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Article history: The increasing number of 10T devices in personal environments such as smarthomes presents oppor-
tunities and risks from a forensic perspective. These devices generate traces that can be useful for
investigative and forensic purposes in any type of offense. At the same time, newer IoT devices are not
supported by existing digital forensic tools and methods, making it difficult for practitioners to extract
data from them without the support of a forensic advisor with specialized knowledge in this area. In
addition, these traces can present evaluation challenges for forensic scientists, and can contain vulner-
abilities that pose privacy risks. Security vulnerabilities of IoT devices create opportunities for extracting
traces but might also be used by criminals to undermine a device. The aim of this work is to increase
familiarity with traces from various IoT devices in a smarthome, and demonstrate how traces from IoT
devices in a smarthome can be useful for investigative and forensic purposes. This work presents a study
of IoT devices and associated smartphone applications, providing approaches to extracting and analyzing
digital traces. This research led to the discovery of vulnerabilities in multiple devices, and a scenario for
the DFRWS IoT forensic challenge was developed.
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Introduction

The Internet-of-Things (IoT) is growing rapidly, creating op-
portunities and challenges for investigators of any type of crime,
including cyberattacks and physical assaults (Kebande et al., 2017,
Akatyev and James, 2017). By definition and design, smarthomes
and other IoT environments are connected, dynamic, and can be
altered from anywhere anytime (Minerva et al., 2015; Loung, 2018;
Barnard-Wills et al., 2014). Many IoT devices have sensors or ac-
tuators that generate data, sometimes autonomously and some-
times in response to human actions (motion detection, door
opening). This always active, always generating makes them
excellent digital witnesses, capturing traces of activities of potential
use in investigations. IoT devices can be invaluable sources of evi-
dence provided digital investigators can manage the quantity of
data generated, the number and variety of devices, the heteroge-
neity of protocols used, and their distributed nature.

Previous research about forensic analysis of IoT devices pro-
posed approaches to facilitate IoT forensics by using frameworks in
which traces are proactively collected from the devices and the
network to be available for study in case of an IoT related incident
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(Kebande and Ray, 2016; Zawoad and Hasan, 2015; Amar et al,,
2018; Perumal et al., 2015; Dorsemaine et al., 2016). Although
such methods are valid, they mainly apply to the industrial IoT
sector where the need and the resources exist to put such forensic
preparedness in place. Most smarthomes, and even smartbuildings,
lack any such forensic preparedness. This work assumes a crime
scene that has not been prepared in advance from a forensic
perspective. This work concentrates on traces that can be obtained
from IoT devices at a crime scene and associated smartphones,
proposing a generalized practical process that extends existing
methods for examining smartphones.

The devices studied in this work listed in Table 1 were selected on
the basis of their popularity in Europe, and specifically Switzerland.
Some consideration was also given to the level of potential for
extracting traces based on prior research and disclosed vulnerabil-
ities. Traces recovered from the Nest and Wink Hub smartphone
applications in this study corresponded to those discovered by
Rajewski (2016, 2017). An Amazon Echo and Nest Camera were also
included in the scenario development, but were not a focus of study.
Prior work already addresses the Amazon ecosystem from a forensic
perspective (Chung et al., 2017; Hyde and Moran, 2017).

Prior work that categorized traces from IoT devices included
movement, location, temperature, presence/absence, steps taken,
distance walk, time spent walking, and calories burnt (Rahman,
2016). During the present study it was possible to extract various
kinds of traces from the devices and their associated smartphone
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Table 1

Devices selected for study in this work.
Manufacturer Device Function
Askey QBee Multi-Sensor Camera Multifunctional surveillance camera
iSmartAlarm Cube One & Accessories Alarm system with a base station, motion

sensor, and contact sensor (door)

Netgear Arlo Pro Surveillance camera
Nest Protect Smoke and CO detector

applications, including system activity logs with details about the
events recorded by the device sensors as well as the commands
sent by the user. Such traces enable an investigator to infer at what
time a door was opened or the moment when the alarm was
disabled. Certain devices, such as smoke and carbon monoxide
detectors can be useful for determining the time and approximate
location where a fire began in a building. Settings of the device and
information about the connected sensors or linked devices can be
useful to determine the last status of a device. Depending on the
devices, this information might or might not survive a reboot.
Traces generated by IoT devices are not only present on the physical
objects but can also be found on smartphones and the cloud. While
traces in the cloud were not part of this research project, traces
generated and stored by smartphone applications were.

Digital traces stored in smartphone applications that were used
to access and alter the IoT devices in this study included cached
image thumbnails and fragments of the camera streams, cached
events triggered by the sensors, and complete event logs stored in
the application database. These traces provide investigators with
information about what happened, when, and which user account
sent commands to a device. The image thumbnails could poten-
tially reveal the number of people within the IoT environment, and
their identities. Photographs and videos recorded by IoT devices
can be highly valuable from a forensic perspective, providing op-
portunities to attribute physical activities to a specific individual.
Cloud credentials were also recovered from smartphone applica-
tions, which could be utilized by an investigator to obtain data
stored on cloud systems. Importantly, well-established methods for
extracting and examining traces from smartphones can be
extended to IoT devices, including chip-off and application analysis.

The novel contributions of this research include:

¢ Extending existing methods for extracting and examining traces
from smartphones to IoT devices

o Developing multiple plugins for the Autopsy analysis platform,
automating the extraction and parsing of traces related to IoT
devices).

e Obtaining memory or filesystem images for the iSmartAlarm
and Arlo base stations, as well as the Wink Hub by interrupting
the boot process.

e Discovering four previously unknown vulnerabilities on two
devices and reporting them to the respective vendors.

e Revealing cloud credentials for two applications, decrypted
from the application settings.

e Creating a tool to retrieve and parse log data from the iSmar-
tAlarm base station.

o Conceiving of a method and supporting tool to intercept traffic
between the QBee Camera and the smartphone application and
reuse it to disable the camera.

e Generating a scenario for the 2018—2019 DFRWS IoT forensic
challenge.

Methodology

The study of the devices in this research followed a

methodology in six steps: preliminary analysis, testbed setup,
network analysis, smartphone application analysis, vulnerability
analysis, physical analysis. The objective of this methodology is to
allow an investigator to study a new device and discover which
traces are available on the device, where and how to collect them,
and eventually develop tools to automate the process. This
approach extends existing methods for forensic processing of mo-
bile devices (Ayers et al., 2014). The main difference is that the
presented methodology deals with a wider variety of device types,
in both hardware and software, requiring investigators to adapt
forensic principles to deal with new systems and extend existing
tools to handle new types of traces.

Preliminary analysis. When an investigator encounters a new IoT
device, the first step is to survey existing research on the device,
including academic research, security sources such as vulnerability
databases, and user community sources. Such a survey can provide
information about traces and vulnerabilities that are already
known to be on the device, as well as possible ways to gain root
access to the device.

Testbed setup. In order to study an IoT device in an extensive way
it is important to test it within a controlled environment. This test
environment requires a network configuration that enables passive
collection of all traffic sent and received by the IoT device. In
addition, to test possible attacks on the IoT device, the network
configuration needs to support man-in-the-middle (MITM) attacks.
To satisfy these requirements, the testing environment in this work
used a Raspberry Pi 3 configured to provide internet access to both
WiFi and Ethernet devices.

Network Analysis. The objective of analysing network traffic in
the test environment is to study the communications to and from
the IoT device, including which other devices or systems it com-
municates with, which communication protocols it uses, and
whether readable information is transmitted, either in plaintext or
encrypted but vulnerable to MITM attacks. Examining the different
entrypoints into the device, the listening ports, and the active
services will give insights into possible ways to obtain information
from the devices, or the availability of remote access services such
as ssh or telnet.

Smartphone Application Analysis. 10T devices, especially ones
designed for smarthomes, provide mechanisms for the user to
monitor and control the device via the Internet or the local
network. These user interactions typically involve a smartphone
application that can store information about the device, its
configuration, and past events. Analysis of IoT traces stored by
associated smartphone applications requires manual investigation
of the applications, as mobile forensic software does not, generally,
include parsers for these particular applications. In-depth, manual
analysis of the smartphone application, including reverse engi-
neering, can uncover additional information which can be corre-
lated with corresponding events recorded by the IoT device and
commands sent by the user within the test environment. The re-
sults of this in-depth analysis can be codified by writing custom
plugins within open source digital forensic tools to automatically
process the traces. These plugins will be available for reuse when
the device is encountered in future investigations.

Vulnerability Analysis. It is important to analyse vulnerabilities of
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Table 2
Summary of findings on each IoT device studied in this work.

Device Network Smartphone Applications Physical

Network Access Vulnerabilities

ARLO — Cloud Credentials (token)
Linked Devices

Cached Thumbnails

User Informations

Linked Devices

Events

Video Fragments

Cloud Credentials -

Access)
NEST —

QBee Cleartext Traffic

Port Forwarding with UPnP
Diagnostic Logs Cloud Credentials

Recorded Events

MQTT Topics Info

UPnP Discovered Devices
User Informations

Linked Devices

Events (Long Term Storage)

SSDP Discovery — —

iSmartalarm

Wink SSDP Advertisements

Echo

WiFi PSK (Memory Image)
Settings and Logs (Root

Logs via USB (Nest Protect)

Memory Images

Filesystem Images

Telnet Console (From -
internal network)

- Cleartext Traffic

Encrypted Password on Android
Unauthenticated Log Access
Cleartext Password on Android

Diagnostic Logs Access

SSH Console -

the IoT device to understand how a device could be compromised
and exploited by a malicious actor in order to perpetrate a crime, as
well as to discover possible ways to access a console on the device
in order to acquire data. Vulnerability analysis of IoT devices
combines all of the information and data from the preceding steps,
and inspects the most common vulnerabilities for the discovered
entry points (Open Web Application Security Project, 2014, 2018).

Physical Analysis. When investigating a crime, it is usually not
possible to retroactively collect network traffic related to a perti-
nent IoT device. In such cases, the information stored on the IoT
device itself is of paramount importance. Therefore, the final step in
the analysis methodology for IoT devices is to perform a physical
analysis of the hardware. Depending on the IoT device it could be
possible to get access via serial connection (UART) and/or JTAG, or it
could be necessary to proceed to chip-off techniques to access the
device memory.

Cloud. A further step when dealing with IoT devices in an
investigation is to obtain related data from associated cloud service
providers. Data from IoT devices is often stored in the cloud for easy
retrieval by associated smartphone applications. This data might be
available from the cloud service provider or using cloud identifiers
recovered from the user phone. Legal authorization is often a pre-
requisite for obtaining such information in the cloud (James and
Jang, 2015).

Extracting traces from IoT devices

During the present research it was possible to extract traces
from multiple locations: directly from the memory of the IoT de-
vices, from the network and from the smartphone applications. The
results are summarized in Table 2.

Network Access. Although most network traffic associated with
the IoT devices in this study was encrypted, some devices
communicated with the smartphone application in plaintext.
Analysis of network traffic between the QBee device and smart-
phone application revealed details used to authenticate remote
commands to the camera. Through further analysis and testing, it
was discovered that these authentication details could be used to
remotely control and disable the QBee Camera.! When such an
attack was performed in the testing environment, it left no trace
that could be used later to reconstruct that the attack occurred.
Examination of traffic from the iSmartAlarm Cube One found that
the diagnostic logs sent from the base station to the smartphone

T CVE-2018-16225.

application were transmitted in plaintext as shown in Fig. 1. These
logs contain details about events triggered by the sensors, com-
mands received by the base station, and requests made to the
iSmartAlarm cloud servers since the device was rebooted. Although
these logs could be accessed via the smartphone application, they
were not stored or cached on the smartphone. Knowing that the
diagnostic endpoint was not authenticated,’ the collection process
was integrated in a Python script to obtain the data directly from
the device instead of having to intercept the network traffic to the
smartphone application.

The analysis of the network traffic therefore provided a way to
discover how a device could be disabled or otherwise compro-
mised, as well as how recorded event details could be acquired
directly from an IoT device.

Direct device access. Utilizing the serial connections on three of
the IoT devices studied in this work, it was possible to access the
memory/filesystem. Through the bootloader of the iSmartAlarm
Cube One and the Netgear Arlo Base Station, it was possible to
acquire memory dumps. The memory dump from the Netgear Arlo
contained the password for its private WiFi network (The Netgear
Arlo creates a custom WPA2 protected WiFi network in order to
isolate the cameras from the user's LAN). The iSmartAlarm memory
dump did not contain noteworthy traces in the context of this
study. By enabling telnet access in the NVRAM settings of the Arlo
station and connecting to its private WiFi network, it was possible
to obtain root shell access to the device which was used to obtain a
partial filesystem copy of the device. The traces collected from the
Arlo ranged from details about cameras that were connected to the
station and their last settings, to all the logs from the device last
factory reset, including for example the timestamps of the motion
detection events from the connected camera. The Wink Hub was
accessed via the bootloader to obtain a root shell on the Linux
system and extract a copy of the full filesystem via SSH. Information
in files acquired from the Wink Hub included configuration settings
of the station and the connected devices, as well as the system logs.
However, in contrast to the Arlo Base station, the system logs were
only stored in the RAM and were lost on device reboot. Importantly
these traces only concern devices with which the Wink Hub was
directly connected, and not devices simply linked to the Wink Hub
cloud account.

Smartphone Applications. The ultimate source of traces related to
the IoT devices in this study was the smartphone on which the
different companion applications were installed. Forensic

2 CVE-2018-16224.
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Fig. 1. Interception of iSmartAlarm'’s diagnostic logs.

examination of these smartphone applications revealed multiple
types of traces, in configuration files, databases (e.g., SQLite, Realm)
and cached files. Details about the events recorded by the sensors
were available for the iSmartAlarm application, the Wink Hub and
the Nest application. For instance, the iSmartAlarm application
recorded event details, commands sent to the device, and which
user sent each command. In addition, smartphone applications can
save thumbnails and videos extracted from connected camera
feeds. For example, such traces were present in the caches of the
Arlo and the Nest smartphone applications. Cloud credentials are
another significant type of trace stored in some smartphone ap-
plications. Smartphone applications for the QBee Camera and the
iSmartAlarm stored the username and password in the configura-
tion files, in encrypted and plaintext format, respectively. The
smartphone application for the Arlo stored the user ID and an
authentication token in a configuration database.

Parsing traces from IoT devices

The traces collected from the IoT devices and smartphone ap-
plications posed two main challenges: the quantity of data and the
fact that most of it is either unstructured or not explicit (e.g., codes
in a database).

During this research multiple parsers were developed,® within
the open source Autopsy framework as well as standalone ones, to
automate the extraction of the traces in a structured and under-
standable form. Specifically, a plugin was developed to extract
cloud credentials from QBee Camera and Swisscom Home App
settings on Android. Another plugin was developed to extract cloud
credentials, events and user actions from iSmartAlarm settings and
database on Android. In addition, a standalone script was created to
download the debug logs from the iSmartAlarm base station and
parse interesting events.

To develop these plugins, it was first necessary to clean and
structure the data when needed. For example, regular expressions
were used to parse the interesting logs from the iSmartAlarm
diagnostic file. Once the data was structured, it was possible to
proceed to the correlation between the known actions performed
during testing, and the associated commands and the entries in the
data. In this way the different codes in the data were associated
with a specific type of action or command. Codifying this knowl-
edge allows for the reuse of the plugins in order to extract auto-
matically from event databases/logs information that could be
useful to an investigator.

iSmartAlarm Events. Two tools were developed to parse infor-
mation related to the iSmartalarm device, a plugin in two parts for
Autopsy as well as a standalone python script.

3 https://github.com/fservida/msc_autopsy_plugins.

The smartphone application for iSmartAlarm stores data in a
SQLite database called iSmartAlarm.DB. The database contains
multiple tables, but only two contain pertinent data: TB_IPUDairy
and TB_SensorDairy (Table 3). The TB_IPUDairy table (Fig. 2) stores
changes in the base station state, user interactions and alarms. The
TB_SensorDairy table stores the events generated by the sensors in
the latter. These events were mostly in the form of unknown codes.
As such, these coded events were compared to the known actions,
as documented during the testing in a controlled environment
(testbed) and from the interface of the application itself, in order to
establish a “translation table” between each code and a specific
event/action. The iSmartAlarm application was decompiled with
jadx (Skylot, 2013—) and, by determining which functions were
responsible for the database management, it was possible to find
additional mappings between the codes in the database and the
event/action type they represent. Subsequently this data was in-
tegrated as a python script in a plugin for Autopsy, which auto-
matically looks for the application database, decodes it, and
presents the events in a structured manner.

The standalone script was used to extract and parse the debug
logs from the iSmartAlarm device itself. Once obtained, as previ-
ously described, the raw logs were a mix of binary data and text
data. In the text data (cf. Fig. 3) a common character, “$*, was found
to be used as a separator between events. Using this knowledge, the
python script reads the text data and parses all the unstructured
events. Because these events were simple text strings, multiple
regular expressions were used to parse the pertinent information
and to structure it in a JSON database. The format of the binary part
of the file was not deciphered, and is currently omitted during
parsing.

Cloud Credentials. Two other plugins were developed to auto-
mate the extraction of user cloud credentials from the applications
settings of iSmartalarm and QBee Camera and Swisscom Home
App. The iSmartalarm cloud credentials were stored in plaintext in
the XML settings file, making them easy to retrieve. Although the
QBee Camera could credentials were encrypted, the encrypted
settings were in a format suggesting the use of the common “Secure
Preferences” library (Alexander-Bown, 2013—). By default, this li-
brary stores the AES key alongside the encrypted data in the XML
file. However, none of the values was a valid AES key for the
decryption. The smartphone application was therefore decompiled
to determine which function handles the encryption/decryption of
the settings (Fig. 4). The discovered function was a slightly modified
version of the “Secure Preferences” one. The AES key is in fact
derived from the value in the file, by inserting a hardcoded string
and hashing it with SHA 256. With that knowledge it was possible
to implement a decryption function in python and integrate it in
another Autopsy plugin. Since the same algorithm and hardcoded
string were used in the Swisscom Home App, the plugin works for
both applications.
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Table 3
iSmartAlarm - TB_IPUDairy and TB_SensorDairy Translation Tables.
logType Type action Meaning profileld profileName
1 Alarm 1 Contact Sensor Alarm - -
2 Motion Sensor Alarm - -
2 Profile Change - - 0 ARM
_ — 1 HOME
_ — 2 DISARM
_ — 3 PANIC
5 Cube Status 1 Cube Offline - -
2 Cube Online — -
logType Type action Meaning
1 RemoteTag Action 1 Arm
2 Disarm
3 Back Home
4 Left Home
_ — 1 Open (Unknown Device)
2 Closed (Unknown Device)
3 Door Open
4 Door Closed
5 Motion Detection
6 Low Battery
7 Nominal Power
8 Sensor Test (model = = 0)
8 Smoke Detection (model = = 1)
14 Device Added
15 Device Deleted
date v action IPUID logType  sensorName operator sensorType  sensorlD userlD profileid profileName
Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
145 1521108904 004D3209D3E4 Z TheBoss (Remote Tag) 2 DISARM
146 1521108878 004D3209D9E4 2 TheBoss (Remote Tag) 1 HOME
147 1521108826 2 004D3209D9E4 5
148 1521042170 004D3209D9E4 2 TheBoss (Remote Tag) 2 DISARM
149 1521041811 1 004D3209D9E4 5
150 1521037461 004D3209D9E4 2 skyman 2 DISARM
151 1521037151 004D3209D9E4 2 TheBoss (Remote Tag) 2 DISARM
152 1521037119 1 004D3209D9E4 1 TheBounc...

Fig. 2. iSmartAlarm database (Table IPUDairy).

AF9::APSEND: :the receive message is AP auto send, try to get more message$@@0000000SAFADAF9: : 4
1$@000000005AFADAFI: : ALARMDOOR: : {"'SensorID":"000A8540" ,""MessageType":"1","TS":"1526389497550" ,
AFB: :APSEND: :the receive message is AP auto send, try to get more message$@P0@0@0OOSAFADAFB: :/

Fig. 3. Door sensor triggered in iSmartAlarm diagnostic logs.

Summary of research findings

This research highlighted two main challenges to the forensic
investigation of IoT devices.

The first challenge relates to the analysis of the network traffic.
An increasing amount of traffic is encrypted, which is a beneficial
development for the security of the users, but limits the collection
of interesting traces to those transmitted by the less secure IoT
devices. Additionally, IoT devices do not limit communication to the
WiFi and Ethernet protocols studied in this research; a number of
devices use protocols such as ZigBee, Z-Wave, Bluetooth or custom
radio frequencies protocols for the communication between the
sensors and the base station. The analysis of these additional pro-
tocols could provide new traces or, more importantly, indications of
possible ways to exploit vulnerabilities in the devices, but requires
more complex equipment and extended expertise.

The second challenge concerns the traces present on the phys-
ical devices. While traces were obtained from the devices, these
traces either limited themselves to configuration settings or had
limited persistence, mainly due to the limited storage available. The
traces about the events recorded by the devices for example were
retained only until a reboot on the iSmartAlarm Cube One and
Wink Hub. The Arlo base station was the most interesting from a
forensic point of view because the traces were retained until a
factory reset. Moreover, access to these traces is non-trivial at the
moment; the technique used in this study exploited the access to
the bootloader via serial connection to extract memory images or
obtain a root shell in order to extract a filesystem image. Other
techniques include using JTAG or chip-off to obtain access to the
data on the device. These procedures can be technically chal-
lenging, especially for an investigator with limited knowledge of
the field, and can be destructive for the device and the traces on it.
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Fig. 4. Decryption function in QBee Camera application.

It is foreseeable that future developments in forensic techniques
and technology could provide simplified ways to perform a physical
extraction of data from IoT devices, similar to ongoing advances in
smartphone forensics.

Given the current challenges of the physical analysis of IoT de-
vices, smartphone and cloud forensics are complementary. Indeed,
most of the data will be sent to the cloud for easy retrieval from the
smartphone applications/webpages, and most of that data will
subsequently be synced to the mobile device.

The analysis of the linked smartphone(s) can therefore produce
traces not available anymore on the device itself. The case of the
iSmartAlarm is the most flagrant discovered in this research, after a
reboot the logs about the time and date of the events would be lost
on the base station; however parsing the application's database on
the smartphone would yield the totality of events cached from the
cloud during a normal usage of the application, which could extend
up to the moment the device was setup. The main problem with
forensic analysis of the traces on a smartphone is that some in-
formation, particularly for recent activities, may not be available
because they have not been automatically synced with the associ-
ated applications.

This problem can partially be solved by cloud forensics. By
accessing the data in the cloud, either with a legal request to the
cloud service provider or authorized use of credentials extracted
from the smartphone, an investigator could download the available
data, including the most recent events, not yet synced with the
smartphone. This approach can also allow, for example, the
download of more data than could be retrieved from a device. For
instance, in the case of the Arlo, it was possible to retrieve the full
recorded clips, instead of merely the thumbnails available on the
smartphone. One downside of this approach is that some services,
for example the Nest and the Arlo, offer subscriptions to the user,
and the data on the cloud is retained only during a certain time-
frame depending on the subscription plan (the exception being
eventual backup copies still available). In this context, aggregation
devices and services such as those offered by the Wink Hub are of
extreme interest from a forensic point of view; these services poll
the linked devices or accounts and retain a copy of the event details
in separate cloud system. This data can remain on the separate
cloud system even after it has been removed from the original
cloud system, either because it exceeded the allowed timespan or
because it could have been intentionally deleted by the user.

Changeability & accessibility

The same features that make IoT devices excellent digital wit-
nesses, can create challenges for forensic preservation - the
moment digital investigators approach a space monitored by IoT
devices, they are generating traces, virtually stepping in the digital
evidence. Such alterations are a form of evidence dynamics (Casey,
2011). Evidence dynamics can occur in any crime scene, impacting
physical and digital evidence, but is particularly pronounced in IoT
equipped environments. For instance, some devices and related
applications store information about the last event, or a token to
access such information or images on the cloud. By interacting with
the scene and the devices, the last event will no longer be related to
the events of interest but instead to the events generated by the
investigators as shown in Fig. 5 for the Arlo camera.

Another point to consider is that as the devices have low storage
capabilities it is possible that the events generated by the in-
vestigators/first responders fill the device memory, prompting it to
prune the older, relevant events. The additional data created by the
intervention on the scene means also that the traces will be
polluted with non-relevant data; this underscores the need for
extensive documentation of all interaction with the devices on the
scene by first responders and investigators alike, to be able after-
ward to differentiate between irrelevant and pertinent traces.

These issues are challenging not only for investigators in a real
case, but also when creating a forensic challenge scenario. In fact, it
is difficult in such an environment not to leave the touch of the
creator in the traces. The preparation of the scenario for the
2018—2019 DFRWS IoT challenge provided some examples of this
problem.

A first difficulty consisted in the unwanted triggering of a mo-
tion detection; shortly after the scenario was concluded, an erro-
neous passage in front of the Arlo camera meant the device, and the
smartphone application, showed traces of this passage, which was
not planned in the scenario. As the data from the Arlo device was
not yet obtained, nor the smartphone already imaged, it meant that
the scenario had to be modified to account for the presence of
somebody after the crime happened but before the police arrived
on scene; in that case by the addition of a witness who entered the
laboratory.

Another problem derives from the smartphone application of
iSmartAlarm. That application sent PNP discovery requests on the
network to discover nearby devices, which resulted in traces in the
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"userId": "A79GZN-316-31881729",
"deviceId": "59U17B7BBSB46", =
"deviceType": "camera”,
"deviceName": "Kitchen's camera”,
"lastModified": 1526578366312, =
"presignedLastImageUrl":

"https://arlolastimage-z1.s3.amazonaws.com/119afe5d_33cl_47f1_97ef_e797ef5b81de/A79GZN-316-31881729/59U17B7BB8B46/ 1las
tImage.jpg?AWSAccessKeyId=AKIAICS2UACAWFSD6C2AREXpires=1526664766&5ignature=hyWkCFyg2KN%2Bs4YOHFWELZADX2BU4%3D",

"presignedSnapshoturl”:

"https://arlos3-prod-z1.53.amazonaws.com/119afa5d_33c1_47f1_97ef_e7%7ef5b81de/A79GZN-316-31881729/59U17B7BB8B46/ snaps
hot.jpg? AWSAccessKeyId=AKIALCS2UACAWFSD6C2AREXpires=1526664766&5ignature=AEDVCALBDG58PCBUOWPFfO8ASen#3D", =

}

1

Fig. 5. Traces of the last photograph taken by an Arlo surveillance camera now relate to the investigators present at the crime scene, not the previous photograph that existed prior

to their arrival at the scene.

configuration files suggesting the presence of a specific network
printer on scene. The printer however was not on scene but on a
different network used to test remote access to the devices. While
this could be useful information in an investigation for locations
frequented by the smartphone user, it was unwarranted in the
scenario.

Lastly, the configuration of some devices, notably the NEST
camera, could not be performed directly on an iOS device (an
iPhone SE, initially used for the study but shortly replaced by the
Samsung phone), and was therefore made using a computer, with a
dedicated Chrome profile. The separation on the profile was not
however sufficient, by error some personal pages were opened in
that profile, and after imaging the phone for the scenario it became
evident that personal information and history were synced to the
chrome browser on the phone (both used the same Google account:
jessie.pinkman@gmail.com).

Accessibility of the traces on the devices is also problematic, as
outlined above, depending on the device it is possible to obtain
much more information if the device is examined prior to power-
off. However, this requires preexisting knowledge of the specific
IoT device and any applicable tools for processing traces. For an
investigator arriving on a scene this means that three main situa-
tions present themselves: she/he knows the device and already has
some tools to extract directly most of the data, she/he knows that
there is no way to rapidly extract the live data or she/he does not
know the device at all. In the first situation the investigator will be
able to utilize said tools on scene, and transport the device back to
the forensic laboratory for preservation and additional analysis. In
the last two situations the investigator will most likely have to
bring the device back to the laboratory for advanced analysis, losing
data in volatile storage with the risk that no copy was available on
the persistent storage. This situation highlights the need for pro-
active study of devices that could frequently be encountered on a
scene; since most of the interesting data (event logs, user activities)
are stored on volatile memory and digital investigators want to
maximize the chances of recovering these traces.

Attribution and evaluation

A final challenge with IoT traces is establishing a link between
the digital traces and physical activities and entities. IoT traces can
be used to reconstruct activities in great detail, but an incorrect
assumption or overlooked event can lead to the wrong conclusion.

4 https://github.com/dfrws/dfrws2017-challenge.

For example, consider a violent crime in a smarthome as was
simulated in the DFRWS 2017—2018 0T Forensic Challenge.” One of
the questions “Evaluating and Expressing Conclusions: Assigning
the probability of the results given two competing propositions
(e.g. The husband killed the wife, some unknown person did).”
Although traces on IoT devices in the victim's home might indicate
that the victim fought with a man other than her husband imme-
diately before her death, this does not prove that the unknown man
murdered the victim. A common mistake is to concentrate on a
specific hypothesis, such as the husband killed his wife. Such
strength of hypothesis approach is to be avoided (Casey, 2018).
Alternative possibilities must be considered carefully, including the
victim harmed herself, the husband killed his wife, or the victim is
still alive. The proper approach is to evaluate the strength of evi-
dence given at least two propositions.

As another example, when someone speaks commands to an
Amazon Echo device, additional analysis is necessary to determine
whose voice it was, and whether the person was physically close to
the device or speaking through audio conference from a different
location.

Presence indicating events such as motion detection or door
opening are not directly linked to an identity. When a trace from an
IoT device shows that a specific user deactivated a security alarm
before the front door was opened and someone entered, this could
provide a strong indication that the account owner issued the
command. However, the account owner could have issued the
command remotely to allow someone else to enter the front door.

Obtaining the smartphone that interacted with IoT devices can
provide a more a complete picture of an individual's presence in a
particular place at a specific time. However, even events within
smartphone applications do not necessarily mean the presence of a
user. When geolocation information indicates that the device was
at the scene when the crime occurred, additional analysis is needed
to determine if the clock was correct, the location information was
accurate, and that the device was not being used by someone else at
the time. When IoT devices generate multimedia traces such as
photographs or audio recordings, face or voice comparison can
provide stronger evidence of identity and attribution of activities.
In any investigation involving IoT devices, care must be taken to
evaluate the digital traces under multiple alternative explanations.

Forensic considerations

To handle IoT devices properly from a forensic perspective, in-
vestigators could be assisted by forensic advisors with specialized
digital forensic expertise, helping them recognize, preserve and
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prioritize digital traces at the crime scene. The effectiveness of
forensic advisors has been demonstrated in disciplines other than
digital forensics, providing guidance and expertise throughout the
investigative process, including which sources of evidence and
forensic processes could be most valuable for their case, and what
questions to ask specialists in the forensic science laboratory (Bitzer
et al., 2018). Ideally digital/multimedia forensic advisors should
have broad expertise in the different fields of forensics, not limiting
themselves to digital disciplines; with a transversal education
(Burri et al., 2018) they will be able to support the investigation and
know when to coordinate with technical specialists for in depth
analysis.

This work also helps address questions of admissibility of evi-
dence from IoT devices in court. The research results for the specific
devices studied in this work will help with the evaluation and
interpretation of future evidence presented in court about the same
devices, by providing a reference for otherwise unknown devices.
More generally, when a new IoT device contains traces that will be
presented as evidence in court, it is beneficial to study the device
following the methodology provided in this work in order to un-
derstand the meaning and limitations of the traces. Utilizing this
methodology to research other popular devices will extend digital
forensics capabilities to evaluate evidence from the broader set of
IoT devices properly.

Conclusion and future work

The rising prevalence of IoT devices in homes and buildings
increases the opportunities to recover digital traces that are rele-
vant to an investigation, whether it be physical (e.g., burglary,
arson) or virtual (e.g., cyberattack, identity theft). This work dem-
onstrates that, in addition to traces on smartphone applications,
there can also be useful traces stored on IoT devices themselves.
Mobile device forensic methods can be applied in general to extract
and examine traces from IoT devices, but the variety of IoT plat-
forms sometimes require device-specific approaches. As demon-
strated in this work, open source forensic tools can be customized
to process traces from IoT devices. For digital forensics to rekeep
pace with technological developments, there is a pressing need for
more research into IoT devices and their associated smartphone
applications, the traces they generate and contain, and security
vulnerabilities that open privacy concerns as well as forensic
extraction opportunities. In particular, there is a need for more in-
depth physical analysis of IoT devices, including chip-off techniques
commonly applied to mobile devices. Additional study is needed of
the most common home security systems, smart assistants as well
as smart firewalls.

The potential criminal exploitation of IoT devices must also be
considered. A criminal can use information generated by IoT de-
vices to stalk a victim or plan an attack, such as accessing surveil-
lance cameras and other IoT systems in a home when planning a
robbery (determining when the owners are not in their home), and
misusing or disabling IoT devices to prevent them from recording
events related to a crime.
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