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The fatigue-induced alteration
In postural control is larger in
hypobaric than in normobaric
hypoxia

Francis Degache®?*, Emilie Serain?, Sophie Roy?, Raphael Faiss® & Grégoire P. Millet(®3

To test the hypothesis that postural control would be more affected by plantar flexors fatigue during
acute exposure in hypobaric (HH) than in normobaric (NH) hypoxia or normobaric normoxia (NN).
Twelve young male adults performed in a random order three experimental sessions (in HH and NH
(F;0,0.139) at an altitude of 2950 m, and in NN at 500 m) composed of a bipedal postural control with
eyes open on a posturographic platform before and after a plantar flexors fatiguing protocol. Center

of pressure (CoP) trajectory and stabilogramm diffusion analyses (SDA) parameters were assessed. A
two-way repeated measures analysis of variance was used to identify differences by examination of the
group and time interaction. Surface of CoP trajectory analysis, increased at POST in HH (p < 0.001) and
in NH (p < 0.01) compared to NN. SDA confirmed that PC was more altered in HH thanin NH (p < 0.001)
and NN (p < 0.05) at POST. The plantar flexor fatigue-induced alteration in postural control increased to
alarger extent in HH than in NH or NN, suggesting an alleviating influence of the decreased barometric
pressure per se and a mechanical influence of the higher breathing frequency in HH.

Postural control (PC) is a complex and multifactorial function requiring the ability to maintain the projection of
the center of gravity in the base of support. Maintaining balance is a continuous and permanent re-establishment
process"~. The regulation of PC depends on sensorial information’s from visual, vestibular system located in the
inner ear, proprioceptive and cutaneous receptor, an integration and treatment by the central nervous system,
and finally an appropriate motor response. Under static or dynamic condition in several conditions measuring
the center of pressure (CoP) displacement on a posturographic platform is one of the most used methods to
analyses PC*-°. Another conceptual framework, called the stabilogram diffusion analysis (SDA), was applied to
the analysis of the traditional statokinesigram for studying human PC%’. In this approach, the CoP is modelled
as fractional Brownian motion, which characterizes the effective stochastic activity of two PC systems during
quiet standing: a short-term and long-term region. It has been suggested that short-term operates in an open
loop mode and does not directly rely on sensory information, whereas the long-term region reflects closed loop
control mechanisms that the human PC operates with sensory feedbacks. The transition between these two types
of control is termed the critical point. This transition point was defining by the critical time intervals (Ct = At,)
and the critical mean square displacement (Cd = Aj?) who quantify the spatial and temporal characteristics of
the switching mechanisms.

Deterioration in PC due to muscular fatigue has been reported in several studies$13. This decrease in the
ability to maintain balance after a fatiguing task might be related to neuromuscular fatigue mechanisms that have
both central and peripheral origins. This decline involves processes at all levels of motor pathways form the brain,
including the central motor command (cortex, motoneurons), to the skeletal muscle, suggesting an impairment
of the action potential transmission along the sarcolemma, the excitation-contraction coupling, the release and
reuptake of calcium and the actin-myosin interaction'*!. Ankle plantar flexors (PF) are of particular interest
because they play a major role in postural control during unipedal and bipedal quiet standing'>'®'". In this con-
text, analyzing PF fatigue to demonstrate PC alterations seems relevant!1>17:18,
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Besides, an acute exposure to both hypobaric hypoxia (HH) and normobaric hypoxia (NH) leads to signifi-
cant alteration in PC>*1%-2!, Recently, we suggested that PC was more altered in HH than in NH* at rest. Hypoxic
conditions can be defined as a combination of barometric pressure (PB) and an inspired fraction of oxygen (F,0,)
that results in an inspired pressure of oxygen (P,0, = F,0, x PB-47) lower than a normoxic value of 150 mm Hg?.
Indeed, hypoxia can be achieved by reducing PB (i.e. hypobaric hypoxia (HH) or by lowering the F,O, while PB
remains stable (i.e. normobaric hypoxia (NH)). It is well described that muscle fatigue alters postural control (1).
Since hypobaric hypoxia is a more severe stimulus than normobaric hypoxia(4,23,24) and is known for acceler-
ating the development of muscle fatigue*, one may speculate that postural control alteration would be greater in
hypobaric hypoxia than in other environmental conditions.

To our knowledge, differences in PC have been reported only during acute passive exposure between HH and
NH*. Since many popular sports (i.e., hiking climbing and mountain trail running) are practiced at altitude with
reported effects on PC'*2%?, it is hence of interest to investigate the effects of a fatiguing exercise in HH vs. NH.
Therefore, the main purpose of the present study was to investigate the effect of muscular fatigue in three different
conditions (HH, NH, NN) on postural control in healthy subjects. Our hypothesis was that a muscular fatigue
would alter more PC in HH than in NH or NN conditions.

Materials and Methods

Subjects. Twelve males without any history of neural disorder participated in this study (24 & 3 years, 178.8
+ 7.0cm, 78.3 £ 8.0kg). All volunteers were low altitude residents (380-500 m) and had no significant altitude
exposure at least one month prior the experiment. The local Medical Ethics Committee (CCVEMO007/10, Sion,
Switzerland) approved the study and written informed consent was obtained from each participant after explain-
ing the experimental procedures and possible risks. Moreover, all experiments were performed in accordance
with relevant guidelines and regulations described for research on human of local Medical Ethics Committee.

Experimental design. The experimental design was conducted in three separate trials for twelves rand-
omized subjects at matched conditions. NN measurements were performed in a well-ventilated laboratory outside
the hypoxic chamber at an altitude of 500 m (F,0, 20.9%, Py 723 mmHg, Sion, Switzerland). The HH experiments
were conducted at 2950 m (F,0, 20.9%, Py 541 mmHg) at Col de Gentianes (Valais, Switzerland). The NH sessions
were realized in a hypoxic chamber (SL-400, ATS, Sydney, Australia), which is a well-ventilated 30-m? room
(2.4m x 5.0m X 2.5m) with transparent glass panels. The hypoxic system allows sufficient hypoxic air input flow
(up to 10001/min) in order to obtain a continuously stable F,O, (altitude simulation by lowering the inspired frac-
tion of O,). NH measurements were done at 500 m (Sion, Switzerland), at a “simulated” altitude of 2950 m (F,0,
14.9%, Py 723 mmHg). PB was measured at theses altitudes using a validated hand-held digital barometer (GPB
2300, Greisinger Electronic, Regenstauf, Germany; accuracy £1.5 mmHg). F,0, was measured using an oximeter
(GOX 100T, Greisinger Electronic) with an external sensor (GCO/GOO 370, Greisinger Electronic). PB and F,O,
were measured and recorded every four hours. We considered travel time to reach the location at 2950 m, travel
time was of approximately 25 minutes by car and additionally 25 min by cable car. Travel times to the HH location
were reproduced in the hypoxic chamber by decreasing F,O, to the desired level progressively upon entering the
hypoxic chamber.

P,0, (103 vs 101 mmHg) and ambient temperature (24.4 vs 27.4°C) were matched between for HH and NH,
respectively).

Postural stability and fatigue protocol.  Before fatigue protocol, subjects were prepared with a belt placed around
the chest to calculate breath frequency (BF) (Bionomadix, Biopax System Inc, United States) and a finger pulse
oximeter (WristOx® 3100, Nonin Medical, United States) was placed on the index of the right hand.

For all HH, NH, and NN conditions, a posturographic platform (Fusyo-Medicapteur, Toulouse, France; Dekra
certification) was used to calculate the CoP trajectories. A computer with the Medicapteurs Winposture2000 soft-
ware recorded data. The force plate measured 530 x 460 x 35 mm and was equipped with three pressure gauges
(hysteresis < 0.2%). Signal processing was accomplished with a 16-bitA/D converter at 40 Hz?>. Duration of test
« Pre » and « Post» general session was 51.2 seconds, resulting in a 2048-point time series. Duration of each test
between fatigue exercises was 25.6 s, allowing for 1024-point time series to be obtained to limit potential recovery
time. Participants stood barefoot, double-leg on precise markers of the platform while trying to maintain postural
stability during the trials in all sessions. Their legs were extended, and their feet formed a 30° angle relative to each
other with an inter-malleolar distance of 5cm.

The subjects were instructed to maintain their balance in the eyes open (EO) condition and to look at a
fixed-level target at a distance of 0.9 m. The height of the visual target was adjusted for each subject. The verbal
instructions were as follows:”Stand with your arms at your sides and look straight ahead while trying to maintain
your postural stability to your best ability”. The intention of the instructions was to ask the participants not to fall
and to limit their sway as much as possible.

The fatigue protocol started right after the initial posture measurement (Fig. 1). Subjects were standing on a
step, and were asked to do “as much as possible plantar flexion keeping their knees straight” during 30 s. Number
of repetitions, heart rate (HR, bpm), saturation (%), pain threshold (PT, mmHg) with a digital pressure algometer
(FDX®, Wagner instrument, Greenwich, USA) were taken. The process was repeated 8 times. PC measurement
after the fatiguing task is defined PCI, respectively until the last one, PC7. In parallel, subjective fatigue was
evaluated by using the Borg visual analog scale (VAS) with a 100 mm horizontal line with “no fatigue” at 0 mm
and “extremely fatigue” at 100 mm. At the end, postural measure (EO) followed by a MVC was done to finish the
testing.
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Figure 1. Testing Protocol. PC: postural control, EO: eyes open, MVC: maximal voluntary contraction.

Data acquisition. One standard postural parameter variable, the surface of CoP (90% confidence ellipse),
was used to describe the subjects’ postural sway for each condition. In addition, SDA was performed for each
subject, each recording time and each condition. The SDA summarize the mean square of CoP displacement as
a function of the time interval between CoP comparisons®. This analysis was repeated for time intervals ranging
from 1/40 to 10s. The SDA parameters were extracted with Collins and Luca (1992)° routine and the following
parameters were taken for the medio-lateral (ML) and antero-posterior (AP): (1) The linear regression of the dif-
fusion coefficients fort short- and long-term region (Ds, DI)(mm?2.s™!); (2) The point of intersection between the
short- and long-term regions of the linear-linear plot is the critical point C°. The coordinates for the critical point
(Ct, Cd) provide the measures of the critical time interval, i.e., Ct= At,, and critical value, Cd = Aj%.

All other variables, fatigue Borg scores (VAS, mm), pain threshold (PT, mmHg), saturation (%), HR (bpm),
BF (Hz) were recorded. To ensure that subjects did the maximal PF during the fatiguing protocol, number of
repetitions in the three conditions were taken into consideration.

Statistical analyses. Mean + standard deviation (SD) values were calculated for all variables of interest.
After testing the assumption of normality of distribution (Kolmogorov-Smirnov test), the statistical tests were
done with the software SigmaPlot (Version 11.0; systat software Inc., San Jose, CA). A a-posteriori sample size
was performed.

A two-way repeated-measures analysis of variance (ANOVA) was used to identify differences by examination
of the group (HH vs. NH vs. NN) x time (PRE, PC1, PC2, POST) interaction. Finally, a one-way ANOVA was
done to analyse the difference in BF between the three conditions. Tukey post-hoc test was used to localize the
differences between means. For all statistical analyses, a P value < 0.05 was accepted as the level of significance.

Results

Summary statistics of postural control parameters. Standard parameters of postural control are
resumed in Fig. 2. CoP surface was higher in HH (p =0.02) than in NN at PRE, and all along the fatiguing
task until POST PC tests (p < 0.001). NH condition is statistically different from NN condition only at POST
(p <0.01). No statistical differences were found between HH and NH. For each condition, a significant time effect
between PRE and POST was observed (p < 0.001).

SDA in the AP(y) plane is presented in Fig. 3. Dsy (Panel A) HH was significantly higher than NH at PC3
(p<0.05) and PC5 to POST (p < 0.001), and significantly higher (p < 0.01) compare to NN since PC1 to POST. In
HH condition, Dsy at POST were statistically different form PRE (p < 0.001). There was a statistically significant
interaction between time and condition (p < 0.001, F=4.937). Dly (Panel B), HH was again significantly higher
than NH since PC3 to POST (p < 0.05) and with NN since PC2 to POST (p < 0.05). In HH, a significant time
effect was observed from PC2 until POST (p < 0.001). There was a statistically significant interaction between
time and condition (p < 0.001, F=6.498). Cty (Panel C) showed only statistical differences from PC5 to POST
between HH vs. NH (p < 0.05) and HH vs. NN (p < 0.01) conditions. Time effect was again observed in HH con-
dition from PC6 to POST (p < 0.05). There was a statistically significant interaction between time and condition
(p<0.001, F=3.174). Cdy (Panel D) of HH and NH showed higher value than NN already in PRE condition
(p <0.01). In this panel D, a time interaction was observed in HH condition from PC3 (p < 0.05). There was a
statistically significant interaction between time and condition (p < 0.001, F=4.033).

SDA in the ML(x) plane showed similar results (Fig. 4). Dsx (Panel A) and DIx (Panel B) showed statistical dif-
ference for HH vs. NH (p < 0.01) and HH vs. NN (p < 0.05) conditions, with higher value for HH. PRE to POST
time effect was significant for Dsx in HH condition (p < 0.001) and for D/x in HH and NN condition (p < 0.001).
There was a statistically significant interaction between time and condition for both parameters (DIx, p < 0.001,
F=4.860 and Dsx, p <0.001, F=2.852). Ctx (Panel C) was higher in HH vs. NH since PC5 to POST (p < 0.01)
and for HH vs. NN since P6 to POST. PRE to POST PC measurements increase more in HH condition (p < 0.001).
There was a statistically significant interaction between time and condition (p < 0.001, F =3.283). Cdx (Panel
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Figure 2. Postural control standards parameters, CoP surface (mm?). *p < 0.05, $$p < 0.01, $$$p < 0.001 for
difference between HH and NN. *p < 0.05 for difference between NH and NN. ***p < 0.001 for difference with
PRE.
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Figure 3. Results of SDA Parameters in the AP plan (y) with short term effective diffusion coefhicient (Dsy),
long term effective diffusion coefficient (Dly), critical point (Ct, Cd) during the three conditions (HH:
hypobaric hypoxia, NH: normobaric hypoxia, NN: normobaric normoxia). PC1, PC2..., correspond to the
postural control measurement after the fatigue task. *p < 0.05, %p < 0.01, $%*p < 0.001 for difference between HH
and NN. *p < 0.05, *p < 0.01, **p < 0.001 for difference between HH and NH. £p < 0.05, #p < 0.01, #£p < 0.001
for difference between NH and NN. *p < 0.05,%*p < 0.01, ***p < 0.001 for difference with PRE condition.

D) was significantly higher in HH vs. NN from PC1 to POST (p < 0.001) and from PC2 to POST for HH vs. NH
(p <0.05). There was a statistically significant interaction between time and condition (p < 0.001, F =2.676).

Others variables. Number of repetitions over 30 varied from 66 to 69 in HH, 64 to 67 in NH and 69 to
73 in NN. No time effect was found but statistical differences for the first three fatiguing periods were observed
between NH and NN or between NH and HH (p < 0.05).

Fatigue Borg scores (VAS) and PT are presented in Table 1. Fatigue VAS increased and PT decreased at POST
when compared to PRE (p < 0.001), excepted for the PT in NN condition but to the same extent in all conditions
since no interaction was found.
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Figure 4. Results of SDA Parameters in the ML plan (x) with short term effective diffusion coefficient (Dsy),
long term effective diffusion coefficient (Dly), critical point (Ct, Cd) during the three conditions (HH:
hypobaric hypoxia, NH: normobaric hypoxia, NN: normobaric normoxia). PC1, PC2..., correspond to the
postural control measurement after the fatigue task. *p < 0.05, %*p < 0.01, $%p < 0.001 for difference between HH
and NN. *p < 0.05, *p < 0.01, **p < 0.001 for difference between HH and NH. #p < 0.01 for difference between
NH and NN. *#p < 0.05, ***p < 0.001 for difference with PRE condition.

Fatigue VAS PT
Conditions | Pre Post Pre Post
HH 0.15+£0.48 5.77 £ 1.8%%* 66.71 £ 29.40 46.53 4 18.74%%*
NH 0.17+0.47 6.49 £ 2.01%%* 60.19£21.35 48.36 4 17.89%%*
NN 0.36£0.90 5.03 £ 1.87%#%* 54.35+19.84 47.24+14.52

Table 1. Borg visual analog scale (VAS) and pain threshold (PT) between the three different conditions (HH:
hypobaric hypoxia, NH: normobaric hypoxia, NN: normobaric normoxia). ***p < 0.001 for difference with

PRE condition.
HR (bpm) SpO, (%) BF (Hz)
Conditions | Pre Post Pre Post Pre Post
HH 82.91+15.08 110.89 4 16.09%%* 90.09 4 3.425%% 91.224£2.91%% 0.33 £0.09%3%## 0.3340.08
NH 78.33+11.76 118.89 4 21.77%%* 89.004-2.22%%% 90.1142.71%8 0.2240.09 0.3040.08
NN 72.92+10.18 120.11 4 15.07#%* 96.25+1.66 96.11+£2.15 0.234+0.08 0.3240.10

Table 2. Heart rate (HR), saturation (SpO,). and breathing frequency (BF) between the three conditions (HH:
hypobaric hypoxia, NH: normobaric hypoxia, NN: normobaric normoxia). ***p < 0.001 for difference with
PRE condition. ***p < 0.001 for difference with NN. #*p < 0.001 for difference with NH.

Cardio-ventilatory responses. For all three conditions, HR increase and was significantly higher at POST
compare to PRE without interaction between the conditions HH, NH and NN (Table 2). Inversely for SpO, no time
effect was found, but a significant difference (lower values) for HH vs. NN (p < 0.001) and NH vs. NN (p < 0.001)
were observed at PRE and POST. BF in HH was significantly higher to NH and NN (p < 0.001) only at PRE.

Discussion

The main novel finding of this study is a plantar flexors fatigue induced significantly more postural instability
when performed during exposure in HH than in NH. We also demonstrated that such muscle fatigue altered
more PC in hypoxia (either in HH or in NH) than in normoxic condition. In the present study, we recorded that
BF was higher in HH than in NH in PRE only. In several studies**~?’, slight physiological responses between acute
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HH and NH have been reported concerning differences in cardio-ventilatory responses at rest. BF and HR are
in general higher in brief exposure in HH but reach similar value in NH after 5 to 30 minutes following the onset
hypoxia®. Hyperventilation represents a significant input for the PC regulation®® because it is correlated with the
velocity of CoP displacement®, and a significant elevation of the surface of CoP*2. It was suggested that immediate
effects of hyperventilation led to a respiratory alkalosis, which induce an increase of nervous fibre’s excitability
and a distortion of the proprioceptors®*2. Another explanation of PC impairments was showed by Hodges et al.
(2002) suggesting that PC was directly related to an increase of the frequency and the amplitude of the respiratory
movements*. One cannot rule out a direct mechanical influence of the higher breathing frequency in HH at least
at the beginning of the protocol whereas other mechanisms (alkalosis, direct impact of lower PB on the vestibular
activity) are likely inducing the larger PC alteration under increasing PF fatigue.

Differences between HH and NH. Standards parameters, like CoP surface, were not significantly different
in HH vs. NH. However, SDA values in both AP and ML planes that at the end of the fatiguing task were signif-
icantly higher in HH than in NH condition. This difference between HH and NH occurred generally after the
third to the fifth fatiguing periods. Interpretation of SDA may offer more insight into the nature of the process
controlling the CoP trajectories. Our results suggest that the stochastic activity of short- and long-term region
were higher in HH condition, and that subjects took longer time to stabilise their body at POST in both planes
(AP and ML) during first 10 seconds without taking into consideration somatosensorial afferences (correspond-
ing to open-loop activity). An increase in short term stochastic activity could be due to increased co-activation of
the ankle muscles?®. Over the long-term region, the increase stochastic activity suggested that the actions taken by
the PC were more frequent. This long-term change associated with muscular fatigue could be represented by two
interpretations. The first one is a stiffening strategy, by increasing the activation of the antagonist muscles, because
fatigue increase the frequency of action needed to regulate bipedal stance. The second one, peripheral and central
level of the nervous system due to the fatigued muscle impact also the force production, which suggest that the
motor output is more affected by the fatigue than the sensory system!2.

The larger alteration of PC in HH condition could also be due to fatigue affecting proprioceptive feedbacks,
which would be in link with the increase in critical point. These changes in the temporal interaction are supported
by observation of increased reflex time, reduces proprioception and weaker muscle strength?*.

It is known that postural stability is significantly deteriorated at high altitude in healthy subjects® and that
these alterations where significantly higher in HH than NH condition in the AP plane®*. It was also suggested
that postural instability was more influenced by change in PB than by change in fraction of oxygen®. It is known
that hypoxia affects not only somatosensory information but also its integration and hypoxia inhibits the tonic
vibration reflex in humans**. Moreover, activation of muscular mechanoreceptors (group I efferents) by tendon
vibration is largely attenuated in acute and chronic hypoxemia in different animal species®*.

In the present study, there were no significant correlations between cardiorespiratory changes and modifica-
tions of postural control. Since breathing pattern is different between NH and HHY, further research is required
to investigate the effects of the thoracic cage movements on postural control at different altitudes in these two
hypoxic conditions.

Despite that the present results confirm most of the existing literature (i.e., HH is a more severe stimulus than
NH), the fact that the HH measurements were not performed in a hypobaric chamber but in “terrestrial altitude”
and thus in a different location than in NN or NH, one cannot rule out that the conditions were not perfectly
similar and may have slightly influenced the results. We assume that these differences were negligible.

Of interest was that a single-blinded protocol was applied between the NN and NH conditions; so that the
subjects in the hypoxic chamber were not informed of the F,0,. However, for obvious reasons, blinding was not
possible in the HH session. Therefore, one cannot exclude a placebo-nocebo effect on postural control.

Differences between hypoxia conditions (HH and NH) and NN.  Significant differences in CoP sur-
face and SDA were observed between HH and NN conditions. All SDA parameters in HH, AP and ML, were
more altered at 2950 m vs. 500 m. This is in line with previous findings who consistently reported that PC is
impaired in an altitude-dependent manner?'. Nordhal et al. (1998), demonstrated that vision is one of the first
senses altered by the lower oxygen availability in acute hypoxia®. Considering the PC regulation mechanism, if
vision is altered with acute hypoxia, higher disturbance on PC is observed.

Another explanation, could be in relation with the results of the study of Hoshikawa and al. (2000) who
demonstrate that acute HH was related to an increase of the electromyographic activity of plantar flexors', con-
firming that the sensory organization and motor output were influenced by acute HH exposure. Thus, the hypoxic
stimulus seemed to have impacts on muscle activity.

The effect of fatigue protocol. Significant increase in CoP surface at POST in the three conditions were
observed. The main finding of SDA was that for HH condition and in both plane, AP and ML, a significant inter-
action of time at POST were observed for almost all variables. Our fatigue protocol induce a moderate to heavy
score on the fatigue Borg score at the end the fatiguing task. One study used the same method to evaluate the
fatigue protocol and showed that a Borg score around 5.36 +2.11 impact PC in the AP measure'®. The impact of
muscular fatigue induces a greater contribution of the myostatic loops, the reflex response augment to increase
stiffness joint and reduce postural sway®. Effect of fatigue also affects the descending drive, corresponding to a
decrease of the efficacy of the cortico-spinal output. This decrease influences the motor neurons and affects the
control of movement®. However, in several studies"®!%!!, maximal isometric voluntary contraction was used as
an index of fatigue to quantify the strength loss. This is one of the limitations of our study.
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Conclusion

In conclusion, the present study demonstrated that acute exposure to real altitude (HH, 2950 m) combined to a
fatigue protocol affected PC to a larger extent than the same protocol at a simulated altitude and near sea-level in
our specific population of young and active students. It remains unknown if similar findings would be observed
in elderly and the consequences on the fall risks. The increase of CoP surface and SDA results showed that PC was
altered in both AP and ML plane in HH condition. The present results suggest that postural control was firstly
more influenced by change in barometric pressure and secondly by the fatigue protocol in hypoxic condition,
that affect more the sensory pathway and the motor output. These observations have practical implications in
all sport activities where PC is important and performed in altitude. It may be for safety reasons and prevent fall
risks in trail running, climbing or mountaineering. It could be for training purpose in biathlon since shooting
performance is deteriorated by altitude®.

Limitations. Despite that the present results confirm most of the existing literature (i.e., HH is a more severe
stimulus than NH), the fact that the HH measurements were not performed in a hypobaric chamber but in
“terrestrial altitude” and thus in a different location than in NN or NH, one cannot rule out that the conditions
were not perfectly similar and may have slightly influenced the results. We assume that these differences were
negligible.

However, for obvious reasons, blinding was not possible in the HH session. Therefore, one cannot exclude a
placebo-nocebo effect on postural control.
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