial (CS) systems. Here, we define a likelihood func-
tion, which is a measure of the misfit of the field data with the
model outputs, to evaluate model parameters. A general formula-
tion of a likelihood function, assuming independent Gaussian
uncertainties for the data (e.g., Mosegaard and Tarantola, 1995)
is given by

L(m|d)/ exp(−S), (7)

where

S(m) = 1
2

∑n
i=1

Fi(m)− di
si

( )2

, (8)

with S the misfit function, m = [a, b, lxy, s, f, Td, τi] the model
parameters and F the forward model (water flow model and sub-
glacial channel generator). The forward model outputs F(m)
(water pressure and tracer transit times) are based on a simulation

run using m as parameters. Field data d = [d1,…dn] correspond to
the observations, with n the total number of data. The standard
deviation of the errors σ = [σ1,…σn] have to be estimated and
should reflect not only instrumental errors, which are relatively
small, but also the effect of averaging a point measurement over
a model cell and model errors. The choice of the uncertainties
is a subject of debate; for example, Brinkerhoff and others
(2016) chose uncertainties similar to the magnitude of daily var-
iations. However, the setup here differs as the inversion is per-
formed for a snapshot of time. We run several inversions to test
the effect of σ in the likelihood function and select a value that
avoids overfitting but represents the uncertainties that each data
source is subjected to, such as field measurement errors, model
errors and limitations (e.g., mesh resolution).

Each data source is subjected to field measurement errors,
which are added to model errors and limitations (e.g., mesh reso-
lution). Note that Eqn (9) is a general formulation that is subse-
quently adapted for each kind of data, as is commonly done for
joint inversion. Assuming independence, the total likelihood is
the product of the individual likelihoods, which can be stated as

L(m|d)/ exp −
∑
j

Sj

( )
, j [ {pw, ts, z}. (9)

Here each misfit function Sj is designed to account for the par-
ticularities of the observational data type, where Spw, Sts and Sz
correspond to water pressure observations, tracer-transit speeds
and a correction term to account for piezometric level exceeding
the surface elevation (see below).

Borehole water pressure data are subject to different sources of
uncertainty. Furthermore, it has been observed that neighbouring
boreholes can show significant differences in water level and
behaviour (e.g., Rada and Schoof, 2018). Therefore, we have low
confidence in the spatial representativeness of a measurement.
The latter is implemented in the likelihood function by adding
a tolerance to the borehole location, i.e., we select the modelled
value within a radius rbh which is closest to the measurement
and use this in the likelihood. Then, the misfit function is stated
as:

Spw = 1
2

∑n
i=1

min(|Fi(m)− dpwi,g |)
s
pw
i

( )2

,

g [ { ∀ xg, yg with (xi − xg)
2 + (yi − yg)

2 , r2bh }, (10)

where subscript γ refers to the neighbouring cells (coordinates
xγ, yγ) within a distance rbh of a borehole location (xi,yi). The
standard deviation of borehole data are considered as spw

i .

Fig. 1. Synthetic example of subglacial channel gener-
ator (water flow from right- to left-hand side). On the
right-hand side colour fields correspond to the GRF
(ϕR), and on the left-hand side to unconditioned subgla-
cial channels. The influence of the shift s parameter is
shown in (a), (b) and (c), by shifting the GRF ( f and lxy
are fixed) and computing the channels. (a) and (b)
show minor differences when the shift is small. (c)
shows different structures as it considers a completely
different part of the GRF. In (d), shift is the same as in
(c), but the integral scale (lxy) of the GRF is smaller.
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Tracer-transit times provide an estimate of subglacial water
flow conditions. However, the total tracer resident times are
strongly influenced by the inflow modulation time (time spent
inside the moulin), which is estimated from water recharge into
the moulin and its geometry. Within the data used in this
study, there are no observations about recharge conditions into
moulins. Consequently, observed transit times are only used to
constrain or regularize the model into a range of physically plaus-
ible transit speeds (Schuler and others, 2004; Werder and others,
2010). We define the binary variable I ts as an indicator of the
tracer-transit speeds within a physically reasonable range defined
by dtsmin and dtsmax. Transit speeds outside the physically reasonable
range are then penalized through a likelihood function with
standard deviation sts

i :

Sts = 1
2

∑n
i=1

Its
min(|Fi(m)− dtsmin|, |Fi(m)− dtsmax|)

sts
i

( )2

,

Its = 0, dtsmin ≤ Fi(m) ≤ dtsmax,

1, dtsmin . Fi(m) or dtsmax , Fi(m).

{ (11)

Additionally, we assume that it is unlikely that the hydraulic
head exceeds the surface elevation. To this end, we implement
an equation that is activated only if water pressure exceeds surface
elevation and penalizes the likelihood when the water level is
higher than the surface elevation. This is implemented as a trun-
cated Gaussian given by

Sz = 1
2

∑n
i=1

Iz
Fi(m)− z i

sz
i

( )2

, Iz = 0, Fi(m) ≤ zi
1, Fi(m) . zi,

{
(12)

where I z is an indicator corresponding to the index of nodes
where Fi(m) has exceeded the surface elevation zi with a standard
deviation sz

i .
One of the challenges in the model inversion is that we expect

different channel networks with the correct hydraulic parameters
to have a similar hydraulic response (i.e. to honour the observa-
tions). In other words, we expect to find several local maxima,
which can be distant in the model space. In addition, there are
nonlinearities and discontinuities in the likelihood function. For
example, gradually modifying structural parameters (lxy, s, f)
can modify the channel network until a large reorganization is
introduced. This is, for instance, the case when two parallel chan-
nels are being gradually pushed together until they merge, cul-
minating in a larger restructuring of the network.

Consequently, we choose an inversion algorithm that explores
the space thoroughly and avoids getting trapped in one local max-
imum. This is commonly done by Markov chain Monte-Carlo
algorithms such as the Metropolis-Hasting algorithm (Metropolis
and others, 1953). Here, we use a more advanced algorithm, the
Markov chain Monte-Carlo DREAM(ZS) algorithm (Laloy and
Vrugt, 2012). DREAM(ZS) explores the model space similarly to a
Metropolis-Hasting algorithm but includes multiple chains an adap-
tive sampling which facilitates a robust exploration of the model
space and therefore it is able to find several local maxima more
readily. In addition, we configure DREAM(ZS) with different starting
points to ensure an extensive model space exploration. As a result,
DREAM(ZS) captures the multimodal distribution of our problem,
where each mode corresponds to a local maximum and therefore
to a CS network. Moreover, it allows uncertainty quantifications
of the model parameters for each explored local maximum. Note
that this involves running the inversion procedure numerous
times, which is feasible as our model is relatively computationally
inexpensive.

2.4 Channel network structure persistence across the melt
season

The proposed methodology finds sets of subglacial systems (or
model parameters) for one snapshot. We refer to the set of
inferred subglacial systems as CS systems, as they honour the
observations. While this is acceptable for a single snapshot, if
independent inversions are carried out for different snapshots,
the spatial and topological dependence of the channel network
structure across the melt season is not guaranteed. Similar to pre-
vious studies (Arnold and others, 1998; Banwell and others,
2013), we assume that the channel network structure does not
change radically in the course of the melt season. While, changes
in recharge during the course of the season can affect the
hydraulic parameters and channel radii.

To ensure channel-architecture dependence between snap-
shots across the melt season, we force the parameters that define
structural parameters of the subglacial channel generator (lxy, s
and f ) to remain within a vicinity. For this, we implement the
inversion in two steps: First, we infer a set of subglacial systems
conditioned to a reference snapshot (labelled with subscript R:
aR, bR, lxy,R, sR, fR, Td,R, τi,R), select manually one model (e.g.,
maximum likelihood mode) and extract the structural parameters
(labelled with prime: lxy’, s’, f’). The second step consists in infer-
ring independently the subglacial systems of all other snapshots sϵ
{1, …, 5}, limiting the exploration of the structural parameters to
the vicinity of the selected model (lxy’, s’, f’). The bounds are set in
order to allow perturbations such as channel translation and local
deformation to avoid large network reorganizations. This is done
by sensitivity tests that constrain the bounds of lxy’, s’ and f’
such that no large reorganizations are observed in the network.
As a result, the inferred structural parameters for each snapshot
(l,xy,s’, ss’, fs’) are near the selected model. The inferred structural
parameters for all snapshots are therefore correlated because they
are forced to be in the surroundings of the same local maximum
of the likelihood function, imposing a dependence across the melt
season. Note that the channel radius parameters (a and b), trans-
missivity Td of the distributed system and τi are not constrained to
remain in the vicinity of the selected model (Fig. 2).

3. Application to the trunk of the Gorner Glacier

3.1. Field site and dataset

The study site and model area correspond to the trunk of Gorner
Glacier, Switzerland (Fig. 3). Gorner Glacier is located in the
Valais Alps at the foot of Monte Rosa and has experienced sub-
stantial mass loss since the 1980s (Huss and others, 2012). The
glacier system consists of five tributaries covering an area of
∼50 km2 (in 2003). The model extent comprises the ablation
zone of the main glacier tongue, with an area of ∼6.5 km2 and
a surface elevation range between 2200 and 2700 m a.s.l.. Recent
observations indicate surface velocities of up to 200 m a−1 near
the confluence of the tributaries Grenz and Zwillings Glacier,
35 m a−1 near bh1 (Fig. 3) but much slower surface movement
over much of the lower part of the glacier (Benoit and others,
2019). In addition, bedrock elevation maps show an extended
over-deepening where ice thickness exceeds 400 m (Sugiyama
and others, 2008). A distinct feature of the Gorner Glacier is
the polythermal composition in the ablation zone. A cold ice
body extends between the Grenz and Gorner confluence (near
boreholes bh1–7 expecting bh5 in Fig. 3a), occupying 80–90%
of the ice thickness (Ryser and others, 2013). The cold ice is
impermeable to meltwater, except for fracturing or water flowing
permanently through cracks and moulins, leading to supraglacial
streams and ponds.
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Gorner Glacier was extensively studied over the years 2004–08
with the main focus in glacial lake outburst floods, which occurred
periodically from the drainage of the Gornersee. Extensive field-
work and data collection were done providing one of the most com-
plete of such datasets (e.g., Huss and others, 2007; Sugiyama and
others, 2008; Walter and others, 2008; Werder and others, 2009;
Riesen and others, 2010). For this study, we use datasets acquired
in 2005 which include borehole water pressure data (Huss and
others, 2007; Riesen and others, 2010), dye-tracer experiments
(Werder, 2009; Werder and others, 2009) and discharge of the
catchment. In addition, hourly surface melt on a 25m grid is avail-
able from a melt model calibrated to in situ ablation measurements
and catchment discharge (Huss and others, 2008). Estimates of ice
thickness distribution are available for the entire glacier system
based on ground-based and airborne ground-penetrating radar sur-
veys and spatial interpolation of the radar profiles (Farinotti and
others, 2009; Rutishauser and others, 2016). Furthermore, repeated
DEMs providing information on ice surface topography are avail-
able (Bauder and others, 2007). Key aspects of the datasets are sum-
marized below and illustrated in Figures 3, 4.

Water levels are available from seven boreholes drilled down to
the glacier bed and instrumented with pressure transducers
(Riesen and others, 2010). Boreholes bh1, bh3, bh4 show strong
diurnal amplitudes of water head (sometimes in excess of 100m)
almost in phase with the discharge measured at the gauging station
(Fig. 3, Fig. 4). Conversely, boreholes bh5, bh6 and bh7 show minor
or no diurnal oscillations across the season, with a relatively higher
water level. Note that at the beginning of August 2005, mean water
levels rose and oscillations reduced significantly in boreholes bh1
and bh4. Borehole bh2 shows an anticorrelated behaviour with an
amplitude of 3m. Such an anticorrelated signal has been attributed
to stress re-distribution at the glacier bed (e.g., Murray and Clarke,
1995; Lefeuvre and others, 2018; Rada and Schoof, 2018). Overall,
boreholes with a steady and relatively high-water level can be inter-
preted as situated in partly or fully disconnected areas, whereas
boreholes with strong diurnal-oscillating water level are situated in
hydraulically well-connected areas. In addition, the rise in the
water level of bh1 and bh4 in August 2005 can be interpreted as
a transition from a channelized to a distributed or less efficient sys-
tem in their vicinity.

Fig. 2. Parameter inversion strategy and snapshot dependence.
First, the parameters for a reference snapshot are inferred and
one model is selected (e.g., maximum likelihood model). For
the following snapshots, the structural parameters are con-
strained to the vicinity of the structural parameters from the
selected model.

Fig. 3. (a) Model configuration, the location of boreholes (bh), and moulins (M) with tracer test data. (b) Overview of the Gorner Glacier system in 2005. The inves-
tigated area is shown in grey. Abbreviations correspond to the tributary glaciers Unterer Theodul (The), Breithorn (Bre), Schwärze (Sch), Zwillings (Zw), Grenz (Gre),
and Gorner (Gor) Glacier.
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Discharge for the entire catchment is available from the hydro-
power gauging and water catchment station, located ∼1 km down-
stream the glacier outlet by the time of the study (2005). The
discharge time series shows strong daily fluctuations and seasonal
variations (Fig. 4). Note that proglacial discharge is in phase with
the subglacial water pressure and thus we take this as the recharge
rate, in which our model directly enters the subglacial system.
However, the recharge needs to be spatially partitioned between
the moulins on the glacier trunk (which is the model domain)
and between the tributaries (input via inflow boundary condi-
tions). We do this partitioning according to the melt rates calcu-
lated by a calibrated, distributed glacier surface melt model (Huss
and others, 2008). According to the results, the trunk of Gorner
Glacier (i.e. the area investigated in this study) contributes
∼22% of the total discharge during the summer months, whereas
the remaining catchment runoff stems from higher regions of the
catchment and the tributary glaciers.

Dye-tracer tests were carried out throughout the melt season
from four different moulins (m1–m4, Fig. 3). Tracer-transit
times were extracted from the breakthrough curves of dye-tracer
tests and corrected for proglacial residence time following
Werder and others (2009). Overall, tracer-transit times for most
of the injection points across the season ranged between 2 and
4 hour. The only exception corresponds to moulin m2, the most
distant to the glacier outlet, which showed a transit time of
∼13 hour in June and September 2005. Tracer-transit times are
presented in Figure 4 as green vertical bands, defined by the injec-
tion time and the time of exit at the glacier outlet. Water flux
entering the moulins was not measured during the tracer experi-
ments. In addition, a mapping of moulins location was carried out
in the field in 2005. We expect that several moulins may have
been missed by the survey, but it is likely that their spatial density
is well represented.

In addition, the seasonal drainage of a large ice-marginal lake
impacts on the evolution of the subglacial system (Fig. 3). Note
that lake drainage was observed between 13 and 15 June 2005.

It is suggested that the lake drained via an R-channel which
could have started opening a week before the event (Huss and
others, 2007). However, it is estimated that before the outburst
flood (13 June), the lake contribution prior to the main phase
of the drainage was stored sub- or englacially and is therefore
not accounted for in our model.

From the dataset, we select five snapshots across the melt sea-
son. We chose the timing of each snapshot such that it is at the
end of a relatively stationary period, in order to make it represen-
tative of a stable situation of the subglacial system (Fig. 4 and
Supplementary Table S1).

3.2 Modelling choices and settings

Total water recharge in the subglacial system is set to the dis-
charge measured at the outlet for each snapshot (Fig. 4). The rela-
tive contribution of each tributary is extracted from the
distributed surface melt model results and input from tributary
glaciers as Neumann boundary conditions. In addition, basal
melt, which is negligible compared to the total recharge, is
assumed to correspond to a uniform 5mm a−1, following the
same order of magnitude as presented in Herman and others
(2011) and Cuffey and Paterson (2010). Water exits the subglacial
system at the glacier outlet, which is modelled as a Dirichlet
boundary condition at atmospheric pressure.

As precise moulin locations and water recharge are unknown,
sensitivity tests are performed to evaluate their influence in the
subglacial channel generator. Here, we carry out a sensitivity
test evaluating the unconditioned networks as it allows inspecting
the channel networks before running the more computationally
expensive water flow model.

First, the subglacial channel generator is used to produce mul-
tiple realizations of unconditioned subglacial systems by ran-
domly sampling structural parameters (lxy, s, f). In addition, we
explore the influence of the variance of the GRF on the network
structure (Eqn (2)) and set it similar to small-scale changes in the

a

b

Fig. 4. (a) Observed borehole water levels, measured outlet discharge and modelled discharge. Tracer-transit times correspond to vertical green bands defined by
the injection time and the time of exit at the outlet (for reference, thicker line is ∼13 h and thinner range from 2 to 4 h). Each modelled snapshot is denoted by
black dashed line. (b) Zoom for each snapshot.
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hydraulic potential because the variance should not modify the
general trend given by the other terms in Eqn (2). This step allows
defining the structural parameter ranges where networks are
realistic.

Second, we construct a moulin probability density map from a
survey carried out in 2005 (Loye, 2006). Third, we randomly sam-
ple moulin locations from the density map (Supplementary
Fig. S1) and assign a water recharge contribution proportionally
to the Voronoi cell area of each moulin. Several random realiza-
tions including different number of moulins were used to deter-
mine the consequences of such assumptions (Supplementary
Figs S2–S5). To compare the different channel network realiza-
tions (e.g., Fig. 5a–d), we compute the likelihood for each cell
to be occupied by a channel weighted by the accumulated water
flow (e.g., Fig. 5e, f), obtained by routing the hydraulic potential
(Eqn (2)). Note that the normalized accumulated flow differs
from the number of upstream-cells as is commonly found in
the literature (e.g., Arnold and others, 1998). Here, the accumu-
lated flow is weighted by the pointwise recharge from the moulins
and tributary glaciers. Overall, sensitivity tests found that moulin
number, location and relative recharge does not greatly impact the
channel network structure (see Supplementary material). This can
be explained by the fact that in this case study, water recharge into
moulins within the model domain only accounts for 22% of the
total subglacial discharge. Moreover, unconditioned channel loca-
tions for all configurations are well constrained by ϕ* and result in
one or two main channels receiving most of the accumulated flow.
For the following analysis and inversion, we thus run the model
using a single set of 60 moulins whose positions are randomly
sampled from the moulin probability map. A selection of uncon-
ditioned channel network realizations is presented in Figure 5.

Next, the parameter inversion strategy requires defining the
misfit function of each component (Eqns (10–12)). Here, two
sources of errors related to borehole observations are considered:
borehole location (or spatial representativeness of a punctual
measurement in a grid) and water pressure. As model errors are
unknown and are usually larger than the instrumental error, we
considered borehole water level standard deviations
si

pw = 10m, and spatial tolerance of rbh = 100 m (Eqn (10)).
Tracer-transit times are largely dependent on water recharge

into moulins and their geometry (e.g., Werder and others,
2010). As these data are not available, tracer-transit times are
only considered as a measure of physically reasonable velocities
in the subglacial system. In general, tracer experiments carried

out in Alpine glaciers have shown that transit speed (straight
path from the injection point to the glacier’s snout divided by
transit time) rarely exceeds 1 m s−1 (e.g., Nienow and others,
1996; Schuler and others, 2004; Werder and others, 2010;
Chandler and others, 2013). Indeed, tracer tests carried out in
2005 from four different moulins (Fig. 3) resulted in transit
speeds in the range from 0.1 to 1 ms−1 (Werder and others,
2010). Thus, we chose to bound tracer-transit speeds at the mou-
lins with observations to a range of dtsmin and dtsmax (Eqn (11)) cor-
responding to transit speeds of 0.1 and 1.2 m s−1. Note that transit
speed is computed from the total residence time, including inflow
modulation time. Water recharge into the moulin as well as mou-
lin volume is unknown, hence inflow modulation time is
unknown and thus we incorporate a fitting parameter that
accounts for inflow modulation time (τi), with a range from 0
to 20 h. This is critical in order to avoid model overfitting. For
transit speeds that fall outside the physically reasonable range,
we consider a standard deviation of sts

i = 0.25 m s−1 (Eqn (11)).
Water pressure exceeding surface elevation has only rarely

been observed on glaciers and has not been reported for Gorner
Glacier. Here we decrease the likelihood of a model when the
hydraulic potential exceeds the surface elevation. This is done
by evaluating Eqn (12) at 108 points dispersed at regular 250 m
intervals over the entire surface of the glacier and using a standard
deviation of sz

i = 10 m. The value of si
z has been chosen to rap-

idly decrease the likelihood of water pressures exceeding this
bound. However, we note that this term plays a secondary role
by driving the model towards a solution closer to the actual bore-
hole observations.

Lastly, we select snapshot dates across the season as well as a
reference snapshot. The snapshots are defined as the average con-
dition at midday within a 15 minutes window. The main criteria
to select snapshot dates is to find periods where water pressure,
discharge and meteorological variables are as stationary as pos-
sible. Then the snapshot is considered at the end of the stationary
period. It is likely that the channel network is well developed in
midsummer. We thus select snapshot 3 as the reference snapshot.
However, tests (not shown) indicate that the choice of the refer-
ence snapshot does not greatly influence the results. As shown
in Figure 2, each snapshot is an independent inversion where
the structural parameters are bounded in the vicinity of the
selected CS system structural parameters (lxy, f, s). The bounds
considered are s ± 50 m, lxy ± 50 m and f ± 0.1. A summary of
the data used for the inversion is presented in Table 1.

Fig. 5. (a–d) Examples of unconditioned channel networks. (e) Colour scale shows the normalized sum of the accumulated flow for 500 realizations. (f) Colour scale
shows the logarithm base 10 of the normalized sum of accumulated flow for 500 realizations.
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4. Results

4.1 Reference snapshot inversion (snapshot 3)

A set of 15 independent inversions were run for the reference
snapshot (snapshot 3). Each inversion is configured to start
with a different set of parameters. From the 15 independent inver-
sions, 11 different local maxima or CS systems were found (some
independent inversions converged to the same local maxima).
Note that for each of the inversions a likelihood distribution of
the inferred parameters is calculated by our numerical scheme.
The maximum likelihood CS systems are shown in Figure 6a
(see Supplementary Fig. S7 for additional results). Note that all
but one inversion had a similar maximum likelihood value,
whereas the remaining inversion converged to significantly
lower likelihood value (CS 9 in Fig. S7). Overall, it was found
that water flow occurs predominantly in channels that run-in
depressions of the hydraulic potential (e.g., CS 1–5) and areas
between channels are subject to a relatively higher hydraulic
potential. CS system CS 6 does not fully capture this pattern, as
its southern channel is not located in a depression of the
hydraulic potential (Fig. 6a). Note that CS 6 transmissivity is rela-
tively large compared to other CS, implying that more flow occurs
in the distributed system and consequently the hydraulic potential
field is smoother in comparison to other CS (Fig. 6c). All CS sys-
tems exhibit the presence of high discharge channels passing near

boreholes showing diurnal oscillations in water pressure (bh1, bh3
and bh4). Boreholes with a high and steady hydraulic head are
located in areas distant from predominant channels. One of the
most significant differences between the inversions is the point
where the main channels merge: for example, CS 1 has two
main parallel channels that join near the glacier outlet whereas
CS 2 has only one predominant channel already 3.5 km in front
of the glacier snout (a). Note that for CS 3 parameters a and b
converged to a range that differs from the rest of the models.
The a and b parameter values indicate that CS 3 presents smaller
radii for channel starting points and larger radii near the outlet in
comparison to other CS. However, note that the sum of the vol-
ume of all subglacial channels (TCV) in CS 3 is similar to CS 6,
indicating that the channel networks of CS 3 and CS 6 share simi-
lar overall volumes. This difference indicates that the channel
structures influence the hydraulic efficiency of the network and
therefore particular channels radii are needed for conditioning
the model to observations.

Borehole water pressure residuals show that most observations
lie within the uncertainty bounds (Fig. 6b), except for bh3, which
is difficult to match because it implies a sharp hydraulic gradient.
Indeed, boreholes 2 and 3 are at a distance of 220 m, but show a
dissimilar water pressure level and behaviour. The hydraulic para-
meters (a, b and Td) of the CS systems are well constrained.
However, these parameters differ from one conditioned model
to another. The latter implies that each channel network architec-
ture has a particular geostatistical radii relation (Eqn (4)) that best
fits the observations. The transmissivity (Td) of the maximum
likelihood models ranges between 10−7.9 and 10−7.2 m2 s−1.
Lastly, the structural parameters (lxy, s, f) converged to a different
value for each CS, showing that each network is different by con-
struction (c).

4.2 Inversion of subglacial systems across the melt season

We selected CS 1, as the maximum likelihood CS system model to
carry on the inversion across the melt season (snapshots 1–5).
This choice is supported by its high likelihood and the fact that
two other independent runs (CS 3 and Supplementary Fig. S8)
converged to a similar network structure. Additionally, we per-
formed the inversion across the melt season assuming channel
network persistence of CS 2 (Supplementary Fig. S9).

Inversion results show that the maximum likelihood CS system
of the five snapshots presented, as expected, minimum variations
in the network architecture throughout the melt season (Fig. 7a, c).
Similarly, the CS systems present channels in areas with lower
hydraulic potential, separated by high-pressure areas of the dis-
tributed system.

Across all snapshots, a majority of borehole pressure observa-
tions are within the uncertainty bounds of the model (Fig. 7b).
Note that snapshots 2, 3 and 4 present a similar magnitude in
water recharge, however, the observed borehole water pressure
differs for each snapshot (Fig. 7b). The channel radius parameters
(a, b) are subject to relatively small differences, which allow hon-
ouring the observations of each snapshot (Fig. 7c). Snapshots 4
and 5 indicate similar pressure observations, however, the
recharge forcing of snapshot 4 is more than triple that of snapshot
5. Consequently, parameter a (radii linear scaling) is smaller in
snapshot 5. This is clearly indicated by the total volume of subgla-
cial channel networks (TCV), where the TCV of snapshots 2, 3
and 4 is more than double of that for snapshot 5. The transmis-
sivity of the distributed system does not vary significantly across
the inferred snapshots. As the structural parameters have been
bounded, lxy, s and f do not show any major difference between
the snapshots.

Table 1. Model coefficients and parameters

Parameter Definition Value/bounds Units

Model constants
ρw Water density 1000 kg m−3

ρi Ice density 917 kg m−3

g Gravitational acceleration 9.81 m s−2

B bedrock elevation M
H Ice thickness m

Derived from geometry and constants
ϕz Elevation potential MPa
pi Ice overburden pressure MPa
f∗ Hydraulic potential from Shreve’s

equation
MPa

Water flow model variables
ϕ Hydraulic potential MPa
pw Water pressure MPa
N Effective pressure MPa

Variables determined by inversion procedure
r Channel radius 0–20 m
Td Transmissivity distributed systema 10−10–10−2.5 m2 s−1

τi Inflow modulation timea 0–20 h
ϕR Gaussian random field perturbation MPa

Channel generator variables
a Radius scaling factor 0.01–5 m
b Radius hierarchical order factor 0.01–4
lxy Integral scale 150–750 m
f Flotation factor 0.8–1.1
s Shift parameter 0–32.5 km

Parameter inference
Sj Misfit function for each data type

where j [ pw, tt, z
{ }b

si
pw Standard deviation of the error in

borehole water pressure
10 m

rbh Distance tolerance for water
pressure borehole location

100 m

si
z Standard deviation of the error in

hydraulic head exceeding glacier
surface elevation.

10 m

zi Surface elevation m
si

ts Standard deviations of the errors in
transit speed

0.25 m s−1

dmin−max
ts Bound for speed in moulins 0.1–1.2 m s−1

aCorresponds to a variable of the subglacial channel generator as well.
bSuperscripts correspond to pw water pressure, ts transit speed and z hydraulic head
exceeding glacier surface elevation.
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5. Discussion

In this study, we infer properties of the subglacial drainage system
of Gorner Glacier based on fitting our model to observations at
different snapshots across the melt season. Our approach focuses

on building a parsimonious model that allows the exploration of
multiple solutions to explain observations. In this section we
explore the limitations, advantages and further work associated
with our framework.

Fig. 6. Conditioned subglacial systems (CS) for six independent inversions of the reference snapshot (snapshot 3). CS 1 is highlighted in grey as it is propagated
throughout the rest of the melt season. (a) Maximum likelihood of CS hydraulic potential field and channel discharge. Note that CS 1, 3 and 6 present two main
parallel channels, whereas CS 2 and 5 present one dominant channel downstream of the boreholes. (b) Borehole water pressure residuals (boreholes in x-axis).
Observations are displayed as blue vertical bands and black dot indicates the maximum likelihood model displayed in (a). Boxplots indicate the uncertainty with
boxes corresponding to the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points (∼±2.7σ for normal distribution). Outliers
are plotted as red cross. (c) Inferred parameter distributions (CS in x-axis). Black dots indicate the maximum likelihood model displayed in (a), boxplots the par-
ameter residuals. The total volume of subglacial channels (TCV) is shown in the right-hand side in m3.
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Fig. 7. Conditioned subglacial system (CS 1) across the melt season (five snapshots). Grey bands indicate reference snapshot (snapshot 3). (a) Maximum likelihood
hydraulic potential field and channel discharge. Discharge at the outlet is provided in parenthesis (b) Borehole water pressure residuals (boreholes in x-axis). In
snapshot 1, boreholes 4 and 5 do not have data. Observations are displayed as blue vertical bands and black dot indicates the maximum likelihood model dis-
played in (a). Boxplots indicate the uncertainty with boxes corresponding to the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme
data points (∼±2.7σ for normal distribution). Outliers are plotted as red cross. (c) Parameter distributions (CS in x-axis). Black dots indicate the maximum likelihood
model displayed in (a), boxplots the parameter residuals. The total volume of subglacial channels (TCV) is shown in the right-hand side in m3.
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The proposed model makes the following necessary simplifica-
tions: (1) it assumes a spatially uniform transmissivity to represent
the distributed system, (2) it produces the channel network structure
by a flow routing method, (3) it uses a statistical relation for the
channel radii, (4) it assumes constant recharge for the duration of
a snapshot period, which is necessary to resolve water flow in steady
state. Conservatively, we selected the snapshots after a relatively
stable recharge period in order to be relatively close to steady-state
conditions. These assumptions make the model computationally
inexpensive, and as a result, its parameters can be inferred from
data, along with uncertainty quantification.

An important challenge when applying our model regards the
uncertainties in recharge conditions. We use a distributed melt
model calibrated with measured discharge and in situ ablation mea-
surements, to estimate how recharge is partitioned between different
locations of the model domain. Tributaries account for 76% of the
total recharge and moulins account for 22% of the recharge. The
remaining 2% of the discharge is incorporated outside the model
domain (between the glacier snout and the gauging station). To
assess the impact of the subglacial channel generator on the number
of moulins, location and relative contribution, we carried out a sen-
sitivity analysis. It was found that these factors do not greatly influ-
ence the network structure (see Supplementary material). This
result, however, cannot be generalized, as it is particular to this
site where channels are well constrained by Shreve’s hydraulic
potential and moulin recharge corresponds to only about a fifth
of the total recharge. One particularity of Gorner Glacier is its poly-
thermal nature in the ablation zone (Ryser and others, 2013). The
cold ice body acts as an impermeable barrier for meltwater except
when water flows continuously into pre-existing moulins or cracks.
Such moulins in the cold ice area are rare, hence, they drain a larger
surface area providing sufficient meltwater to maintain them. This
feature could imply a more stable supra- and englacial system,
and consequently that recharge locations into the subglacial systems
are persistent across the melt season.

Results and previous studies have stressed that flow routing
models are sensitive to small-scale perturbations (e.g., Chu and
others, 2016; Irarrazaval and others, 2019). This is particularly
relevant when downscaling (or interpolating) bedrock elevation
data to match the higher spatial resolution of a surface DEM, as
flow routing becomes biased towards small-scale features from
the high-resolution DEM. Moreover, modelled bedrock elevation
can significantly differ depending on the model and available data
used to determine the ice thickness (e.g., Farinotti and others,
2017). The subglacial system generator adds variability, which
allows generating sets of unconditioned subglacial systems. The
core of the channel network generation is based on the addition
of a nonuniform spatial perturbation term, modelled as a GRF,
to the hydraulic potential field. The GRF is parametrized by struc-
tural parameters lxy,, f and s, allowing for a low dimensionality of
the inverse problem. As a result, modifying structural parameters
lxy, f and s results in global changes in the network. A drawback of
this approach is that fitting independently individual water pres-
sure observations requires locally modifying a channel, which is
not possible with only three global parameters. To avoid overfit-
ting, we add a spatial tolerance to the borehole locations (Eqn
(8)), allowing for a broader range of networks to match observa-
tions. Although the choice of adding a GRF to Shreve’s equation
satisfied the objectives of this case study, further work should
investigate the variability incorporated with different parametriza-
tions or directly using a nonspatially uniform flotation factor, for
example. Another drawback is that the exploration of the model
space is challenged by discontinuities in the likelihood function
as a consequence of modifying parameters (lxy, s, f ). This points
out the importance of having a fast forward model which enables
a large number of runs necessary for uncertainty quantification.

We designed a two-step inversion strategy that first allows infer-
ring multiple subglacial systems models of a reference snapshot.
Here we selected snapshot 3 (10 August 2005), i.e. a midsummer
date, as it is more likely that channel networks are well developed.
For this date, we obtained different CS systems which honour obser-
vations, demonstrating that data are insufficient to constrain a well-
defined or unique channel network. Secondly, we selected two CS
systems (CS 1 maximum likelihood model, and CS 2 in
Supplementary material) to force the results of following snapshots
across the melt season to resemble their conditioned system. The
assumption that the channel network’s main structure persists
across the melt season is practical, as it avoids inversion parameters
that introduce discontinuities in the likelihood function. As a con-
sequence, convergence is much more easily reached in the subse-
quent snapshots. Moreover, the hydraulic parameter variability
found within the reference snapshot is large (see Fig. 6) and thus
considering one channel network allows for a better understanding
of changes on the hydraulic parameters (enlargement and shirking
of channel radii) across the melt season. However, this strategy cer-
tainly underestimates uncertainty as it only explores few models
across the melt season. Further work, with more computational
resources, should implement inversion frameworks to infer inde-
pendently each snapshot (or all snapshot simultaneously), as well
as not enforcing channel network persistence across the melt season.
In that case, channel network persistence across the melt season will
rely on data and its uncertainties

Subglacial transit times from four moulins were used to con-
strain the channel network parameters to a physically reasonable
range. A number of assumptions, which were made to avoid
model overfitting, needed to be made as the available tracer obser-
vations only loosely constrain the transit times: using a large range
for the inflow modulation time (0–20 hour), as well as providing
extended bounds for the subglacial transit speeds through channels
(0.1–1.2m s−1). Nonetheless, including even these broad con-
straints on subglacial transit and inflow modulation facilitated
model space exploration and convergence. Experiments performed
without these constraints (not shown) converged to subglacial
models composed of small channels dominated by large transmis-
sivities in the distributed system. This configuration resulted in
unrealistically fast water transit speeds and a smooth hydraulic
potential field that did not capture sharp hydraulic potential gradi-
ents observed in nearby boreholes. Clearly, if a more accurate solu-
tion (which we found) exists in the transit-time constrained space,
it also exists in the unconstrained space, but it appears that the cap-
ability of the DREAM(zs) algorithm to find it is reduced. Thus, in
our case, limiting transit speeds facilitated convergence to local
maxima and forced discharge into channels. However, other pos-
sible strategies could have been considered such as adding a
lower limit for channel radii, lowering the upper bound of Td or
utilizing another algorithm to explore the model space.

The high sensitivity of the inversion to subglacial transit time
constraints also highlights that having more accurate observations
available would constrain the inversion significantly better. This
finding is coherent with previous work of Irarrazaval and others
(2019) on a synthetic inversion, where tracer tests considerably
reduced the uncertainty of the model parameters. This means
that future tracer experiments need to separate total transit time
into inflow modulation time and subglacial transit time, which
necessitates observations of moulin recharge and obtaining con-
straints of moulin geometry (e.g., Nienow and others, 1996;
Schuler and others, 2004; Werder and others, 2010).

Conditional subglacial systems show that water is concentrated
in subglacial channels with low water pressure surrounded by
areas of poor connectivity and high-water pressure. The subglacial
channels were enlarged at the beginning of the melt season (from
snapshot 1 to snapshot 2), maintaining their total volume over the
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summer (from snapshot 2 to snapshot 4) then substantially
shrink at the end of the season (from snapshot 4 to snapshot
5) as shown in Figure 7c. This is compatible with current under-
standing of the seasonal evolution of the glacier drainage system
(e.g., Fountain and Walder, 1998).

The result of our framework is a set of solutions for subglacial
systems that can match the data with a high likelihood (Fig. 6).
The set of inferred subglacial systems depends on the definition
of the likelihood function, which includes errors from different
sources (e.g., observation and model errors) that must be estimated.
In our experiments, it occurred that the likelihood function accepted
subglacial systems presenting a good agreement with data but a poor
representation of the expected physics, such as channels not captur-
ing water from the surroundings (e.g., CS 6). Further restrictions, for
example, limiting the minimum radii (i.e. a parameter) and regular-
ization may overcome this issue. Note that the variability within the
set of CS system of snapshot 3 (Fig. 6) is larger compared to the
variability of CS 1 across the season (Fig. 7). This implies that not
considering a multi-solution approach could strongly underestimate
the possible diversity of network configurations.

6. Conclusions

We presented a framework which enables the inference of subgla-
cial channels from water pressure and tracer-transit times at dif-
ferent snapshots across the melt season. First, we introduced an
updated subglacial channel generator, which produces a broad
spectrum of likely channel networks. This is relevant as flow rout-
ing algorithms are sensitive to small-scale features and uncertain-
ties in bed elevation datasets can be significant. Previous studies
found that varying the spatially homogeneous flotation factor in
Shreve’s equation can divert subglacial flow routing paths (e.g.,
Banwell and others, 2013; Chu and others, 2016). Here we
added a GRF that accounts for a spatially nonuniform term.
The choice of a GRF is practical in an inversion framework, as
it reduces the dimensionality of an unknown 2-D spatial field.
Consequently, the incorporation of a GRF adds variability to
the simulated subglacial systems, which are typically missing in
flow routing models solely based on Shreve’s equation.

The inversion framework allowed conditioning subglacial sys-
tems to observed water pressure and to a range of plausible tracer-
transit speeds. Our main finding is that multiple channel net-
works can match observations within their uncertainties.
Gorner Glacier presents one of the most comprehensive datasets,
but data are still too sparse to result in one single solution. This
highlights the importance of working in a multi-solution frame-
work, particularly when using results for prediction as distinct
channel networks could influence, for instance, basal sliding or
respond differently under a glacial lake outburst flood scenario.

Benefit of the use of tracer experiment data for uncertainty
reduction was limited. To avoid overfitting, tracer experiments
from four moulins were used to constrain modelled water transit
speeds to a physically reasonable range. For further uncertainty
reduction, as pointed out in previous studies, it is recommended
to measure the moulin recharge hydrograph during the tracer
experiment. Last, our approach favoured a physically simple
model for subglacial hydrology. Further frameworks should
attempt finding a balance between adding more complex physics
(and more parameters) versus physically simpler models capable
of multi-solution, uncertainty quantification and data integration.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2020.116.
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