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Partner choice, confounding and trait 
convergence all contribute to phenotypic 
partner similarity

Jennifer Sjaarda1,2,3 & Zoltán Kutalik    1,2,3 

Partners are often similar in terms of their physical and behavioural 
traits, such as their education, political affiliation and height. However, it 
is currently unclear what exactly causes this similarity—partner choice, 
partner influence increasing similarity over time or confounding factors 
such as shared environment or indirect assortment. Here, we applied 
Mendelian randomization to the data of 51,664 couples in the UK Biobank 
and investigated partner similarity in 118 traits. We found evidence of 
partner choice for 64 traits, 40 of which had larger phenotypic correlation 
than causal effect. This suggests that confounders contribute to trait 
similarity, among which household income, overall health rating and 
education accounted for 29.8, 14.1 and 11.6% of correlations between 
partners, respectively. Finally, mediation analysis revealed that most 
causal associations between different traits in the two partners are indirect. 
In summary, our results show the mechanisms through which indirect 
assortment increases the observed partner similarity.

People in partnerships are more similar to one another than randomly 
sampled pairs. Partners tend to be similar with respect to traits such as 
various anthropometric measures (body mass index (BMI) and height), 
socioeconomic factors, behaviours (religious views1 and social attitudes2), 
lifestyle (diet, smoking habits and hobbies) and even disease risk3–10.

Several different causes can explain this phenotypic similarity. First, 
people actively look for partners who are similar to them11,12, a phenom-
enon known as assortative mating (AM). Second, phenotypic similarity 
can reflect trait convergence during the partnership. In this case, traits 
become more similar over time because partners share a household or 
they influence each other’s behaviour13–15. Third, partner similarity may 
be caused by confounders at the time of partner choice (or later), such as 
shared sociocultural environment and geographical barriers16–18 (Fig. 1). 
Indirect assortment is a special case of the latter, where the confounder 
is the correlated trait which people use in direct partner selection19.

In couples, one person’s genome correlates with certain traits of 
their partner20, and one study found evidence of direct genetic associa-
tions between the genome of an individual and the phenotypes of their 

partner. This finding suggests that partner heritability of a trait cannot 
be explained by between-trait correlation alone21. Overall, causes and 
consequences of phenotypic assortment remain unresolved.

The causes of partner similarity matter for the fields such as behav-
ioural science, population genetics and public health. For instance, high 
phenotypic similarity could imply genetic similarity. In this case, other-
wise independent gene variants would become correlated and would 
ultimately increase genotype homozygocity22. Partner similarity also 
affects the studies of genetic associations; it increases the estimates of 
heritability23 and genetic correlation24, even in ACE (additive, common 
environment and unique environment) models25. Moreover, partner sim-
ilarity can introduce collider bias in within-spouse association models26.

Similar to classical epidemiological studies where it is difficult to 
discern causal factors from confounders, mere phenotypic similarity 
within couples poses interpretational challenges. Mendelian rand-
omization (MR) is a special case of instrumental variable (IV) analysis, 
whereby genetic markers are used as instruments to infer causal rela-
tionship. Because of the random allocation of genetic variants at birth, 
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Among them, 51,664 couples were identified and selected accord-
ing to a procedure described in the Methods and Supplementary Fig. 
1. Starting from 1,278 available phenotypes, we selected those with 
between-partner (Pearson) correlation larger than 0.1 and having at 
least five valid instruments. Pearson and Spearman correlations led to 
very consistent estimates (Supplementary Fig. 2). These were further fil-
tered (Methods and Supplementary Fig. 3) to yield 118 traits to analyse.

Effect of sex, age and time spent together
Among the 118 phenotypes tested, we identified 64 significant (P < 
0.05/66) causal effects in partners after adjusting for the effective num-
ber of tests (66) (Supplementary Table 1). We also examined the Cochran’s 
heterogeneity Q statistic to identify traits with high heterogeneity and 
found no evidence of heterogeneity in the MR estimates (all P > 0.05/66). 
We assessed the 64 significant results for sex differences but did not 
identify any after adjusting for the effective number of tests among the 
remaining traits based on their pairwise correlation matrix (P < 0.05/29).

To identify if partner traits converge over time, we explored 
the impact of age and time spent together (proxied by the amount 

MR can infer causality between an exposure and an outcome27, avoiding 
reverse causality and confounding.

In this work, we used MR to study causality in couples where the 
exposure and outcome traits belong to different people (Fig. 2a). This 
concept is different from classical MR designs within individuals, such 
as the study of BMI causally affecting the risk for coronary artery dis-
ease28. The authors of ref. 29 used an approach similar to ours to study 
partner similarity in alcohol use. They showed that phenotypic correla-
tion in couples does not increase with age and there was a difference 
between correlation and the direct causal effect29.

Here, we applied MR to estimate the causal effects between part-
ners for 118 traits. We studied direct effects on trait similarity, the 
impact of time couples have lived together and the role of confound-
ers. Finally, we explored how cross-trait partner similarity emerges by 
dissecting them to direct and indirect parts.

Results
This study analysed data from the UK Biobank (UKBB) cohort, a pro-
spective population-based study with over 500,000 adult participants. 
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Fig. 1 | Partner similarity framework. a, Illustrates a trait (given by the colour 
blue) which shows increased similarity between partners, either directly 
(through mate choice) or due to confounding factors such as shared geography, 
cultural or religious status or socioeconomic measures. Subsequently, this trait 
may also undergo postmating convergence, which could be due to direct causal 
influence from one partner on the other (that is, through imitation or influence) 
or due to confounding factors such as shared environment. b, Illustrates a 

trait which shows increased similarity among couples (given by the blue trait); 
however, this assortment is only observed because of a causal effect (α) that 
exists between another trait (shown in red) acting on the blue trait. For example, 
if direct assortment occurs under a trait such as BMI (that is, couples intentionally 
select partners of similar BMI as themselves), phenotypic correlation will also be 
observed at all traits which have a causal effect on BMI, such as blood pressure, 
fasting glucose and so on.
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of time at the same address) among the 64 significant traits in both 
men and women separately and both sexes combined. Using linear 
regression of MR estimates versus the median of the five age and/or 
time spent together bins, we detected no significant results in the 
sex-combined results after adjustment for the number of effective 
tests (P < 0.05/66). We also examined the Pearson phenotypic cor-
relation within the different bins and assessed for the presence of a 
trend using linear models (phenotypic correlation versus median bin) 
for all 118 phenotypes. Two traits showed a significant (P < 0.05/66) 
trend across the bins according to time spent together, namely body 

fat percentage (slope = −0.0018, P = 1.96 × 10−5) and forced expiratory 
volume in 1 second (slope = −0.0043, P = 2.98 × 10−4). In both cases, the 
correlation decreased as time spent together increased. We found two 
other traits that showed a significant trend across the bins by median 
age, namely previous smoking status (slope = 0.0011, P = 6.9 × 10−4) 
and aspirin use (slope = 0.0015, P = 1.8 × 10−4). In this case, for both 
phenotypes, the slope increased as median age increased (Fig. 3 and 
Supplementary Table 1). Using Spearman correlation yielded consist-
ent results (all P < 0.05/66).

Causal effects versus raw phenotypic correlations
To better understand the nature of phenotypic assortment, we assessed 
whether there were any discrepancies between the causal effect esti-
mates within couples (𝛼)̂ and observational correlations (𝑟)̂. Using MR, 
the causal effects between partners (within couples) were estimated 
for 118 phenotypes. These traits were selected based on their elevated 
correlation between partners and sufficient (more than five) valid IVs, 
making them suitable for MR analysis. Using a two-tailed Z test to gauge 
the statistical significance of the difference between the estimates 
(with test P-value denoted by Pdiff), we compared (standardized) causal 
MR effects to the raw phenotypic correlation among couples to iden-
tify any traits where the correlation was different than the MR estimate. 
After adjusting for the effective number of tested traits (P < 0.05/66), 
we identified 43 traits which showed different phenotypic correlation 
compared to MR estimate (Fig. 4a and Supplementary Table 1). Of these, 
three had a larger MR estimate compared to correlation (time spent 
watching television, comparative height size at age 10 and overall health 
rating), while the remaining 40 traits had a larger (absolute) correlation 
compared to MR estimate. These included place of birth, north coor-
dinate (NC; ̂r = 0.58 versus α̂ = 0.33, Pdiff = 2.47 × 10−18), systolic blood 
pressure ( ̂r = 0.16 versus α̂ = 0.05, Pdiff = 4.89 × 10−9), height ( ̂r = 0.25 
versus α̂ = 0.21, Pdiff = 6.63 × 10−6), forced vital capacity ( ̂r = 0.25 versus 
α̂ = 0.13, Pdiff = 5.62 × 10−16), basal metabolic rate ( ̂r = 0.21  versus 
α̂ = 0.16, Pdiff = 9.78 × 10−7) and basophil count ( ̂r = 0.47 versus α̂ = 0, 
Pdiff = 1.76 × 10−38) (Fig. 4a).

Significant differences could be indicative of the presence of 
confounders (either negative or positive) driving the observed phe-
notypic correlation. Thus, for traits where couple correlation was 
significantly different than MR causal estimates, we sought to identify 
potential confounders which may, in part, explain the discrepant esti-
mates. For the three traits where correlation was less than the MR 
estimate, we searched for negative confounders (that is, negative 𝛼𝛼yi→yp) 
but did not identify any.

Conversely, for traits where the correlation was greater than the 
MR estimate, we searched for positive confounders and found many 
potential positive confounders. Namely, the mean number of potential 
confounders from our set of 117 candidates was 22.56, with a maximum 
of 39; there was only one trait for which we did not identify any potential 
confounders (Supplementary Table 2). For instance, for systolic blood 
pressure, we identified 29 (correlated) potential confounders, which 
may explain the larger phenotypic correlation ( ̂r = 0.16) as compared 
to MR effect (α̂ = 0.05). These potential confounders included physical 
activity, BMI, lung fitness measures and overall health rating. For weight 
( ̂r = 0.23 versus α̂ = 0.19), we found 30 potential confounders, includ-
ing anthropometric traits (such as leg, trunk and arm fat mass) and 
various behavioural traits which are reflective of exercise patterns, 
such as time spent watching television, walking pace and phone use, 
among many others (Supplementary Table 2). Many of the 40 traits 
with larger phenotypic correlation compared to MR estimates included 
blood cell counts and/or percentages (such as white blood cell (leuco-
cyte) count, neutrophil count, monocyte count and percentage and 
reticulocyte percentage and count). The potential confounders for 
these traits were highly overlapping, including physical activity level, 
anthropometric traits, smoking and health rating (Supplementary 
Table 2). Other notable confounders included measures of physical 

U

a

b

c

Gi
X

Gi
Y

Xi

Yi Yp

Xi

Yi Yp

Gi
X

Gp
X

Xi Xp

Xp

Xp

αyi→yp
 = αy

αxi→xp

αyi→yp

αxp→yp
αxi→yi

αxi→xp

αxi→xp × αxp→yp
 = γ

αxi→yi × αyi→yp
 = ρ

α x i→
y p
= ω

αy→x

rxixp

αy→x

C = αy→x × αy
2

Fig. 2 | MR schematic within couples. a, Illustrates the causal effect among 
couples with a single trait (αxi→xp ), where G represents genetic variant(s), X 
represents a single trait (in an index individual (Xi) and a partner (Xp)) and U 
represents confounding factors that are not associated with genetic variance 
owing to the random distribution of alleles at conception. Throughout the paper 
subscript i and p refer to the index and the partner, respectively. b, Directed 
acyclic graph illustrates the impact a confounder (trait Y) could have on the 
phenotypic correlation between partners for a given trait X (rxixp). Correlation 
due to confounding can be calculated as C = α2

y→x × αy. c, Represents the 
expanded causal network involving two traits and the various estimated causal 
paths from trait X of an index case (Xi) to a phenotype Y in the partner (Yp) given by 
ω, γ and ρ. Cross-trait causal effects from Xi to Yp (ω) can be summarized by three 
possible (non-independent) scenarios: (1) Xi could exert a causal effect on Xp, 
followed by Xp having a causal effect on Yp in the partner alone (γ); (2) the reverse 
could occur whereby Xi has a causal effect on Yi in the index alone, followed by a 
causal effect of Yi case on Yp (ρ); or (3) there could be other mechanisms, either 
acting directly or through other unmeasured or unconsidered variables. To 
quantify ρ, we first estimated the causal effect of Yi on Yp in MVMR (not illustrated) 
to exclude any residual effect of X on phenotype Y from index to partner. These 
three scenarios could also act in some combination. Therefore, the ω estimate 
would capture the paths of γ, ρ and other mechanisms combined. In both a and c, 
cross-partner causal effects are given by blue arrows and same-person causal 
effects are given by green arrows.
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activity for forced vital capacity; smoking status and fitness measures 
for basal metabolic rate; and measures of body size for hand  
grip strength.

Finally, for each confounder we calculated the correlation due to 
confounding (C) as described above (Methods and Figs. 1b and 2b) and 
summed up these C values for all uncorrelated confounders. We then, 
for each trait, compared the difference in estimates (that is, ̂r − α̂) to 
the estimated value Csum (Fig. 4b). One can observe some traits (for 
example, systolic blood pressure) where the difference between part-
ner correlation and causal effects can be well explained by the tested 
confounders, but for the majority of the traits, the observed confound-
ers are not sufficient to account for the discrepancy (for example, 
basophil count has strong positive confounders missing).

Major confounders of trait correlations
Next, we assessed the impact of potential confounders on trait cor-
relation in couples by calculating the ratio of correlation due to con-
founding over the raw phenotypic correlation among couples averaged 
across all traits tested (Supplementary Table 3). While geographical 
location (using place of birth north/east coordinates) was found to 
have a negligible impact on phenotypic correlations (mean confound-
ing ratio 1%), household income (mean confounding ratio 29.8%), age 
completed full-time education (mean confounding ratio 11.6%) and 
physical activity levels (measured using the variable ‘leisure/social 
activities: sport club or gym’; mean confounding ratio 17.1%) had an 

important confounding impact on raw phenotypic correlation among 
couples (Fig. 5).

Cross-trait assortment
We sought to identify the mechanisms underlying partner similarity 
by comparing three estimated paths from a phenotype in the index 
case (Xi) to another phenotype in its partner (Yp) as illustrated in  
Fig. 2c. The total causal effect between Xi and Yp (denoted by ω) can be 
split up into three components: (1) AM through X (that is, Xi → Xp) 
followed by a causal effect between X and Y in the partner (that is, 
Xp → Yp), their product being denoted by γ; (2) causal effect between 
X and Y in the index individual (that is, Xi → Yi), followed by AM through 
Y (that is, Yi → Yp), their product being denoted by ρ; and (3) any remain-
ing effect of Xi on Yp.

We computed within-couple cross-trait causal effect estimates 
Xi → Xp (that is, ω̂) for all combinations of trait pairs (X,Y). Of these, we 
identified 1,327 significant MR effects (pω̂ < 0.05/[662]) among couples, 
which were reduced to 1,088 pairs after removing pairs with phenotypic 
correlation >0.8 (a summary of a set of pruned traits can be found in 
Supplementary Table 4). Several relationships were almost completely 
dominated by ρ (AM through the outcome) and others dominated by γ 
(AM through the exposure). Specifically, we found 326 relationships 
which were significantly different between ρ and γ, of which 89 (27.3%) 
showed larger effects through ρ and the other 237 (72.7%) showed larger 
effects through γ. For instance, we found causal relationships between 
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Fig. 3 | Phenotypic correlation for selected traits by time spent together 
and age of couples. a–d, Scatterplots show the phenotypic correlation for four 
selected traits among couples within different bins. Couples were binned by 
time spent together (proxied by the time lived at the same household) (a,b) and 

median age (c,d). The four panels show correlations for four different traits: 
forced expiratory volume (a), body fat percentage (b), previous smoker (c) and 
aspirin use (d).
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partners for leg fat percentage on the time spent watching television 
and BMI on overall health rating, all dominated by ρ.

On the other hand, we found some causal relationships between 
partners which were primarily dominated by γ (AM through the expo-
sure), including comparative height at age 10 (that is ‘When you were 
10 years old, compared to average would you describe yourself as 
shorter, taller, average’), forced vital capacity and standing height on 

hand grip strength. Finally, we found other pairs where neither ρ nor γ 
captured the relationship (that is, ω̂ was significantly larger than both 
estimates), including BMI effect on partner’s systolic and/or diastolic 
blood pressure.

Finally, we estimated the contribution of the first two components 
(γ̂ and ρ̂) contributing to these significant cross-trait effects and com-
pared their contribution to the total effect using standard linear 
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Fig. 4 | Phenotypic correlation in couples versus causal effects and evidence 
of confounder traits impacting the discrepant estimates. a, Scatterplot shows 
the within-couple standardized MR estimates (αxi→xp) versus the phenotypic 
correlation among couples (rxixp ). The centre of the confidence interval (CI) is 
the estimate for the corresponding parameter and error bars represent 95% CIs.  
A two-tailed Z test was used to test for a significant difference between the 
estimates. After adjusting for the number of effective tests (P < 0.05/66), 43 
significant differences were identified (shown in dark blue), where 3 traits 

showed larger MR estimates compared to correlation and 40 traits showed larger 
correlation compared to MR estimates. The identity line is shown in black. 
Labelled pairs are discussed in the main text. b, Scatterplot shows the difference 
in phenotypic correlation and MR estimate versus the Csum value (estimating the 
correlation induced by measured (uncorrelated) confounders) for each trait 
where the phenotypic correlation was greater than the MR estimate (number of 
traits = 39); error bars represent 95% CIs. The identity line is shown in black. FVC, 
forced vital capacity; NC, north coordinate; SBP, systolic blood pressure.
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regression (Fig. 6 and Supplementary Table 5). Paired t test comparing 
γ̂ and ρ̂ effect estimates revealed that γ̂ (AM through X) is stronger 
(P = 1.1 × 10−5) in general compared to ρ̂ (AM through Y). When we 
summed up the effects of γ̂ and ρ̂, we found that the sum was signifi-
cantly larger than ω̂. However, these two effects seemed to be corre-
lated, carrying potentially shared signals. Hence, we first residualized 
ρ̂ for the effects of γ̂ ( ρ̂resid) to ensure independence between the two 
estimates and then added ρ̂resid to γ̂ ( ρ̂resid + γ̂). We found no significant 
difference between ω̂ and the sum of ρ̂resid + γ̂ in this analysis and with 
data points in general falling near the identity line, suggesting that ω̂ 
was capturing the paths given by γ̂ and ρ̂. Indeed, linear regression 
results revealed that 76% of the total effect (ω̂) can be explained by the 
two paths ( ρ̂resid + γ̂) and that the ρ̂resid + γ̂ is on average very close to 
the total effect.

The extent of bias in the MR estimates
In the Methods, we formulated a general model that accommodates 
parental effects and direct, indirect assortment (Fig. 7). We then, assum-
ing this model, derived the analytical formula for the bias of 

cross-sample MR estimates, which shows its exact dependence on each 
model parameter. Here, we explored the extent of the bias under real-
istic ranges of model parameters and visualized it in Fig. 8. First, we 
observed (Fig. 8a) that rG (the correlation of the genotype between 
partners) has little impact on the bias (since it is limited by the herit-
ability and the genetic correlation) compared to direct environmental 
assortment (rE), and they contribute additively. A similar relationship 
can be observed (Fig. 8b) for the parental genetic- (sG) and parental 
trait effects (sX) on the offspring’s environment; the impact of the for-
mer is dwarfed by the latter for the same reason. Unsurprisingly, the 
largest bias emerges when both the rE and sX are the largest (Fig. 8c). 
This can be complemented by rE combined with parental genetic effects 
on the offspring’s environment (sG) (Fig. 8d).

Overall, when direct environmental or genetic assortment is mod-
erate, parental effects lead to negligible bias in the causal effect esti-
mate between Xi

O and Xp
O. This is why we focused our real data analysis 

efforts on identifying such X-associated (confounding) factors for 
which direct assortment may occur, so that rE (and hence, the MR bias) 
could be limited.
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Fig. 5 | Global confounding impact of select traits on couple phenotypic 
correlation. a–f, Scatterplots of couple correlation due to confounding versus 
the phenotypic trait correlation among couples for selected potential 
confounder traits (Z). The couple correlation due to confounding for each trait X 
was calculated for each confounder Y as C = α2

y→x × αyi→yp. In the case of 
birthplace coordinates, C values were summed across the two (independent) 
north and east coordinates. The centre of the CI is the estimator value and the 
error bars represent the 95% CI. These confidence intervals for the correlations 
shown on the x axis are based on the number of couples shown in the ‘n_pairs’ 

column of Supplementary Table 2. The CI for confounder-induced correlation 
was computed as 1.96 times the s.e. of the estimator α̂2

y→x × α̂yi→yp, the 
computation of which is described in the Methods. For each trait in the pipeline, 
we tested how the contribution of six confounder traits (average total household 
income before tax (a), current tobacco smoking (b), age completed full-time 
education (c), overall health rating (d), sports club or gym user (e) and place of 
birth coordinates (f)) could impact the phenotypic couple correlation. The 
identity line is shown in black.
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Discussion
In this article, we studied causal relationships behind trait similarity 
within couples by applying MR to the UKBB data. We analysed 118 traits, 
representing a wide range of anthropometric-, behavioural- and 
disease-related traits. Among the 118 phenotypes tested, we found 

widespread evidence of causal effects among partners. In particular, 
we identified 64 same-trait causal effects within partners (of 118 traits) 
and no evidence of heterogeneity among same-trait couple MR esti-
mates (αxi→xp). This suggests that associations between a person’s 
genotype and their partner’s phenotype are primarily acting indirectly 
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Fig. 6 | Comparison of causal paths between two traits within couples.  
a–d, We estimated various causal effect paths (ρ, γ and ω, see Fig. 2c) from a 
phenotype of the index case (Xi) to another phenotype of its partner (Yp) for the 
1,088 trait pairs with significant MR effects among couples (pω̂ < 0.05/[662]) and 
trait pair correlation <0.8. Panel (a) provides a scatter plot for 𝜌̂ against 𝛾̂ ; panel 
(b) for 𝜔̂ against 𝜌̂; panel (c) for 𝜔̂ against 𝛾̂ and panel (d) for 𝜔̂ against ρ̂resid + γ̂. 
The solid black line represents the linear regression fit. Dark blue dots indicate 
trait pairs with significant (after Bonferroni, BF, correction) difference between 
the respective parameters shown in the scatter plot, while light blue one mark the 
remaining traits. To calculate ρ̂resid + γ̂, we residualized ρ̂ for the effects of γ̂ 

( ρ̂resid) to ensure complete independence between the estimates and then added 
ρ̂resid to γ̂ ( ρ̂resid + γ̂). e, A box plot comparing the coefficients of the estimates 
among the trait pairs after removing 19 trait pairs where the sign did not match 
between any combination of the four coefficients. In the box plots, the lower and 
upper hinges correspond to the first and third quartiles and the middle bar 
corresponds to the median; the upper whisker is the largest point smaller than 1.5 
times the interquartile range above the third quartile; the lower whisker is 
defined analogously. We used a two-sided paired t test to compare the presented 
estimates ( ρ̂, γ̂, ρ̂resid + γ̂ and ω̂).
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through the cross-partner causal relationship between the trait(s) 
associated with the genotype, rather than the presence of a direct effect 
for index genotype to the partner’s phenotype.

Our results suggest that fitness and anthropometric measures 
are important initially (at the time of mate choice), but their correla-
tion decreases with time; the longer partners stay together, the less 
important it gets to remain similar. On the other hand, we found that 
couples become more similar with respect to smoking cessation and 
aspirin use as their age increases. As age and time spent together are 
highly correlated, it is difficult to distinguish whether this is an effect 
of convergence or of age-dependent partner choice. We did not find 
any significant trends of causal MR effects on time spent together or 
by age. While this could be because of limitations such as statistical 
power, this is consistent with previous reports which suggest that initial 
partner choice is more important than convergence9,30–32.

Deriving an analytical formula for the bias in the cross-partner 
MR estimation allowed a detailed analysis of model parameters that 
contribute most to such potential bias. Our analysis revealed that the 
largest contribution to the bias is direct environmental assortment 
combined with strong parental effects. This conclusion prompted us 
to explore potential confounders for each examined trait.

When investigating the impact of common confounders on our 
entire panel of phenotypes (that is, fixing a confounder and assessing 
its widespread impact on all single-trait AM), we found that household 
income, age completed education and participant of a sport club or 
gym are important confounders, explaining on average 29.8, 11.6 and 
17.1% of the phenotypic couple correlations among traits tested, respec-
tively. These results also suggest that phenotypic correlations in cou-
ples are significantly confounded and point to a relatively few key traits 
which are driving observed partner similarity. These confounder traits 
are strongly intertwined and hence correlated, therefore elucidating 
that the key driver is not feasible with the data at hand. Overall, we 
noticed that the tested confounders are not sufficient to account for 
the gap between couple correlations and causal effects or the latter 
being incorrectly estimated. Of note, phenotypic correlations in cou-
ples are impacted differently by measurement noise than causal effect 
estimates. While the former estimates are attenuated by a factor of 
Var(y)

Var(y)+s2
 in case the true phenotype y is measured with a noise with vari-

ance s2, the causal effect estimates do not change noticeably because 
the exposure and outcome effects are equally diluted. This could lead to 
an underestimation of confounding effects in our results and may explain 
why for three traits we observed larger causal effect than correlation.

Our findings investigating cross-trait assortment suggest that 
causal effects from Xi to Yp are primarily driven by AM through X (that is, 
Xi → Xp) followed by a causal effect within the partner from X to Y (that 
is, Xp → Yp). In contrast, a less likely path would be the inverse, whereby 
the presence of a causal effect from X to Y in an index case is then followed 
by Y being passed directly from index to partner. These results were 
expected, as it is more reasonable for couples to influence each other at 
the exposure level rather than the outcome level, especially since often 
outcome traits (such as diseases) appear much later than mate choice.

We found 1,088 significant cross-trait causal effects within couples 
(ω), which can be summarized by three categories: (1) driven by assort-
ment on the exposure (ω = γ), (2) driven by assortment on the outcome 
(ω = ρ) and (3) not explained by either (that is, ω being greater than 
both ρ and γ). Of note, there were fewer cases in category 3, where the 
causal effect from Xi to Yp was not captured by γ or ρ, suggestive of 
either a direct effect Xi to Yp or indirect effects through variables we 
have not explored. An example from the first category involves a posi-
tive causal effect of time spent watching television on BMI driven by 
the fact that partners causally influence each other with respect to time 
spent watching television, which, in turn, has an impact on BMI at the 
individual level. On the other hand, an example of the second category 
includes a positive causal relationship from height to education, with 
a stronger path through ρ, whereby height (a proxy for ‘dynastic’ 
wealth) increases educational attainment (found previously33) within 
a single individual and AM subsequently occurs via education level. 
Finally, as an example for category 3, we found a negative causal effect 
of never having smoked on leucocyte count within partners, such that 
leucocyte count was higher among individuals with partners who 
smoked. While we also identified a significant effect through γ (AM 
through smoking), the effect was much stronger through ω. These 
findings suggest that there could be a direct effect from index partner 
by way of secondhand smoke. These results are consistent with previ-
ous work showing higher white blood cell count in smokers34, which 
might already be achieved by secondhand smoking.

This study has limitations which should be acknowledged. First, to 
increase statistical power and robustness, we focused on traits available 
in the UKBB with significant correlation among couples and more than 
five valid IVs. As a result, anthropometric traits constituted a larger 
proportion of our traits under study and represent a large percentage 
of our significant findings. Other phenotypes, such as behavioural and 
lifestyle traits, were included but had less statistical power due to lower 
couple correlation and fewer IVs.

Second, using our data, we could not find strong evidence for 
couple convergence over time. This can be due to these effects being 
weak or the available data being suboptimal. Indeed, we used data on 
both age and time together (proxied by time at the same address) to 
answer this question, but these are poor proxies of the relevant traits. 
To properly disentangle the relationship between AM and convergence, 
additional longitudinal data including phenotypes at the time of part-
ner selection would be necessary. A complementary approach could be 
to contrast genetic and phenotypic correlations; however, it is hard to 
tell whether differences reflect postmating effects or different (genetic 
and environmental) correlation to traits under primary assortment20.

Third, we have not explored indirect causal paths from Xi to Xp 
through another variable (Z) measured in either individual. Given the 
limited evidence of direct cross-trait, cross-partner effects, the most 
likely such path would be Xi → Zi → Zp → Xp, leading to an indirect 
effect of αX→ZαZ→XαZi→Zp . This implies a bidirectional causal effect 
between X and Z (within the same individual), but their product is 
expected to negligible35. Also, while assortment/convergence through 
the exposure (γ) and the outcome (ρ) represents independent paths 
from Xi to Yp, our results suggest that the computed effects using MR 
estimates are not perfectly independent. This could potentially be 
because of the overlap in genetic instruments or bidirectional causal 
effect between them or because both estimates depend on the causal 
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Fig. 7 | Modelling the impact of parental effect and AM on cross-sample 
MR. The diagram represents the underlying joint model of parental effects and 
assortment. A focal trait (X) has genetic (G) and envionmental (E) components, 
with effect size g and e, respectively. Their subscripts can be O, F or M, referring 
to the offspring, the father or the mother, respectively. The superscripts can be 
either i or p, indicating the index individual or its partner. We allowed parental 
genetics, parental environment and the parental trait each to influence the 
offspring’s environment, with corresponding direct effect strengths sG, sE and sX, 
respectively. Finally, couples are formed under direct assortments acting  
on G, E and X, leading to correlations rG, rE and rX, respectively.
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effect from X to Y. To the best of our ability, we tried to mitigate this 
bias by (1) using a multivariable Mendelian randomization (MVMR) 
approach to remove effects of X on Y in the calculation of ρ and (2) first 
residualizing γ for effects of ρ to ensure independence before summa-
tion of the effects. Finally, we were limited to the available traits and 
white British samples in the UKBB. AM and partner selection are often 
population specific36. Therefore, our findings may not generalize to 
other populations, and more diverse biobanks are needed to systemati-
cally explore the heterogeneity in assortative behaviour.

In summary, we have surveyed 118 complex traits with significant 
couple correlation in the UKBB and explored the major contributors to 
the observed couple similarity: partner selection, couple convergence 
and confounding. We found that cross-trait assortment can largely be 
explained by single-trait assortments between either trait and substan-
tial causal effects between these traits. Our findings provide insights 
into possible mechanisms underlying observed partner similarity 
patterns at an unprecedented scale and resolution.

Methods
All analyses were run using the R software (v.3.6.3).

Sample selection and couple definition
This study used the UKBB cohort, a prospective population-based 
study with over 500,000 adult participants. UKBB has approval from 
the North West Multi-Centre Research Ethics Committee as a Research 

Tissue Bank approval. This approval means that researchers do not 
require separate ethical clearance and can operate under the Research 
Tissue Bank approval. UKBB also possesses a Human Tissue Authority 
licence, so a separate Human Tissue Authority licence is not required 
by researchers who receive samples from the resource.

Couples were identified and selected according to the following 
procedure. The initial UKBB sample comprised 502,616 individuals. 
First, participants were filtered to only genotyped, white, unrelated 
individuals according to the genetic quality control (QC) file. Redacted 
samples and participants who removed consent were also excluded. 
After filtering, 337,138 participants remained. Within this sample, we 
retained individuals coming from households with exactly two unre-
lated, opposite sex individuals, leaving 108,898 participants. Finally, 
using the data at data field 6,141, ‘How are people in household related 
to participant’ pairs were filtered to only include couples who had both 
responded ‘Husband, wife, or partner’, leaving 103,328 participants or 
51,664 couples for downstream analyses (Supplementary Fig. 1). Note 
that some studies have used more stringent criteria for couple defini-
tion. For example, Yengo et al.22 additionally requested couples to have 
been recruited in the same centre, living in the same location, for the 
same amount of time, living with the same number of people with the 
same household income, same Townsend deprivation, same number 
of smokers and so on. Howe et al.29 used a very similar definition to ours 
(resulting in 10% fewer couples than us); however, they restricted their 
analyses to only couples who reported to live at the same address for 
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Fig. 8 | The impact of various model parameters on MR bias. We plotted the 
bias of the cross-sample MR estimates as a function of the proposed model 
parameters. Parameter rG refers to direct genetic assortment, rE to direct 

environmental assortment, sG to direct parental genetic effect and sX to direct 
parental trait effect. The different panels show the extent of bias when different 
pairs of parameters were covaried: rG, rE (a), sG, sX (b), rE, sX (c) and sG, rE (d).
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the same amount of time. We believe that discrepancies in self-reported 
data can occur frequently (due to misunderstanding, misreporting) 
and hence, decided to use a more liberal couple definition to increase 
sample size at the cost of minor misclassification.

MR
MR uses genetic variants as IVs to assess the presence of a causal rela-
tionship. The random distribution of genetic variants at birth reduces 
the possibility of confounding or reverse causation as explanations 
for the link between the exposure and outcome in the same way that 
the random allocation of a therapy in a randomized controlled trial 
minimizes this risk. MR relies on three core assumptions for the genetic 
variants. First, IVs must be associated with the exposure of interest (the 
relevance assumption). Second, IVs must not be associated with any 
confounder in the exposure–outcome relationship (the exchange-
ability assumption). Third, IVs must not affect the outcome except 
through the exposure (the exclusion restriction assumption). There 
are several methods to estimate the causal effect using MR, the sim-
plest being the Wald method, whereby a ratio is taken between the 
variant–outcome association and the variant–risk factor association. 
A natural extension of this approach, known as the inverse-variance 
weighted (IVW) method, combines multiple IVs, applied in this report37. 
The causal effect of exposure X on the outcome Y, using k genetic vari-
ants, is given by

α̂ =
∑
k
βX
k
βY
k
(σY

k
)−2

∑
k
(βX

k
)2(σY

k
)−2

with the corresponding variance Var (α̂) = 1
∑
k

(βX
k
)2(σY

k
)−2

, where βX
k

 and βY
k

 

represent the estimated effects of genetic variant k on X and Y, respec-
tively, and σY

k
 represents the standard error of βY

k
. Here, we extended 

the framework of MR to situations where the exposure and the outcome 
are measured in different individuals. More specifically, our exposure 
was a trait of an index individual, and the outcome was the same (or 
another) trait in its partner.

Phenotype selection and processing
We used an agnostic, phenome-wide approach for selecting pheno-
types. Specifically, we first selected phenotypes which were analysed 
by the Neale group and which had men, women and joint summary 
statistics available (http://www.nealelab.is/uk-biobank/). This list was 
intersected with our internal database (application number 16389), 
leaving 1,278 phenotypes available for analysis. Phenotypes were pro-
cessed in the filtered QC dataset (n = 337,138) according to a slightly 
modified version of the PHEnome Scan ANalysis Tool (PHESANT) pipe-
line to accommodate the phenotypes that we had available in our 
database38. Continuous variables were transformed to a normal distri-
bution using a rank-preserving inverse normal quantile transformation, 
while ordinal and binary traits were recategorized according to PHE-
SANT documentation (for example, categories with fewer than ten 
participants were removed). We then filtered these phenotypes as 
follows. First, to focus on traits with some indication of assortment, 
we computed the raw phenotypic correlation (rxixp, where x refers to 
trait X, i represents the index person and p is its partner) among couples 
and removed phenotypes with a Pearson correlation of <0.1. To ensure 
that inverse normal quantile transformation was not significantly 
impacting the correlations of each trait, we also calculated the correla-
tion between partners for each trait using the nonparametric Spearman 
correlation and found consistent estimates (Supplementary Fig. 2). 
Second, we removed phenotypes that had fewer than five valid IVs for 
MR. IVs were defined based on an association P < 5 × 10−8 in the joint 
Neale summary statistics, after pruning for independence (based on 
a clumping procedure performed in PLINK39 with the options 

–clump-kb 10000 and –clump-r2 0.001 using the 1000 Genomes Euro-
pean samples as a reference). Third, using the sex-specific summary 
statistics, the IV heterogeneity between sexes was calculated. IVs that 
showed (Bonferroni-corrected) significant evidence of heterogeneity 
between sexes were excluded (P < 0.05/[number of IVs]). After this 
procedure, phenotypes were again filtered to those with at least five 
valid IVs remaining. Fourth, dietary phenotypes were removed due to 
high correlation among these phenotypes (due to the shared house-
hold), insufficient power, problems with reverse causation and difficult 
interpretation40. Finally, we manually removed several duplicated and 
redundant phenotypes. Specifically, (1) left-side body traits (highly 
correlated with right side) were removed; (2) we retained only one of 
the duplicated phenotypes for BMI and weight (retaining UKBB data 
fields 21001 and 21002, respectively); and (3) all ‘qualifications’ data 
were removed (corresponding to UKBB field 6,138) due to the availabil-
ity of finer-scale correlated variables, such as ‘age completed full-time 
education’ (data field 845). This ad hoc procedure was meant to capture 
only major redundancies. After this process, 118 phenotypes remained 
for analysis (Supplementary Fig. 3).

Estimation of single-trait causal effects in couples
To investigate the causal effect of a trait in one individual on the same 
trait of their partner, we performed couple-specific MR analyses. Spe-
cifically, the trait in the index case was used as the exposure and the 
same trait in the partner was used as the outcome trait. The effect of 
genetic variants on the exposure was obtained from the Neale summary 
statistics using the full UKBB sample. Instruments for each trait were 
selected as described above: that is, being both genome-wide signifi-
cant (P < 5 × 10−8) and pruned for independence. Next, we estimated the 
effects of single-nucleotide polymorphisms (SNPs) on the outcomes 
of interest by testing the association between each genetic instrument 
measured in the index individual with the phenotype measured in the 
partner using the UKBB partner dataset described above. In other 
words, for each phenotype, the corresponding genetic data for the IVs 
were obtained from the index case, while the phenotypes (dependent 
variable) were taken from the corresponding partner. All SNP trait 
estimates were estimated in men and women separately (that is, using 
the sex-specific Neale summary statistics or two separate models in the 
couple data), adjusting for age and the first 40 genetic principal com-
ponents of both the index and partner. To mimic the Neale models, we 
performed linear regression of SNP effects on phenotypes, regardless 
of data type (including binary). Continuous phenotypes were scaled to 
have mean of zero and s.d. of one before regression, while ordinal and 
binary phenotypes were left as processed by PHESANT.

To estimate the causal effect of a trait from an index case to a 
partner (αxi→xp, we combined the effects of genetic instruments on the 
exposure (from Neale) with effects on the outcomes (measured among 
couples) in an MR framework using the IVW method (Fig. 2a)37. To 
estimate the causal effects in both sexes combined, SNP effects were 
first meta-analysed across sexes using fixed effects models before 
performing MR (rather than meta-analysing the MR estimates directly) 
to minimize weak instrument bias41. Effects of the genetic estimates 
on both the exposure and outcome were first standardized (such that 
the squared effect size represents the explained variance) to allow for 
seamless comparison across traits and to the raw phenotype correla-
tion. Significance was determined by adjusting for the number of 
effective tests based on the correlation matrix of phenotypes tested42, 
resulting in 66 independent tests. The significance threshold was 
adapted accordingly as P < 0.05/66.

After estimating single-trait causal effects in couples, we used a 
two-tailed Z test to identify traits with a significant difference between 
the MR estimate and the phenotypic correlation in couples. For each 
trait with discrepant estimates, we tested the causal effect of each of 
the remaining 117 phenotypes in our pipeline (Y1,… ,Y117) on the focal 
trait of interest (X) using MR (αy→x). These same-person MR estimates 
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were calculated using meta-analysed sex-specific Neale estimates for 
both the SNP exposure and SNP outcome effects using the IVW method. 
Before performing each same-person MR, genetic variants were first 
filtered for evidence of reverse causality at a threshold of P < 0.001 
(Steiger filter)43, whereby SNPs were removed if the standardized SNP 
effect on the outcome was stronger than the effect on the exposure 
based on a one-tailed t test at a significance level of P < 0.001. SNP 
effects were standardized before calculating MR effects.

We then explored those potential confounders, Y1,Y2,… ,Y117, with 
a significant impact on X (P < 0.05/66). As the confounding impact of 
each Yk involves a within-couple effect (𝛼𝛼yi→yp), as illustrated in Fig. 2b, 
we further filtered the remaining Yk traits to those with a significant 
within-couple MR effect (P < 0.05/[number of remaining Yk]). The cou-
ple correlation induced by confounder Y can be expressed as 
α2
y→x × αyi→yp. We restricted confounders to only those that had a cor-

relation with X less than 0.8 to avoid using meaninglessly similar traits 
to X. Since potential confounders may be correlated, one could use 
MVMR to assess the joint contribution of these confounders on the 
couple correlation for trait X. This, however, led to numerical instability, 
and we decided to rather prune confounders (r2 < 0.1, prioritizing for 
larger α̂2

y→xα̂yi→yp values) and obtain α̂y→x estimated from univariable 
MR, where IVs were pruned for independence (r2 < 0.001). Finally, we 
plugged in the obtained causal effect estimates for the m remaining 
confounder traits (Y1,Y2,… ,Ym) on X, (α̂Y1→X, α̂Y2→X,… , α̂Ym→X ), into the 
estimator of the correlation induced by these confounders to get the 

estimate of total confounding C =
m
∑
j=1

α̂(Yj)i→(Yj)p
(α̂Yj→X)2. The variance of 

such a sum was estimated as the sum of the variances of the individual 
terms (since they are uncorrelated). The variance of (α̂Yj→X)2 was approx-
imated by assuming α̂Yj→X following a normal distribution and used the 
general formula of Var (X2) = 4μ2σ2 + 2σ4 for X ≈ N(μ,σ2). The variance 
of the product of α̂(Yj)i→(Yj)p

 and (α̂Yj→X)2 was estimated based on the 
formula for the variance of the product of independent random vari-
ables: Var (XY) = Var (X)Var (Y) + Var (X) E2 (Y) + Var(Y)E2 (X).

The role of confounders on trait correlation in couples
We sought to explore the impact of potential confounders on mate 
choice by calculating the trait correlations between partners that are 
due to confounding. We considered the impact of the following con-
founders (Y) on the partner correlations of the remaining 117 traits 
selected by our pipeline: average household income, age completed 
full-time education, sports club or gym user, current tobacco smoking, 
overall health rating, and north and east birth place coordinates (UKBB 
data fields 738; 845; 6160; 1239; 2178; 129; and 130, respectively). The 
choice of these traits was somewhat ad hoc, mostly driven by previous 
evidence for driving trait similarities and themselves showing strong 
couple correlation in the UKBB. Using the single-trait causal effects in 
couples and the same-person MR estimates, correlation due to found-
ing was calculated for each pair (Y,X) as C = α2

y→xαyi→yp (Fig. 2b). These 
confounding estimates were finally contrasted to the couple correla-
tion values to explore the extent that each Y may confound couple 
correlations by examining the ratio between the two estimates (that 
is, 

C

cor(Xi ,Xp)
). Birthplace coordinates (east–west and north–south) were 

considered together and their invoked trait correlations were summed 
up, as they are orthogonal by definition.

Trait convergence over time
Trait similarity in couples can be driven by both mate choice and/or trait 
convergence over time spent together. To tease out the contribution of 
these different sources, we explored whether the cross-partner causal 
effects change as a function of the length of the relationship and age. 
The length of relationship was proxied by the minimum value of the 
‘length of time at current address’ (data field 699) for the two partners. 
To estimate the effect of age, we took the median age of couples. For 
each of the two derived variables, we split the couples into five roughly 

equal-sized bins (using the ‘smart_cut’ function from the cutr R pack-
age). We first estimated the phenotypic correlation of each trait within 
couples of each bin. Next, for each single-trait MR described above, 
analyses were run in the full sample as well as in the different bins. Of 
the significant results identified in the sex-combined analysis above, 
we tested to see if there was any significant difference in MR estimates 
among the bins. Binned MR estimates were computed using the SNP 
outcome effect estimated in each bin separately, and the SNP outcome 
effects used the same SNP exposure effects from Neale. Analyses were 
run in each sex separately and combined (meta-analysed at the SNP 
level). As above, SNP effects were standardized before calculating MR 
estimates. To assess for the presence of a trend across bins, we tested 
the significance of the slope of a linear model of bin-specific correla-
tions and bin-specific MR estimates, inversely weighted by the SE, 
versus the bin centre (that is, the median age or time spent together 
for the given bin). Multiple testing was, as described above, adapted 
based on the effective number of tests but restricted to traits which 
showed significant causal effects in the joint (both sexes combined), 
nonbinned MR (resulting in a threshold of P < 0.05/29).

Estimation of cross-trait causal effects in couples
Using the same process as in the AM analysis involving a single trait, 
we also sought to investigate causal effects within couples involving 
two traits (αxi→yp). In other words, two different traits were used as 
exposure and outcome to determine the causal effects of trait X (in 
the index individual) on trait Y (in the partner). Here, we only consid-
ered trait combinations with phenotypic correlation of <0.8 (esti-
mated in the entire UKBB, n = 337,138) to avoid too closely related 
traits. The same set of SNPs was used as in the same-person MR (that 
is, first filtered for the presence of reverse causality). As in the 
single-trait MR, SNP exposure effects were obtained from the Neale 
summary statistics and SNP outcome effects were estimated in the 
couple-derived dataset. MR models were run in both sexes separately 
and jointly (meta-analysing the SNP effects before performing MR 
analyses). Significance was determined based on the squared effective 
number of tests (P < 0.05/[662]).

Comparison of paths from index to partner
There are several independent paths through which a trait in an index 
case could exert a causal effect on another trait in the partner. We 
wanted to explore if one path was more dominant, in general, and if 
there was evidence for the presence of direct effects (or indirect effects 
with additional traits involved). Restricting to Bonferroni-significant 
trait pairs (with phenotypic correlation of <0.8) from the couple MR, 
we sought to explore the various paths through which a phenotype X 
in an index case (Xi) could causally impact a phenotype Y in the partner 
(Yp) as illustrated in Fig. 2c. With the exception of exposure traits that 
directly alter the environment of their partner, such as smoking creat-
ing the presence of secondhand smoke, Xi is unlikely to have a direct 
effect on another Yp. Alternatively, Xi might indirectly impact Yp by 
inducing changes in Xp, which in turn, impacts Yp. For instance, 
increased BMI in an index case is not expected to directly increase 
cardiovascular disease risk in their partner but rather, to modify the 
partner’s risk through first increasing their BMI. To explore this intui-
tion, we dissected the causal effect from Xi to Yp (ω) into three possible 
(nonindependent) mechanisms. First, Xi could exert a causal effect on 
Xp, followed by Xp having a causal effect on Yp in the partner alone (γ). 
Second, the reverse could occur, whereby Xi has a causal effect on Yi in 
the index alone, followed by a causal effect of Yi case on Yp (ρ). Third, 
there could be other mechanisms, either acting directly or through 
other unmeasured/considered variables. These three scenarios could 
also act in some combination. In this way, the ω estimate would capture 
the paths of γ, ρ and other mechanisms combined.

Using the same-person MR estimates that were calculated as 
described above, we estimated γ and ρ representing the various paths 
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from Xi to Yp and contrasted them to the total cross-trait cross-partner 
effect ω. To quantify γ, the single-trait couple causal effect estimate 
(that is, from the regression Xp ∼ Xi) was multiplied by the 
same-individual causal estimate (that is, αx→y from Y ∼ X). To quantify 
ρ, we first estimated the causal effect of Yi on Yp in MVMR to exclude 
any residual effect of X on phenotype Y from index to partner. Specifi-
cally, Yp was used as the independent variable with both Yi and Xi as 
independent variables (that is, the MVMR was Yp ∼ Yi + Xi). We included 
both IVs from X and Y, pruned for independence (performed in PLINK 
with the options –clump-kb 10000 and –clump-r2 0.001 using the 1000 
Genomes European samples as a reference). We took the coefficient 
of Yi as the direct causal effect from Yi to Yp (αyi→yp) and multiplied this 
by the same-individual causal estimate (αx→y). Finally, we estimated ω 
directly from our cross-trait couple MR framework (αxi→yp). We com-
pared the estimates of γ, ρ and ω using a Z test to assess their difference 
and using linear regression with the intercept forced through the origin 
to determine their relationship. Finally, we quantified the proportion 
of ω that could not be explained by the paths quantified by γ and ρ. As 
γ and ρ are not perfectly independent, potentially due to correlation 
between X and Y or pleiotropic limitations of MR, we estimated the 
extent of dependence via the correlation between ρ and γ across the 
different trait pairs. To account for the duplicate signals due to this 
correlation, we removed the effects of γ from ρ by keeping the residuals 
from the linear regression ρ ∼ γ. We then estimated the proportion of 
variance explained (R2) of ω jointly by γ and the residualised ρ.

Biases in the causal effect estimation
Violations of the MR assumptions are different in applications like ours, 
where the exposure and outcome are the same trait but measured in 
different individuals. Hartwig et al.44 explored the impact of AM on 
MR but for the classical setting of testing different traits in the same 
individual. Therefore, we set up a model (Fig. 7) specific to causal 
effect estimations where exposures and outcomes are the same traits 
but in different individuals (couples) to examine the potential issues. 
We have allowed for a more complex set of MR violations, which we 
describe below.

The model focuses on trait X in the offspring (O) (Xi
O) and that in 

the partner (Xp
O). Analogously, we denoted the same trait in the off-

spring’s mother and father with subscripts M and F. These traits are 
influenced by direct genetic effects (Gi

O) and direct (non-genetic) envi-
ronmental effects (EiO), with effect sizes g and e, respectively. Everything 
derived below works the same way even if Gi

O represents a single SNP 
(and hence, EiO is heritable). The offspring environment is influenced 
by the parental environment (EiP), the parental genes (Gi

P) and the paren-
tal trait (Xi

P). Parental characteristics (G, E,X) are simply defined as a 
rescaled average of the maternal and paternal traits: that is, 

Xi
P = (Xi

M + Xi
F)/√2 (1 + cor(Xi

M,X
i
F) to ensure that the trait variance is equal 

to 1, i.e. Var(Xi
P) = 1. Note that this simplification assumes that paternal 

and maternal effects are identical, which holds in general32. The direct 
causal effects of Gi

P, E
i
P and Xi

P on EiO are denoted by sG, sE and sX, respec-
tively. By definition, the correlation between mean parental genotype 
and offspring genotype is 1/√2. Parental traits (EiP,X

i
P) cannot modify 

offspring genotype; thus, they can influence Xi
O only via its environ-

mental component (EiO). The same description holds for all correspond-
ing variables of the partner. Finally, Xi

O and Xp
O are paired such that 

predefined correlations between G, E and X are satisfied. For this, direct 
assortment coefficients rG, rE and rX are defined between G, E and X, 
respectively.

As can be seen from Fig. 7, parental effects induce a correlation of 
( 1
√2
) (sG + sX × g) between the offspring genotype (Gi

O) and the offspring 
environment (EiO). Also, one can note that the total couple correlation 
for X can arise from three independent sources: direct X assortment 
(rX), through direct assortment for E (rE × e2) and through direct assort-
ment through G (rG × g2). Thus, the expected correlation between Xi

O 

and Xp
O is rX + rE × e2 + rG × g2 . Similarly, the expected correlation 

between EiO and EpO is rE + rX × e2 + rG ((
1
√2
) (sG + g × sX))

2
 and between Gi

O 

and Gp
O is rG + rX × g2 + rE ((

1
√2
) (sG + g × sX))

2
.

Under this model, the expected effect of the index genotype on 
the index trait is

E [β̂Gi→Xi ] = g + ( 1
√2

) (sG + g × sX) e,

while the expected effect of the index genotype on its partner’s trait is

E [β̂Gi→Xp ]

= (g + ( 1
√2
) ⋅ (sG + g × sX) e) rX + rG × g + ( 1

√2
) (sG + g × sX) (rE × e).

Therefore, the expectation of the estimated causal effect Xi
O → Xp

O 
can be written as

E [αXi
O→Xp

O
] ≈ E[β̂Gi→Xp ]

E[β̂Gi→Xi ]
= rX +

rG × g + ( 1
√2
) (sG + g × sX)(rE × e)

g + ( 1
√2
) (sG + g × sX) e

.

Several parameters in this model can lead to the violation of 
MR assumptions

•	 Violation 1 (sssG ≠ 0): this violation implies that parental  
genetics directly impact offspring environment (not  
through E or X). Such violation would most likely happen  
if Gi

P impacts another parental phenotype YiP which has an  
impact on EiO ∶ that is, sG = g ⋅ rG (X,Y) sY. Here, rG (X,Y) refers  
to the genetic correlation between traits X and Y. The formula 
assumes that the effect of Gi

P to a secondary trait (Y) is expected 
to be its genetic effect on the primary trait (X) multiplied by their 
genetic correlation.

•	 Violation 2 (sssX ≠ 0): this violation is the classical parental rearing 
(or in other terms, dynasty) effect.

•	 Violation 3 (sssE ≠ 0): this violation does not lead to MR bias since 
there is no path from the offspring genotype to the offspring 
environment through the parental environment.

•	 Violation 4 (rrrG ≠ 0) ∶ this violation allows direct assortment 
based on index and partner genetics, which most likely happens 
due to assortment for another trait (Y). Hence, its typical size is 
rG = (g × rG (X,Y))2rY. Here, we made a similar assumption as for 
Violation 1. One (toy) example for such scenario could be 
educational attainment (X), whose genetic component is 
strongly associated with intelligence, for which additional 
assortment occurs.

•	 Violation 5 (rrrE ≠ 0): this violation allows direct assortment based 
on the environment of the index and partner. A simplified 
example for this scenario is trait X being BMI and E representing 
‘going to the gym’. In such case, beyond AM for BMI, people are 
more likely to choose their partners from the gym (selecting for 
fitter individuals); hence; the environment has an additional 
direct effect of the partner’s BMI.

To gauge the extent of the MR bias in realistic parameter settings, 
we have visualized the bias for a wide range of parameters. We set 
rX = 0.2, the heritability to 20% (hence, g = √0.2 and e = √1 − 0.2). Then, 
two of the remaining four crucial parameters (sG, sX; rE, rG) were fixed 
and the other two were varied. For example, the chosen range for rG 
assumed a value of rG (X,Y) = 0.3 and rY range of [−0.3, 0.3] using the 
abovementioned formula of rG = (g × rG (X,Y))2rY. Similarly, we used the 
formula sG = g × rG (X,Y) sY  to justify the explored range for sG, with 
rG (X,Y) = 0.3 and sY between −0.3 and 0.3.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The UK Biobank data are available through the standard UK 
Biobank application procedure (https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access). The household information 
can be separately requested from the UK Biobank access team, as it 
is not part of the variables listed on the showcase (https://biobank.
ndph.ox.ac.uk/showcase/index.cgi). The 1000 Genomes European 
genetic data can be downloaded from http://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/.

Code availability
Custom code is available at https://github.com/jennysjaarda/proxyMR.
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