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Summary

This thesis is composed of three articles addressing issues at the intersection of ruin
theory, cryptocurrency mining, and insurance economics. A key focus is examining
the quantitative trade-o�s between risk and pro�tability across di�erent contexts.

In the �rst article, we explore the risky nature of cryptocurrency mining under
the Proof-of-Work consensus mechanism. We introduce the concept of ruin, where
operational costs can outweigh mining rewards. Our research investigates the ben-
e�ts and drawbacks of joining a mining pool, which reduces return variability at
a speci�c cost. By applying ruin theory and risk-sharing principles from actuarial
science, we derive explicit formulas for key metrics like expected value of the pro�t
and ruin probability, demonstrated through numerical examples with parameters of
practical relevance.

The second article builds upon these �ndings, shifting from theoretical to empir-
ical analysis. Here, we scrutinize the validity of our theoretical models in real-world
mining scenarios. A signi�cant addition is the inclusion of transaction fees in block
rewards. We introduce algorithms for �tting generalized hyperexponential distribu-
tions to actual data and conduct a sensitivity analysis to assess various factors in
mining, particularly the e�ects of temporal dependencies and transaction fees. We
conclude that despite the apparent time dependence in the rewards, approximations
by combinations of exponentials with an i.i.d. assumption yields satisfying results.

In the third article, we shift our focus to the non-life insurance industry, specif-
ically the challenges of risk classi�cation. We address the issue of policyholder
categorization into risk classes and the potential errors in this process, particularly
relevant with the advent of automatic classi�cation systems. We explore the con-
sequences of misclassifying policyholders into two distinct risk types, providing a
mean-variance framework to study the insurer's optimization problem in setting
premiums. This analysis includes examining the cost-bene�t trade-o� when proba-
bilities of classi�cation errors are known. We develop a simple framework that can
be further extended to include competition, multi-period dynamic games and other
risk measures.
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Résumé

Cette thèse se compose de trois articles abordant des problématiques à l'intersection
de la théorie de la ruine, du minage de cryptomonnaies et de l'économie des assur-
ances. L'accent est mis sur l'examen des compromis quantitatifs entre le risque et
la rentabilité dans di�érents contextes.

Dans le premier article, nous explorons la nature risquée du minage de cryp-
tomonnaies sous le mécanisme de consensus par preuve de travail. Nous introduisons
le concept de ruine, où les coûts opérationnels peuvent dépasser les récompenses du
minage. Notre recherche étudie les avantages et les inconvénients de rejoindre un
pool de minage, qui réduit la variabilité des rendements à un coût spéci�que. En
appliquant la théorie de la ruine et les principes de partage des risques des sciences
actuarielles, nous dérivons des formules explicites pour des mesures clés telles que la
valeur espérée du pro�t et la probabilité de ruine, démontrées à travers des exemples
numériques avec des paramètres pratiquement pertinents.

Le deuxième article s'appuie sur ces résultats, passant d'une analyse théorique
à une analyse empirique. Ici, nous examinons la validité de nos modèles théoriques
dans des scénarios de minage réels. Un ajout signi�catif est l'inclusion des frais
de transaction dans les récompenses de blocs. Nous introduisons des algorithmes
pour ajuster les distributions hyperexponentielles généralisées aux données réelles et
réalisons une analyse de sensibilité pour évaluer divers facteurs dans le minage, en
particulier les e�ets des dépendances temporelles et des frais de transaction. Nous
concluons que malgré l'apparente dépendance temporelle dans les récompenses, les
approximations par des combinaisons d'exponentielles avec une hypothèse i.i.d. pro-
curent des résultats satisfaisants.

Dans le troisième article, nous orientons notre attention vers l'industrie des assur-
ances non-vie, en particulier les dé�s de la classi�cation des risques. Nous abordons
la question de la catégorisation des preneurs d'assurance en classes de risque et les
erreurs potentielles dans ce processus, particulièrement pertinentes avec l'avènement
des systèmes de classi�cation automatique. Nous explorons les conséquences d'une
mauvaise classi�cation des titulaires de polices en deux types de risques distincts,
en fournissant un cadre moyenne-variance pour étudier le problème d'optimisation
de l'assureur dans la �xation des primes. Cette analyse comprend l'examen du com-
promis coût-béné�ce lorsque les probabilités d'erreurs de classi�cation sont connues.
Nous développons un cadre simple qui peut être étendu pour inclure la concurrence,
des jeux dynamiques sur plusieurs périodes et d'autres mesures de risque.
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Chapter 1

Introduction

Throughout history, correctly understanding the drivers of a particular risk and ac-
curately assessing its amplitude have been preoccupations of various members of the
society in order to protect their peers from unexpected events. This thinking led
- among others - to the development of actuarial science, which aims to determine
the price of uncertainty for insurance applications.

Generally, in the non-life insurance sector, the pricing framework is based on
speci�c characteristics of the insured individuals. A range of classi�cation methods
are employed to sort policyholders into risk groups, which are established by the
insurance company. Hence, risk classi�cation is a never-aging topic in insurance.
Its accuracy ensures fair policy pricing and sustainable portfolio management. In
a world where demographic shifts, new technologies, and changing consumer be-
haviour reshape the risk pro�les, actuaries must recalibrate and re�ne classi�cation
techniques. However, with new techniques come new threats, such as erroneous risk
classi�cation. The consequences of misclassi�cation are severe, from biased premi-
ums to adverse selection and potential ruin.

In the domain of classi�cation pricing strategies, a balance must be achieved be-
tween the accuracy of classi�cation, the associated costs and risk, and the resulting
expected pro�t. On one hand, the adoption of a more sophisticated classi�cation
system has the potential to attract better customer pro�les, thus improving the
quality of the underwritten risk. On the other hand, the implementation of such
a system carries with it an increase in both operational costs and the potential for
error, which in turn can reduce pro�tability. Moreover, this complexity in the clas-
si�cation system may have a cascading e�ect on various other risk metrics and key
performance indicators. Thus, a tradeo� between various risk measures has to be
found.

This search for balance for an insurer surprisingly �nds a parallel in the world of
cryptocurrency mining, where the stakes of managing risk and reward are equally
high. Just as insurance companies classify risks to price policies accurately and
ensure pro�tability, cryptocurrency miners must assess the cost-bene�t dynamics of
participating in mining activities. In particular, for a miner, this translates to the
risk of operational costs surpassing mining rewards, leading to �nancial insolvency.
This scenario is akin to a ruin event in insurance, where companies face the risk of
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2 CHAPTER 1. INTRODUCTION

becoming unable to cover claims.

The area of cryptocurrencies is relatively new, having emerged just over the past
�fteen years. This period has witnessed economic bubbles and �nancial crashes.
Millions have engaged in mining or purchasing cryptocurrencies, often without a
comprehensive grasp of the underlying mechanisms. Various reward systems and
pooling schemes present a jungle of complex terminology. This thesis aims to o�er
an actuarial perspective on this topic and to draw connections to ruin theory.

This introductory chapter will lay out some foundations for the understanding of
this present thesis. In Section 1.1, we will get an overview of classi�cation techniques
and criteria selection, which are a starting point for Chapter 4. Section 1.2 will
present the classic results of ruin theory, which are further used in Chapters 2 and
3. Furthermore, Section 1.3 provides a short overview of the principles of blockchains
and the emergence of cryptocurrencies, to increase the understanding of Chapters 2
and 3. Finally, we summarize the main contributions of this thesis in Section 1.4.

1.1 Risk classi�cation in insurance pricing

Risk classi�cation in insurance is a fundamental process used to categorize potential
policyholders based on various risk factors. It involves assessing the likelihood and
potential cost of a claim associated with an individual or group. This process is not
only critical in determining premiums but also in ensuring the �nancial sustainability
of insurance products. The underlying principle is that similar risks should be
grouped together, and each group should be charged a premium proportional to the
level of risk they represent. In a monograph by the American Academy of Actuaries
[51] authors point out the importance of �nding balance between maximizing the
category size to increase historical data volume and minimizing the inhomogeneity
within the class and thus the adverse selection.

1.1.1 Classi�cation criteria

The rationale for risk classi�cation has several drivers [63, 116]. Let us give an
overview of the most important ones in the insurance realm.

At the heart of risk classi�cation lies the actuarial and statistical basis, which
forms the cornerstone of insurance underwriting. Actuaries employ statistical mod-
els to assess risk, drawing on historical data to forecast future claims. This approach,
however, is not without its challenges. The accuracy of these models is contingent
upon the quality and relevance of the data used. Errors can occur due to outdated
data, incorrect assumptions, or oversimpli�ed models that fail to capture the com-
plexity of real-world scenarios. Such inaccuracies in risk assessment can lead to
mispriced premiums and adverse selection from the customer's side.

Operational factors also play a crucial role in risk classi�cation. These include
the costs associated with the identi�cation and processing of risk data, as well as
the veri�ability of the information collected. High operational costs may lead to
shortcuts in risk assessment processes, potentially resulting in errors. Moreover, the



1.1. RISK CLASSIFICATION IN INSURANCE PRICING 3

reliability of the data gathered is crucial: unveri�ed or erroneous data can skew risk
assessments, leading to misclassi�ed risks.

The social dimension of risk classi�cation covers the respect of sensible customer
data and ensuring social acceptability and a�ordability for the insured. Insurance
companies must navigate between thorough risk assessment, and the invasion of pri-
vacy and the use of unethical classi�cation criteria, though they may be statistically
relevant. Additionally, the a�ordability of insurance products is a social concern. If
risk is misclassi�ed, resulting in exorbitant premiums, insurance may become inac-
cessible to those who need it most.

Lastly, the legal framework within which insurance operates cannot be ignored.
State regulations and equality legislation play a crucial role in shaping how risks
are classi�ed. As a prominent example, we mention here the European Court of
Justice ruling on the prohibition of discrimination by gender in insurance pricing
[112]. Compliance with these legal requirements is imperative to avoid penalties
and maintain the insurer's reputation. However, legal constraints can also introduce
challenges in risk classi�cation, as they limit the factors that insurers can consider,
potentially leading to less accurate risk assessments.

Recently, with the development of genetic testing and personalized medicine,
new challenges have arisen with respect to data protection. By undergoing a ge-
netic test and sharing data with the insurer, the latter gains knowledge about the
individual's risk type which in turn in�uences the classi�cation scheme. This trig-
gers some concerns from the population with regard to privacy considerations for
sensitive data sharing [50]. Also, the challenge of including personalized medicine
into healthcare systems may cause inequalities at a very granular level, since some
patients would receive very costly treatments that need to be covered by the insurer.
A comprehensive review of those challenges can be found in [84].

One should not disregard the origins of insurance which lay in the principles of
risk sharing among the undertakers. Insurance is not an exclusive instrument of
protection against risk; an individual can alternatively turn to self-protection and
a self-insurance technique to mitigate his risk. In this respect, risk classi�cation
arises as a means for the insurer to compete with alternatives [1]. With inaccurate
risk classi�cation, however, there is potential risk that the ine�ciency is unevenly
distributed and thus penalizes an already disfavoured group. Another aspect to note
is the problem of adverse selection, mentioned above. From a public policy perspec-
tive, adverse selection may be desired to some extent, as it increases the coverage
of particularly exposed individuals [139]. From this point of view, risk classi�cation
may be skewed in a suitable direction to achieve this objective via public policies.

In practice, multiple relevant criteria are used to classify the customer in cat-
egories. Those can be grouped in the following distinguishable categories. Some
further examples of criteria and analysis of their fairness can be found in Charpen-
tier [32].
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Demographic characteristics This category includes criteria that are speci�c to
the individual or entity seeking insurance. Among them we can cite the most notable
examples relevant to both life and non-life insurance. Age and gender constitute for
instance the main rating factors in a life insurance policy. The geographical position,
such as the address, also constitutes a valid factor since the proximity to dangerous
borders may favour theft, and the type of city among more rural or more urban areas
may in�uence the driving behaviour. Further rating criteria in motor insurance are
presented in Lemaire [93]. For working-related bene�ts, occupation is a relevant
factor as some professions are deemed to have a more risky impact on the accident
frequency.

Object characteristics In non-life insurance, the object of the contract is often
not the individual, but a property or casualty (mainly, with exception of health
insurance). For example, in motor insurance, the main rating factors, in addition
to the driver's characteristics, would be the car's price, model, horsepower, type
of gear. For a pet coverage, the insurer will be interested in the pet's breed and
gender, whereas for household insurance, one will be questioned about the type of
construction.

These two categories group criteria that are often observable and cannot be
hidden, see e.g. Denuit et al. [48, chap. 1]. Mostly, they are veri�ed upon the claim
occurrence and the insurer reserves the right to decline a coverage in case of a falsely
reported characteristic. For the next typology of criteria, the visibility of a factor is
more complicated.

Risk behaviour This category involves criteria that directly relate to the history
of the insured or the behaviour of the insured person or activity. Notably, the
claims history enters this category. The latter often enters the ratemaking system
via a bonus-malus framework, such as in the motor insurance. More recently, with
the advances of technologies, possibilities of live-tracking customers with devices
installed on the car engine raised the monitoring of the client's behaviour onto a
new level [146]. The insurance based on telematics criteria is refereed to as Pay-as-
you-drive in practice. This system can help preventing cheating on the behaviour
declaration. On an individual level, lifestyle habits, such as smoking, can also lead
to higher premiums. The type of usage of property can also categorize a client in
a riskier category, such as the use of a house as primary or secondary residence, or
the participation or not of an insured horse in exhausting sport competitions. Often
of declarative nature, those criteria can be falsely reported to reduce the apparent
risk.

Policy-related factors Finally, the insurance contract also di�ers in some policy-
speci�c factors. This can include the coverage amount, deductibles, and policy lim-
its, which directly a�ect the premium but are choices made by the policyholder.
Analyzing these factors may uncover the self-selection by the insured people, as a
policyholder who expects more claims might for instance take a lower deductible.

Even for veri�able criteria, errors are inevitable due to human mistakes or
system-imposed restrictions such as limited input �elds that cut away important
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information. Furthermore, errors in classi�cation might arise as the historical data
on which estimations are made may be not su�cient and lead to wrong conclusions.

1.1.2 Classi�cation techniques

In this subsection, we will give a brief overview of popular machine learning clas-
si�cation techniques. Generally, they fall into two broad classes of algorithms: su-
pervised and unsupervised learning. In a survey on the use of arti�cial intelligence
in actuarial science, Richman [118, 119] describes the di�erence between those two,
and introduces the existence of a third one: reinforcement learning. The idea of the
latter is learning what to do to maximize a numerical reward signal, without being
told what actions to undertake [132]. Since very few applications of this class of
arti�cial intelligence (AI) are used in insurance (see a rare occurrence in Choi et al.
[35] for fraud detection in insurance claims), let us concentrate on the �rst two.

Supervised learning

This method involves training a model on a labelled dataset, where the outcomes
are known. This method is highly valuable in actuarial tasks like claim prediction,
risk assessment, and pricing models. The common point of these techniques is
having an input set and an output set, which are somehow linked. The goal of these
techniques is to use the inputs to predict the outputs [75]. Once a classi�er has been
"learned", it can be used to perform prediction on a novel dataset. The inputs in
the classi�cation task can consist of numerical variables, but categorical features are
also admissible.

Bayesian classi�er This very simple approach in classi�cation is based on Bayesian
decision theory, combining prior knowledge with new evidence [137]. Some tech-
niques using Bayesian methods can be found in Wütrich and Merz [154, chap. 6].
Given a set of M classes ωi, i = 1, 2, . . . ,M let us classify a novel input x to the
class ωi that maximizes the posterior probabilities, i.e.

ωi = argmax
ωj

P (ωj | x) .

After information on some observations x has been obtained, the classi�er is updated
following the Bayes theorem

P (ωj | x) =
f(x | ωj)P (ωj)

f(x)
, j = 1, 2, . . . ,M,

where f(x) is the p.d.f. of x. The classi�er is updated using the posterior distribu-
tions

ωi = argmax
ωj

f(x | ωj)P (ωj) .

Both the conditional p.d.f. and the a priori probability can be estimated from the
training dataset. An illustration of this classi�er is shown in Figure 1.1. Also note
that the Bayesian classi�er minimizes the misclassi�cation error on the training set
[137].
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Figure 1.1: Bayesian classi�er. Figure taken from [75].

Logistic regression Let us consider a dataset which needs to be classi�ed in two
categories. The logistic regression is particularly suited to model the probability
that an observation falls into one class or another [81]. Assume we want to classify
between two classes 0 and 1. Given a set of input (explicative) variables X, we
observe the class Y (the output variable) for the training set. We aim to predict the
probability of a novel observation to fall into one class, i.e.

p(X) = P (Y = 1 | X) .

As the predicted results must be a probability comprised between 0 and 1, the linear
regression technique would not satisfy the conditions. Thus, we resort to the logistic
function

p(X) =
eβX

1 + eβX
.

For the calibration of the vector β of parameters, a maximum likelihood maximisa-
tion can be performed. Naturally, β can admit an intercept. As for the results, the
sensitivity of the prediction with respect to the change in X will not only depend on
the underlying linear regression parameters, but also on the initial value of X itself.

k-nearest-neighbour In this method, one considers the observations in the train-
ing set closer in input space to the variable to classify as its neighbours, and the
predicted output is then the same as those of the neighbours. Let xi, i = 1, 2, . . .
be the features of a risk i or the input variables. The output yi is also observed
for our training set. We denote the neighbourhood of x by Nk(x) assuming k near-
est neighbours (measured by a distance metric, like the Euclidean distance). The
predicted output Ŷ for a novel input set x will be given by

Ŷ (x) =
1

k

∑
xi∈NK(x)

yi.
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As we can observe, the prediction will change depending on the number of neighbours
considered. With a smaller k, the separation between classi�ed zones will be fuzzier,
as every individual point will have a "zone of in�uence" around itself. For a higher
k, the delimited predicted region frontier will be smoother, as the predicted class
is chosen by a majority vote amongst the k nearest neighbours. One should pay
attention to the metric used when choosing the unique k parameter: indeed, if
k = 1, all the observations in the training set would be correctly classi�ed, which
leads to a 0 mean-square error on the training dataset. This does not ensure the
same results in a independent dataset which results in an over�tting problem.

Unsupervised learning

In this approach, learning involves analyzing data without pre-labelled outcomes. It
is useful for discovering underlying patterns, customer segmentation, and anomaly
detection in insurance data [81]. We have access to a set of features or patterns,
and the goal is to exploit the interesting information provided by those features.
The prediction here is not the objective, we would rather group observations based
on observed characteristics. For this purpose, an important tool is the principal
component analysis, a tool often used for dimensionality reduction before supervised
techniques are applied, and a range of clustering techniques for grouping into classes
[75]. In insurance, it can be used for customer segmentation or identifying groups
with similar risk pro�les. Let us give an example of a clustering technique.

K-means One of the most popular methods in clustering, a technique for �nding
subgroups in a dataset [49]. In simple terms, we aim to maximize intraclass homo-
geneity and maximize interclass heterogeneity. In aK-means clustering method, one
speci�es in advance the desired number of clusters K. The algorithm then partitions
the dataset into non-overlapping clusters. De�ne C1, . . . , CK as sets containing the
observations in each cluster. Each observation belongs to at least one and not more
than one cluster. Let W (Ck) be a measure of within-cluster variation. Informally,
we aim to minimize

min
C1,...,CK

K∑
k=1

W (Ck).

The common choice for the within-cluster variation measure is the squared Euclidean
distance

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2, (1.1)

where |Ck| is the number of observations in the kth cluster and p the number of
features of each observation. In other words, we compute the sum of the squared
Euclidean distances of all pairwise observations in each cluster. Approaching this
problem by brute force is hardly feasible - the possible number of combinations
to check is equal to Kn. Therefore, a simple algorithm is used in the K-means
clustering: First, randomly assign all observations to the K clusters. This is the
initialization step. Next comes the iterative step. For each cluster, compute the
centroid, i.e. the mean vector of the p features of the cluster observations. Assign
each observation to the closest cluster centroid and repeat from the centroid cal-
culation. An illustration of the K-means clustering is shown in Figure 1.2. The
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results will depend on the initialization of the cluster, so it is important to repeat
the algorithms multiple times with a di�erent random starting position.

Figure 1.2: K-means classi�er, example on the iris dataset1.

1.2 Ruin theory

Let us de�ne the classical risk reserve process of an insurance company {Rt}t≥0,
starting with initial capital R0 = u. Further we assume that claims are de�ned
by their claim count {Nt} in the time interval [0, t] and the size of the nth claim is
denoted by Xn. Additionally, the premium �ow is set as p per time unit. Altogether,
we then obtain

Rt = u+ pt−
Nt∑
n=1

Xn.

Further, we de�ne the ruin probability ψ(u) in in�nite time horizon as the probability
that the reserve ever goes below zero given the initial capital u:

ψ(u) = P
(
inf
t≥0

Rt < 0 | R0 = u

)
.

The time of ruin is then referred to as τ(u) = inf{t > 0 : Rt < 0}. An illustration of
this risk reserve process is given in Figure 1.3. The study of the ruin probability, as
well as the risk reserve process in general is referred to as the ruin theory. Surveys of
general methods on collective risk theory can be found in Asmussen and Albrecher
[16], Bühlmann [30], De Vylder [47], Dickson [52], Grandell [69], Kaas et al. [83],
Rolski et al. [120] among others.

1.2.1 Cramér-Lundberg model

The origins of the Cramér-Lundberg model trace back to the early 20th century,
marking a signi�cant evolution in actuarial thought. Filip Lundberg, a Swedish ac-
tuary and mathematician, �rst introduced the fundamental concepts of this model

1From R base datasets [117], �rst introduced by Fisher [64].
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τ(u) = T4

R(t)

u

Figure 1.3: Risk reserve process R(t). The claims arrival times are denoted by Tn.

in his thesis [100] as early as 1903, laying the foundations for a systematic approach
to calculating probabilities of ruin in insurance companies. His work was further
re�ned and popularized by Harald Cramér, a Swedish statistician, who expanded
on Lundberg's ideas and integrated them within the developing �eld of stochastic
processes [40, 41].

For the de�nition of the Cramér-Lundberg model, we need to respect assumptions
1.2.1-1.2.3.

Assumption 1.2.1. The claims count follows a Poisson process, i.e.

P (Nt = k) = e−λt (λt)
k

k!
, k = 0, 1, . . . ,

with N0 = 0 and independent increments. In other words, Nt is Poisson distributed
with mean λt. A comprehensive description of its various properties can be found
in Tijms [142]. We can mention some notable properties such as the memoryless
property. De�ne the inter-arrival times of the claims Wn := Tn − Tn−1, n = 1, 2, . . .
and T0 = 0. Then, {Wn}n≥1 are independent and exponentially distributed with
mean 1/λ. As we can see, the interarrival times do not depend on t, meaning that for
any given moment, the time until the next event occurs is exponentially distributed,
just like the initial time between events, and this remains true irrespective of the
time passed since the last event. This unique feature of the Poisson process, known
as being memoryless, means that the elapsed time since the last event does not
in�uence the waiting time for the next one. The next important feature is that under
thinning and merging operations, the resulting process remains a Poisson process,
see e.g. [34]. For example, the process Nt can be separated into two independent
processes N1

t and N2
t with respective probabilities p and 1 − p. Both resulting

processes will be again Poisson processes with rates pλ and (1 − p)λ respectively.
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As for the merging, the sum of two independent Poisson processes with rates λ1, λ2
gives again a Poisson process with rate λ1 + λ2.

Assumption 1.2.2. The claims sizes X1, X2, . . . are positive i.i.d. with a com-
mon distribution F . Furthermore, claims sizes are independent of Nt the counting
process.

Assumption 1.2.3. The premium rate p is constant.

In order for an insurance company to properly function, we also assume that
the safety loading condition is satis�ed, i.e. p > λE (X). Now, to derive the ruin
probability in in�nite time, de�ne ϕ(u) = 1− ψ(u) and condition on the size of the
�rst claim:

ϕ(u) =

∫ ∞

0

λe−λt

∫ u+pt

0

ϕ(u+ pt− x)dF (x)dt

= e−λhϕ(u+ ph) +

∫ h

0

λe−λt

∫ u+pt

0

ϕ(u+ pt− x)dF (x)dt.

(1.2)

The �rst term in the equation (1.2) describes the case when there is no claim in the
interval [0, h]. Next, by substitution and di�erentiation (see e.g. [120] for a proof of
di�erentiability), we derive the following result:

d

du
ϕ(u) =

λ

p
ϕ(u)− λ

p

∫ u

0

ϕ(u− x)dF (x). (1.3)

We de�ne the Laplace transform of a function h(x) as

h̃(s) =

∫ ∞

0

e−sxh(x)dx.

Then, applying the Laplace transform to (1.3), and using limu→0 ϕ(u) = lims→0 sϕ̃(s) =
1, we have

ϕ̃(s) =
p− λE (X)

ps− λ(1− f̃(s))
,

where f̃(s) is the Laplace transform of the p.d.f. of the claims. Note that ϕ(0) = 1−
λE (X) /p. Inverting the Laplace transform yields the famous Pollaczek-Khintchine
formula

ϕ(u) =

(
1− λE (X)

p

) ∞∑
n=0

(
λE (X)

p

)n

F ∗n
I (u),

where FI is the integrated tail of F, i.e. FI(x) =
1

E(X)

∫ x

0
(1−F (y))dy and F ∗n denotes

the nth fold convolution of F . By applying for example a martingale approach, one
can derive the Lundberg equation

λ

∫ ∞

0

eRx dF (x) = pR,

with R > 0 being the adjustment (Lundberg) coe�cient. It exists whenever the
claim distribution is light-tailed. In that case, an upper bound for the ruin proba-
bility is ψ(u) ≤ e−Ru, also known as Lundberg's inequality, see e.g. [69].
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1.2.2 Dual risk model

We refer to the model with negative premium in�ows and negative claims sizes as
the dual risk model. This model is de�ned in (1.4).

Rt = u− ct+
Nt∑
n=1

Yn. (1.4)

The constant out�ow can be interpreted as the operational cost and the random
upward jumps as the present value of future innovations for example. Another
example of this process is a life annuity [69]. An illustration of this risk reserve
process is represented in Figure 1.4. Some �rst appearances can be traced back to
Cramér [41]. More recently, developments around this model have been brought to
light with respect to optimal dividend problem as in Avanzi et al. [18], Gerber and
Smith [67], Ng [111] or with tax payments considerations in Albrecher et al. [4].
In that case, assuming Poisson arrival times, the ruin probability in in�nite time

t
0

T1

|
T2

|
T3

|
τ(u)

|

R(t)

u

Figure 1.4: Risk reserve process R(t). Ruin occurs at τ(u), which does not coincide
with a jump.

horizon is given by
ψ(u) = e−Ru,

where R is the unique positive solution of the Lundberg equation

λ− cR = λf̃Y (R).

For proofs, see e.g. Asmussen and Albrecher [16] or Grandell [69, p.8]. This process is
considered in Chapter 2, namely an individual miner's risk process can be interpreted
as a dual risk model of the above kind.
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1.2.3 Sparre-Anderson model

The Sparre-Anderson model represents a signi�cant advancement in the �eld of ruin
theory, generalizing the classic Cramér-Lundberg model. First ideas were introduced
by Erik Sparre Andersen in 1957 [13] and further developed by Thorin [140, 141].
This model accommodates a wider range of claim arrival processes, allowing for
other than Poisson distributions. From the Assumptions 1.2.1-1.2.3, Assumption
1.2.1 is relaxed and can be reformulated as Assumption 1.2.4. Assumptions 1.2.2
and 1.2.3 still hold.

Assumption 1.2.4. The arrival times form a renewal process. Let {Wn}n≥1 be
inter-arrival times of the claims. Then, W1,W2, . . . are i.i.d. with a common distri-
bution FW .

The corresponding claims count Nt is then a renewal counting process where
Nt =

∑∞
n=1 1 (

∑n
k=1Wk ≤ t), where 1(·) is the indicator function [69], [120]. In

recent literature, various adaptations of the model have been studied and extended
for practical purposes. Here are some examples of possible applications. Will-
mot [152] studies the case of a class of renewal processes characterized by a ra-
tional Laplace�Stieltjes transform of the arrival inter-occurrence time distribution.
Dufresne [55] derives the Laplace transform of the non-ruin probability for a wide
class of claim inter-arrival times or severity distributions, when admitting a rational
Laplace transform representation. The time value of ruin with Erlang(n) renewal
process is explored in Li and Garrido [94]. A Sparre-Andersen dual model is stud-
ied in Yang and Sendova [156] to link this renewal process extension to the model
described in the previous subsection.

1.3 Blockchain and cryptocurrencies

Finding a cryptocurrency section in an actuarial science thesis may seem unexpected.
However, as Chapter 2 will demonstrate, actuarial tools �nd their use in a much
broader area than just the insurance sector. In order to better understand the further
chapters, this short section provides necessary background for further reading.

1.3.1 Blockchains

Blockchain technology, at its core, is a type of decentralized data ledger. It allows
data to be stored globally on thousands of servers while letting anyone on the net-
work see everyone else's entries in real-time. This makes it di�cult for one user to
gain control of the network or manipulate the data [110]. It is maintained collec-
tively by a peer-to-peer network. The type of blockchain we consider in this thesis is
public and therefore accessible by anyone. When transactions are realized, they are
recorded into the blockchain according to a consensus protocol on which everyone
agreed. Once a block entered the blockchain, it cannot be modi�ed anymore. Each
block consists of important information, which is immutable [163], which makes it a
reliable storage of transactions. As minimal information, blocks usually contain their
unique identi�er, the hash, and the previous (parent) block identi�er, which creates
the link between them. The timestamp is also part of the block, which ensures that
only the �rst block gets attached to the chain. Moreover, the block contains the
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transactions details. Further components of a blockchain include its nodes. These
nodes have the job of maintaining the blockchain's integrity. They store, spread, and
preserve the blockchain data, thus making the system decentralized. Each node has
a full record of the data that has been stored on the blockchain since its inception,
allowing for a high level of transparency and security. If one node has an error in its
data, it can use the thousands of other nodes as a reference to correct itself. This
self-auditing system of a blockchain is what makes it reliable and secure. Acting as
validators in this intricate system, there are miners. They use powerful computers
to solve complex mathematical problems that validate and secure transactions. This
process is known as mining. Mining involves �nding a hash that matches the current
transaction requirements. It is a trial and error process, and the probability of solv-
ing these problems is very low, making mining a competitive and resource-intensive
process. In the case of cryptocurrency application, when a miner successfully solves
the mathematical problem, they are allowed to add a block to the blockchain and
are rewarded with the blockchain's native cryptocurrency. Finally, each blockchain
relies on its consensus protocol used to achieve the necessary agreement on a single
data value or a single state of the network among distributed processes [15].

Cryptocurrencies aside, there exist multiple applications of blockchains in other
�elds. Notably, let us mention its usage in smart contracts [162]. Smart contracts are
contracts that automatically execute themselves upon meeting some conditions. To
state an easy example, when you buy a chocolate in a vending machine, it is a form
of smart contract, where the necessary condition is inserting the adequate amount
of coins. The advantage of this system is not needing any intermediaries between
parties, which is very useful when contracting parties do not trust each other. By
using a blockchain, all the transactions within a contract are stored in distributed
ledgers. Clauses and conditions of the service and counterpart are written in com-
puter programs and automatically executed. Hence, smart contracts exclude fraud
and are transparent.

Another example of application of a blockchain is in supply chain management.
During the long process of creation of a good or service, the latter travels through
various stakeholders, e.g. producers, retailers, manufacturers. By implementing
blockchain technology on a good, via tracking devices, a company can track the
movement of the merchandise through the whole process and, if necessary, record
the surrounding conditions at each stage. For example, one could detect a failure of
cooling systems during the transport of refrigerated food or medicine. Since no one
can modify the data during the process as it is stored in a blockchain, it is trustable
and transparent. With the help of this technology, the customer can be ensured
of the legally certi�ed provenance of the merchandise and reduce the incentive of
companies to resort to unethical production sources. On a more operational side,
adopting the tracking of goods via blockchain allows the data to be accessible by
everyone in the process, and can be practical for inventory management. For ex-
ample, whenever the inventory level is falling below a predetermined threshold, the
order to the producer can be automatically triggered, and the delivery organized.
For a review on this topic, the reader may refer to [59, 72].

In another sector, blockchain technology appears in the gaming industry [17]. For
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example, let us examine the concept of NFTs (non-fungible tokens). They can be
used as an in-game asset, traded or exchanged with other players. The ownership
of such objects is registered in a blockchain, allowing transparency and enabling
players to certify the ownership of their virtual assets. From a security perspective,
the use of blockchain prevents games and their mechanisms from being copied or
hacked.

1.3.2 Cryptocurrencies

Blockchain as a core technology for the emergence of a cryptocurrency was �rst pro-
posed by Nakomoto in 2008 [109]. Cryptocurrencies are digital currencies, without
a paper equivalent. They are decentralized and not emitted by a central authority
(central bank), hence they are not controlled by any governments or o�cial �nan-
cial institutions. All the transactions executed by their means are anonymous and
veri�ed by a peer-to-peer network, and once they are validated, they cannot be
unwritten, so they are irreversible. As a consequence, a user cannot betray its coun-
terparty by sending virtual funds and cancelling the transaction once it has already
entered the block.

The crypto-market is a fast evolving world. As of November 2023, the total
market capitalization of all crytocurrencies is around $ 1'391 billion. As it can be
seen in Figure 1.5, Bitcoin was - and still is - the dominant currency in this market,
as the �rst one ever introduced [15], although in recent years, the development of
alternatives, like Ethereum, Cardano, or Dogecoin has risen.

Figure 1.5: Percentage of total market capitalization of cryptocurrencies across time.
Taken from https://coinmarketcap.com/charts/, last accessed on November 19,
2023.

From now on, let us focus on the Bitcoin currency. Its consensus protocol is the
Proof-of-Work. It means that every person, called miner, must solve a cryptopuz-
zle. After someone succeeds in doing so, a block of transactions is appended to the
blockchain. In exchange, the miner obtains a reward in Bitcoins, set at 6.25 Bit-
coins as of November 2023. In other words, the winning miner gets the authorization
from the community to choose which transactions will �ll the new block. On aver-
age, one block is mined every ten minutes. To maintain this rate, the complexity
of the cryptoproblem is adjusted every 2016 blocks (approximately every two weeks).

https://coinmarketcap.com/charts/
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Blocks in the Bitcoin blockchain are public, which means that anyone can access
the information about those blocks. In the same spirit, anyone can become a miner
and therefore take part in the validation process. The usual information one can
�nd in a block contains the list of transactions, the amounts, the timestamps and
attached transaction fees. As an illustration, in Figure 1.6, the reader will observe
for the block number 781'745 all information mentioned above and in particular the
hash. Let us enter in more detail on this latter point.

Figure 1.6: Overview of the Bitcoin block 781'745 as seen by the public. Taken
from https://www.blockchain.com/explorer/blocks/btc/781745, last accessed
on November 21, 2023.

A hash is a unique string of characters generated by a speci�c cryptographic
function from input data of any size. In the Bitcoin context, this data typically
includes transaction information. The hash function used in Bitcoin is known as
SHA-256, which stands for Secure Hash Algorithm 256-bit, see e.g. [114]. This
algorithm takes input data and produces a �xed-length, 256-bit hash, which ap-
pears as a sequence of 64 hexadecimal characters. To illustrate, consider the block
781'745 introduced in Figure 1.6. The pictured hash of this block is given by
00000000000000000003b630b4a574e1ded1af5495714aac7300d9e169909e38. De-
spite the complexity and randomness of this string, it is deterministically generated:
the same input data will always produce the same hash. However, even a minor
change in the input, such as altering the amount of the transaction, or the time-
stamp, would result in a completely di�erent hash.

In Bitcoin mining, the primary goal is to �nd a hash that is below a pre-set target.
This target is what de�nes Bitcoin's di�culty level: the smaller the target, the rarer
and more di�cult it is to �nd a hash that meets this criterion. The process of �nding
such a hash involves a parameter called a nonce. A nonce, short for "number only
used once", is a variable that miners alter repeatedly to change the hash outcome.
Essentially, miners engage in a process of trial and error, altering the nonce and
recalculating the hash until they �nd one that is less than the target [15]. The nonce
is also part of a block information as can be seen in Figure 1.6. This mining process

https://www.blockchain.com/explorer/blocks/btc/781745
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is computationally intensive and consumes tremendous amounts of electricity. As a
result, Bitcoin mining on a global scale has a profound energy footprint. To put it
into perspective, the annual electricity consumption for Bitcoin mining worldwide
is around 157.21 TWh2 and this number is comparable to the annual electricity
consumption of a country like Poland3, a country with a population of 38 mio.
inhabitants. This high energy demand raises environmental concerns and drives
ongoing discussions about the sustainability of such cryptocurrencies. For instance,
in [45], De Vries et al. investigate the Bitcoin's mining carbon footprint. In another
work, De Vries and Stoll [46] explore the problem of electronic waste left by quickly
obsolete mining equipment. Wendl et al. [151] provide an extensive review of the
environmental impact of cryptocurrencies. The immense power consumption is an
inherent aspect of ensuring the security and integrity of the Proof-of-work mining
process, which remains for the moment the Bitcoin's consensus protocol.

1.3.3 Mining pools

Often, miners join together in mining pools. These pools are groups of miners
who combine their computational resources to increase their chances of success-
fully mining Bitcoin blocks. Upon success, the rewards are distributed among
pool participants in proportion to their contributed computational power, follow-
ing prede�ned rules among the pool. As of December 2023, the Bitcoin mining
landscape is dominated by several key players. According to data from https:

//mempool.space/graphs/mining/pools, seven major pools hold more than 85%
of the pool market share.

The leader of the market with a market share of approximately 25% is AntPool.
Founded in 2014 by Bitmain, a Chinese company, leading designer of chips for Bit-
coin mining, it is one of the world's oldest mining pools. Besides Bitcoin, AntPool
also supports a variety of other cryptocurrencies, including Bitcoin Cash, Litecoin,
Ethereum Classic, Ethereum PoW, Dash, among others4. AntPool o�ers miners two
types of reward methods: Full Pay Per Share (FPPS) and Pay Per Last N Shares
(PPLNS). The FPPS method provides a payout for each share of computational
power contributed by the miner, regardless of whether a block is mined or not. This
method ensures a steady and predictable income stream for miners but includes a
fee of 4% to cover the risk taken on by the pool, since the transaction fees are also
distributed. On the other hand, the PPLNS method only pays out when a block
is successfully mined, and the reward is divided among the miners who contributed
to the last shares. This method can potentially be more pro�table and no fees are
retained by the pool but also carries more risk, as payouts are dependent on the
pool's success in mining blocks5.

The second biggest pool in the market is Foundry USA, with a market share
of approximately 25% as of December 2023. It was founded in 2020 by a US

2https://ccaf.io/cbeci/index, last accessed on November 21, 2023.
3https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-

data.html, last accessed on November 21, 2023.
4https://coinmarketcap.com/academy/glossary/antpool, last accesses on 30/12/2023.
5https://antpoolsupport-hc.zendesk.com/hc/en-us/articles/5983010227993-Miners-

Settings-Fees, last accessed on 30/12/2023.

https://mempool.space/graphs/mining/pools
https://mempool.space/graphs/mining/pools
https://ccaf.io/cbeci/index
https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
https://coinmarketcap.com/academy/glossary/antpool
https://antpoolsupport-hc.zendesk.com/hc/en-us/articles/5983010227993-Miners-Settings-Fees
https://antpoolsupport-hc.zendesk.com/hc/en-us/articles/5983010227993-Miners-Settings-Fees


1.3. BLOCKCHAIN AND CRYPTOCURRENCIES 17

based company active in cryptocurrency investment as a response to a largely Asian
dominated market6. This pool focuses only on Bitcoin and Bitcoin Cash cryp-
tocurrencies. Foundry operates under the FPPS rewards system. For the trans-
action fees, the payout rate is calculated as the mean percentage of transactions
fees per block in the last elapsed mining day. The formulas for the calculation of
the payouts can be found at https://pool-faq.foundrydigital.com/what-is-

foundry-usa-pools-payout-methodology7. There are no pool management fees
retained by the pool8.

Very scarce information can be found on pools going bankrupt. Indeed, the visi-
ble information for a external observer is noting that pools stop mining new blocks,
in which situation one can suspect a pool having gone out of business. The reasons
of this are often unknown. In the early stages of Bitcoin history, we can cite the
example of the Galaxy mining pool, launched in July 2013, we can see how it shut
down 40 days later due to insu�cient hash rate9. It is not reported that the pool
has �led for o�cial bankruptcy and one can infer from the aforementioned forum
thread that the pool manager took preventive measures before collapsing.

In recent years, several notable examples of big mining companies going bankrupt
can be found. For instance in 2022, three big mining companies operating in the US
have �led for bankruptcy under Chapter 1110. Some explanations of these events
may be the increase in electricity price due to an unstable geopolitical situation and
a drop in the Bitcoin price in the second half of the year.

In the same year, Poolin, one of the top 10 largest pools in the world, announced
facing liquidity problems11. It led to users experiencing issues with payout with-
drawals. Reasons of these problems were not publicly announced but there are
speculations about the pools involvement in yield farming, in other words lending
cryptoholdings to earn returns on investment. As of December 2023, Pooling has
lost more than 90% of its market share but still operates and is still part of the top
10 biggest pools. These events highlight the risks and challenges faced by Bitcoin
mining pools, especially in volatile market conditions and when engaging in high-risk
�nancial activities like yield farming.

6https://foundrydigital.com/mining-service/foundry-usa-pool/, last accessed on
30/12/2023.

7Last accessed on 30/12/2023.
8https://www.hedgewithcrypto.com/best-bitcoin-mining-pools/, last accessed on

30/12/2023.
9https://bitcointalk.org/index.php?topic=248031.0, last accessed on 30/12/2023.
10https://ezblockchain.net/article/bitcoin-mining-companies-who-already-

declared-bankruptcy-and-why, last accessed on 30/12/2023.
11https://www.pymnts.com/cryptocurrency/2022/crypto-insolvencies-spread-as-top-

bitcoin-mining-pool-halts-withdrawals/, last accessed on 30/12/2023.

https://pool-faq.foundrydigital.com/what-is-foundry-usa-pools-payout-methodology
https://pool-faq.foundrydigital.com/what-is-foundry-usa-pools-payout-methodology
https://foundrydigital.com/mining-service/foundry-usa-pool/
https://www.hedgewithcrypto.com/best-bitcoin-mining-pools/
https://bitcointalk.org/index.php?topic=248031.0
https://ezblockchain.net/article/bitcoin-mining-companies-who-already-declared-bankruptcy-and-why
https://ezblockchain.net/article/bitcoin-mining-companies-who-already-declared-bankruptcy-and-why
https://www.pymnts.com/cryptocurrency/2022/crypto-insolvencies-spread-as-top-bitcoin-mining-pool-halts-withdrawals/
https://www.pymnts.com/cryptocurrency/2022/crypto-insolvencies-spread-as-top-bitcoin-mining-pool-halts-withdrawals/
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1.4 Main contributions of this thesis

This thesis contains results in the area of ruin theory applied to cryptocurrency
mining problems, as well as insurance economics with respect to risk classi�cation.
A recurrent and uniting theme throughout the thesis is to study a quantitative
trade-o� between risk and pro�tability. The results of Chapter 2 have already been
published in Insurance: Mathematics and Economics and the content of Chapters
3 and 4 are submitted for publication.

In Chapter 2, we explore the resource-intensive process of mining blocks in
blockchain technology, especially under a Proof-of-Work consensus mechanism. This
method of mining can lead to a �nancial risk known as ruin, where the costs of min-
ing operations surpass the gains obtained from mining rewards. Our focus is on the
potential bene�ts for a miner of joining a mining pool, which can help reduce the
variability of returns for them at a speci�c cost of joining. We are able to draw
analogies to reinsurance in this context. Using concepts from ruin theory and risk-
sharing principles in the �eld of insurance, we conduct a quantitative analysis to
assess the impact of pooling in this domain. Via this approach, we derive a series of
explicit formulas to quantify key aspects of interest, such as the expected value of
the pro�t and the ruin probability. To demonstrate the practical applicability of our
�ndings, we present numerical examples using parameters that hold in real-world
scenarios.

After a more theoretically oriented view on the topic of ruin in blockchain mining
activities, in Chapter 3 we turn to an empirical assessment of our previous �ndings.
Speci�cally, we control whether the calculated probabilities of ruin and the expected
future surplus, derived under certain model assumptions, hold true in practical sce-
narios. A key addition to our analysis is the inclusion of transaction fees within block
rewards. Additionally, we introduce algorithms designed to �t generalized hyper-
exponential distributions to real-world data. Furthermore, we conduct a sensitivity
analysis to evaluate various factors of interest in the mining process. This includes
assessing the impact of incorporating temporal dependencies and transaction fees
into the models, in contrast to assuming i.i.d. mining rewards.

Finally, Chapter 4 shifts to a di�erent aspect of the insurance world: risk classi�-
cation. Here, pricing strategies often depend on individual criteria of policyholders.
Insurers commonly employ various classi�cation algorithms to sort policyholders into
di�erent risk categories. However, this method is not without its �aws, as errors in
classi�cation can occur. With the development of new data science technologies, the
limitations of these risk classi�cation systems are becoming more evident in practical
applications. In this chapter, we explore the consequences of such misclassi�cations.
We di�erentiate between two types of risks and establish a framework to quantita-
tively assess the problem of an insurer setting optimal premiums. This includes an
analysis of the balance between costs and pro�ts, when the probabilities of classi�ca-
tion errors are known. In particular, we derive Markowitz-type e�cient frontiers for
identifying optimal trade-o�s between risk and pro�tability. We also provide several
extensions of the original model and give a number of numerical illustrations.



Chapter 2

Blockchain mining in pools:

Analyzing the trade-o� between

pro�tability and ruin

This chapter is based on the following article:

H. Albrecher, D. Finger, and P.-O. Go�ard. Blockchain mining in pools: Ana-
lyzing the trade-o� between pro�tability and ruin. Published in Insurance: Mathe-
matics and Economics, 105, 313-335 [8].

Abstract. The resource-consuming mining of blocks on a blockchain equipped with a

Proof-of-Work consensus protocol bears the risk of ruin, namely when the operational

costs for the mining exceed the received rewards. In this chapter we investigate to what

extent it is of interest to join a mining pool that reduces the variance of the return of

a miner for a speci�ed cost for participation. Using methodology from ruin theory and

risk sharing in insurance, we quantitatively study the e�ects of pooling in this context

and derive several explicit formulas for quantities of interest. The results are illustrated in

numerical examples for parameters of practical relevance.
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2.1 Introduction

A blockchain is a decentralized data ledger maintained by a Peer-to-Peer network.
Blockchain users issue transactions to the network peers who agree on those to be
recorded by following a consensus protocol. In public and permissionless blockchains,
such as the one for Bitcoin, the consensus protocol is called Proof-of-Work (PoW).
The nodes, referred to as miners, compete to solve a challenging cryptographic puz-
zle using some brute force search algorithm. The �rst miner to come up with a
solution includes the pending transactions in a block and is rewarded with newly
minted crypto-coins. This reward compensates the operational cost of mining mainly
induced by the consumption of electricity. The PoWprotocol is designed to be in-
centive compatible in the sense that a miner is compensated proportionally to her
computational e�ort. When the Peer-to-Peer network grows large, the share of the
network computing power owned by a given miner shrinks, which in turn makes the
gains infrequent. The constant operating costs therefore endanger the solvency of
miners and has led them to join forces by forming mining pools.

Mining pools grant miners a steadier income, as block �nding rewards are collected
more often. The earnings are then fairly distributed to the pool participants based
on their contribution to the computational e�ort. The simplest way to do so consists
in splitting the reward whenever a block is found. This is the proportional reward
system. More sophisticated reward schemes have been put together to increase the
amount of risk transferred from the miners to the pool and to �ll the gaps of the
proportional system that we will discuss later. These more sophisticated systems
require the supervision of a manager who undertakes part of the risk in exchange
for a commission. An early work of Rosenfeld [121] provides a detailed overview
on mining pool reward systems, see also the recent survey of Zhu et al. [164]. In
practice, the individual contribution of a miner is measured through a share submis-
sion process. A share refers to an easier-to-�nd 'fake' solution to the crypto-puzzle
that miners must send to the pool manager to prove their involvement (for instance,
a solution to the crypto-puzzle with only m instead of the n > m leading zeroes
required for the successful mining of a block). In this work we provide a risk anal-
ysis of Pay-per-Share (PPS) reward systems in which the pool manager pays for
each share submitted by the miners. In that way the manager takes on much of
the randomness associated to the mining activity, which is therefore very appealing
to the participant. Using utility theory, Schrijvers et al. [126] showed that such
systems are incentive-compatible for risk-averse miners. Both Rosenfeld [121] and
Zhu et al. [164] stressed that a scheme of this kind must go hand in hand with a
proper capital allocation strategy on the part of the manager to avoid ruin. Reliable
information on mining companies �ling for bankruptcy are hard to come by, we are
able to provide one. Bcause Mining, LLC, the mining a�liate operating in Virginia
Beach, Virginia, �led voluntarily for bankruptcy court protection under Chapter 11
on April 11, 2019 in order to reorganize its debts. Unsecured creditors included
a Virginia power company ($1, 459, 267.38), the U.S. Customs and Border Patrol
($737, 041.90), landlords, and sta�1.

The aim of this chapter is to provide risk-analytic tools to inform the decision

1Source: https://www.theblockcrypto.com

https://www.theblockcrypto.com/post/20287/mining-company-files-bankruptcy-and-reveals-interesting-debtors
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making process of miners and pool managers. This is achieved by taking an ap-
proach inspired from insurance risk theory. The wealth of miners and pool managers
is modelled via stochastic processes that take into account operational costs, pool
participation fees and block �nding rewards. The resulting processes are similar to
those appearing in the surplus modelling for insurance companies which collect pre-
miums continuously and have to pay loss reimbursements to policyholders in case a
claim occurs. A standard risk measure in this context is the ruin probability de�ned
as the probability that the wealth process falls below zero, see e.g. Asmussen and
Albrecher [16] for an overview. This analogy was already used in Albrecher and
Go�ard [10], where the opportunity for miners to deviate from the prescribed pro-
tocol by withholding blocks was investigated. A �rst result was also obtained there
in relation to the advantage of joining a mining pool which applies the proportional
system. Our objective in this chapter is to considerably extend this line of thinking
towards the Pay-per-Share redistribution systems that are more commonly used in
practice. We will also consider a variant of the model in which the collected re-
wards are random variables. This assumption will enable the application of classical
results from double-sided jumps in a risk reserve process for modelling insurance
portfolios, see for example Albrecher at al. [9], Labbé and Sendova [91]. Incorporat-
ing random rewards allows us to account for the transactions fees and the exchange
rate of cryptocurrencies to �at ones. Transaction fees are included by blockchain
users to entice the network to process their transactions, see Easley al. [60] and
Kasahara and Kawahara [85]. The redistribution of the revenue generated by the
transaction fees among the pool participants also varies from one mining pool to
another. Closed-form expressions for the probability of ruin and the expected pro�t
given that ruin has not occurred are provided up to an exponentially distributed
time horizon. These formulas are amenable for a quick numerical evaluation to per-
form a sensitivity analysis of risk and reward indicators with respect to the model
parameters. We believe that our results will be useful for miners and pool managers
to make the right �nancial choices. Our indicators can also serve as the basis for a
potential future regulatory framework for mining activity on blockchains equipped
with the Proof-of-work consensus protocol.

A major concern associated to mining pool formation is the centralization of the
network. Cong et al. [37] have explained that miners who direct their mining power
to multiple small mining pools enjoy the same risk sharing bene�ts as miners that
choose to join a single mining pool. Hence the intuition that a larger mining pool
would grow even larger is misguided. Empirical data shows that the participation
fees are greater in larger mining pools, which naturally slows down their growth. We
aim at providing more insight on the risk of centralization in the light of our analysis.

The remainder of the chapter is organized as follows. Section 2.2 gives a brief de-
scription of the mining process in blockchains equipped with Proof-of-Work. Section
2.3 provides an overview of the existing reward systems and describes the Pay-Per-
Share mechanism in more detail, as it will be the focus later on. Formulas for the
ruin probability and expected surplus for the pool manager are derived for determin-
istic rewards in Section 2.4 and for randomized reward in Section 2.5. Section 2.6
provides formulas from the individual miner's perspective. Section 2.7 is devoted to
numerical illustrations where the sensitivity of the risk and performance indicator
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is analysed with respect to the model parameters. Section 2.8 concludes.

2.2 Mining blocks in a Proof-of-Work powered blockchain

A block consists of a header and a list of "transactions" that represents the in-
formation recorded through the blockchain. The header usually includes the date
and time of creation of the block, the block height which is the index inside the
blockchain, the hash of the block and the hash of the previous block. The hash
of a block is obtained by concatenating the header and the transactions in a large
character string thus forming a "message", to which a hash function is applied. A
hash function is a function that can map data of arbitrary size to �xed-sized values.
The hash functions used in blockchain applications must be cryptographic, i.e. quick
to compute, one way and deterministic. It must be nearly infeasible to generate a
message with a given hash value or to �nd two messages with the same hash value.
A small change in the message should change dramatically the hash value so that
the new hash value appears to be uncorrelated to the previous hash. We will not
expand on how to build such a cryptographic hash function, we refer the interested
reader to the work of Al-Kuwari et al. [2]. In the bitcoin blockchain as well as in
many other applications, the standard is the SHA-256 function which converts any
message into a hash value of 256 bits. The latter is usually translated into a hex-
adecimal digest, for instance the hash value of the title of the present chapter reads
as

98b1146926548f6b57c4347457713ff2f035beda9c93f12fbc9b202e9c512e80.

The information recorded in a public blockchain may be retrieved by anyone and can
be accessed through a blockchain explorer such as blockchain.com, the content of the
block of height #724724 may be viewed through the following link block content.
Mining a block means �nding a block hash value lower than some target which can
only be achieved by brute force search thanks to the properties of cryptographic
hash functions. In practice, the search for an appropriate hash value, referred to as
a solution, is done by appending a nonce to the block message before applying the
hash function. A nonce is a 32 bits number, drawn at random by miners until a
nonce resulting in a proper block hash value is found. For illustration, consider the
block in Figure 2.1.

Figure 2.1: A block that has not been mined yet.

The hash value in decimal notation is 1.43e76 while the maximum value for a
256 bits number is 2256 − 1 ≈ 1.16e77. We refer to the latter as the maximal target
and denote it by Tmax. The Proof-of-Work protocol sets a target T < Tmax and

https://www.blockchain.com/
https://www.blockchain.com/btc/block/0000000000000000000954d42e8ced7017448cb9f39b364e371a1eec6e34463b
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ask miners to �nd a nonce such that the hash value of the block is smaller than T .
Practitioners would rather talk about the di�culty which is de�ned as D = Tmax/T .
If the di�culty is one, any hash value is acceptable. Increasing the di�culty reduces
the set of allowable hash values, making the problem harder to solve. A hash value
is then called acceptable if its hexadecimal digest starts with a given number of
zeros. If we set the di�culty to 24, then the hexadecimal digest of the hash of the
block must start with at least 1 leading zero, making the hash value of the block in
Figure 2.1 not acceptable. After completing the nonce search we get the block in
Figure 2.2. Note that it took 5 attempts to �nd this nonce. The number of needed

Figure 2.2: A mined block with a hash value having on leading zero.

trials is geometrically distributed with parameter 1/D, which means that with a
di�culty of D = 24 it takes on average 16 trials. The protocol adjusts the di�culty
automatically every 2, 016 block discoveries so as to (globally) maintain one block
discovery every 10 minutes on average. The time between two block discoveries
depends on the number of hash values computed by the network at a given instant.
As of February 2022, the network computes 182.58 Exahashes per second and the
di�culty is 27, 967, 152, 532, 434.2 For an exhaustive overview of the mining process
in the bitcoin blockchain, we refer the reader to the book of Antonopoulos [15,
Chapter 10]. As each trial (of the system) for mining a block is independent of
the others and leads to a success with very small probability, the overall number of
successes is binomially distributed and will be very well approximated by a Poisson
random variable. This justi�es the Poisson process assumption made in the sequel
to model the block arrival and the reward collecting processes. Empirical studies of
the block inter-arrival times data tend to con�rm this hypothesis, see the work of
Bowden et al. [27].

2.3 Risk models and reward systems

A risk model de�nes the wealth of some company or individual as a stochastic
process

Rt = u− Ct +Bt, t ≥ 0

which corresponds to the income (Bt)t≥0 net of the expenses (Ct)t≥0. The surplus
process (Rt)t≥0 starts at some initial level R0 = u > 0. We take a continuous
time approach where t ∈ R+, and (Ct)t≥0 and (Bt)t≥0 de�ne increasing functions
or stochastic processes. A risk analysis is relevant only if at least one of the model
components is random. The activity of the company is pro�table if on average

2Source: bitcoinblockhalf.com

https://www.bitcoinblockhalf.com/
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the earnings exceed the expenses, namely E(Bt) > E(Ct). Even if the net pro�t
condition holds, the variability of the process (Rt)t≥0 can lead to bankruptcy as it
may become negative. De�ne the ruin time as

τu = inf{t ≥ 0 : Rt < 0},

which corresponds to the �rst time at which the surplus goes below 0. The risk
of bankruptcy is classically assessed by computing the ruin probability up to time
t ≥ 0 de�ned by

ψ(u, t) = P(τu ≤ t). (2.1)

It is sometimes more convenient from a mathematical point of view to consider
the in�nite-time horizon by letting t → ∞, and in that case we write ψ(u) :=
limt→∞ ψ(u, t). Following the rationale developed in [10], we also consider a perfor-
mance indicator de�ned as

V (u, t) = E(RtIτu>t), (2.2)

which corresponds to the expected surplus at time t ≥ 0 in case ruin did not occur
until then.

Consider a network of n miners, where miner i ∈ {1, . . . , n} owns a share pi ∈ (0, 1)
of the network hashpower, i.e.

∑n
i=1 pi = 1. If the number of blocks found by the

network is governed by a homogeneous Poisson process (Nt)t≥0 with intensity λ,
then the number of blocks found by miner i is a (thinned) Poisson process (N i

t )t≥0

with intensity pi · λ. Denote by b > 0 the amount of the reward for �nding a new
block and assume that the cumulative operational cost is a linear function with slope
ci > 0 which depends on the price of the electricity and the computing power of
miner i. The surplus process of miner i is then given by

Ri
t = u− ci · t+N i

t · b, t ≥ 0. (2.3)

Model (2.3) has been considered by Albrecher and Go�ard [10], and formulas for both
the �nite-time ruin probability (2.1) and the expected surplus (2.2) were derived.
To make the formulas more amenable for numerical evaluation, the authors then
decided to approximate the �xed time horizon t ≥ 0 by an exponential random
variable T ∼ Exp(t) with mean t ≥ 0, resulting in tractable expressions for

ψ̂(u, t) = E[ψ(u, T )], and V̂ (u, t) := E[V (u, T )], (2.4)

which were then used to carry out a numerical analysis.

Remark 2.3.1. Model (2.3) assumes that the block-�nding reward is constant, while
the bitcoin protocol stipulates a halving of the reward every 210, 000 blocks. However,
�rst note that 210, 000 blocks take 4 years to be found which is greater than the time
horizon we have in mind when de�ning ψ̂(u, t) and V̂ (u, t). Second, since these
halving dates are known to blockchain networks, the market automatically adjusts
the cryptocurrency exchange rate before the halving occurs. Eventually, one could
also replace b in Model (2.3) with a piecewise constant function to account for halving
events. However, this would only be relevant for very long time horizons and will
not be pursued in the present work.
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Consider now a situation where a subset of miners I ⊂ {1, . . . , n} decides to gather
in a mining pool. The cumulated hashpower of this pool is then

pI =
∑
i∈I

pi,

and the arrival rate of block rewards for a given miner i rises from pi · λ to pI · λ.
Because the reward is shared among the pool participants, the size of the reward
collected by miner i decreases from b to pi · b. The expected surplus is the same
when mining solo and mining for a pool, but the variance (and therefore the risk) is
smaller when mining for a pool. The management of a mining pool relies heavily on
the reward distribution mechanism set up by a pool manager. For the redistribution
system to be fair, each miner must be remunerated in proportion to her calculation
e�ort. Miner i must earn a share pi/pI of the mining pool total income. The pool
manager has to �nd a way to estimate the contribution of each pool participant. This
is done by submitting shares which are partial solutions to the cryptopuzzle easier
to �nd than the actual solution. Recall from Section 2.2 that a proper solution
corresponds to a hash value starting with a given number of zeros, so shares are
hash values with a smaller number of leading zeros. If the current di�culty of
the cryptopuzzle is D, then the di�culty for �nding a share is set to q · D by the
pool manager, where q ∈ (0, 1). The manager's cut is a fraction f ∈ (0, 1) of the
block discovery reward b. We start by presenting the proportional reward system in
Section 2.3.1.

2.3.1 The proportional reward system

The proportional reward system splits time in rounds which correspond to the time
elapsed between two block discoveries. During these rounds, the miners submit
shares. The ratio of the number of shares submitted by miner i over the total
number of shares submitted by her fellow mining pool participants determines her
share of the reward and should converge to her share of the mining pool computing
power, that is pi/pI (for su�ciently low complexity of the shares, the latter limit
will be a very good approximation for the actual situation indeed). The surplus of
miner i is then given

Ri
t = u− ci · t+N I

t · (1− f) · pi
pI

· b, t ≥ 0, (2.5)

where (N I
t ) is a Poisson proccess of intensity pI · λ that gives the number of blocks

appended to the blockchain by the mining pool. The duration of a round is expo-
nentially distributed Exp [(pIλ)−1]. The uncertainty on the length of the round has
undesirable consequences on the time value of the shares submitted by the miners.
Indeed, if n shares are submitted during a round, then the value of a given share is
(1 − f) · b/n. The longer a round lasts, the greater the value of n is. The shares
are worth less in longer rounds which triggers an exodus behavior of miners toward
mining pools with shorter rounds. This phenomenon, called pool hopping, has been
documented in the early work of Rosenfeld [121]. Yet another drawback is that a
miner that has found a full solution may delay the submission until her ratio of
shares submitted re�ects her fraction of the mining pool computing power. The
proportional system is not incentive-compatible using the terminology of Schrijvers
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et al. [126]. A discounting factor may be applied to compensate the decreasing
value of shares over time, see for instance the slush's method [130].

Our work is also concerned about the risk undertaken by pool managers. Within the
frame of the proportional reward system, the surplus of the pool manager is given
by

RI
t = u+N I

t · f · b, t ≥ 0. (2.6)

Model (2.6) does not account for any mining pool operating cost. The mining costs
are entirely borne by miners and the mining pool manager only serves as coordinator.
A proportional-type reward system should therefore lead to a low management fee f .

Although this system provides fairness, it has weaknesses that justify the intro-
duction of a more sophisticated distribution mechanism. In particular, if miners seek
to actually transfer some of the risk associated to the mining activity to the pool
manager, then they should rather turn to a mining pool based on a Pay-per-Share
system, which is the focus of this chapter and introduced in the next section.

2.3.2 The Pay-Per-Share reward system

In a Pay-per-Share reward system, the pool manager immediately rewards the min-
ers for each share submitted. Let (Mt)t≥0 be a Poisson process of intensity µ that
counts the number of shares submitted by the entire network of miners up to time
t ≥ 0. Denote by q ∈ (0, 1) the relative di�culty of �nding a block compared to
�nding a share. Let 0 < w < b be the reward for �nding a share. The number
of shares submitted by miner i is then a (thinned) Poisson process (M i

t )t≥0 with
intensity pi · µ, pi being the share of the individual miner's network hashpower as
de�ned above, and her surplus when joining a PPS mining pool becomes

Ri
t = u− ci · t+M i

t · w, t ≥ 0. (2.7)

The intensities of the processes (Nt)t≥0 and (Mt)t≥0 are linked through λ = q · µ.
By setting w = (1 − f) · b · q, we observe that the surplus (2.5) and (2.7) have the
same expectation at time t, but the variance and therefore the risk associated to
(2.7) is lower. This reward system has been shown to be resistant to pool hopping
and is incentive compatible. It also entails a signi�cant transfer of risk to the pool
manager whose surplus process is now given by

RI
t = u−M I

t · w +N I
t · b, t ≥ 0, (2.8)

making her subject to the risk of bankruptcy.

Remark 2.3.2. Since the process (M I
t )t≥0 requires solving for a problem of lower

complexity than (N I
t )t≥0, (N I

t )t≥0 is a subset of the path de�ned by the process
(M I

t )t≥0. It means that both processes are not independent. Concretely, at the mo-
ment of the block reward payment b, at the same time there is a realisation of the
miners' reward w. As we sometimes will need to isolate downward jumps without the
simultaneous upward jump point, we de�ne another process with a reduced intensity.
We apply the superposition theorem (see e.g. [88]) to the Poisson process M I

t by
rede�ning the down jump process as (M I,d

t )t≥0 ∼ Poisson(µd), where µd = µ− λ.
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Figure 2.3: Illustration of surplus paths for the pool members and the pool manager.

Figure 2.3 represents sample paths of the surplus processes for an individual
miner and the pool manager.

In addition to the bounty for �nding a new block, blockchain users usually in-
clude a small �nancial incentive for the network to process their transaction. These
transaction fees (e.g. referred to as gas within the ETHEREUM blockchain), are
known to be variable as they highly depend on the network congestion at a given
time. Note also that since the operational cost is paid by miners using a �at currency,
it would be more accurate to account for the exchange rate of the cryptocurrency
to some �at currency. We can therefore model the successive rewards for shares
and blocks as sequences of nonnegative random variables denoted by (Wk)k≥1 and
(Bk)k≥1 respectively, which for simplicity we will both assume to be i.i.d. in this
chapter. A reward system that features a Pay-per-Share mechanism and includes
in the miners' reward the transaction fees is referred to as a Full Pay-per-Share re-
ward system by practitioners. The surplus of miner i in a mining pool applying the
FPPS system is given by

Ri
t = u− ci · t+

M i
t∑

k=1

Wk, t ≥ 0, (2.9)

and the surplus of the pool manager then becomes

RI
t = u−

MI
t∑

k=1

Wk +

NI
t∑

l=1

Bl, t ≥ 0. (2.10)

In the following sections, we will now derive formulas for the ruin probability and
expected surplus in case ruin did not occur up to a given time horizon for the models
discussed above.

2.4 Pool analysis with deterministic rewards

We start with a �xed time horizon. For simplicity, we drop the superscript I in the
following developments.
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2.4.1 Deterministic time horizon

For the pool manager's side, we �rst de�ne some measures of interest. Let τ =
inf{t ≥ 0 : Rt < 0} be the time of ruin of the pool manager, i.e. the �rst time his
surplus reaches 0. The corresponding ruin probabilities in �nite and in�nite horizon
respectively are given by

ψ(u, t) = P(τ ≤ t), and ψ(u) = P(τ <∞). (2.11)

The net pro�t condition in this case translates to λb > µw. It implies from [16],
that ψ(u) < 1. We also de�ne the expected surplus at time t given that ruin has
not occurred up to time t:

V (u, t) = E(RtIτ>t). (2.12)

In the sequel, we will use the process (Md
t )t≥0 de�ned in Remark 2.3.2 repre-

senting the pure downward jumps. Note that ruin can only occur at discrete times
when the process (Md

t )t≥0 admits a jump. We can rewrite the ruin time τ as

τ = inf{t ≥ 0;Md
t w > u+Nt(b−w)} = inf{t ≥ 0;Md

t > u/w+Nt(b−w)/w}. (2.13)

Equivalently, we can rewrite it as

τ = inf{t ≥ 0;Md
t w/(b− w) > u/(b− w) +Nt} (2.14)

to isolate the (Nt)t≥0 process with unit jumps. The study of the p.d.f. fτ of τ is
analogous to the derivations in [68]. Since (Nt)t≥0 and (Md

t )t≥0 are Poisson process,
they enjoy the order statistic property. That is, given that Nt = n, the jump times
{T1, . . . , Tn} of the process Nt have the same distribution as the order statistics
vector of a random variable having distribution Ft(s) = s/t, 0 ≤ s ≤ t. Further, let
{Sd

n, n ∈ N} be the sequence of arrival times associated with the process (Md
t )t≥0.

Its distribution function is denoted by FSd
n
(t) and its p.d.f. by fSd

n
(t). Denote by

⌈x⌉ the ceiling function. Following Corollary 1 from [68], we proceed from Equation
(2.14) and derive the next steps.

Theorem 2.4.1. Let (Nt, t ≥ 0) and (Md
t , t ≥ 0) be Poisson processes with

intensities {λ, µd} respectively, and assume that the net pro�t condition λb > µw
holds, then the p.d.f. of τ is given by

fτ (t) =
+∞∑
n=0

E
[
(−1)n

tn
Gn

[
0|Sv0 , . . . , S

d
vn−1

]
|Sd

vn = t

]
fSd

vn
(t)P [Nt = n] , (2.15)

where (vn)n≥0 is a sequence of integers de�ned as vn = ⌈n(b − w)/w + u/w⌉, n ≥
0, and (Gn(·|{. . .})n∈N is the sequence of Abel-Gontcharov polynomials de�ned in
Appendix 2.A.

The proof is delegated to Appendix 2.B. The expression of the ruin time p.d.f.
(2.15) is not convenient for numerical purposes. The in�nite series in (2.15) must
be truncated, possibly to a high order to reach an acceptable level of accuracy.
Also, the evaluation of the Abel-Gontcharov polynomials relies on the recurrence
relationships (2.68) which are known to su�er from numerical instabilities. Moreover,
the conditional expectation with respect to {Sd

vn = t} itself requires the use of
Monte Carlo simulations. Finally, a similar algebraic expression for V (u, t) is out of
sight. In view of all these di�culties, we therefore propose as in [10] a workaround
which consists of replacing the deterministic time horizon by a random variable with
exponential distribution.
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2.4.2 Exponential time horizon

To obtain a nicer solution to the problem, we now randomize the time horizon T .
The practical intuition suggests that the time horizon is never �xed in advance
and is subject to various external factors, such as bitcoin price �uctuations, in-pool
events etc. We choose the time horizon T to be exponentially distributed with rate
1/t (so that E(T ) = t). This leads to computable expressions having an intuitive
justi�cation due to the lack of memory property of the exponential distribution. Let
V̂ (u, t) := E(RT Iτ>T ) denote the expected value of the surplus at the exponential
time horizon T .

Theorem 2.4.2. Let b and w, b > w, be �xed positive integers and assume that
the net pro�t condition λb > µw holds. Then the expected surplus at an exponential
time horizon can be expressed in the form

V̂ (u, t) =
w∑
i=1

cix
u
i + u+ λb t− (λ+ µd)w t,

where x1, . . . , xw are the w roots inside the unit disk of the equation

λxb − (λ+ µd + 1/t)xw + µd = 0, (2.16)

and the constants c1, . . . , cw are the solution of the linear equation system
λxb−w

1 − (λ+ µd + 1/t) · · · λxb−w
w − (λ+ µd + 1/t)

λxb−w+1
1 − (λ+ µd + 1/t)x1 · · · λxb−w+1

w − (λ+ µd + 1/t)xw
...

. . .
...

λxb−1
1 − (λ+ µd + 1/t)xw−1

1 · · · λxb−1
w − (λ+ µd + 1/t)xw−1

w




c1
c2
...
cw

 =


A1

A2
...
Aw

 ,

(2.17)
with

Ai = (i− 1)µd + µdt(λb− (λ+ µd)w)− µdw, i = 1, . . . , w.

Proof. Akin to the approach in [9], consider some small h > 0 and condition on the
following scenarios during the time interval (0, h):

1. no jump and T > h;

2. no jump and T ≤ h;

3. occurrence of an upward jump;

4. occurrence of a downward jump.

All other combinations of these events have negligible probability in the limit h→ 0
that we will pursue below. One then obtains

V̂ (u, t) = e−( 1
t
+λ+µd)hV̂ (u, t) +

1

t

∫ h

0

e−s/te−(λ+µd)su ds

+ λ

∫ h

0

e−λse−(1/t+µd)sV̂ (u+ b− w, t) ds+ µd

∫ h

0

e−µdse−(1/t+λ)sV̂ (u− w, t) ds.

(2.18)
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We now take the derivative w.r.t. h and set h = 0 to obtain

λV̂ (u+ b−w, t)− (λ+ µd +1/t)V̂ (u, t) + µdV̂ (u−w, t) + u/t = 0, u ≥ 0. (2.19)

By de�nition of V̂ (u, t) we have the boundary conditions V̂ (u, t) = 0 for all u < 0
and the linear boundedness 0 ≤ V̂ (u, t) ≤ u + (λb − µdw)t in both u and t for all
u, t ≥ 0.

Equation (2.19) is an inhomogeneous di�erence equation with constant coe�-
cients (see e.g. [82] for solution methods), which has the general solution

V̂ (u, t) =
b∑

i=1

cix
u
i + d0 + d1u

with constants {ci}bi=1, {xi}bi=1, d0, d1 still to be determined.
Let us start with the inhomogeneous part: plugging the ansatz d0 + d1u into (2.19)
gives

d1 = 1, d0 = λbt− (λ+ µd)wt.

For the homogeneous part, we consider the characteristic equation (2.16), which by
the Fundamental Theorem of Algebra has exactly b complex roots x1, . . . , xb. The
linear boundedness of V̂ (u, t), however, excludes any solution with absolute value
exceeding 1 (i.e., the corresponding constants ci must be zero). In fact, it turns out
that exactly w roots of the polynomial in (2.16) are located inside the unit disk in
the complex plane. To see this, observe �rst that (λ+ µd + 1/t)xw + µd has exactly
w roots inside the unit disk (due to µd/(λ+µd+1/t) < 1). Then Rouché's Theorem
establishes that the same is true for the entire polynomial in (2.16), if

|λzb| < | − (λ+ µd + 1/t)zw + µd| on |z| = 1,

which translates into the condition

|µd − (λ+ µd + 1/t)zw| > λ on |z| = 1. (2.20)

The reverse triangle inequality states for any complex a, b ∈ C that |a−b| ≥
∣∣∣|a|−|b|

∣∣∣,
which shows that for |z| = 1 the left-hand side of (2.20) is larger than λ + 1/t, so
that (2.20) is indeed ful�lled.
It is now only left to determine the coe�cients c1, . . . , cw corresponding to the w
roots x1, . . . , xw ∈ C with |xi| < 1 of (2.16). To that end, note that (2.19) evaluated
at u = 0, . . . , w − 1 gives the following system of equations:

λV̂ (b− w, t)− (λ+ µd + 1/t)V̂ (0, t) = 0,

λV̂ (b− w + 1, t)− (λ+ µd + 1/t)V̂ (1, t) + 1/t = 0,

· · ·
λV̂ (b− 1, t)− (λ+ µd + 1/t)V̂ (w − 1, t) + (w − 1)/t = 0.

Substituting the form

V̂ (u, t) =
w∑
i=1

cix
u
i + u+ at
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with at = λb t− (λ+ µd)w t into this system leads to

λ
w∑
i=1

cix
b−w
i + λ(b− w) + λat − (λ+ µd + 1/t)

(
w∑
i=1

ci + at

)
= 0,

λ

w∑
i=1

cix
b−w+1
i + λ(b− w + 1) + λat − (λ+ µd + 1/t)

(
w∑
i=1

cixi + (1 + at)

)
+ 1/t = 0,

· · ·

λ

w∑
i=1

cix
b−1
i + λ(b− 1) + λat − (λ+ µd + 1/t)

(
w∑
i=1

cix
w−1
i + (w − 1 + at)

)
+ (w − 1)/t = 0.

But the latter can be rewritten in the form (2.17).

Example 2.4.3. Figure 2.4 depicts V̂ (u, t) as a function of u for the parameters
b = 100, w = 9, t = 1, λ = 10, µd = 90. Note that for some capital levels u the
increase of V̂ (u, 1) from u to u + 1 is larger than for others. This is linked to how
many down-jumps relative to up-jumps are needed to become negative, and due to
the discrete nature of the problem such jumps in V̂ (u, t) occur naturally.

20 40 60 80 100
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150

Figure 2.4: V̂ (u, 1) as a function of u

In an analogous way, an explicit formula for ψ̂(u, t) = E [ψ(u, T )] can be derived.

Theorem 2.4.4. Let b and w, b > w, be �xed positive integers. Then the ruin
probability up to an exponential time horizon with mean t is given by

ψ̂(u, t) =
w∑
i=1

cix
u
i (2.21)

where x1, . . . , xw are the w roots inside the unit disk of Equation (2.16) and the
constants c1, . . . , cw are the solution of the linear equation system

λxb−w
1 − (λ+ µd + 1/t) · · · λxb−w

w − (λ+ µd + 1/t)
λxb−w+1

1 − (λ+ µd + 1/t)x1 · · · λxb−w+1
w − (λ+ µd + 1/t)xw

...
. . .

...
λxb−1

1 − (λ+ µd + 1/t)xw−1
1 · · · λxb−1

w − (λ+ µd + 1/t)xw−1
w




c1
c2
...
cw

 =


−µd

−µd
...

−µd

 .

(2.22)
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Proof. We proceed in the same way as in the proof of Theorem 2.4.2. The analogue
of (2.18) then is

ψ̂(u, t) = e−( 1
t
+λ+µd)hψ̂(u, t) + λ

∫ h

0

e−λse−(1/t+µd)sψ̂(u+ b− w, t) ds

+ µd

∫ h

0

e−µdse−(1/t+λ)sψ̂(u− w, t) ds

(2.23)

and (2.19) is replaced by

λψ̂(u+ b− w, t)− (λ+ µd + 1/t)ψ̂(u, t) + µdψ̂(u− w, t) = 0, u ≥ 0, (2.24)

which is the homogeneous equation of the former. The boundary conditions here are
given by ψ̂(u, t) = 1 for u < 0 as well as the obvious bound ψ̂(u + b− w, t) ≤ 1 for
all u ≥ 0. Correspondingly, from the proof of the previous theorem we then know
that

ψ̂(u, t) =
w∑
i=1

cix
u
i (2.25)

with constants c1, . . . , cw still to be determined. Evaluating (2.24) at u = 0, . . . , w−1
gives

λψ̂(b− w + j, t)− (λ+ µd + 1/t)ψ̂(j, t) + µd = 0, j = 0, . . . , w − 1.

Substituting (2.25) into these leads to

λ
w∑
i=1

cix
b−w+j
i − (λ+ µd + 1/t)

(
w∑
i=1

cix
j
i

)
+ µd = 0, j = 0, . . . , w − 1,

or equivalently (2.22).

2.5 Pool analysis with stochastic rewards

Until this point, we considered deterministic rewards b and w for jump sizes of the
surplus process. However, in practice, one may desire to incorporate variability in
these quantities to account for instance for the incorporation of variable transaction
fees attached to the block reward, or to capture the price volatilities to convert the
reward to a �at currency.

Let us therefore assume now that the up- and downward jumps in the dynamics
of the pool manager's surplus are stochastic. Under certain assumptions on the
nature of these jumps, this will allow us to still derive closed-form formulas for ψ̂
and V̂ in the spirit of [9], see also [16, Ch. 4]. Equation (2.8) then is replaced by

Rt = u−
Md

t∑
n=1

Wn +
Nt∑
n=1

Br,n, t ≥ 0, (2.26)

where we assume Wn, n ∈ N to be i.i.d. positive random variables with cumulative
distribution function FW and �nite mean representing payments to the pool mem-
bers, and Br,n, n ∈ N are assumed to be i.i.d. positive random variables with dis-
tribution function FBr and �nite mean representing the remaining in�ow of bounty
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rewards diminished by the simultaneous payout to the respective pool member. If
one wishes to draw a parallel to the previous case with deterministic rewards, the
random variable Br assumes the role of b − w, the �xed block reward minus the
payout to the pool member.

Consider the expected surplus of the pool manager as de�ned previously with
a random time horizon T . Concretely, T follows an exponential distribution with
mean t. As in the previous section, we are interested in V̂ (u, t).

Proposition 2.5.1. The quantity V̂ (u, t) = E(RT Iτ>T ) for the pool surplus process
(2.26) is a solution of the integral equation

λ

∫ ∞

0

V̂ (u+ br, t) dFBr(br)− (λ+ µd + 1/t)V̂ (u, t)

+ µd

∫ u

0

V̂ (u− w, t) dFW (w) + u/t = 0, u ≥ 0,

(2.27)

with boundary conditions V̂ (u, t) = 0 for all u < 0 and 0 ≤ V̂ (u, t) ≤ u+ (λE[Br]−
µdE[W ])t for all u, t ≥ 0.

Proof. We extend the approach of the proof of Theorem 2.4.2 by conditioning on
the size of the jump in case a jump occurs. For some small h > 0 we correspondingly
get

V̂ (u, t) = e−( 1
t
+λ+µd)hV̂ (u, t) +

1

t

∫ h

0

e−s/te−(λ+µd)su ds

+ λ

∫ h

0

e−λse−(1/t+µd)s

∫ ∞

0

V̂ (u+ br, t) dFBr(br) ds

+ µd

∫ h

0

e−µdse−(1/t+λ)s

∫ u

0

V̂ (u− w, t) dFW (w) ds.

(2.28)

Taking the derivative w.r.t. h and setting h = 0, one obtains (2.27). The property
V̂ (u, t) = 0 for all u < 0 follows by de�nition and the linear upper bound in u and
t is obtained from the inequality V̂ (u, t) ≤ E(RT ).

Remark 2.5.2. For degenerate FBr and FW (i.e. for constant Br and W ), the
integral equation (2.27) simpli�es to (2.19) (and for integer constants, we get back
to the setting of Theorem 2.4.2).

For our purposes, it is very reasonable to assume (and will lead to simpli�ed
notation) that the generic random variables Br and W are connected via

Br = aW (2.29)

for some constant a > 1 that depends on the number of miners in the pool. In-
deed, W is the payment to the pool miner for solving a less complex puzzle, and
Br can be seen as the bounty reward when the more complex puzzle is solved mi-
nus the payment to the miner who solved it, and that latter payment will be a
constant fraction, depending on the speci�cation of the pool rules. Note that for
most positive random variables, a scaled version of it belongs to the same class of



34 CHAPTER 2. BLOCKCHAIN MINING IN POOLS

random variables with only the parameter(s) changed, and the latter is indeed the
case for all distributional assumptions that we will pursue in this chapter. In any
case, all results below can easily be adapted to the case when Br and W follow dis-
tributions that are unrelated combinations of exponentials with di�erent n and Ai's.

Let us now consider in more detail the case where both the up- and down-jumps
are random variables whose distributions are combinations of exponentials. The
latter class is dense in the class of all random variables on the positive half-line,
so that the result is in fact quite general (see e.g. Dufresne [56]). Concretely, the
density of downward jumps is then assumed to be of the form

fW (w) =
n∑

i=1

Aiαie
−αiw, w > 0, (2.30)

where α1 < α2 < . . . < αn and A1 + · · · + An = 1 (but the Ai are not necessarily
positive). The Laplace transform of this density is given by

f̃W (s) := E(e−sW ) =
n∑

i=1

Ai
αi

αi + s
, Re(s) > −α1.

From (2.29), we then have

fBr(br) =
n∑

i=1

Aiβie
−βibr , br > 0 (2.31)

with βi = αi/a, i = 1, . . . , n.

Theorem 2.5.3. If W and Br are random variables with densities given in (2.30)
and (2.31), then we have

V̂ (u, t) =
n∑

k=1

Cke
−rku + u+ t

n∑
i=1

Ai

(
λ

βi
− µd

αi

)
, (2.32)

where r1, . . . , rn are the solutions with positive real parts of

λ
n∑

i=1

Ai
βi

βi + r
+ µd

n∑
i=1

Ai
αi

αi − r
− (λ+ µd + 1/t) = 0 (2.33)

and

Ck =

∑n
j=1Bj

n∏
h=1

(αj − rh)
n∏

i=1,i ̸=j

rk−αi

αj−αi

n∏
h=1,h ̸=k

(rk − rh)
, k = 1, . . . , n (2.34)

with

Bj =
1

α2
j

− t

αj

n∑
i=1

Ai

(
λ

βi
− µd

αi

)
, j = 1, . . . , n.

Proof. Substituting (2.30) and (2.31) into (2.27), we get
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λ
n∑

i=1

Aiβi

∫ ∞

0

V̂ (u+ br, t)e
−βibrdbr

− (λ+ µd + 1/t)V̂ (u, t) + µd

n∑
i=1

Aiαi

∫ u

0

V̂ (u−w, t)e−αiwdw + u/t = 0, u ≥ 0.

The function V̂ (u, t) then has the form

V̂ (u, t) =
n∑

k=1

Cke
−rku + d1u+ d0,

for constants C1, . . . , Cn, r1, . . . , rn, d0, d1 to be determined. In fact, plugging this
ansatz into the above equation shows that comparing coe�cients of e−rku exactly
gives (2.33) (which is a generalized Lundberg equation in the terminology of ruin the-
ory, cf. [16]). That equation has exactly n solutions with positive real part r1, . . . , rn
and n solutions with negative real part (see e.g. [160]). The solutions with negative
real part would enter V̂ with positive real part and are correspondingly irrelevant
for our purpose, as that would violate the linear boundedness of the resulting V̂ (in
other words, the coe�cients in front of such terms need to be zero). Comparing
coe�cients of e−αiu, i = 1, . . . , n gives

n∑
k=1

Ck

αi − rk
=
d1
α2
i

− d0
αi

, i = 1, . . . , n. (2.35)

Coe�cients in front of u e−αiu, i = 1, . . . , n all cancel. After a little algebra, one
sees that a comparison of coe�cients of u in that equation establishes d1 = 1 and a
comparison of the constant coe�cients gives

d0 = t
n∑

i=1

Ai

(
λ

βi
− µd

αi

)
.

These obtained values of d1 and d0 can now be plugged into (2.35), and the resulting
system of linear equations can be solved explicitly to give (2.34), either by realizing
that the coe�cient matrix is a Cauchy matrix or by using the trick of rational
function representation developed in [9, Sec.4].

Example 2.5.4. A particular simple example of the above is the case where W is
exponentially distributed with parameter α and Br is exponentially distributed with
parameter β. In that case n = 1 in Theorem 2.5.3 and we obtain

V̂ (u, t) =

(
1

α2
− t

α

(
λ

β
− µd

α

))
(α−R)e−Ru + u+ t

(
λ

β
− µd

α

)
, (2.36)

where R is the (unique) solution with positive real part of

λ
β

β + r
+ µd

α

α− r
− (λ+ µd + 1/t) = 0. (2.37)

Let us now move on to study the ruin probability ψ̂(u, t) = E [ψ(u, T )] in the
present context.
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Theorem 2.5.5. If W and Br are random variables with densities given in (2.30)
and (2.31), then we have

ψ̂(u, t) =
n∑

k=1

Dke
−rku, (2.38)

where r1, . . . , rn are the n solutions with positive real parts of (2.33) and

Dk =

∑n
j=1

1
αj

n∏
h=1

(αj − rh)
n∏

i=1,i ̸=j

rk−αi

αj−αi

n∏
h=1,h̸=k

(rk − rh)
, k = 1, . . . , n. (2.39)

Proof. We can proceed in the same way as in the proof of Proposition 2.5.1 to derive
an integral equation for the ruin probability. The analogue of Equation (2.28) here
is

ψ̂(u, t) = e−( 1
t
+λ+µd)hψ̂(u, t) + λ

∫ h

0

e−λse−(1/t+µd)s

∫ ∞

0

ψ̂(u+ br, t) dFBr(br) ds

+ µd

∫ h

0

e−µdse−(1/t+λ)s

(∫ u

0

ψ̂(u− w, t) dFW (w) +

∫ ∞

u

1 dFW (w)

)
ds.

(2.40)

Taking the derivative w.r.t. h and evaluating at h = 0 then gives

λ

∫ ∞

0

ψ̂(u+ br, t) dFBr(br)− (λ+ µd + 1/t)ψ̂(u, t)

+ µd

∫ u

0

ψ̂(u− w, t) dFW (w) + µd(1− FW (u)) = 0, u ≥ 0.

(2.41)

Here the boundary conditions are ψ̂(u, t) = 1 for u < 0 and ψ̂(u, t) ≤ 1 for u ≥ 0
and arbitrary t > 0, and uniqueness of its solution follows analogously to Theorem
2.5.3. Under the assumptions on FBr and FW this reads

λ

n∑
i=1

Aiβi

∫ ∞

0

ψ̂(u+ br, t) e
−βibr dbr − (λ+ µd + 1/t)ψ̂(u, t)

+ µd

n∑
i=1

Aiαi

∫ u

0

ψ̂(u− w, t) e−αiw dw + µd

n∑
i=1

Aie
−αiu = 0, u ≥ 0. (2.42)

In analogy to the proof of Theorem 2.5.3 we then see that the ruin probability must
have the form

ψ̂(u, t) =
n∑

k=1

Dke
−rku

for constants D1, . . . , Dn to be determined, and r1, . . . , rn being the n positive so-
lutions of (2.33). The constants Dk are now obtained by substituting the above
expression into (2.42) and comparing coe�cients of e−αiu, i = 1, . . . , n. This gives

n∑
k=1

Dk

αi − rk
=

1

αi

, i = 1, . . . , n. (2.43)

This system of linear equations is again of Cauchy matrix form with explicit solution
(2.39), establishing the result.
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Example 2.5.6. If W and Br are exponentially distributed with parameter α and
β, respectively, then (2.38) simpli�es to

ψ̂(u, t) = (1−R/α)e−Ru, u ≥ 0, (2.44)

where R is the (unique) solution with positive real part of (2.37).
Note that for t→ ∞ one obtains R = (λα− µdβ)/(λ+ µd) > 0, so that

ψ(u) =
µd(1 + β/α)

λ+ µd

e
−λα−µdβ

λ+µd
u
, u ≥ 0. (2.45)

In particular, without initial capital in the pool, the in�nite-time ruin probability
amounts to

ψ(0) =
µd(1 + β/α)

λ+ µd

,

in accordance with Formula (8.1) in [9].

2.6 Individual miner analysis

2.6.1 Deterministic rewards

Comparing the formula describing the miner's surplus under the PPS pooling scheme
(2.7) with the solo-mining surplus (2.3), one can see that they are in fact the same
type of process, only distinguished by the reward amount and frequency. Corre-
spondingly, the formulas obtained by Albrecher and Go�ard [10] for the expected
value of the surplus and the ruin probability of a honest miner apply in the PPS
case with deterministic rewards. Adapted to the present context, we hence get:

Theorem 2.6.1. [10] For the miner's surplus process Ri
t = u− ci · t+M i

t ·w, t ≥ 0,
with M i

t ∼ Poisson(piµt), the value function V̂ (u, t) can be expressed as

V̂ (u, t) = u+ (piµw − ci)t(1− eρ
∗u), (2.46)

where ρ∗ is the negative solution of the equation

−ciρ+ piµ(e
wρ − 1) = 1/t. (2.47)

Theorem 2.6.2. [10] For the same surplus process, the ruin probability with expo-
nential time horizon is given by ψ̂(u, t) = eρ

∗u, where ρ∗ is the negative solution of
(2.47).

2.6.2 Stochastic rewards

Consider now the same surplus process as in the previous section, but with stochastic
rewards. Let us de�ne this process by

Ri
t = u− ci · t+

M i
t∑

n=1

Wn, t ≥ 0, (2.48)

where we assume Wn, n ∈ N to be i.i.d. positive random variables with cumulative
distribution function FW and �nite mean and M i

t ∼ Poisson(piµt) as previously.
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This type of process is denominated as the dual problem in the insurance context,
see e.g. [18]. We assume that the net pro�t condition piµE[Wn] > ci is satis�ed.
We are again interested in deriving the expected value of the surplus and the ruin
probability for the miner. To simplify the computations, we consider again an
exponential time horizon.

Theorem 2.6.3. For exponential time horizon, the expected value of the miner's
surplus V̂ (u, t) can be expressed as the solution of the integro-di�erential equation

ciV̂
′(u, t) + (

1

t
+ piµ)V̂ (u, t)− piµ

∫ +∞

0

V̂ (u+ w, t)dFW (w)− u/t = 0, (2.49)

with boundary conditions V̂ (0, t) = 0 and 0 ≤ V̂ (u, t) ≤ u− cit+ piµE[W ].

Proof. As in previous sections, by conditioning the occurrence of T to a small time
interval (0, h), we can write the value function as

V̂ (u, t) = e−h( 1
t
+piµ)V̂ (u− cih, t) +

∫ h

0

1

t
e−s( 1

t
+piµ)(u− cis)ds

+

∫ h

0

piµe
−s( 1

t
+piµ)

∫ +∞

0

V̂ (u− cih+ w, t)dFW (w)ds.

(2.50)

Taking the derivative w.r.t. h and evaluating it at h = 0 gives us (2.49). The
boundary condition follows from ruin considerations.

For rewards whose distribution is a combination of exponentials (2.30), we can
re�ne Theorem 2.6.3.

Theorem 2.6.4. When W has density fW (w) =
∑n

j=1Ajαje
−αjw, w > 0, then

V̂ (u, t) = t

(
ci − piµ

n∑
j=1

Aj

αj

)
e−Ru + u+ t

(
piµ

n∑
j=1

Aj

αj

− ci

)
, u > 0, (2.51)

where R is the unique solution with positive real part of the equation

ciR + piµ

n∑
j=1

Ajαj

R + αj

− (
1

t
+ piµ) = 0.

Proof. Equation (2.49) translates into

ciV̂
′(u, t)+(

1

t
+piµ)V̂ (u, t)−piµ

n∑
j=1

Ajαj

∫ +∞

0

V̂ (u+w, t)e−αjwdw−u/t = 0. (2.52)

This equation has a solution of the form

V̂ (u, t) = Ce−Ru + d1u+ d0 (2.53)

and we plug this ansatz into (2.52)

ci(−RCe−Ru + d1) + (
1

t
+ piµ)(Ce

−Ru + d1u+ d0)

− piµ
n∑

j=1

Ajαj

∫ +∞

0

(Ce−R(u+w) + d1(u+ w) + d0)e
−αjwdw − u/t = 0.

(2.54)
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Comparing coe�cients, we obtain

d1 = 1, d0 = t

(
piµ

n∑
j=1

Aj

αj

− ci

)
.

Further, a comparison of the coe�cients in front of e−Ru simpli�es to the following
equation:

ciR + piµ

n∑
j=1

Ajαj

R + αj

− (
1

t
+ piµ) = 0. (2.55)

Similarly to the Lundberg equation derived in [99], we note that there is one positive
root R to this equation. To complete the proof, we consider the boundary condition
V̂ (0, t) = 0 and substituting into the ansatz gives C = −d0.
Example 2.6.5. When W is exponentially distributed, i.e. fW (w) = αe−αw, w > 0,
Equation (2.51) simpli�es to

V̂ (u, t) = t
(
ci −

piµ

α

)
e−Ru + u+ t

(piµ
α

− ci

)
, u > 0, (2.56)

where R is the solution with positive real part of

ciR
2 + (αci −

1

t
− piµ)R− α

1

t
= 0.

Theorem 2.6.6. For exponential time horizon, the miner's ruin probability can be
expressed as

ψ̂(u, t) = e−R·u, (2.57)

where R is the unique positive root of

piµ+
1

t
− ciR = piµE[e−RWn ]. (2.58)

Proof. The proof is adapted from Example 2 of Mazza and Rullière [103]. From the
latter, we have that the Laplace transform of the ruin time τ in the dual problem
is E[e−sτ ] = e−R(s)·u, with R(s) being the unique positive root of piµ + s − ciR =
piµE[e−RWn ]. Since the ruin probability up to an exponential time horizon can be
rewritten as

ψ̂(u, t) = E[P(T > τ) | τ ], (2.59)

with T ∼ Exp(1/t), it immediately follows that

ψ̂(u, t) = E[eτ/t] (2.60)

which completes the proof.

Example 2.6.7. IfW is an exponential random variable, i.e. fW (w) = αe−αw, w >
0, then the ruin probability reduces to

ψ̂(u, t) = e−R∗u, (2.61)

where

R∗ =
1/t+ piµ− ciα +

√
∆

2ci
, ∆ = (ciα− piµ− 1/t)2 + 4ciα/t. (2.62)

Remark 2.6.8. Results concerning the ruin probability can also be retrieved from
the respective results for a more general renewal model considered in Alcoforado et
al. [11].
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2.7 Numerical illustration

2.7.1 Pool manager

In this section, we will illustrate the pool dynamics in both the deterministic and
stochastic setting. In addition, we will perform a sensitivity analysis on main deci-
sion variables from the pool's perspective.

First, let us de�ne the set of parameters used in the following examples. For
each illustration, we keep all the parameters �xed to these levels except the one that
is varying : t = 336, pI = 0.1, q = 0.1, f = 0.02, b = 1000MU, w = (1 − f)bq =
98MU, λ = 6pI = 0.6, µd = 6pI(1/q − 1) = 5.4. The units we use are hours (h)
for the time parameters and monetary units (MU) for the value functions. The
choice for the time horizon t is equal to 2 weeks because it is linked to the period
of di�culty adjustment. The monetary units are related to bitcoin in this way :
1000MU = 6.25BTC. The reason for this scaling is purely practical to solve the
deterministic problem which involves integer constraints. As of May 28th 2021,
1BTC ≈ $35670.5, so 1MU ≈ $231.85.

Figure 2.5 compares the function V̂ (u, t) de�ned in Theorem 2.4.2 with the Monte
Carlo simulation of the mining process with deterministic and exponential time hori-
zon �xed at the same mean parameter. The functions are reduced by u to isolate
the expected gain realized by the pool manager. We can see that the exact formula
falls nicely within the 95% con�dence interval bounds of the MC simulations within
�xed or exponential time horizon. The red line represents the upper limit of the
function to which it converges as u → +∞, which is also the expected value of the
gain in absence of ruin considerations. One can see that for small levels of initial
capital potential ruin a�ects the resulting pro�t considerably, and for any given u
the pool manager can quantify the undesirable e�ect of ruin.
Figure 2.6 exhibits the corresponding ruin probability ψ̂(u, t) for the mining pool.
We can note that ruin is highly non-negligible for low levels of initial capital. In-
deed, ψ̂(u, t = 336) < 5% for u > 22594, which is equivalent to $5238419. We also
see how the exponential time horizon slightly underestimates the ruin probability
for low capital levels, which is due to the skewness of the exponential distribution.
This graph can also be interpreted sideways: if one �xes a threshold for the ruin
probability on the vertical axis, the corresponding initial capital can be read o� on
the horizontal axis.

In Figure 2.7, we depict the sensitivity of the expected surplus and the ruin
probability to the management fee f . Not surprisingly, the relationship between f
and ψ̂(u, t) is decreasing, as the pool retains more reward for itself. The parameter
f impacts the expected gain of the pool manager.

Remark 2.7.1. Note that here we consider the interplay of all factors in a static set-
up for a �xed number of participants in the pool. One may then go one step further
to consider the fact that a higher fee f may deter some participants to join the
pool, with respect to their willingness to pay and when comparing with fees of other
competitive pools in the market. This out�ow of miners would consequently impact
negatively the expected pro�t of the pool. However, such considerations naturally ask
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for an analysis with competing pools, which is beyond the scope of this chapter.

In Figure 2.8, we explore the impact of the relative di�culty to �nd a share q
on ruin and expected surplus.

It is worthwhile to note that increasing q is pro�table to the pool manager.
Indeed, as q increases, the payout of shares to the pool members is getting less



42 CHAPTER 2. BLOCKCHAIN MINING IN POOLS

0.00 0.02 0.04 0.06 0.08 0.10

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

f

V^
−

u

(a) V̂ (u, t)− u as a function of f .

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

f

ψ̂

(b) ψ̂(u, t) as a function of f .

Figure 2.7: Sensitivity to f in case of deterministic rewards and exponential time
horizon.
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Figure 2.8: Sensitivity to q in case of deterministic rewards and exponential time
horizon.

frequent, thus the pool manager retains more liquidity and controls his probability
of ruin at lower levels. The parameter q adjusts the magnitude of the risk transfer
between the miners and their manager.

Figures 2.9, 2.10, 2.11, 2.12 illustrate the same concepts with exponentially dis-
tributed rewards. For comparison, the parameters for the exponential distributions
are chosen so that the resulting mean matches the deterministic jump sizes, i.e.
α = 1/w = 1/98, β = 1/b = 1/1000.

Figure 2.13 gives a two-way sensitivity analysis with respect to the pool size
pI and the pool fee f . The level curves indicate the expected pro�t for the pool
manager for di�erent pool sizes.
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For a bigger pool size pI , in order to maintain the same level of expected pro�t,
the pool manager can reduce the fee size. One can clearly see an inverse relationship
between the pool size and the fee. Thus, a bigger pool can diminish its fees to attract
more miners and thus to grow even more. This implies a threat on the decentralized
nature of the consensus protocol. If a mining pool manager concentrates more than
50% of the total hashpower, then the blockchain is prone to 51%-type attacks such
as double spending in the bitcoin context. How can a smaller mining pool tackle this
problem? One solution consists in o�ering to take on more risk by decreasing the
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Figure 2.11: Sensitivity to f in case of exponentially distributed rewards and expo-
nential time horizon.
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Figure 2.12: Sensitivity to q in case of exponentially distributed rewards and expo-
nential time horizon.

di�culty of �nding a share which reduces to decreasing the value of q. Figure 2.14
shows the expected pro�t of two mining pools, one for which pI = 0.1 and a smaller
one for which pI = 0.02, both having an initial capital level u = 22500, for both
the reward and the time horizon being exponentially distributed. The level curves
indicate that in terms of expected pro�t a smaller miner may decrease q without
increasing the pool fee f , while maintaining the same level of pro�tability. That is
not the case for the larger mining pool whose expected pro�t turns out to be more
sensitive to q.
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2.7.2 Individual miner

Let us now compare the situation of an individual miner before and after joining the
pool. We recall Figure 2.3 (left panel), which exampli�es the pool members' surplus.
Also, the surplus of the member is described by (2.9). Finally, we use the results
presented in Sections 2.6.1 and 2.6.2 to assess the pool e�ect for the individual
miner's surplus following the protocol. Consider a miner in a deterministic rewards
environment. We assume a PPS pool and consider a pool member whose hashpower



46 CHAPTER 2. BLOCKCHAIN MINING IN POOLS

is equal to 1% of the pool's total hashpower, i.e. pi = 0.001. For the choice of other
parameters, we assume that the cost of electricity c is given by

c = pi × eW × πW , (2.63)

where eW is the electricity consumption of the network expressed in kWh, and πW is
the price of electricity per kWh. For the sake of our example, we take the estimate of
eW as 115.541×109

365.25×24
.3 The price of electricity is taken to be $0.06, then converted to our

MU . Therefore, the net pro�t condition is satis�ed both with and without joining
the pool. Figures 2.15 and 2.16 illustrate the expected surplus and ruin probability
with deterministic rewards and exponential time horizon. One can observe how
e�ective the risk reduction in case of joining the pool is for the individual miner.
Figure 2.16 particularly emphasizes the drastic decrease of ruin probability for low
capital levels.
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Figure 2.15: V̂ (u, t) − u as a function of u for an individual pool miner alone in
black and within the pool in red.

Up until a level of initial capital of u = 1255, it is more pro�table for the miner
to join the pool, whereas for higher levels of capital the pool fee becomes the main
decision driver instead of the ruin considerations. Converted to USD, this amounts
to approximately $290, 971. Recall that this is akin to the e�ects of reinsurance,
as the miner cedes part of his risk to the pool in exchange of a �xed contractual
payment (pool fee). In Figure 2.17, we can see how this indi�erence point evolves
with respect to the proportion of the computational power pi of an individual miner.
One observes that this point grows with the size of the miner. This may seem coun-
terintuitive, but one must note that in the formula giving us the result (2.51), the

3https://cbeci.org/, consulted on May 28th 2021.
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Figure 2.16: ψ̂(u, t) as a function of u for an individual pool miner alone in black
and within the pool in red.

parameter pi enters only as a scaling factor and is also indirectly incorporated in ci
via Equation (2.63). In practice, a miner with a very small computational power is
unlikely to see a reward very fast, which may deter him from entering the mining
market at all. Moreover, comparing the expected pro�t at the indi�erence point for
a miner with pi = 0.001% and pi = 0.1%, we obtain an expected pro�t of 8MU and
800MU respectively, which translates to $2, 120 and $212, 000 respectively, as con-
verted on December 30, 2023. To give a practical example, let us consider a novice
miner with one PC according to 2023 market standards. With such an equipment,
this miner can mine at a rate of 50 megahashes per second. Using an online calcula-
tor4, one can conclude that the expected pro�t is practically null. The miner in our
previous example, amounting to even pi = 0.001% of global computational power, is
approximately 93, 000, 000 times more powerful. Naturally, mining involves invest-
ing in better and specialized equipment, which makes the di�erence.

Finally, we investigate the sensitivity of the miner's expected surplus with respect
to the key model parameters. In Figure 2.18, the miner can see for his level of initial
capital u whether it is better to join the pool or not, depending on the employed fee
f . As before, for higher levels of capital, the miner is less willing to accept high fees
than a miner with less initial capital. We also observe that the two red lines (miner
in the pool with di�erent initial capital u) are much closer to each other than the
two black lines (miner outside of the pool with di�erent initial capital u). This is
due to the risk reduction of the miner inside the pool, since he is transferring part

4For example: https://bitcoinx.com/profit/.

https://bitcoinx.com/profit/
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Figure 2.17: Level of initial capital u for which the individual miner obtains the same
expected pro�t inside and outside of the pool, as a function of his computational
power pi.

of the risk to the pool and getting more frequent rewards.
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Figure 2.18: V̂ (u, t) − u as a function of f for an individual pool miner alone in
black and within the pool in red.

Figure 2.19 shows the level curves of V̂ (u, t) with a varying di�culty for the
miner's problem q and pool fee f . Note that not joining the pool is equivalent to
setting the di�culty level equal to the block �nding problem level and letting the
pool fee be f = 0.

With such a two-way analysis, the pool can �x an appropriate fee and the miner
can see whether he is better o� joining the pool for his given level of capital u.
In this graph, we depict the situation of one particular miner with his respective
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Figure 2.19: V̂ (u, t) as a function of q and f for an individual pool miner alone in
black and within the pool in red.

initial capital u. For another miner, the situation would be di�erent and he might
choose another more suitable pool. Therefore, multiple pools exist in the market to
accommodate the various participants.

The miner's decision to join a pay-per-share mining pool does not depend on
the size of the mining pool. Hence a miner will be indi�erent whether to direct her
hashpower towards a small or large pool. All that matters is the level of expected
pro�t (decreasing in f) and the share of risk transferred to the mining pool (de-
creasing in q). Decentralization will prevail if the preferences, more speci�cally the
risk aversion, of both the pool managers and the individual miners are su�ciently
heterogeneous. Note that a situation where a mining pool would control most of the
computing power is not desirable for anyone. The blockchain would then be prone
to attacks and the associated cryptocurrency would no longer be of value.

2.8 Conclusion

In this chapter, we developed a framework for a bitcoin mining pool analysis from a
risk and pro�tability perspective. Given a pay-per-share pooling scheme, we investi-
gated the pro�tability of a pool under ruin probability considerations, which allows
us to derive original results for the pool manager's expected pro�t. When describing
the pool income process as a stochastic double-sided jump process, one can adapt
techniques developed in the actuarial literature for applications in the blockchain
universe. In addition, we also looked at the problem from the individual miner's
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side, to identify conditions under which it is pro�table for her to enter the pool or not.

We �nd that ignoring ruin considerations highly overestimates the expected gain
for a pool for small values of initial capital and quantify the required capital level
needed for which the ruin aspect becomes negligible. Moreover, we de�ne a trade-o�
between the main pool de�ning parameters to set up conditions for optimizing the
pool pro�t for di�erent levels of capital. For an individual miner, pooling has similar
e�ects as a reinsurance treaty for an insurer. We provide a sensitivity analysis that
can be helpful for the miner to select the most appropriate pool given his initial
parameters.

For a randomized time horizon, it was possible to obtain explicit formulas for all
quantities of interest. The �exibility of our model enabled to consider deterministic
as well as stochastic reward sizes. The established formulas for combinations of ex-
ponentials are in fact quite �exible, as any other distribution on the positive hal�ine
can be approximated arbitrary well with such distributions (cf. [56]). Naturally,
some restrictive assumptions were needed to enable the explicit mathematical treat-
ment in this chapter, in particular the assumption of independent and identically
distributed jump sizes. It will be interesting in future research to look into relaxing
these assumptions.

The study of the formation of mining pools naturally raises the question of
whether they pose a threat to the decentralized nature of blockchain-based appli-
cations. We �nd that the size of the mining pool does not interfere in a miner's
decision making process. A miner chooses a mining pool according to the share of
risk she wishes to cede and the pro�t she wishes to make. The preferences of miners
and pool managers have been analysed using game theory in Cong et al. [37] and Li
et al. [95]. The results of the present chapter may serve as concrete risk management
tools for miners and pool managers that could also be integrated as value or cost
functions within such a game-theoretic approach.
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2.A Appendix A: Abel-Gontcharov polynomials

Let U = {ui , i ≥ 1} be a sequence of real non-decreasing numbers. The (unique)
family {Gn(x|U) , n ≥ 0} of Abel-Gontcharov polynomials of degree n in x attached
to U is de�ned as follows. Starting with G0(x|U) = 1, the polynomials Gn(x|U)
satisfy the di�erential equations

G(1)
n (x|U) = nGn−1(x|EU), (2.64)

where EU is the shifted family {ui+1 , i ≥ 1}, and with boundary conditions

Gn(u1|U) = 0, n ≥ 1. (2.65)

So, each Gn, n ≥ 1, has the integral representation

Gn(x|U) = n!

∫ x

u1

[∫ y1

u2

dy2 . . .
∫ yn−1

un

dyn

]
dy1. (2.66)

The polynomials Gn, n ≥ 1, can be interpreted in terms of the joint distribution of
the order statistics (U1:n, . . . , Un:n) of a sample of n independent uniform random
variables on (0, 1). Indeed, for 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1, we have that

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un).

This last identity is used inside the proof of Theorem 2.4.1 together with the follow-
ing property

Gn(x|a+ bU) = bnGn ((x− a)/b |U) , n ≥ 1. (2.67)

Lastly, the numerical evaluation of (2.15) can rely on the recursive relations

Gn(x|U) = xn −
n−1∑
k=0

(
n

k

)
un−k
k+1Gk(x|U), n ≥ 1. (2.68)

Formula (2.68) follows from an Abelian expansion of xn based on (2.64), and (2.65).

2.B Appendix B: Proof of Theorem 4.1

The event {τ ∈ (t, t+ dt)} can be viewed conditioned over the values of the process
(Nt)t≥0. In other terms,

{τ ∈ (t, t+ dt)} =
+∞⋃
n=0

{τ ∈ (t, t+ dt)} ∩ {Nt = n}. (2.69)

We distinguish according to the value of Nt. For Nt = 0, Equation (2.14) can be
rewritten as

τ = inf{t ≥ 0;Md
t > u/w}, (2.70)

which occurs when the ⌈ u
w
⌉th jump of Md

t occurs at t, where ⌈x⌉ denotes the ceiling
function. It follows that

{τ ∈ (t, t+ dt)} ∩ {Nt = 0} = {Sd
⌈ u
w
⌉ ∈ (t, t+ dt)} ∩ {Nt = 0} (2.71)
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and
fτ |Nt=0(t) = fSd

⌈ u
w ⌉
(t), t ≥ 0. (2.72)

In case Nt ≥ 1, one needs to constrain {Md
t , t ≥ 0} so it does not reach

Nu,sw/(b − w) + u/(b − w) for any time s < t but does so at t. Let (vn)n≥0 is
a sequence of integers de�ned as vn = ⌈n(b− w)/w + u/w⌉, n ≥ 0. We have

{τ ∈ (t, t+ dt)} ∩ {Nt ≥ 1} =
+∞⋃
n=1

n⋂
k=1

{Tk ≤ Sd
vk−1

} ∩ {Sd
vn ∈ (t, t+ dt)} ∩ {Nt = n},

(2.73)
asMd

t > Nt︸︷︷︸
=n

(b−w)/w+u/w at the time of the fatal jump (and before t, Nt reaches

each step before the payout process surpasses it). Now

P [{τ ∈ (t, t+ dt)} ∩ {Nt ≥ 1}]

=
+∞∑
n=1

P

[
n⋂

k=1

{Tk ≤ Sd
vk−1

} ∩ {Sd
vn ∈ (t, t+ dt)} | Nt = n

]
P [Nt = n] .

(2.74)

By the order statistic property, we get

P

[
n⋂

k=1

{Tk ≤ Sd
vk−1

} ∩ {Sd
vn ∈ (t, t+ dt)} | Nt = n

]

= P

[
n⋂

k=1

{Uk:n ≤ Ft

(
Sd
vk−1

)
} ∩ {Sd

vn ∈ (t, t+ dt)}

]

= P

[
n⋂

k=1

{Uk:n ≤ Ft

(
Sd
vk−1

)
} | Sd

vn ∈ (t, t+ dt)

]
P
[
Sd
vn ∈ (t, t+ dt)

]
= E

[
(−1)nGn

[
0 | Ft

(
Sd
v0

)
, . . . , Ft

(
Sd
vn−1

)]
| Sd

vn ∈ (t, t+ dt)
]
P
[
Sd
vn ∈ (t, t+ dt)

]
,

(2.75)

where (U1:n, . . . , Un:n) denote the order statistics of n i.i.d. unit uniform r.v. and
Gn(. | .) denote the Abel-Gontcharov polynomials, see Appendix 2.A for a short
presentation. Now take Ft(s) = s/t, s ≤ t. In virtue of the property (2.67), we have

Gn

[
0 | Ft

(
Sd
v0

)
, . . . , Ft

(
Sd
vn−1

)]
= Gn

[
0 | Sd

v0
/t, . . . , Sd

vn−1
/t
]

=
1

tn
Gn

[
0 | Sd

v0
, . . . , Sd

vn−1

]
. (2.76)

Inserting that last expression into (2.75) yields the announced result (2.15).



Chapter 3

Empirical risk analysis of mining a

Proof-of-Work blockchain

This chapter is based on the following article:

H. Albrecher, D. Finger, and P.-O. Go�ard. Empirical risk analysis of mining a
Proof-of-Work blockchain. Submitted, [7].

Abstract. The process of mining blocks on a blockchain utilizing a Proof-of-Work con-

sensus mechanism carries inherent risks, particularly when the operational expenses asso-

ciated with mining exceed the rewards earned. Building on previous �ndings on mining

in pools, this chapter delves into the question of whether the theoretical formulas for the

ruin probability and the expected value of future surplus obtained under particular model

assumptions are indeed validated empirically. In particular, we include the presence of

transactions fees in the block rewards in our analysis. We also provide algorithms to �t

the involved generalized hyperexponential distributions to actual data. Moreover, we per-

form a sensitivity analysis for di�erent factors of interest, and we quantify the relevance of

incorporating temporal dependence and transaction fees in the model.

53



54 CHAPTER 3. EMPIRICAL RISK ANALYSIS OF MINING. . .

3.1 Introduction

A blockchain is a data ledger which is maintained by a Peer-to-Peer network. The
database entries, referred to as transactions, are recorded by batches called blocks
resulting from the application of a consensus protocol. In the case of the bitcoin, the
consensus protocol is the Proof-of-Work. The network participants, called miners,
compete to solve a cryptoproblem via a trial and error approach. Computers are
running 24/7 which consumes a lot of electricity. This operational cost is borne
by the miners and compensated by a reward expressed in cryptocurrency units
whenever a new block is found. The stability of blockchain systems relies heavily
on this incentive mechanism. The balance between cost and reward is a stochastic
process, which we model as

Rt = u− Ct +Bt, t ≥ 0, (3.1)

where the initial capital u is augmented by the income (Bt)t≥0 net of the expenses
(Ct)t≥0. Such models were studied in [10, 8, 95] assuming that

Ct = c · t, for c, t ≥ 0,

and

Bt =
Nt∑
i=1

Ui, t ≥ 0,

where (Nt)t≥0 is a Poisson process and the block rewards Bi form a sequence of
positive random variables. One goal of this chapter is to propose a more accurate
model for these rewards.

Block rewards consist of a protocol-speci�ed bounty augmented by transactions
fees. When passing a transaction, users will typically attach a transaction fee to
it. This fee mostly depends on the transaction volume, since each block has a
�xed allotted space inside. The pending transactions are stored in the memory pool

(often abbreviated as mempool), where they await con�rmation, hereby forming a
queue. The transaction fee level closely relates to the network congestion that may
be tracked by looking at the mempool size. Algorithms have been developed to in-
form the users of the appropriate transaction fee levels, see for instance the book of
Antonopoulos [15, Chapter 6]. Although common practice suggests that miners pri-
oritize transactions with the highest transaction fee per byte rate, some deviations
can be observed due to potential arbitrage opportunities linked to include speci�c
transactions or ordering them in a given manner. Such considerations are beyond
the scope of the present study, and we refer the reader to the work of Messias et al.
[105]. In the bitcoin blockchain, the impact of the transaction fees is currently still
minor when compared to the bounty for �nding a new block. However, as the reward
gets halved approximately every four years, the need to understand the underlying
dynamics of transaction fees will become pivotal in the future. In Carlsten et al.
[31], the authors envision the stability of the system when the block reward reduces
to the transaction fees. Möser & Böhme [107] analyse the main drivers of the fees
and conclude that higher fees lead to faster transaction processing. Easly et al. [60]
link the proportion of zero-fee transactions to the bitcoin price and memory pool
size through a linear model. Tedeschi et al. [136] build a neural net that outputs the
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probability for a transaction to be included based on the transaction features. Fi-
nally, Rossi et al. [122] consider a queueing model to estimate the con�rmation time.

The block reward is expressed in crypto-currency units, but the operational
cost in (3.1) is likely to be expressed in �at currency. The question of modelling
the exchange rate of crypto against �at currencies naturally arises when studying
the pro�t and losses of blockchain miners via model (3.1). The evolution price of
cryptocurrencies has been extensively studied in the literature. Ciaian et al. [36]
study the bitcoin price formation incorporating market information, such as the
Dow Jones stock market index or the oil price. Bouoiyour et al. [26] decompose
the bitcoin price index using Empirical Mode Decomposition, which is similar to
signal-processing techniques, but does not assume periodicity, see e.g. [158]. Many
authors have applied neural network techniques to �t and predict bitcoin prices.
For instance, Almeida et al. [12] use Arti�cial Neural Networks (ANN) and �nd
that trading volumes are irrelevant. McNally et al. [104] use Recurrent Neural Net-
works (RNN) of Long Short Term Memory type to accomododate their three-year
long dataset. Time series models like GARCH [86] and ARIMA [19, 153] have also
been considered.

We will pursue two modelling strategies in this chapter. First, we assume that
the block rewards are independent and identically distributed (i.i.d.) random vari-
ables with a generalized hyperexponential (GH) distribution, studied in Botta et
al. [25], also referred to as the combination of exponentials model by Dufresne [56].
The probability density function of a GH distribution is a linear combination of ex-
ponentials which does not need to be convex (in contrast to mixture of exponential
distributions). The GH class is a proper subset of matrix-exponential (ME) dis-
tributions which are probability distributions with rational Laplace transform, see
already Cox [39] and Bladt & Nielsen [23] for a recent overview. The GH class leads
to tractable calculations and is itself already dense in the set of probability distribu-
tions on the positive half-line. For applications in insurance risk theory, see e.g. Lin
& Willmot [96, 97]. In that framework, (3.1) is called the dual model of the standard
insurance risk model, as the wealth process performs upward jumps and decreases
linearly in time. In our previous work [8], we found closed-form expressions for the
ruin probability and the expected pro�t when the rewards are GH distributed. In
this chapter we want to go one step further and �t such a distribution to actual
bitcoin data.

Since the construction is not probabilistic, a priori one can not guarantee that a
particular �tted set of parameters for a GH (and more generally ME) distribution
represents a proper probability distribution. Conditions based on the roots and poles
of the Laplace transform have been given in the works of Bean et al. [22] and Fackrell
[62]. These conditions apply to ME distributions and were integrated in Fackrell
[61] within a maximum likelihood estimation procedure. Dufresne [56] used GH dis-
tributions to approximate any distribution on the positive half-line via an expansion
in terms of Jacobi polynomials. The non-negativity problem is addressed then by
expanding the square root of the probability density. In this work, we explore the
polynomial approach to �t data to a GH distribution. The non-negativity of the
resulting probability density function is checked via a bisection procedure suggested
in the work of Hanzon & Holland [73]. To the best of our knowledge, this chapter is
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the �rst to �t combinations of exponentials to actual data in a non-parametric way
instead of approximating a prede�ned distribution. The results may therefore also
be applicable in other modelling contexts where such a distributional assumption is
assumed, see e.g. [9] for an example in ruin theory.
The assumption of stationarity, a key premise in our �rst approach, might be con-
sidered too restrictive, as block rewards are in�uenced by transaction fees and �uc-
tuations in cryptocurrency prices. Consequently, we adopt a second approach that
views block reward data as an ARIMA time series. After �tting it to the data,
we generate scenarios that enable us to estimate risk and performance indicators
through Monte Carlo simulations. We then conduct a numerical comparison be-
tween the results obtained under this time series framework and the ones based on
the i.i.d. assumption in our �rst approach, together with a series of further sen-
sitivity results on various assumptions underlying the model for which a tractable
formula for the key quantities is available.

The rest of the chapter is organized as follows. Section 3.2 provides a brief
description of our data together with reminders about the way that Proof-of-Work
blockchains operate. Section 3.3 describes the combination of exponentials model
and our block reward distribution function estimators. The proposed estimation is
�rst back-tested on synthetic data, before it is applied to the actual block reward
data. Section 3.4 presents the result of our time series analysis. Section 3.5 compares
the two modelling approaches, looking at their impact on the pro�tability and ruin
of blockchain miners. It also contains sensitivity tests with respect to the inclusion
of transaction fees in the modelling as well as the electricity price. Section 3.6
concludes.

3.2 Transaction fee concepts and descriptive data

analysis

In this section, we will analyse empirical data on the transaction fees in the bitcoin
cryptocurrency. Let us �rst give a short reminder on the de�nition of transaction
fees and their importance in the mining process.

In the bitcoin Proof-of-Work veri�cation algorithm, each miner solves a crypto-
problem in order to validate a block. Whenever a block is validated or mined, the
miner receives the corresponding block reward set to 6.25 BTC as of November 2023.
In addition, the sum of transaction fees attached to all the transactions included in
this block are also given as an additional reward to the miner. As part of the vali-
dation system, the miner obtains the authorization from the community to choose
which transactions from the memory pool ("waiting line") are entering the newly
mined block. The user will typically attach a transaction fee to the required pay-
ment. This fee mostly depends on the transaction volume, since a block has a �xed
allotted space inside. It also depends on the market congestion and the individual
user's decisions [15]. There exist algorithms that help the user choose an appropriate
fee. For example on https://privacypros.io/tools/bitcoin-fee-estimator/,
one can estimate the expected con�rmation time as a function of the chosen fee.
Apart from the congestion, which can be studied by looking at the memory pool,

https://privacypros.io/tools/bitcoin-fee-estimator/
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another determinant for the choice of transaction fees may be the electricity price
and the bitcoin price. In fact, when the bitcoin price is high, miners may have more
incentive to mine at a larger scale and thus speed up the inclusion of the transac-
tions into the blocks, hence reducing the congestion. Another factor one may want
to consider is the electricity price. When the electricity price is high, some miners
will reduce their activity of even go out of business. This may raise the congestion
and drive up the transaction fees. For this, including a stochastic cost process in the
model (3.1) would be necessary, but is out of scope of this chapter. Moreover, this
chapter focuses on very short (2 weeks on average) time horizons, in which electricity
price variations can considered minor or being �xed via contracts with the provider.
In the mining process, the miners have to decide which transactions to incorporate
in the block, since it has limited memory space. They will consider the priority of
the transaction based on the attached fee size per byte, but recent research shows
that there may be other (sel�sh) interests in promoting transactions [105]. It is
important to note again that with the scheduled halving of the �xed block rewards
every four years, the share of the transactions fees in the total rewards will gain
decisive importance over time. Thus, including and modelling this stochastic part
will become even more relevant in the future.

For this analysis, we use publicly available data. Scrapping bitcoin-related data is
possible by making calls to some APIs. This was done by looping through necessary
blocks. For example, to access block number 650000 information, one can follow the
address https://chain.api.btc.com/v3/block/6500001. It extracts information
in JSON format, which can then be reformatted to our needs. With this method, we
gather data for the period spanning from the last halving of the bitcoin reward on
May 12, 2020 until September 16, 2021. For this time frame, we collect the following
information:

� The transaction fees per block (Fees in BTC);

� The exchange rate BTC-USD per minute (Price in USD);

� The size of the memory pool of the transactions in bytes (daily) (Mempool
size);

� The number of transactions in the memory pool (daily) (Mempool count);

� The current di�culty of the cryptoproblem (adjusts bi-weekly) (Di�culty).

Figure 3.1 depicts the extracted data and Table 3.1 contains some statistics of the
dataset. One can observe a strong correlation between the transaction fees and the
number of transactions in the memory pool, which is con�rmed in Table 3.2.

For the analysis in this chapter, we consider a smaller sub-sample of the data
containing 10'000 data points ranging from February 10, 2021 to April 21, 2021.
Also, we merge the series of fees and prices by converting fees in USD, since we
aim to model the latter. The covariate "difficulty" is not retained as it has a
bi-weekly update and our focus will be on a two weeks horizon. For this chapter, we
also do not further consider the strongly correlated variables "mempool size" and

1last accessed on 12/09/2023

https://chain.api.btc.com/v3/block/650000
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(c) Mempoolsize
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(d) Mempoolcount
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(e) BTC/USD price
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(f) Fees in USD

Figure 3.1: Illustration of the data.

Table 3.1: Main statistics of the dataset.

Block Date Fees in BTC Price in USD Mempool size Mempool count Di�culty

Mean 0.594 29'535 36'090'588 25'610 1.86E+13
Min 630'014 12.05.2020 0 8'584 120'928 290 1.37E+13
25th pct. 0.1731 11'324 3'889'528 4'757 1.68E+13
Median 0.4652 31'700 27'446'996 18'670 1.86E+13
75th pct. 0.8872 46'331 70'698'937 38'942 2.08E+13
Max 700'851 16.09.2021 4.074 64'617 110'094'398 138'640 2.51E+13

"mempool count", because �tting a time series with a covariate implies modelling
the dynamics of this covariate independently. For the purpose of this chapter, we
opt for modelling only one time series only, the dynamics of which then aggregates
all the dynamics playing a role for the output variable. As illustrated in Figure
3.2, the time series of fees exhibits strong autocorrelation, so that a stationarity
assumption would not be appropriate. However, by taking the �rst di�erence, one
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Table 3.2: Pearson correlation matrix.

Fees in BTC Mempool size Mempool count Di�culty Price

Fees in BTC 1 0.4885764 0.6361694 0.3313047 -0.01781731
Mempool size 0.48857638 1 0.7462129 0.6715088 0.43744576
Mempool count 0.63616939 0.7462129 1 0.5342133 0.25523618
Di�culty 0.33130472 0.6715088 0.5342133 1 0.54365471
Price -0.01781731 0.4374458 0.2552362 0.5436547 1

can �nd back stationarity to a large extent, see the right-hand side of Figure 3.2;
only one lag is still signi�cant for the fees. We will therefore consider only one lag
when �tting a time series model in Section 3.4.
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Figure 3.2: Autocorrelation function of fees in USD (left) and its �rst di�erences
(right).

3.3 Block reward as a combination of exponentials

A random variable U has a generalized hyperexponential distribution if its cumula-
tive distribution function (CDF) is given by

FU(x) = 1−
d∑

i=1

aie
−λix, for x ≥ 0, (3.2)

where λ1, . . . , λd > 0 and a1, . . . , ad ∈ R with
∑d

i=1 ai = 1. In the sequel, we assume
that λ1 < . . . < λd. De�ne the vectors

λ = (λ1, . . . , λd) , a = (a1, . . . , ad) ,

and the diagonal matrix Λ = diag(λ), so that

FU(x) = 1− a · e−Λx · 1d, for x ≥ 0, (3.3)

where 1d = (1, . . . , 1). The probability density function (PDF) is given by

fU(x) = b · e−Λx · 1d, for x ≥ 0, (3.4)

with b = a · Λ.
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The Laplace transform of U

E(e−θU) = b · (Λ + θId) · 1d, θ ≥ 0, (3.5)

where Id is the identity matrix, is rational which implies that combinations of ex-
ponential distributions are instances of matrix-exponential distributions.

3.3.1 Non-negativity of GH probability distribution functions

Given a set of parameters a and λ, there is no straightforward way to ensure that
(3.3) is a proper CDF or that (3.4) is a proper PDF. Some characterization, based
on the Laplace transform, have been provided by Bean et al. [22] and Fackrell [62]
for ME distributions. We take a di�erent road here, following up on the work of
Hanzon and Holland [73]. Consider the function

f(x) = b · e−Λx · 1d, x ≥ 0. (3.6)

In order for f to be a proper PDF, we need to ensure

f(x) > 0, ∀x > 0, and
∫ ∞

0

f(x)dx = 1. (3.7)

Necessary conditions for (3.7) to hold include b1 > 0 and b ·Λ−1 = 1d, but the latter
are not su�cient. We therefore use a veri�cation method via bisection, suggested in
Hanzon and Holland [73]. We de�ne the sequence

f0(x) = b ·e−Λx ·1d = fU(x) and fk(x) = b ·
k∏

i=1

(λj ·Id−Λ) ·e−Λx ·1d, for k = 1, . . . , d.

It is characterized by the following property: for x ∈ [0,M ], the function fk has at
most one sign-changing zero between two sign-changing zeros or boundary points of
fk+1 for k = 0, 1, . . . , d − 1. As fd(x) = 0, one can recursively, starting from fd(x),
check the presence of sign-changing points on a closed interval through a bisection
procedure.

3.3.2 Fitting GH distributions to data via polynomial expan-

sions

Dufresne [56] presents a method to approximate any PDF of a distribution on the
positive half-line via a combination of exponentials. The approximation formula
takes the form of an expansion in terms of the shifted Jacobi polynomials de�ned as

R
(α,β)
k (x) =

k∑
j=0

ρk,jx
j, (3.8)

where

ρk,j =
(−1)k(β + 1)k(−k)j(k + α + β + 1)j

(β + 1)jk!j!
, (3.9)

where (z)k = z ·(z+1)·(z+2)·· · ··(z+k−1) denotes the Pochhammer symbol. These
polynomials are orthogonal on [0, 1] w.r.t. the weight function ϕ(x) = (1− x)αxβ.
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Any function g : (0, 1) 7→ R, square integrable w.r.t. ϕ(x) can be expanded as a
shifted Jacobi polynomial expansion with

g(x) =
∞∑
k=0

ckR
(α,β)
k (x), (3.10)

where

ck =
1

hk

∫ 1

0

g(x)(1− x)αxβR
(α,β)
k (x)dx, (3.11)

and

hk =

∫ 1

0

(1− x)αxβR(α,β)
n (x)2dx =

Γ(n+ α + 1)Γ(n+ β + 1)

(2n+ α + β + 1)n!Γ(n+ α + β + 1)
. (3.12)

The convergence in (3.10) takes place in the L2 sense, see for instance the book
of Nagy [134, Ch.7]. Our target is a PDF f on the positive half-line. Following
Dufresne [56], we expand the function f ∗(x) = eprtf(x) for some p ∈ R and r > 0
and use the change of variable

g(x) = f ∗
[
−1

r
log(x)

]
,

that maps the interval (0, 1) onto (0,∞). The expansion of f is then

f(x) = e−rpt

∞∑
k=0

ckR
(α,β)
k (e−rpt), (3.13)

and the square integrability condition on g translates directly to∫ ∞

0

e−(β+1−p)rt(1− e−rt)αf 2(t)dt <∞.

The coe�cients of the polynomial expansion can also be expressed as an integral in
terms of f as

ck =
r

hk

∫ ∞

0

e−(β−p+1)rt(1− e−rt)R(α,β)
n (e−rt)f(t)dt. (3.14)

A simple truncation of the in�nite series in (3.13), followed by a normalization so
that it integrates to 1, yields an aproximation

f(t) ≈ e−rpt

d−1∑
k=0

ckR
(α,β)
k (e−rt), (3.15)

which is consistent with what is referred to as Method A in Dufresne's work [56].
Replacing the polynomials R(α,β)

k (x) by
∑k

j=0 ρk,jx
j in (3.15) yields

f(t) ≈
d∑

j=1

d−1∑
k=j−1

ckρk,j−1e
−(j−1+p)rt,

which is a combination of exponentials as in (3.4) where

b :=
( ∑d−1

k=0 ckρk,0 . . . cd−1ρd−1,d−1

)
and λ :=

(
pr (1 + p)r . . . (n+ p)r

)
.
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Remark 3.3.1. The approximation method involves selecting parameters α, β, p,
r, and determining the truncation order d. In the absence of established selection
guidelines, we draw upon the parameter values utilized in Dufresne's work [56]. The
choice of the truncation order should strike a balance between accuracy, computa-
tional e�ciency, and numerical stability, favoring larger values wherever possible.
When considering f ∗ instead of f , it ensures that f(t) approaches zero as t tends
towards in�nity for any truncation order, provided that 0 < p < (β + 1)/2.

For our application, we do not have a known distribution function to approxi-
mate, but a dataset to �t. Assume that {x1, . . . , xM} form an i.i.d. sample of size
M . We can replace the expansion coe�cients de�ned in (3.14) by their empirical
counterpart with

ĉk =
r

hkM

M∑
m=1

e−(β−p+1)rxm(1− e−rxm)R
(α,β)
k (e−rxm), for k = 0, . . . , d− 1. (3.16)

An a posteriori control with the help of the bisection method from Section 3.3.1 can
ensure the non-negativity of the estimated PDF

f̂M(t) = e−rpt

d−1∑
k=0

ĉkR
(α,β)
k (e−rt). (3.17)

The estimated PDF is a nonparametric density estimator relying on orthogonal
functions, a method detailed in [148, Ch.8]. A recognized limitation of this approach
is its susceptibility to occasional negative values stemming from sampling errors. In
instances where our estimates exhibit negativity, we can employ what Dufresne [56]
terms as 'Method B' as a corrective measure. Instead of expanding eprtf(t), consider
expanding

f̃(t) = eprt
√
f(t).

We get an approximation formula of the form√
f(t) ≈ e−prt

d−1∑
k=0

ckR
(α,β)
k (e−rx) =

d∑
j=1

bje
−λjt, (3.18)

and �nally squaring it yields an approximation of f which is a proper PDF after
normalization:

f(t) ≈
d∑

j=1

d∑
k=1

bjbke
−(λj+λk)t =

2d−1∑
m=1

b̃me
−(m−1+2p)rt,

with b̃m =
∑m

j=1 bjbm+1−j and bj>d := 0, since λj = (j−1+p)r, j = 1, 2, . . . , d. The
coe�cients of the polynomial expansion of

√
f are given by

bk =
r

hk

∫ ∞

0

e−(β−p+1)rt(1− e−rt)R
(α,β)
k (e−rt)

√
f(t)dt. (3.19)

To get a statistical estimation of the coe�cients, we replace f in (3.19) by a kernel
density estimator

f̂h(x) =
1

M

M∑
m=1

Kh(x− xm) =
1

Mh

M∑
m=1

K
(x− xm

h

)
, (3.20)

where K(x) is the Gaussian kernel.
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Remark 3.3.2. In contrast to Method A, Method B guarantees a valid PDF. How-
ever, this advantage comes at the expense of signi�cantly increased computational
complexity due to doubling the number of terms (with a numerical integration of the
kernel density estimator for each).

3.3.3 Simulation study

We illustrate our �tting procedure for a combination of exponentials through a brief
simulation study. Draw m samples (x1, . . . , xm) from a right-shifted gamma random
variable X = γ + Y , where γ > 0 and Y has PDF

f(x) =
δrxr−1e−δx

Γ(r)
, x > 0, r, δ > 0. (3.21)

The choice of this shift is motivated by the observed shape of the empirical distribu-
tion in our collected block reward data later. We set the parameters to r = 3, δ = 0.5
and γ = 5. Figure 3.3 shows the �t (in red) of the combination of exponentials dis-
tribution to the data when using Method A with parameters α = 0, β = 0, r =
0.01, p = 0.9, d = 20 for samples of sizes n ∈ {100, 1000, 10000, 100000}. The qual-
ity of the �t enhances as the sample size increases. However, note that also, for
larger sample size, the density estimate occasionally exhibits negative values.
Figure 3.4 shows the �t (in red) of the combination of exponentials distribution to the
data when using Method B with parameters α = 0, β = 0, r = 0.01, p = 0.9, d = 20,
for samples of sizes n ∈ {100, 1000, 10000, 100000}. The �t is less good when using
Method B; however, it consistently results in a valid probability distribution. Due
to this essential property, we have chosen to exclusively employ Method B in our
application to the block reward data in the sequel. Method B is centred around the
square root of the PDF; in the Appendix 3.A we perform an exploratory analysis
on the approximations using higher order of roots.

3.3.4 Real data application

The block reward comprises two components: the reward for discovering a new block,
which currently stands at BTC 6.25 as of November 2023, and the transaction fees
detailed in Section 3.2. Given that miners typically operate within a �at currency
framework, such as USD, we apply the exchange rate applicable at the moment
of block discovery. Figure 3.5 depicts the histogram of total rewards received by
miners, presented both in BTC and USD. The data is indeed shifted away from
zero due to the �xed block reward addition, which poses a challenge for parametric
�tting methods, as the support of exponential random variables is the entire positive
hal�ine. The non-parametric approach, utilizing a polynomial expansion, provides
an advantage by capturing variations in the central mass, even in the absence of
data points in the lower tail.

Figure 3.6 shows the �t of the combination of exponentials using Method B with
two parameterizations.

As the number of terms increases, the central part of the density aligns more
closely with the actual data, albeit with an increase in instability near the left end.
Conversely, reducing the number of terms results in a smoother shape, but the
original density's spikes are less pronounced. Renormalization alleviates this e�ect
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(c) Sample size: 10000.

N = 20, α = 0, β = 0, r = 0.01, p = 0.9

x

f x

0 5 10 15 20 25

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

(d) Sample size: 100000.

Figure 3.3: Fitting of the shifted Gamma random sample by mod-
i�ed Method A.

to some extent (cf. the green line), and we choose to use the parametrization with
d = 10 for the numerical analysis later.

3.4 Block rewards as time series

Since we also want to test the model for its sensitivity to non-stationarities, we �t
the block reward data to an ARIMA model calibrated using the Box and Jenkins
optimization method. Recall that a time series Xt is ARIMA(p, d, q) if ∇dXt is an
ARMA(p, q) process, where ∇d is the dth di�erence operator. An ARMA(p, q) time
series is a stationary process de�ned as

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + zt + θ1zt−1 + · · ·+ θqzt−q, (3.22)

with ϕp ̸= 0, θq ̸= 0 and zt is white noise with mean 0 and variance σ2
z , see e.g.

[129]. Note that time series modeling is not a focus of this chapter, we refer to other
papers for this purpose, see e.g. [19, 153]. Our choice of a simple ARIMA model
is motivated by its suitability for generating plausible scenarios over a short time
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(b) Sample size: 1000.
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(c) Sample size: 10000.

N = 20, α = 0, β = 0, r = 0.05, p = 0.3
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(d) Sample size: 100000.

Figure 3.4: Fitting of the shifted Gamma random sample by mod-
i�ed Method B.
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Figure 3.5: Histogram of total rewards, period from February 10,
2021 to April 21, 2021.

horizon while departing from the i.i.d. assumption of Section 3.3. Also, we opted
against more complex GARCH models due to their tendency to over�t the data
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Figure 3.6: Approximation of the bitcoin rewards sample (Method
B, α = 0, β = 0, r = 0.0000008)

and their requirement for an extensive number of lags to ensure reliability. Hence,
we deliberately select a simple ARIMA models as a pragmatic and reliable choice
to conduct our risk analysis over a two weeks time horizon. For �tting our model,
we consider a data set from a time frame between February 10, 2021 and April 6,
2021 that we split into a training set and a consecutive test set for checking the
data prediction. In Table 3.3 we summarize the obtained results. The �tted model
suggests indeed a once di�erentiated series.

Table 3.3: Summary of ARIMA model.

ar1 ma1 ma2 ma3 ma4 ma5 ma6 ma7

-0.7799 0.0989 -0.6543 -0.1146 -0.0337 -0.0330 -0.0075 -0.0267
s.e. 0.1122 0.1125 0.0771 0.0194 0.0136 0.0138 0.0123 0.0122

σ2 219226983
Log.Lik. -88159.57
AIC 176337.1
BIC 176400

In Figure 3.7 we show an illustration of the �tted model. On the left-hand
side, one can see the �tted data points in comparison to the historical values of
the training sample. On the right-hand side, we show simulated paths in di�erent
colors and the true historical values from our test sample in black. In addition to
the statistical �t (cf. Figure 3.8 for a normal Q-Q plot for the remaining residuals),
the �t also seems quite satisfactory visually, which is remarkable for the case of only
a few free parameters.
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Figure 3.7: ARIMA(1,1,7) �t to block reward data.
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Figure 3.8: Normal Q-Q plot of ARIMA(1,1,7) residuals.

3.5 Comparison of the two modelling approaches in

terms of risk

In [8, 10], explicit formulas were derived for the ruin probability and the expected
surplus of a miner, taking into account the option of participating in a mining pool.
Assume the miner's surplus has the form

Ri
t = u− ci · t+

Nt∑
i=1

Ui, t ≥ 0,

where Nt ∼ Poisson(piµt) and the Ui's are i.i.d. with PDF fU(x) =
∑d

j=1 ajλje
−λjx,

x > 0. In [8], it was shown that under the assumption of i.i.d. rewards of GH
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type, the ruin probability up to an exponential time horizon (with mean t) can be
expressed as

ψ̂(u, t) = e−R·u, (3.23)

and the miner's expected value of the surplus at that exponential time horizon, given
that it did not go negative until then, is given by

V̂ (u, t) = t

(
ci − piµ

d∑
j=1

aj
λj

)
e−Ru + u+ t

(
piµ

d∑
j=1

aj
λj

− ci

)
, u > 0, (3.24)

where R is the unique solution with positive real part of the equation

ciR + piµ

d∑
j=1

ajλj
R + λj

−
(
1

t
+ piµ

)
= 0.

These metrics are of particular signi�cance, given that the process of mining incurs
considerable energy costs, and real-world miners may face the risk of �nancial ruin,
which in turn a�ects their expected earnings.
Our goal in this section is to assess the sensitivity of the risk measures for which
we have formulas (3.23) and (3.24) w.r.t. some of the model assumptions. First,
in Section 3.5.1 we compare the formulas (using a GH �t to block rewards data
from the time period February 10, 2021 to April 21, 2021) to the actual historical
realization of the occurrence of blocks and the sizes of the rewards in the period from
February 10, 2021 to a random time horizon in the future with a mean of 2 weeks.
Note that there are still three random elements to be implemented in the historical
path: the actual length of the random time horizon and the probability that a found
block was found by a particular miner. Thirdly, we consider a 'Full Pay-per-Share'
reward system (FPPS) for the pool, in which pool managers instantly reward miners
for each share submitted, with the payout determined by the block reward and the
entire estimated transaction fees associated with the block. That is, we have to
simulate the arrival of shares in addition to the arrival of blocks. As the historical
sample path both contains potential time-dependence of transaction fees and the
actual block reward values (rather than the GH �t), but only one realization of the
two latter e�ects, we subsequently compare in Section 3.5.2 the results of (3.23) and
(3.24) with the simulated counterparts under an i.i.d. assumption, by bootstrapping
block reward sizes from the empirical distribution function over the period February
10, 2021 to April 21, 2021. Subsequently, in Section 3.5.3 we provide a comparison
of the formulas (3.23) and (3.24) with the simulated counterparts under the ARIMA
assumption calibrated in Section 3.4. Finally, Sections 3.5.4 and 3.5.5 consider the
sensitivity of the model output concerning the inclusion of transaction fees at all, as
well as concerning the price of electricity.

3.5.1 Comparison with the historical path

With the collected data on the fees and prices, we can reconstitute the real surplus
path of miners or pools in any speci�c past time period. Indeed, if we position our-
selves at some starting date, we can replicate the out�ows of mining costs and the
in�ows of block rewards for the individual miner as well as for the pool. For the fol-
lowing example, we select a two weeks time frame. We select the documented block
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arrival in the entire system to the particular pool by simulating a Bernoulli random
variable with probability equal to the pool's proportion of computational power in
the global mining network. For the individual miner, we also simulate the more
frequent share payouts by assuming Poisson distributed arrivals of their rewards. In
Figures 3.9 and 3.10, one can see an illustration of the surplus path for the pool and
the miner, respectively. Figures 3.9a and 3.9b are almost indistinguishable to the
naked eye, but they are not identical. Indeed, for that short particular time horizon,
the exchange rate was not very volatile. Here we choose the same parameters as in
[8]: t = 336h = 2 weeks, pi = 0.001, q = 0.1, f = 0.02, µ = 6pi = 0.006, u = $1M ,
the cost of electricity ci is given by c = pi×eW ×πW , where eW is the electricity con-
sumption of the network expressed in kWh, and πW = 0.04 is the price of electricity
per kWh. For eW , we choose 115.541×109
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Figure 3.9: Pool surplus path.
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Figure 3.10: Miner surplus path USD.

Our analysis distinguishes between scenarios where the miner is engaging in solo
mining or participating in a pool. More speci�cally, we implement the following
approach:

1. We choose February 10, 2021 as the starting date.

2. We randomize the time horizon by simulating nsim durations following an
exponential distribution with mean equal to 2 weeks.

2https://cbeci.org/

https://cbeci.org/
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3. For each simulation run, we simulate nsim share reward payment times.

4. For each block found by an individual miner, mining alone, he will receive
the block reward and the transaction fees attached to this block. For a miner
in a pool, the miner receives only a fraction of the block reward and of the
transaction fees, assuming a FFPS pooling scheme. In practice, whereas the
bitcoin block reward is known and �xed (at 6.25 BTC as of November 2023),
the transaction fees included in a block can only be discovered after the block
is appended to the blockchain. It means that the pool has to predict the future
fee in order to pay the miners before the block appears. What often happens
in practice, is that the fee is computed as the average fee over some short
time frame, e.g. the last 24 hours [135]. This is the retained approach in our
framework.

5. Combine all data to produce sample paths of the miner's surplus for di�erent
values of their initial capital u. Averaging over all iterations yields simulated
values for V̂ (u, t) and ψ̂(u, t).

On the other hand, we compute (3.23) and (3.24) under the i.i.d. assumption with
a GH model for the block rewards as calibrated in Section 3.3, using the moderate
truncation parameter d = 10 (a higher number of terms in the combinations of
exponentials would signi�cantly complicate the numerical evaluation). Figures 3.11
and 3.12 display the ruin probability and expected surplus based on the theoretical
formulas and the historical path method, for both a stand-alone miner and one
joining a pool. One can see that the results are rather close for the two cases, and
the shape as a function of initial capital u is identi�ed rather well. This suggests
that the theoretical formulas are quite useful for practical use.

3.5.2 Sensitivity of the GH �t under the i.i.d. assumption

Under the assumption of i.i.d. block rewards, it is interesting to see how sensitive the
results are w.r.t. to the �tted GH model. For that purpose, we compare the formulas
(3.23) and (3.24) to a situation, where we resample block reward values from the
empirical distribution function of rewards from the period February 10, 2021 to April
21, 2021. In a sense, this may also be considered a fairer comparison than the one
in Section 3.5.1, since now the variability of block rewards is similar. Figures 3.13
and 3.14 depict the results, where the black lines represent the formulas using the
GH �t, and the red lines are simulated values under the resampling together with
a 95% con�dence interval (also in all the remaining plots of this section, whenever
we plot simulated values we do so together with its 95% con�dence interval). Since
this data sample served as the basis for the GH �t calibration, one expects a close
similarity, which is indeed the case. Consequently, the GH approximation seems
su�cient for purposes of drawing conclusions for our quantities of interest.

3.5.3 Sensitivity w.r.t. time dependence of rewards

We use the ARIMA model calibrated in Section 3.4 to simulate trajectories for the
transaction fees, as well as another ARIMA model for the bitcoin price in USD
relevant for the �xed 6.25 BTC contributions (as was suggested by Azari [19], for
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Figure 3.11: Simulation of a historical path vs i.i.d. GH �t, miner in a pool (starting
date February 10, 2021).
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Figure 3.12: Simulation of a historical path vs i.i.d. GH �t, miner alone (starting
date February 10, 2021).

more details see Appendix 3.B). For our time window, a calibration of the latter
ARIMA model suggests an ARIMA(5,1,1) model. The sum of the two forms our
block reward process, which feeds a Monte Carlo estimator of the ruin probability
and expected surplus under that assumption. As previously, we �t the block rewards
expressed in USD. For the miner, the price conversion seems interesting, as rewards
enter less often, therefore the timing of the conversion is important and taken in
account. From the pool perspective, it virtually operates in BTC for both in�ows
and out�ows and therefore does not su�er conversion risk. Figure 3.15 and 3.16
compare the results (in red) with the formulas (3.23) and (3.24) (in black), which
were derived under an i.i.d. assumption. One observes that for the ruin probability,
the deviation from the i.i.d. assumption observed in the data is not relevant for the 2
weeks timeframe, and also for the expected value of the future surplus, the deviations
are minor. The di�erence in the expected pro�t for large initial capital (where ruin
becomes very unlikely) can be explained by the fact that for the calibration of the
ARIMA model the time period is shorter (by 20%) compared to the one of the i.i.d.
GH �t due to out-of-sample validation, cf. Section 3.4.
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Figure 3.13: Empirical reward distribution vs i.i.d. GH �t, miner in a pool (starting
date February 10, 2021).

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0
2

0
0

0
0

0
0

u

V^

V
^

 theoretical

V
^

 simulated

(a) Expected value of the surplus.

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

ψ̂

ψ̂ theoretical

ψ̂ simulated

(b) Ruin probability.

Figure 3.14: Empirical reward distribution vs i.i.d. GH �t, miner alone (starting
date February 10, 2021).

3.5.4 Sensitivity w.r.t. transaction fees

Transaction fees represent an additional element of randomness in the block re-
wards, adding to the inherent volatility of the bitcoin (�at) price. Our objective
is to illustrate the e�ects of including or excluding transaction fees in the reward
modelling process. Figures 3.17 and 3.18 depict the changes in the ruin probability
and expected surplus for miners, both solo and within a pool, when transaction fees
are inlcuded or left out (that is, only the ARIMA model for the bitcoin price is
simulated in the latter case). One observes that the expected surplus converges to
di�erent limits as the initial capital u grows large. In that case, the impact of ruin on
the miner's surplus diminishes, and only the positive e�ect of higher block rewards
materializes (statistically, for the period May 12, 2020 to September 16, 2021, the
transaction fees mounted to 8.6% of the �xed part of the block rewards 6.25 BTC per
bounty). In terms of ruin probabilities, while the model including fees prevails over
the one without fees, the di�erence is in fact very small. However, it is important to
consider that the �xed block reward undergoes a scheduled halving approximately
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Figure 3.15: ARIMA simulation vs i.i.d. GH �t, miner in a pool (starting date
February 10, 2021).
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Figure 3.16: ARIMA simulation vs i.i.d. GH �t, miner alone (starting date February
10, 2021).

every four years. According to the current countdown3, the next halving is expected
in April 2024, reducing the �xed reward to 3.125 BTC. In Figures 3.19 and 3.20,
we therefore conduct the same analysis with 3.125 BTC for the �xed part, all other
factors held constant (and assuming that the fee dynamics remain unchanged after
that halving). In the latter case, the di�erences become much more pronounced.

3.5.5 Sensitivity w.r.t. electricity costs

Finally, let us consider the sensitivity of the results to electricity costs under the
ARIMAmodel. Figures 3.21 and 3.22 show the ruin probability and expected surplus
as a function of the price of electricity for a solo miner and a mining pool participant
for a �xed initial capital of u = 100′000.

Such a graph can help to identify upper bounds for a�ordable electricity prices
needed to ensure speci�c target levels of ruin probability or expected surplus for a
given level of u.
Notably, the results reveal a substantial di�erence in the ruin probability between
individual miners and those participating in a pool, emphasizing the risk mitiga-
tion bene�ts of pooling (already observed in [8]). Additionally, this quanti�es the

3See, for example, https://www.nicehash.com/countdown/btc-halving-2024-05-10-12-

00.

https://www.nicehash.com/countdown/btc-halving-2024-05-10-12-00
https://www.nicehash.com/countdown/btc-halving-2024-05-10-12-00
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Figure 3.17: Sensitivity to presence/absence of fees, miner in a pool.

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0
2

0
0

0
0

0
0

u

V^

V
^

 with fees

V
^

 without fees

(a) Expected value of the surplus.

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

ψ̂

ψ̂ with fees

ψ̂ without fees

(b) Ruin probability.

Figure 3.18: Sensitivity to presence/absence of fees, miner alone.

in�uence of increased electricity costs, underlining the exposure and vulnerability of
'Proof-of-Work' cryptocurrencies to energy-related crises. Such considerations may
(even economically) motivate the transition to alternative, less energy-intensive con-
sensus protocols. For instance, Ethereum, the second-largest cryptocurrency, shifted
from 'Proof-of-Work' to 'Proof-of-Stake' on September 15, 2022, reducing its energy
consumption by a remarkable 99.95%.4

3.6 Conclusion

In this chapter, we have delved deeper into the framework for analyzing bitcoin min-
ing from the perspective of risk and pro�tability. Previously, quantifying the choices
available to miners, such as entering a mining pool and selecting the most suitable
one, relied on formulas based on assumptions involving combinations of exponential
distributions. In this work, we introduce a straightforward and e�cient approach for
�tting real-world data to these distributions, allowing us to apply theoretical results
in practical mining scenarios. The remarkable �exibility of the resulting method
enables us to explore shapes that are typically challenging to achieve using other
approaches. The code for this work is available upon request.
Furthermore, we have explored the stochastic nature of block rewards, breaking
down their variability into two key components: price volatility and the inclusion

4Source: https://ethereum.org/en/upgrades/merge/ (last accessed on 13/09/2023).

https://ethereum.org/en/upgrades/merge/
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Figure 3.19: Sensitivity to presence/absence of fees, miner in a pool, block reward
3.125 BTC.
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Figure 3.20: Sensitivity to presence/absence of fees, miner alone, block reward 3.125
BTC.

of transaction fees. Our �ndings highlight the growing importance of incorporating
fees in modeling, especially with the scheduled halving of the �xed block reward.
By expressing transaction fees as a time series, we can simulate our key metrics
of interest�namely, the expected surplus and ruin probability�and compare them
to theoretical results. This analysis con�rms that the formulas derived in [8, 10],
originally under an i.i.d. assumption, stand up well when compared to the outcomes
derived from modeling strategies that incorporate time dependency or use empirical
data more generally.
Finally, we emphasize the sensitivity of our key metrics to the inclusion of transac-
tion fees. While the di�erences in magnitude are currently still small, we anticipate
signi�cant shifts in results after the next halving, making fees a more substantial
factor in modeling. Our analysis also underlines the substantial impact of electricity
costs on a miner's pro�tability and ruin probability. These insights contribute to
the ongoing debate surrounding the viability of 'Proof-of-Work' consensus protocols
in an increasingly energy-constrained world.
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Figure 3.21: Sensitivity to change of electricity price πW , miner in a pool (starting
date February 10, 2021).
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Figure 3.22: Sensitivity to change of electricity price πW , miner alone (starting date
February 10, 2021).
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3.A Appendix A: Variations of the root degree in

the GH �tting procedure

In Section 3.3.2, one of the methods proposed to �t the empirical data by GH
distributions performs a �t on the square root of the density function in order to
guarantee non-negativity. One may wonder about the use of the squaring procedure.
Indeed, the technique should also be applicable in a similar fashion to all nth roots of
a PDF, where n is even. In Figure 3.23, we illustrate the results obtained by taking
n = 2, n = 4 and n = 6 to �t a toy sample drawn from a Gamma distribution.
The main empirical observation is that the higher the root degree used, the fuzzier
the approximated curves become, which is due to the increased number of terms in
the GH distribution. With these considerations, we do not investigate higher order
roots and proceed with the square root method in this chapter.
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Figure 3.23: Approximation of the Gamma PDF by modi�ed
Method B.

3.B Appendix B: Additional time series models

3.B.1 ARIMA with covariates

In this subsection, we modify the model proposed in Section 3.4 in order to incor-
porate relevant covariates such as the mempoolcount in the form of a regression.
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Regarding the relevance of the chosen variables, beside the linear correlation de-
tected in Section 3.2, there is an intuitive explanation. The mempool count variable
measures the number of transactions in the memory pool of the blockchain, await-
ing validation by the miners. As this number grows, the congestion of the network
increases. In order for the users to validate their transactions faster, there is an
incentive for them to likewise increase the amount of fees attached to their trans-
actions. In fact, most platforms incorporate calculators that help users to calculate
necessary fees in order to almost surely ensure a transaction under a �xed time limit.

First of all, lets us present some additional descriptive statistics from the trans-
action fees dataset. In Figure 3.24, one can observe that by taking the �rst di�erence
leads to stationarity. Indeed, as can be seen in Figure 3.25, the ACFs of the di�er-
enced variables show that only one lag for the fees is still signi�cant, and none for
the other covariates.

For the ARIMA with covariates regression, we follow the procedure from [79],
where the times series is regressed on a vector of covariates and the residuals are
forecasted with an ARIMA. In our case, the vector of covariates contains the mem-
pool count variable, shifted in time for 100 periods, which gives a vector of 100
time-dependent variables. In other words, we de�ne Xmem

t , the random variable
describing the mempool count at time t. Let L be the lag operator, such as
LkXmem

t = Xmem
t−k , for example LXmem

t = Xmem
t−1 . The covariates used in the re-

gression would then be : (LXmem
t , L2Xmem

t , . . . , L99Xmem
t ).

A potential problem arising from the choice of this regression period is that in
practice, after 100 predicted values, one runs out of known covariates. So the pre-
dictions should be readjusted after this horizon. In practice, trend estimates can
be taken from the covariates time series in order to incorporate them as regressors
for the future time points in the model. Another problem again, is the absence of
control on the negativity of the predicted future data points.

The summary of the result can be found in Table 3.4. In this table, one can
observe the signi�cance of each lag in the regression. The order of the model was
chosen based on the AIC criterion from a search up to 20 lags. In the Figures
3.26, one can see on the left-hand side the �tted results by the model and on the
right-hand side, the predicted values.
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Figure 3.24: First di�erence of each covariate.
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Figure 3.25: ACF di�erence of each covariate.
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Figure 3.26: ARIMA(4,1,2) with linear regression on 100 lagged
memory pool count covariates.



82 CHAPTER 3. EMPIRICAL RISK ANALYSIS OF MINING. . .

Table 3.4: Summary of ARIMA model with lagged regressors of memory pool count.

ar1 ar2 ar3 ar4 ma1 ma2 xreg1 xreg2 xreg3

-0.6308 0.2366 0.0624 0.0434 -0.0513 -0.7898 0.054 0.1093 -0.2924
s.e. 0.0679 0.0228 0.0167 0.0126 0.067 0.0603 0.1216 0.1472 0.1479

xreg4 xreg5 xreg6 xreg7 xreg8 xreg9 xreg10 xreg11 xreg12

0.1533 0.0656 -0.0312 0.2065 -0.1537 0.0489 0.0079 0.0657 0.0506
s.e. 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479

xreg13 xreg14 xreg15 xreg16 xreg17 xreg18 xreg19 xreg20 xreg21

-0.2628 0.0852 -0.123 0.0803 0.0948 0.089 -0.088 -0.1082 0.0212
s.e. 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479

xreg22 xreg23 xreg24 xreg25 xreg26 xreg27 xreg28 xreg29 xreg30

0.1854 0.0017 -0.1564 -0.0236 0.0297 0.0248 0.1464 -0.166 0.1341
s.e. 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1479 0.1478 0.1477

xreg31 xreg32 xreg33 xreg34 xreg35 xreg36 xreg37 xreg38 xreg39

-0.1022 -0.0552 -0.1845 0.1116 -0.0922 0.2335 -0.1421 0.4361 -0.278
s.e. 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477

xreg40 xreg41 xreg42 xreg43 xreg44 xreg45 xreg46 xreg47 xreg48

-0.1486 0.3066 -0.0679 -0.2838 0.2205 -0.1769 0.1635 0.1928 -0.1592
s.e. 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477

xreg49 xreg50 xreg51 xreg52 xreg53 xreg54 xreg55 xreg56 xreg57

-0.0567 -0.1243 0.1907 0.0804 0.0154 -0.0461 -0.162 0.0289 0.1161
s.e. 0.1477 0.1477 0.1477 0.1477 0.1477 0.1477 0.152 0.1539 0.154

xreg58 xreg59 xreg60 xreg61 xreg62 xreg63 xreg64 xreg65 xreg66

-0.1808 0.0621 0.1966 -0.1887 0.0183 -0.1012 0.2699 -0.4113 0.1366
s.e. 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

xreg67 xreg68 xreg69 xreg70 xreg71 xreg72 xreg73 xreg74 xreg75

0.1899 0.077 -0.3807 0.1774 0.0485 -0.1507 0.1555 -0.0685 -0.162
s.e. 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

xreg76 xreg77 xreg78 xreg79 xreg80 xreg81 xreg82 xreg83 xreg84

-0.0186 -0.0585 0.312 -0.1822 0.0604 -0.144 0.0168 -0.0953 0.1755
s.e. 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

xreg85 xreg86 xreg87 xreg88 xreg89 xreg90 xreg91 xreg92 xreg93

-0.1648 -0.1744 0.1769 -0.1296 0.072 0.0338 0.1139 -0.0778 -0.0734
s.e. 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

xreg94 xreg95 xreg96 xreg97 xreg98 xreg99 xreg100

0.0997 -0.2199 0.1156 -0.0932 -0.0331 0.054 0.2058
s.e. 0.154 0.154 0.154 0.1541 0.1541 0.1533 0.1268

σ2 220137825
Log.Lik. -87024.43
AIC 174262.9
BIC 175009.1

3.B.2 Vector Auto Regression

As with an ARIMA using a linear matrix of regressors we do not take in account
the evolution of these regressors in time, a �t of a vector autoregressive model
(VAR) would capture this. Again, we consider the memory pool count as the only
regressor as including others did not signi�cantly improve the �ts based on previous
observations. A multivariate time series Xt subject to a VAR(p) process can be
expressed in the following form:

Xt = β1Xt−1 + · · ·+ βpXt−p + zt, (3.25)
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where β1, . . . ,βp are non-zero vectors of coe�cients and zt is a multivariate white
noise with mean 0 and covariance matrix Σz. For an overview of this model, see e.g.
[129].

We choose the number of lags based on an AIC selection of models upto 200
lags. As it can be seen in Figure 3.27, the small number of lags let the forecasted
values be strongly in�uenced by the trend of the last values and thus the predicted
path may follow too closely the average of the last time points.
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Figure 3.27: VAR(16) forecast.

To compare, we also apply the model with 144 lags, which corresponds approxi-
mately to 1 day of data (see Figure 3.28) and 2016 lags (2 weeks) in Figure 3.29.

Figure 3.29 shows that with the increased number of lags, the con�dence intervals
for the prediction are getting larger, thus encompassing the true values in the 95%
bounds.
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Figure 3.28: VAR(144) forecast.
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Figure 3.29: VAR(2016) forecast.
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3.B.3 ARIMA-GARCH

Recent literature already suggested modelling bitcoin prices through GARCH mod-
els (see e.g. [86]). GARCH type modelling is better suited to model the volatility
observed in series. GARCH models were �rst introduced by Bollerslev in 1986 [24]
and have the following representation: Let ϵt be a real-valued stochastic process
following a GARCH(p,q) process. Then:

ϵt | ϵs ∼ N (0, ht) , ∀s < t,

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j,

where p ≥ 0, q ≥ 0, α0 > 0, αi ≥ 0, i = 1, . . . , q, βj ≥ 0, i = 1, . . . , p, see also
[65].

In order to �t our data, we will apply �rst the ARIMA model to our data (as
above) and further introduce heteroskedasticity in the residuals via the GARCH
model, as suggested in [155, 165]. In Figure 3.8, we showed the normal Q-Q plot
of the residuals from the ARIMA model. As the reader can observe, there is room
for improvement and standard statistical tests reject the Gaussian hypothesis. So
in order to �ll this gap, we �t a GARCH model to the residuals. For this, we base
our choice of parameters on the AIC criterion. The best model out of the tested set
is GARCH(17,2). In Figure 3.30a, one can see the improvement of the Q-Q plot of
residuals after accounting for the variance. Finally in Figure 3.30b, one can observe
the prediction with con�dence interval bounds for the overall model. Up to 10 days,
the realized path falls within the con�dence interval bound, but this example is the
worst case scenario since the training period strongly deviates from the test data. As
in all other models, the main drawback is that the predicted results can be negative.
This model is not retained in comparison to the ordinary ARIMA model as few
improvements of the Q-Q plot are observable for many additional parameters.
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Figure 3.30: Results of the ARIMA(1,1,7)-GARCH(17,2) model.

3.B.4 Bitcoin price

In Section 3.5 we mentioned that the Bitcoin price was �tted using an ARIMA
model inspired by Azari [19]. Let us present this model here. We �t the data on the
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same period as the transaction fees, from February 10th, 2021 to April 21th, 2021.
The corresponding price evolution is displayed in Figure 3.31a. On the right-hand
side of Figure 3.31b, we can observe the ACF of the Bitcoin price, which exhibits
autocorrelation.
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Figure 3.31: BTC/USD price, 10/02/2021 to 21/04/2021.

A test for stationarity with an augmented Dickley-Fuller test and a Ljung-Box
test is performed and rejects stationarity. In order to counter this problem, we
transform the series by observing the log-di�erentiated series in Figure 3.32a. As
can be seen in Figure 3.32b, the autocorrelation disappears. The Dickley-Fuller test
startistic has a p-value of 0.01, which do not reject stationarity.
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Figure 3.32: Log di�erentiated BTC/USD price, 10/02/2021 to
21/04/2021.

We can now con�dently �t an ARIMA by minimizing AIC using forecast package
from Hyndman and Khandakar [79]. The plot of observed vs �tted values almost
overlap in Figure 3.33a. This �t is given by a ARIMA(5,1,1) model with parameters
given in Table 3.5. Next, following [157, chap. 7], we can simulate paths of Bitcoin
prices from the �tted ARIMA model. We can see simulated predicted paths in color
in Figure 3.33b vs the true historical development in black.

3.C Appendix C: Other cryptocurrencies

In this Section, we aim to compare the dynamics of the transaction fees for other
cryptocurrencies and see whether they can also be captured by simple models.
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Figure 3.33: ARIMA(5,1,1) �t of the Bitoin price, 10/02/2021 to
21/04/2021.

Table 3.5: Coe�cients of the ARIMA �t for the price model.

ar1 ar2 ar3 ar4 ar5 ma1

0.6991 0.0065 0.0126 -0.0015 -0.0251 -1.7217
s.e. 0.0370 0.0039 0.0038 0.0038 0.0033 003701

σ2 4653
Log.Lik. -576682.5
AIC 1153379
BIC 1153446

3.C.1 Cardano

Launched in 2012, Cardano5 blockchain records transactions performed in Ada cryp-
tocurrency. In contrast to the Bitcoin, Cardano adopted a Proof-Of-Stake consen-
sus protocol. The cryptostaking does not require huge computational power to solve
cryptoproblems. Instead, anyone can become a validator by staking their coins. Ada
holder delegate their stake to stake pools, reliable server nodes run by a stake pool
operator. With a higher amount of staked coins, the node gets a higher probability
of becoming a validator, meaning he will construct the next block. Akin to the
Bitcoin consensus protocol, the winner of this round will collect the reward. Since
its conception, Cardano evolved through di�erent eras of development. Currently,
the block formation is structured as follows. Time is divided in epochs, which in
their turn are subdivided in slots. Each slot last for one second and one epoch
accommodates 432'000 slots. In every slot, there is a probability of electing one or
more slot leaders. If one of these leaders produces a block, it is appended to the
blockchain. See Zhang and Lee [159] for an overview of consensus protocols.

The rewards in the Cardano system are constituted by the sum of the trans-
action fees attached to the newly generated block as well as some newly issued
Ada coins. The reward is distributed to the slot leader according to a prede�ned
formula (see https://docs.cardano.org/learn/pledging-rewards). One of the

5https://docs.cardano.org/, https://cardano.org/

https://docs.cardano.org/learn/pledging-rewards
https://docs.cardano.org/
https://cardano.org/
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parameters in the formula is the saturation parameter, preventing the pools of stak-
ing to much and thus decentralizing the system. The transaction fees themselves
obey a certain structure. The minimal fee is capped from below by a formula liner
in the transaction size (see https://docs.cardano.org/explore-cardano/fee-

structure, [29]). On the other hand, there is no upper bound on the fees.

For the purpose of our analysis, we collect data on the sum of the transaction
fees per block during 2 periods of time. These periods match the beginning and
the end of the extracted Bitcoin data series. Due to the high frequency of Cardano
blocks, obtaining the full 16 months period data was not possible.
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Figure 3.34: Cardano fees.

The �rst observation that can be made in Figure 3.34 is a seemingly cyclical be-
haviour of the fees. This cyclicity may re�ect the intensity of the transactions during
di�erent daytimes. For the most recent period, the peaks on the graphs consistently
fall around 2-3 p.m. UTC. As for the lowest parts, there are on the opposite at 3 a.m.

The ACF in Figure 3.35 con�rms the cyclical behaviour of the time series.
The idea is then to �t a model accounting for seasonality (daily in our case).
For this purpose, we apply the SARIMA model. Recall that a time series Xt is
SARIMA(p, d, q)(P,D,Q)s de�ned as

ΦP (B
s)ϕ(B)∇D

s ∇dXt = ΘQ(B
s)θ(B)zt, (3.26)

where zt is a white noise with mean 0 and variance σ2
z , and ∇ denote backshift

operators. For an overview of this model, see e.g. [129] and [78] for forecasting
methods. The results are illustrated in Figure 3.37.

3.C.2 Ethereum

Ethereum, established as the second most prominent cryptocurrency following Bit-
coin in terms of market capitalization, presents a interesting case in the world of
digital currencies. This short subsection investigates its uniqueness and recent de-
velopments, and the implications of these changes for users and miners.

In the Ethereum blockchain, Ommer (previously known as Uncle) blocks repre-
sent an interesting phenomenon. These blocks are generated concurrently with the
main blocks but do not form part of the main chain. Despite this, Ommer blocks are

https://docs.cardano.org/explore-cardano/fee-structure
https://docs.cardano.org/explore-cardano/fee-structure
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Figure 3.35: ACF of Ada transaction fees.
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Figure 3.36: ACF and PACF of Ada transaction fees.

integral to Ethereum's architecture, contributing to network security and rewarding
miners for valid block production. However, with the transition of Ethereum from
a Proof-of-Work (PoW) to a Proof-of-Stake (PoS) protocol, the role and dynamics
of Ommer blocks have undergone signi�cant changes, and are not part of the PoS
protocol anymore6, although the transaction fees mechanics remained unchanged for
Ommer blocks after transition7.

Ethereum transactions are powered by "gas," a unit that quanti�es the com-
putational e�ort required to execute operations. Each transaction necessitates a
certain amount of gas, acting as a fee paid to miners for processing and validating
transactions. Notably, if the gas limit for a transaction is reached without com-

6https://ethereum.org/en/glossary/#ommer, last accessed on 23/11/2023.
7https://eips.ethereum.org/EIPS/eip-3675#block-and-ommer-rewards, last accessed on

23/11/2023.

https://ethereum.org/en/glossary/#ommer
https://eips.ethereum.org/EIPS/eip-3675#block-and-ommer-rewards
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Figure 3.37: SARIMA (40, 1, 10)4320 �t of Ada transaction fees.

pletion, the transaction fails, emphasizing the importance of accurately estimating
gas requirements [74]. The London Hard Fork8, implemented on August 5, 2021,
at block 12,965,000, introduced a pivotal change in the Ethereum fee structure. A
portion of the transaction fees, previously awarded to miners, is now "burned" or
permanently removed from circulation. This mechanism aims to reduce the overall
supply of Ether, potentially in�uencing its value. Additionally, the update brought
a new fee calculation model, incorporating a base fee per block (subject to �uctua-
tion) and a priority fee, determined by users to expedite transaction processing9.

A landmark event in Ethereum's history was "The Merge", completed on Septem-
ber 15, 2022, at block 15,537,393. This transition marked Ethereum's shift from the
energy-intensive PoW consensus mechanism to the more environmentally friendly
PoS protocol. This fundamental change not only alters the method by which new
blocks are created and validated but also has signi�cant implications for the overall
security, scalability, and energy e�ciency of the Ethereum network.

Figures 3.38a and 3.38b illustrate the total fees associated with Ethereum trans-
actions over the period from 21/06/2022 to 07/10/2022. These charts provide
valuable insights into the dynamics of Ethereum's network before and after the
Merge, highlighting the �uctuating nature of transaction fees. Similarly, Figures
3.39a and 3.39b focus on the fees received by miners, accounting for the burned fees.

8https://cointelegraph.com/news/ethereum-london-hard-fork-goes-live, last accessed
on 23/11/2023.

9https://ethereum.org/en/developers/docs/gas/, last accessed on 23/11/2023.

https://cointelegraph.com/news/ethereum-london-hard-fork-goes-live
https://ethereum.org/en/developers/docs/gas/
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Ethereum's evolution, particularly through signi�cant updates like the London Hard
Fork and The Merge, shows its adaptive and innovative nature in the cryptocurrency
domain. These developments not only demonstrate Ethereum's commitment to ad-
dressing scalability and environmental concerns but also show its potential to shape
the future landscape of blockchain technology and digital currencies.
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Figure 3.38: ETH total fees.
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Chapter 4

On the cost of risk misspeci�cation

in insurance pricing

This chapter is based on the following article:

D. Finger, H. Albrecher, and L. Wilhelmy. On the cost of risk misspeci�cation
in insurance pricing: a mean-variance approach. Submitted.

Abstract. In the non-life insurance industry, pricing is often done relative to individual

criteria of policyholders. Various classi�cation algorithms are in use to categorize policy-

holders into risk classes de�ned by the insurer, but classi�cation errors may result from

this process. In the light of recent automatic classi�cation practices, it becomes impor-

tant to assess the risks caused by such errors. In this chapter we examine the impact

of risk class misspeci�cations for a simple situation with two risk types. We provide a

mean-variance framework for quantitatively studying the insurer's optimization problem

of specifying premiums and we analyze the tradeo� of costs and bene�ts when classi�cation

error probabilities are known.
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4.1 Introduction

Risk classi�cation is a classical tool in actuarial practice. Indeed, the distribution
of individual risks will often di�er substantially, depending on personal character-
istics, di�erent exposure, environmental conditions etc. If an insurer applies the
same premium across all such categories, this may lead to adverse selection, in the
sense that individuals who face a lower premium than appropriate for their true
risk will massively enter the contract, raising the price and squeezing out rational
individuals with lower risk (see e.g. [14] for a general discussion). Classi�cation is
commonly used in insurance during the underwriting process and the tari�cation, cf.
[113, 145] for health and life insurance and [149] for property lines. Di�erent types
of variables, such as quantitative or categorical can be used in various algorithms for
actuarial classi�cation purposes [128]. For an overview of classi�cation methods we
refer to [75]. In the literature, numerous authors discuss risk classi�cation in view
of adverse selection and e�ciency in the Pareto sense, see [53] for a survey on this
topic. In [42, 43, 77] authors study the e�ciency of imperfect categorization in a
utility setup. In [54, 116], authors consider the e�ect of bans on classi�cation on the
market e�ciency. [138] deals with the customers' perspective on adverse selection
and e�ciency of risk classi�cation. The contributions [42, 116] consider also costs
of categorization. Indeed, risk classi�cation may be costly both computationally
(in terms of resource-consuming algorithms in the presence of huge datasets) and
in monetary terms (e.g. involving data acquisition from o�cial statistics or from
competitors).

The insurer hence needs to select appropriate criteria for rating variables, which
may take di�erent forms and are not always motivated by actuarial drivers. For
instance, [63] distinguishes actuarial, operational, social and legal criteria. In some
cases, classi�cation may be inaccurate when the main criterion is unobservable or
there are legal constraints to use it, e.g. for social or political reasons. For instance,
gender-based discrimination is nowadays forbidden in the European Union (see e.g.
[124]), even if it is widely considered a relevant characteristic from the statistical
point of view. In [125], authors discuss the perceptions of gender as pricing criteria
by the customer and explain the complex interplay between anti-discrimination laws
and actuarial principles within the insurance industry, see [98] for suggestions to deal
with this issue. We refer to the recent book [32] for a rich source of information and
ideas on this topic.

In recent years, advancements in genetic testing and personalized medicine have
brought forth unique challenges in data protection. When individuals undergo ge-
netic tests and share this information with their insurers, it gives the insurer insight
into the individual's risk pro�le. This knowledge can a�ect how individuals are clas-
si�ed in insurance schemes, raising privacy concerns about the sharing of sensitive
genetic data. Moreover, integrating personalized medicine into healthcare systems
presents potential inequalities. Some patients might require expensive treatments,
raising questions about coverage by insurance providers. Detailed discussions of
these challenges are explored in various studies, including [50] and [84].

Although criteria to distinguish risk pro�les will exist, they may often be un-
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known to the insurer due to the asymmetry of information, see e.g. [3, 6]. At the
same time, recent years have seen a dramatic increase in both the amount of risk
information available and the ability to analyse it statistically [133]. In many sit-
uations, risks can be analysed on an almost individual basis, but in any case as
elements of much smaller rating pools, i.e. pools of risks that share characteristics
such that they can be assumed to have the same loss distribution. O�ered insur-
ance cover may also take into account the current risk situation, i.e. environmental
variables (e.g. time, place) or even behavioural variables. The small size of rating
pools leads to larger estimation errors in estimating the expected cost of insurance
cover. In the presence of competing insurance providers and given the transparency
of the prices of their insurance o�ers, customers may tend to choose the cheapest
o�er, i.e. an o�er that is too low compared to the true but unknown production
costs. From the perspective of the insurance company, this phenomenon is known
as the "winner's curse". In order to avoid the negative economic consequences of
the winner's curse, insurance companies like to apply tailor-made surcharges to the
o�ered premium. It is likely that these surcharges, in addition to the higher cost of
more granular risk assessment, will lead to higher overall costs for the entire insured
portfolio of risks. Hence, the total welfare of the community is reduced. In addi-
tion, the overall coverage ratio may be reduced as some risk owners may �nd the
increased cost of insurance too high. An overly granular approach may therefore be
counterproductive and there may be an optimal level of rating granularity, together
with legal boundaries, see for instance [63], [5] and [143].

Even when the resulting loss distributions are assumed to be known, each clas-
si�cation method will inherently contain classi�cation errors, which may lead to
unpro�table decision making. Note that error rates tend to be higher when one
class is less represented in the population, cf. [87, 150]. For a classical reference to
empirical evidence on concrete values for error probabilities arising from frequently
used statistical methods, see e.g. [21].

In this chapter, we would like to quantitatively study the e�ects of such classi-
�cation errors in the context of a simple model with only two possible risk classes.
In that case one faces two types of errors: assigning a risk of the �rst class as one of
the second and vice versa (a false positive and false negative in statistical terms, or
also sensitivity vs. speci�city, see e.g. [87, 145]). We compare three scenarios, one
where the insurer does not classify the heterogeneous risks and two others where
the risks are di�erentiated, but once with perfect knowledge and once with some
probability of misspeci�cation of policyholder types. While the introduction of the
classi�cation mechanism allows to price the insurance risks more e�ciently, it en-
tails certain �xed costs, and the potential misspeci�cation can impact the insurer's
pro�t further. In a similar spirit to [66], we develop a simple framework to as-
sess the respective trade-o� between costs of classi�cation and pro�ts. We consider
linear and sigmoid-type demand functions of the premium for the probability that
a customer accepts an o�ered policy (rather than deterministic demand functions
as in [66]). Our main optimization target is the expected pro�t for the insurer (see
e.g. [89]), and we consider several risk measures to assess the risk part in the analysis.

The remainder of the chapter is structured as follows: In Section 4.2, we start
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with an insurer's expected pro�t approach and a piece-wise linear demand setting.
We then consider di�erent scenarios for this setup in Section 4.3. In Section 4.4,
we then include the variance in our considerations, and establish mean-variance
frontiers for the pro�t. We illustrate the results and its main drivers in Section 4.5.
In order to assess the sensitivity of the results, Section 4.6 then develops a number
of extensions, namely a sigmoid-type rather than piece-wise linear demand function,
a lower semi-variance and a value-at-risk concept for replacing the variance in the
risk assessment of the strategies, as well as a utility function approach to unite the
consideration of pro�tability and variability in one function, together with numerical
illustrations for each of these cases. Finally, Section 4.7 concludes.

4.2 Model Setting

Assume that there is only one insurer present in the market, so there is no compe-
tition. Let us further assume a population of n individuals, who are all willing to
contract insurance, and independently from each other choose whether they enter
the insurance contract for a given premium or not. The individuals fall into two
types: low risk type with loss random variable L and high risk type with loss ran-
dom variable H, with underlying cumulative loss distribution functions FL(x) and
FH(x), x ≥ 0 respectively (both L and H will typically have atoms at 0, signifying
the case of no claim in the considered time period). De�ne the respective means
and variances by

E (L) = µL, Var (L) = σ2
L, (4.1)

E (H) = µH , Var (H) = σ2
H , µH > µL, (4.2)

which are all assumed to be �nite. All risks are assumed to be independent and
identically distributed within each type. Let {pL, pH ≥ 0} be the actual proportion
of the low- and high-risk type among the policyholders (pL + pH = 1).

De�ne an acceptance function fi which for any proposed premium P gives the
probability for an individual to enter the contract; the form of this function di�ers
for each risk type i. Each individual is assumed to take the decision about entering
independent of all the others. We distinguish the acceptance behaviour of each
individual within its risk type, but this can be extended to distinguish between each
individual at a personal level. If m individuals are o�ered a premium P and all use
the same acceptance function fi, we then expect m · fi(P ) individuals to enter the
contract. Let us �rst assume that fi is piece-wise linear

fi(P ) =

1− P

Pmax
i

, 0 ≤ P ≤ Pmax
i , i ∈ {L,H}

0, Pmax
i < P,

(4.3)

where Pmax
i is the so-called reservation price, cf. Figure 4.1. Clearly, fi is non-

increasing in P . We set the condition µi < Pmax
i to ensure the possibility of positive

expected pro�ts for the company.
Our approach represents a stochastic setup for the acceptance of an o�ered con-

tract, in contrast to [66] who work with (4.3) as a deterministic demand function for
a given price. While for expected pro�ts as dealt with in Section 4.3 this di�erence
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Figure 4.1: Acceptance probability fi(P ) as a function of o�ered premium P .

does not matter, it will be important for the risk considerations in the subsequent
sections. Despite the non-di�erentiability of the piece-wise linear fi at Pmax

i , this
form will lead to simple local solutions. An extension of the results to a more com-
plex, but analytically better tractable sigmoid form will be considered in Section
4.6.

Remark 4.2.1. In the classical work of Rothschild and Stiglitz [123] as well as fur-
ther models based on it, in a comparable setting of identifying contracts to sell, the
authors �nd optimal solutions in terms of premiums and levels of coverage. For the
present purpose and simplicity we, however, prefer to use the concept of the accep-
tance function, with individuals facing a binary choice of entering the contract or
not. That is, we do not allow a partial coverage or deductibles here. Allowing par-
tial coverages would change the model in some aspects. In Section 4.3, the di�erence
between both settings would not be observable, as in expectation one may interpret
the acceptance function of the individuals as their level of coverage instead of the
probability to accept the contract. On the contrary, in Section 4.4, the variance
would di�er, as the partial coverages would not induce a variability in the number
of insured individuals as the acceptance function does.

In the following sections, we introduce three di�erent scenarios that the insurer
may face. We start with the case where the insurer can observe the risk type of
each individual, which we refer to as the full information case. We then consider the
situation where the insurer can not distinguish between the two types ex-ante at all.
In that case the only possible method of pricing is to not di�erentiate individuals, and
the pro�tability of the insurance business will then depend on the empirical fraction
of each risk type in the population. Finally, the possibility to observe and measure
a certain characteristic, which can be discrete or continuous, allows us to classify
an observation, but with a certain error probability. This probability depends on
the true class of the observation. The introduction of the classi�cation mechanism
has certain costs, but allows to better price according to the true risk class. We
are interested to quantitatively assess the respective trade-o� in this simple model
setup.
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4.3 Expected pro�t in three scenarios

In this section, we focus on the expected pro�t only. Let us introduce three di�erent
scenarios that the insurer may face, starting with the case where the insurer can
actually observe the risk type of each individual.

4.3.1 Full information

The benchmark for our analysis is the situation with no asymmetry of information.
Here the insurer can observe the risk type of each individual and therefore price
according to the true type. Recall that we know the actual proportion {pL, pH} of
the population in each class. Therefore, we can maximize pro�t by di�erentiating
between groups. If, for a given individual, the price is higher than its true risk
premium, his/her willingness to accept the contract decreases. Let us denote by
X

(L)
j the jth loss random variable of the low risk type (independent copies of L)

and by X(H)
j the jth high-risk loss variable (independent copies of H). Then, the

(random) pro�t is given by

Π =

n·pL∑
j=1

ILj (PL −X
(L)
j ) +

n·pH∑
j=1

IHj (PH −X
(H)
j ), (4.4)

where ILj and IHj are independent Bernoulli random variables with probabilities
fL(PL) and fH(PH), respectively. In this case, an adaptation of [66] establishes that
the optimal premiums are independent of n, pL and pH , and they are simply the
average of the mean claim size and the maximum premium that the policyholders
are willing to pay.

Theorem 4.3.1. In the full information case, the expected pro�t of the insurer is
maximized by the premium choice

PL =
1

2
(µL + Pmax

L ) (4.5)

and

PH =
1

2
(µH + Pmax

H ) (4.6)

for the two risk classes.

Proof. The optimal premium choice is the solution of the following optimization
problem:

{PL, PH} = argmax
x,y

E (Π) = argmax
x,y

npLfL(x)(x− µL) + npHfH(y)(y − µH). (4.7)

We notice that E (Π) is a continuous function of {x, y} and that for {x < µL, y <
µH}, E (Π) < 0; {x = µL, y = µH}, E (Π) = 0; {x > µL, y > µH}, E (Π) > 0.
Also, limx→+∞,y→+∞ E (Π) = 0, which means that E (Π) admits a strictly positive
maximum for some {x > µL, y > µH} (and the optimization in x and y can in fact
be separated). We can characterize this point by the following equations:

∂E (Π)

∂x
= npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL

!
= 0 (4.8)
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∂E (Π)

∂y
= npH (f ′

H(y)y + fH(y))− npHf
′
H(y)µH

!
= 0, (4.9)

where the
!
= operator denotes a necessary condition. From (4.8) we have

∂E (Π)

∂x
=npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL = 0

⇐⇒ npL

(
− 1

Pmax
L

)
(x− µL) + npL

(
1− x

Pmax
L

)
= 0

⇐⇒ x =
1

2
(µL + Pmax

L ).

Since the optimal solution PL respects the condition PL ≤ Pmax
L , as µL < Pmax

L ,
it is not necessary to distinguish cases of the piece-wise function. To prove it is
indeed a local and global maximum, we can easily prove that the second derivative
is negative for a linear f :

∂2E (Π)

∂x2
=npLf

′′
L(x)(x− µL) + 2npLf

′
L(x)

=2npL

(
− 1

Pmax
L

)
< 0.

The same reasoning holds for the �rst and second derivative w.r.t. y.

Remark 4.3.2. It is easy to check that if

µL + Pmax
L < 2µH , (4.10)

then PL < µH , in which case charging a low-risk type premium to a high-risk type
customer results in an expected loss on the individual level. □

In terms of sensitivities, we simply see from (4.5) and (4.6) that

∂Pi

∂µi

=
∂Pi

∂Pmax
i

=
1

2

for both risk types i ∈ {L,H}. That is, the reactivity of the optimal premium is
constant for variation in the mean loss. Consequently, in case of increasing losses,
the increase in premium will only cover half of the increase in losses, thus decreasing
pro�ts by the double e�ect of smaller margins and smaller acceptance rate. Similarly,
shifting the endpoint Pmax

i of the acceptance function (for invariant µi) also increases
the optimal chargeable premium linearly with slope 1/2.

4.3.2 No di�erentiation

Next, let us consider the situation where the insurer has no possibility to distinguish
between risk types on the individual level, but still has an estimate for the fractions
{pL, pH} of the population in each class (e.g. through some historical �gures). So
we assume these numbers to be known (pL + pH = 1). In this scenario, the insurer
proposes an identical premium P to every individual. This has the advantage that
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one saves the cost of identi�cation of risk types, and provides another benchmark
for the sequel. The pro�t in this case is

Π =

npL∑
j=1

ILj (P −X
(L)
j ) +

npH∑
j=1

IHj (P −X
(H)
j ),

where ILj and IHj are Bernoulli random variables with probabilities fL(P ) and fH(P )
respectively, and the optimal premium then amounts to

P = argmax
z

E (Π) = argmax
z

n(pLfL(z) + pHfH(z))z − npLfL(z)µL − npHfH(z)µH .

(4.11)
Comparing the resulting optimization problem

max
z
npLfL(z)(z − µL) + npHfH(z)(z − µH) (4.12)

with (4.7), we see from PL ̸= PH there that the optimal solution P to (4.12) will
now yield a smaller pro�t (which is intuitive, since we have less information available
than in the setup of Section 4.3.1).

Theorem 4.3.3. In the no di�erentiation case, the expected pro�t of the insurer is
maximized by the premium choice

P = a∗PL + (1− a∗)PH , (4.13)

where PL and PH are the optimal premiums of the full information case given in

(4.5) and (4.6) and a∗ = pL/P
max
L

pL/P
max
L +pH/Pmax

H
.

Proof. Problem (4.12) can be solved using the �rst order condition

∂E (Π)

∂z
=npL (f

′
L(z)z + fL(z)) + npH (f ′

H(z)z + fH(z))

− npLf
′
L(z)µL − npHf

′
H(z)µH

!
= 0.

Using z < min{Pmax
L , Pmax

H }, plugging in the function f yields

npL

(
− 1

Pmax
L

)
(z − µL) + npL

(
1− z

Pmax
L

)
+ npH

(
− 1

Pmax
H

)
(z − µH) + npH

(
1− z

Pmax
H

)
= 0,

which leads to

z =

pL
Pmax
L

µL+Pmax
L

2
+ pH

Pmax
H

µH+Pmax
H

2

pL
Pmax
L

+ pH
Pmax
H

and �nally (4.13).
The second order condition yields a strictly negative result, thus con�rming the

global maximum.

Expression (4.13) shows that P is the average of the optimal premiums under
full information, weighted by the proportions in the population and the maximum
a�ordable premiums. Under the assumption (4.10), this also establishes

PL ≤ P ≤ PH .
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Remark 4.3.4. One should be careful to check whether P > Pmax
L : in that case, L

type customers do not enter the contract. This happens if a∗ <
PH−Pmax

L

PH−PL
. Conse-

quently, the optimal premium is that for higher risk types only, meaning P = PH . If
the expected pro�t for P = PH is greater than the one found above, then the optimal
premium will be PH and only H types will enter the contract. □

The change of the expected pro�t when compared to the case of full information
can now also be expressed as

npL (fL(P )− fL(PL)) (PL − µL)︸ ︷︷ ︸
loss on L not entering the contract

+

gain on extra margin on L︷ ︸︸ ︷
npLfL(P )(P − PL)

+ npH (fH(P )− fH(PH)) (PH − µH)︸ ︷︷ ︸
gain on more H entering the contract

+

loss on reduced margin on H︷ ︸︸ ︷
npHfH(P )(P − PH) < 0. (4.14)

In particular, for low risk types the proposed premium P is higher than their appro-
priate optimal premium PL under full information. Thus, with the decreasing shape
of the acceptance function, on average the insurer loses low-risk type customers and
the associated expected pro�t (negative �rst term in (4.14)). At the same time,
those who remain bring higher pro�ts (the second term in (4.14)). Correspondingly,
due to the cheaper than appropriate premium PH , more high-risk type customers
join (positive third term in (4.14)), but they pay less premium now (negative fourth
term).

4.3.3 Di�erentiation in two classes

Assume now that the insurer does not know the individuals' risk type, but has
access to a mechanism that can assign (classify) the risk types correctly with a
certain probability. Assume that the probability of misclassi�cation is the same for
each policyholder of the same type and given by

pH|L := P (i is classi�ed as H | i ∈ L) ,

pL|H := P (i is classi�ed as L | i ∈ H) .

Remark 4.3.5. If pH|L = pL|H = 0, we get back to the full information setting, as
there is no classi�cation error. If pH|L = pL|H = 1, all the true H end up in the
L group and all the true L are classi�ed in the H group (which would also result
in knowing the true type of each one, but having to switch the categories). In the
cases when pH|L = 1 and pL|H = 0 or pH|L = 0 and pL|H = 1, all individuals are
classi�ed in the same group. Typically, there is a tradeo� between the two error
types: in an attempt to classify one risk more accurately, the precision on the other
one will go down. For instance, in order to minimize pL|H , we could simply attribute
all observations to group H, which indeed gives pL|H = 0, but pH|L would increase
drastically as all L observations are then erroneously identi�ed as H.

The cost c(n) of applying the classi�cation algorithm will increase with popula-
tion size n (the computational cost of di�erent algorithms is increasing in the sample
size (take for instance the simplest Bayesian classi�er [161] with linear complexity),
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the human time invested in analysing data and making decisions increases, and
more powerful machines may be needed to run the algorithms, just to name a few
reasons). At the same time, the marginal cost is likely to decrease in n (�xed costs
in the process can be divided onto more policyholders, the insurer gains experience
and recognizes patterns etc.). Hence, we de�ne

c : R+ 7→ R+, c′(n) ≥ 0, c′′(n) ≤ 0.

A mathematically simple candidate for such a function is

c(n) = c0 log(γn),

where γ o�sets for the minimal cost amount and c0 scales for the intensity of the
e�ect of the population size.

The insurer will propose premiums, P ∗
L and P ∗

H , di�erent from the ones in Section
4.3.1 under full information, and some customers receive 'wrong' o�ers, leading to
a di�erent customer behaviour with respect to accepting the contract. Figure 4.2
visualizes the pricing process. An initial population of n customers is subdivided into
groups by their true risk type, rather than their identi�ed risk type, and �nally the
insurer loses some customers because of the entailed acceptance patterns of policies.

Contacted
population

L

H

L

H

H

L

P ∗
L

P ∗
H

×pL

×pH

×(1 − pH|L)

×pH|L

×(1 − pL|H )

×pL|H

×fL(P∗
L)

×fL(P∗
H )

×fH (P∗
H )

×fH (P∗
L)

n

Figure 4.2: Visualisation of the pricing process.

In this situation, the pro�t is given by

Π =

n·pL·(1−pH|L)∑
j=1

I
L|L
j

(
P ∗
L −X

(L)
j

)
+

n·pL·pH|L∑
j=1

I
H|L
j

(
P ∗
H −X

(L)
j

)

+

n·pH ·(1−pL|H)∑
j=1

I
H|H
j

(
P ∗
H −X

(H)
j

)
+

n·pH ·pL|H∑
j=1

I
L|H
j

(
P ∗
L −X

(H)
j

)
,

where IL|Lj , IH|L
j , IH|H

j and I
L|H
j are Bernoulli random variables with parameters

fL(P
∗
L), fL(P

∗
H), fH(P

∗
H) and fH(P

∗
L) respectively. The optimization procedure now
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amounts to

{P ∗
L, P

∗
H} =argmax

v,w
E (Π) = argmax

v,w
npL(1− pH|L)fL(v)(v − µL)

+npLpH|LfL(w)(w − µL) + npH(1− pL|H)fH(w)(w − µH)

+npHpL|HfH(v)(v − µH)− c(n).

(4.15)

Theorem 4.3.6. In the di�erentiation case, the expected pro�t of the insurer is
maximized by the premium choice

P ∗
L = b∗PL + (1− b∗)PH (4.16)

and
P ∗
H = c∗PL + (1− c∗)PH (4.17)

for the two classi�ed risk classes, where PL and PH are the optimal premiums (4.5)

and (4.6) of the full information case, b∗ =
pL(1−pH|L)/P

max
L

pL(1−pH|L)/P
max
L +pHpL|H/Pmax

H
and c∗ =

pLpH|L/P
max
L

pH(1−pL|H)/Pmax
H +pLpH|L/P

max
L

.

Proof. We make use of the following �rst order conditions from (4.15) to determine
the optimal solution:

∂E (Π)

∂v
=npL(1− pH|L) (f

′
L(v)v + fL(v)) + npHpL|H (f ′

H(v)x+ fH(v))

− npL(1− pH|L)f
′
L(v)µL − npHpL|Hf

′
H(v)µH

!
= 0

(4.18)

∂E (Π)

∂w
=npLpH|L (f

′
L(w)w + fL(w)) + npH(1− pL|H) (f

′
H(w)w + fH(w))

− npLpH|Lf
′
L(w)µL − npH(1− pL|H)f

′
H(w)µH

!
= 0

(4.19)

Equation (4.18) yields

npL(1− pH|L)

(
− 1

Pmax
L

)
(v − µL) + npL(1− pH|L)

(
1− v

Pmax
L

)
+ npHpL|H

(
− 1

Pmax
H

)
(v − µH) + npHpL|H

(
1− v

Pmax
H

)
= 0, (4.20)

leading to (4.16). Formula (4.17) is obtained in a completely analogous way from
(4.19).

The second order conditions are strictly negative and thus con�rm the maximum.

Like in the no di�erentiation case, the optimal premiums can again be expressed
simply as a weighted average of the optimal premiums from the full information
case, and the weights now involve the error probabilities.

Remark 4.3.7. One needs to verify the limiting case of P ∗
H = Pmax

L and P ∗
L =

Pmax
L to obtain the true maximum, since misclassi�ed L individuals may not enter

the contract after the limiting premium. This is the case when c∗ <
PH−Pmax

L

PH−PL
and
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b∗ <
PH−Pmax

L

PH−PL
. One can distinguish three cases. Firstly, if both P ∗

H < Pmax
L and

P ∗
L < Pmax

L , then the optimal solutions are given by Equations (4.16) and (4.17).
Secondly, if only P ∗

H > Pmax
L , then the correct premium for the proposed H contract

should be P ∗
H = PH , since we correctly price for only H types entering the group.

H types will always enter the contract since their premium is a weighted average
of PL and PH , and both are smaller than Pmax

H from Section 4.3.1. Thirdly, if
both P ∗

H > Pmax
L and P ∗

L > Pmax
L , which could happen with a high proportion of

misclassi�ed H individuals, then the optimal solution would be to o�er the contract
only to H types by setting P ∗

L = PH and P ∗
H = PH . It is worthwhile to notice that the

second-order mixed partial derivatives ∂2E(Π)
∂v∂w

= ∂2E(Π)
∂w∂v

= 0, and therefore the optimal
price for the low risk types does not depend on the optimal price for the high risk
types and vice versa. □

What is of particular interest is the situation where H individuals are wrongly
classi�ed as L. Indeed, since Pi > µi, this is the only situation where the insurer
makes losses, so it is important to maintain control over this group. The loss (pre-
sented here as a negative gain) compared to the benchmark of the situation of full
information can be decomposed into

npL(1− pH|L) [(fL(P
∗
L)− fL(PL)) (PL − µL) + fL(P

∗
L)(P

∗
L − PL)]︸ ︷︷ ︸

True L: Loss on L not entering the contract and gain on those who remain

+npLpH|L [(fL(P
∗
H)− fL(PL)) (PL − µL) + fL(P

∗
H)(P

∗
H − PL)]︸ ︷︷ ︸

False H: Loss on L not entering the contract and gain on those who remain

+npH(1− pL|H) [(fH(P
∗
H)− fH(PH)) (PH − µH) + fH(P

∗
H)(P

∗
H − PH)]︸ ︷︷ ︸

True H: Gain on extra H entering the contract and loss on them underpriced

+npHpL|H [(fH(P
∗
L)− fH(PH)) (PH − µH) + fH(P

∗
L)(P

∗
L − PH)]︸ ︷︷ ︸

False L: Gain on extra H entering the contract and loss on them underpriced

− c(n)︸︷︷︸
Invested cost

.

Recall that P was the optimal uniform premium for the case without di�eren-
tiation. Di�erentiation of risk types only makes sense, if the resulting premiums
P ∗
L, P

∗
H satisfy P ∗

L ≤ P ≤ P ∗
H (cf. Figure 4.3). From Equations (4.13), (4.16) and

PL P PH

P ∗
L P ∗

H

?

Figure 4.3: Illustration of premiums in di�erent scenarios.

(4.17), this amounts to the condition c∗ ≤ a∗ ≤ b∗ which can easily translated to
the following condition on the error probabilities:

pH|L + pL|H ≤ 1.

This will always be ful�lled in practically relevant situations.
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4.4 A mean-variance analysis

Proposing a unique premium P to both categories of risks attracts a higher rela-
tive proportion of H than the di�erentiating strategies. This heterogeneity in the
portfolio composition generates a higher level of risk, which one should consider
in the underwriting process. As the expected pro�t considered in Section 4.3 does
not capture this aspect of the problem, we introduce the variance of the pro�t as
a simple indicator that can be easily implemented in practical settings, as one only
needs estimates for the �rst two moments of the underlying claim distributions for
the analysis.

De�ne by NL, NH the (random) number of insured persons of risk type L and
H, respectively, entering the contract. Their �rst two moments are summarized in
Table 4.1, where PL, PH are given by Equations (4.5), (4.6), P by Equation (4.13)
and P ∗

L, P
∗
H by Equations (4.16), (4.17).

Table 4.1: Expected value and variance of the number of insured for each scenario.

Full information No di�erentiation Di�erentiation

E (NL) npLfL(PL) npLfL(P ) npL(1− pH|L)fL(P
∗
L)

+npLpH|LfL(P
∗
H)

Var (NL) npLfL(PL)(1− fL(PL)) npLfL(P )(1− fL(P )) npL(1− pH|L)fL(P
∗
L)(1− fL(P

∗
L))

+npLpH|LfL(P
∗
H)(1− fL(P

∗
H))

E (NH) npHfH(PH) npHfH(P ) npH(1− pL|H)fH(P ∗
H)

+npHpL|HfH(P ∗
L)

Var (NH) npHfH(PH)(1− fH(PH)) npHfH(P )(1− fH(P )) npH(1−pL|H)fH(P ∗
H)(1−fH(P ∗

H))
+npHpL|HfH(P ∗

L)(1− fH(P ∗
L))

For each risk type i, Ni =
∑n

j=1 I
i
j, where I

i
j are independent Bernoulli ran-

dom variables with probability fi(Pi), so E (Ni) = nfi(Pi) and variance Var (Ni) =

nfi(Pi)(1− fi(Pi)). The claim sizes are X(i)
j and the premium is Pi. From (4.4), we

then get

Var (Πi) = Var

(
Ni∑
j=1

(
Pi −X

(i)
j

))

= E

(
Var

(
Ni∑
j=1

(
Pi −X

(i)
j

)
| Ni

))
+ Var

(
E

(
Ni∑
j=1

(
Pi −X

(i)
j

)
| Ni

))
= E (Ni) · σ2

i + (Pi − µi)
2 · Var (Ni) .

(4.21)

With this ingredient, we can now derive the variance of the pro�t in our three
scenarios introduced in the previous section.

� Full information:

Var (Π) = E (NL)σ
2
L + (PL − µL)

2Var (NL) + E (NH)σ
2
H + (PH − µH)

2Var (NH) .

� No di�erentiation:

Var (Π) = E (NL)σ
2
L + (P − µL)

2Var (NL) + E (NH)σ
2
H + (P − µH)

2Var (NH) .
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� Di�erentiation:

Var (Π) =npL(1− pH|L)fL(P
∗
L)σ

2
L + (P ∗

L − µL)
2npL(1− pH|L)fL(P

∗
L)(1− fL(P

∗
L))

+npLpH|LfL(P
∗
H)σ

2
L + (P ∗

H − µL)
2npLpH|LfL(P

∗
H)(1− fL(P

∗
H))

+npH(1− pL|H)fH(P
∗
H)σ

2
H + (P ∗

H − µH)
2npH(1− pL|H)fH(P

∗
H)(1− fH(P

∗
H))

+npHpL|HfH(P
∗
L)σ

2
H + (P ∗

H − µL)
2npHpL|HfH(P

∗
L)(1− fH(P

∗
L)).

Remark 4.4.1. Note that in all of the above expressions a term containing the
variance due to the randomness of claim sizes is followed by one with the variance
due to the randomness of underwriting, i.e. the customer's probability to enter the
contract or not. In Section 4.5, we will illustrate this decomposition with the help of
a numerical example.

With external pressures coming from di�erent stakeholders, it may be preferable
to not price-di�erentiate until a certain variance level. This threshold will be higher
with increasing classi�cation costs and error probabilities. Consequently, we intro-
duce a variance constraint in the optimization problem, modifying the problem from
Section 4.3 to

maxE (Π)

s.t.Var (Π) ≤ σ̄2.

Varying the value of σ̄ will lead to a mean-variance e�cient frontier in the spirit of
Markowitz [102]. Introduce the Lagrange multipliers

L(Pi, λ) = E (Π(Pi)) + λ
(
σ̄2 − Var (Π(Pi))

)
(4.22)

for the premium Pi in any of the optimization programs (4.7), (4.11) and (4.15).
The optimal premiums are then obtained by the �rst order conditions

∂L
∂Pi

=
∂E (Π)

∂Pi

− λ
∂Var (Π)
∂Pi

!
= 0,

∂L
∂λ

= σ̄2 − Var (Π) !
= 0.

We give here the corresponding equations for the full information case, the other
cases follow in an analogous way. Equation (4.22) translates into

L(PL, PH) =n

(
pL

(
1− 1

Pmax
L

PL

)
(PL − µL) + pH

(
1− 1

Pmax
H

PH

)
(PH − µH)

)
+λ

{
σ̄2 −

[(
npL

(
1− 1

Pmax
L

PL

))2

+ npL

(
1− 1

Pmax
L

PL

)]
σ2
L

−(PL − µL)
2npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

−

[(
npH

(
1− 1

Pmax
H

PH

))2

+ npH

(
1− 1

Pmax
H

PH

)]
σ2
H

−(PH − µH)
2npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

}
.

The �rst order conditions are given by
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∂L
∂PL

= npL

(
− 1

Pmax
L

)
(PL − µL) + npL

(
1− 1

Pmax
L

PL

)
− λ

(
npL

(
− 1

Pmax
L

)
σ2
L + 2(PL − µL)npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

+(PL − µL)
2npL

1

Pmax
L

(
1− 2

PL

Pmax
L

))
!
= 0,

∂L
∂PH

=npH

(
− 1

Pmax
H

)
(PH − µH) + npH

(
1− 1

Pmax
H

PH

)
− λ

(
npH

(
− 1

Pmax
H

)
σ2
H + 2(PH − µH)npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

+(PH − µH)
2npH

1

Pmax
H

(
1− 2

PH

Pmax
H

))
!
= 0,

∂L
∂λ

= σ̄2 −
(
npL

(
1− 1

Pmax
L

PL

)
σ2
L + (PL − µL)

2npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

+npH

(
1− 1

Pmax
H

PH

)
σ2
H + (PH − µH)

2npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

)
!
= 0.

This results in a system of three equations for the three unknowns PL, PH and λ
which can be solved numerically for every choice of involved parameters.

4.5 Numerical illustrations

Let us now consider concrete numerical illustrations of the results of the previous
sections. The following parametrization will be used throughout this section unless
otherwise stated:

µL = 1, µH = 5, σ2
L = 1, σ2

H = 10, pL = 0.9, pH|L = pL|H = 0.1. (4.23)

For the shape of the cost function we assume c(n) = 20 log n in the plots, but note
that any other choice would be feasible as well.

4.5.1 Expected pro�t

Let fi(P ) have the form (4.3) with Pmax
L = 4µL = 4 and Pmax

H = 4µH = 20. Then
we get from the respective formulas of Section 4.3:

� Full information:

PL = 2.5, PH = 12.5, E (Π) = 0.788n.

� No di�erentiation:
P ≈ 2.717, E (Π) ≈ 0.298n.

Note that µL < P < µH . In this case, the insurer targets the low-risk L type cus-
tomers because their proportion in the population is large enough to compensate
for the losses on the H types.
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� Di�erentiation in two classes:

P ∗
L ≈ 2.525, P ∗

H = 12.5, E (Π) ≈ 0.687n− c(n).

Note that P ∗
H > Pmax

L .

Applying the classi�cation is hence only an advantage if

0.687n− c(n) ≥ 0.298n.

Conversely, the maximum cost which the insurer will be willing to pay for the
classi�cation, given a population of size n, is

c(n) < 0.388n.

It is instructive to look into the sensitivity of the results. Let us �rst explore the
variability of the pro�t under di�erent error probabilities, which can be a helpful
decision tool in case of limited investment resources. For each level of error proba-
bilities, we recompute the optimal premiums. Figure 4.4 features the sensitivity of
the expected pro�t with respect to both error probabilities. The classi�cation cost
still needs to be deducted here from the expected pro�t. If the insurer is given a
choice of di�erent classi�cation algorithms or investment possibilities for improve-
ment of precision with known resulting error probabilities, one can verify whether
that investment is worthwhile. This �gure may help the decision makers to judge
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Figure 4.4: Expected pro�t as function of error probabilities.

whether with given error probabilities, a re�nement in the classi�cation may be of
added value to the company.



4.5. NUMERICAL ILLUSTRATIONS 109

4.5.2 Variance

Numerically, with the parameters de�ned in (4.23), we obtain the following results
for the three cases of the linear acceptance function:

� Full information:
Var (Π) = 2.505469n.

� No di�erentiation:
Var (Π) = 1.79213n.

� Di�erentiation:
Var (Π) = 2.355267n.

As the total variance is an increasing function of the number of policyholders,
it will naturally be higher under a di�erentiation strategy, as the insurer gets more
market share. But the structure of the variance will be di�erent. Without di�er-
entiation, the variance inside the group is much higher than the average of internal
group variances from the di�erentiation case, that di�erence being larger when the
two distributions are further apart.

In Figure 4.5, we plot the variances in the three scenarios to illustrate their
forms as a function of chosen premium. We split the variances according to the part
stemming from the variability of claims (in red) and from the one of acceptance of
contracts (in green). The humps indicate the region where the increase of variance
due to the increasing deviation from the mean is compensated by the decrease in
the number of underwritten policies. In Figures 4.5b and 4.5c, we can observe
two humps, appearing because of the mixture of two risk types. With the help of
this decomposition, we can clearly see that the humps in the plots come from the
acceptance behaviour. In Figure 4.5a, we observe that if the premium becomes too
high, the total variance decreases as the population does not enter the contract any
more. In Figure 4.6 the same variance decompositions are depicted, but scaled with
respect to the absolute value of the expected pro�t. In this way, one can compare
the risk per unit of gained pro�t in each situation.

In Figures 4.7-4.9, we show the variances when varying one parameter at a time.
In Figure 4.7, one can observe the variance shapes for a small range acceptance
function. In this case, the variance is mostly de�ned by the claims behaviour,
since the acceptance rate remains low and the humps are less pronounced. For
an acceptance function ranging up to high premiums as shown in Figure 4.8, the
acceptance variance dominates. The humps are more pronounced as policyholders
exist in a broader range. Finally, with a bigger expected claim size di�erence between
risk types, the relationship between the humps and the risk types becomes clearer
as they are further apart, see Figure 4.9.

4.5.3 Mean-variance e�cient frontier

To complete the numerical part, we now address the illustration of the mean-variance
frontier as de�ned in Section 4.4 for a population size of n = 10′000. We see in Figure
4.10 that up to a certain variance level, the non-di�erentiation strategy dominates
di�erentiation in terms of expected pro�t. This breaking point depends on the cost
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(a) Perfect information case. Left-hand side: Var (Π) as a function of PL. Right-hand side:
Var (Π) as a function of PH .
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(b) No di�erentiation case.
Var (Π) as a function of P .
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(c) Di�erentiation case. Left-hand side: Var (Π) as a func-
tion of P ∗

L. Right-hand side: Var (Π) as a function of P ∗
H .

Figure 4.5: Decomposition of the variance.

function c(n) and the error probabilities. One may also want to consider limiting
constraints in practice such as regulatory constraints or the demands of stakeholders.
The kinks in the frontier arise from the fact that for di�erent variance limitations, a
di�erent portfolio composition becomes optimal. In other words, the optimal strat-
egy switches in the points of the kinks by letting more of a lower or higher risk type
entering the contract.

The mean-variance approach assumes variations to both sides as equally weighted
since the variance is a symmetric risk measure. This framework can be extended
to other risk measures, such as the lower semi-variance to take in account only
one-sided deviations from the mean or the value-at-risk to consider minimal pro�t
requirements. These adaptations are developed in Section 4.6, where we also present
an alternative approach for the risk assessment based on utility functions.

4.6 Extensions

4.6.1 A sigmoid-type acceptance function

While the piece-wise linear acceptance functions used in this chapter allow for intu-
itive and transparent results, one may want to challenge this simplistic assumption.
In this section we would like to extend the previous analysis to a possibly more
realistic shape that still allows for an explicit treatment. Concretely, assume that
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(a) Perfect information case. Left-hand side: Var (Π) divided by the absolute value of
E (Π) as a function of PL. Right-hand side: Var (Π) divided by the absolute value of E (Π)
as a function of PH .
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(b) No di�erentiation case.
Var (Π) divided by the abso-
lute value of E (Π) as a func-
tion of P .
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(c) Di�erentiation case. Left-hand side: Var (Π) divided by
the absolute value of E (Π) as a function of P ∗

L. Right-hand
side: Var (Π) divided by the absolute value of E (Π) as a
function of P ∗

H .

Figure 4.6: Decomposition of the variance scaled by the absolute value of the ex-
pectation.

(a) No di�erentiation case. (b) Di�erentiation case.

Figure 4.7: Decomposition of the variance, parameter Pmax
i = 2µi.

f belongs to the class of sigmoid functions, namely the logistic functions, which
are smooth and monotone, thus suitable for our situation [90]. This form of func-
tion appears when applying a logit lapsing model with di�erent risk factors, see
e.g. [57, 70]. An example of a model using premiums as risk factors can be found
in [28, 71] and particularly in [58]. Consider the following concrete shape of the
acceptance function fi of an individual of risk type i:

fi(P ) =
1

1 + eai(P−bi)
, ai ∈ R+, bi ∈ R, i ∈ {L,H}, (4.24)



112 CHAPTER 4. ON THE COST OF RISK MISSPECIFICATION. . .

(a) No di�erentiation case. (b) Di�erentiation case.

Figure 4.8: Decomposition of the variance, parameter Pmax
i = 10µi.

(a) No di�erentiation case. (b) Di�erentiation case.

Figure 4.9: Decomposition of the variance, parameter µH = 10.

Figure 4.10: Mean-variance frontier with linear demand function.

where the parameters ai and bi need to be calibrated. We can suppose bi > µi, so that
the function reaches value 1/2 for premiums that are higher than the actuarially fair
premium, cf. Figure 4.11. As a grows, the curve becomes steeper around the pivotal
position determined by the parameter b (note that the choice of b also determines
the value of f for P = 0 which will typically be smaller than 1). From an analytical
point of view, the form (4.24) is more attractive than the piece-wise linear shape
considered in the previous sections, as it is di�erentiable everywhere. Clearly, fi is
strictly decreasing in P :

∂fi(P )

∂P
=

−aieai(P−bi)

(1 + eai(P−bi))
2 < 0.
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Figure 4.11: Acceptance function f for small (left) and large (right) parameter a.

De�ne further the price elasticity of a risk type as the change of the number of
customers entering the contract with respect to the price variation:

EP =
∂fi(P )

∂P

P

fi
=

−aieai(P−bi)P

1 + eai(P−bi)
= −aieai(P−bi)Pfi(P ).

This measure illustrates the reactivity of the portfolio size to the variation of pre-
mium, cf. for instance [144, Ch.15].

Theoretical results

We �rst derive the analogous results to the ones in Sections 4.3, 4.4, under the
sigmoid acceptance function. The full information case still leads to an explicit
formula:

Theorem 4.6.1. In the full information case, the expected pro�t of the insurer is
maximized for the premium choice

PL = µL +
1

aL
+

1

aL
W (eaLbL−aLµL−1) (4.25)

and

PH = µH +
1

aH
+

1

aH
W (eaHbH−aHµH−1), (4.26)

where W (z) denotes the (principal branch of the) Lambert W function, which is the
inverse function of g(x) = xex (cf. [38]).

Proof. The optimal premium choice is the solution of the optimization problem

{PL, PH} = argmax
x,y

E (Π) = argmax
x,y

n (pLfL(x)(x− µL) + pHfH(y)(y − µH)) .

We can characterize the maxima by the equations

∂E (Π)

∂x
= npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL

!
= 0, (4.27)
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∂E (Π)

∂y
= npH (f ′

H(y)y + fH(y))− npHf
′
H(y)µH

!
= 0. (4.28)

From (4.27) we have

npL

∂
(
1− 1

1+e−aL(x−bL)

)
∂x

(x− µL) + 1− 1

1 + e−aL(x−bL)

 = 0

⇐⇒ aL(x− µL) = 1 + e−aL(x−bL)

leading to (4.25). Equation (4.26) for the high-risk individuals is then obtained in
a completely analogous way.
To see that the extremal point is indeed a local maximum, one needs to verify

∂2E (Π)

∂x2
= npLf

′′
L(x)(x− µL) + 2npLf

′
L(x) < 0.

Using {PL > µL, PH > µH} and

∂2f(P )

∂P 2
=
a2i e

−ai(P−bi)
(
1− e−ai(P−bi)

)
(1 + e−ai(P−bi))

3 ,

we can rearrange the previous condition as

f ′′
L(x)(x− µL) < −2f ′

L(x).

Since −2f ′
L(x) is always positive, f

′′
L(x) < 0 for all x < bL and x = PL > µL. The

same conclusion holds for the second derivative w.r.t. y.

Remark 4.6.2. Note that we can provide a necessary condition for PL to be smaller
than µH :

eaL(bL−µH) < aL(µH − µL)− 1. (4.29)

This condition is of interest for analysing the case when the low-risk type premium
yields losses in absolute terms if sold to a high-risk type. Also, one can easily ob-
tain sensitivities of the premium with respect to the parameters by means of �rst
derivatives.

∂Pi

∂µi

= 1 +
1

ai

∂W

∂µi

= 1− W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
, ∈ [0, 1] > 0,

∂Pi

∂bi
=

1

ai

∂W

∂bi
=

W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
, ∈ [0, 1] > 0,

∂Pi

∂ai
= − 1

a2i
− 1

a2i
W +

1

ai

∂W

∂µi

=
bi − µi

ai

W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
− 1

a2i

(
1 +W (eaibi−aiµi−1)

)
.

Concerning the sign of the last term, under bi > µi the �rst term is positive and
the second is negative. The overall di�erence is negative for small values of ai, but
positive for larger ai, that e�ect manifesting itself sooner if the di�erence bi − µi is
larger.
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In case of no di�erentiation, we proceed as before by taking �rst order conditions
of the expected pro�t de�ned above in Equation (4.11):

∂E (Π)

∂z
=npL (f

′
L(z)z + fL(z)) + npH (f ′

H(z)z + fH(z))

− npLf
′
L(z)µL − npHf

′
H(z)µH

!
= 0.

Plugging in the sigmoid function f yields

pL

(
−aLe−aL(z−bL)

(1 + e−aL(z−bL))
2 (z − µL) + 1− 1

1 + e−aL(z−bL)

)

+pH

(
−aHe−aH(z−bH)

(1 + e−aH(z−bH))
2 (z − µH) + 1− 1

1 + e−aH(z−bH)

)
= 0,

which can be solved numerically. We establish that PL ≤ P ≤ PH , following the
assumption in (4.29).

For the di�erentiation case, we have the problem de�ned in Equation (4.15) to
solve. Once again, as the �rst order conditions are symmetric, we will detail only
one of them.

∂E (Π)

∂v
=npL(1− pH|L) (f

′
L(v)v + fL(v)) + npHpL|H (f ′

H(v)v + fH(v))

− npL(1− pH|L)f
′
L(v)µL − npHpL|Hf

′
H(v)µH = 0

⇐⇒ pL(1− pH|L)

(
−aLe−aL(v−bL)

(1 + e−aL(v−bL))
2 (v − µL) + 1− 1

1 + e−aL(v−bL)

)

+pHpL|H

(
−aHe−aH(v−bH)

(1 + e−aH(v−bH))
2 (v − µH) + 1− 1

1 + e−aH(v−bH)

)
= 0.

(4.30)

Similarly, we also get

∂E (Π)

∂w
= 0 ⇐⇒ pL(pH|L

(
−aLe−aL(w−bL)

(1 + e−aL(w−bL))
2 (w − µL) + 1− 1

1 + e−aL(w−bL)

)

+pH(1− pL|H)

(
−aHe−aH(w−bH)

(1 + e−aH(w−bH))
2 (w − µH) + 1− 1

1 + e−aH(w−bH)

)
= 0.

(4.31)

These conditions characterize the optimum, which is then solved numerically.

Numerical illustrations

Let us look into the case of a sigmoid acceptance function (4.24) with parameters

aL = aH = 1, bi = 2µi, i ∈ {L,H}.

All other parameters remaining identical to those from Section 4.5, we obtain the
following results:
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� Full information:

PL ≈ 2.567203,

PH ≈ 8.926367,

E (Π) ≈ 0.8030561n.

� No di�erentiation:

P ≈ 8.836827,

E (Π) ≈ 0.2998947n.

Note that P > µH > µL. In this case, the insurer targets the high risk type
audience because even if its size is smaller, with this acceptance function form he
can make higher margins on them, thus compensating their smaller size.

� Di�erentiation:

P ∗
L ≈ 2.601853,

P ∗
H ≈ 8.91731,

E (Π) ≈ 0.6993114n− c(n).

Note that µL < P ∗
L < µH < P ∗

H .

Consequently, di�erentiation is only preferable here if the population size satis�es

0.6993114n− c(n) ≥ 0.2998947n, that is n/ln(γn) ≥ 2.503651c0,

in our case n ≥ 282.617. Conversely, the maximum cost the insurer is willing to pay
given a population size is given by:

c(n) < 0.3994167n.

For the variances, the results are as follows:

� Full information:
Var (Π) = 1.874096n.

� No di�erentiation:
Var (Π) = 1.089133n.

� Di�erentiation:
Var (Π) = 1.800876n.

Figure 4.12 depicts the form of the variance as function of the proposed premiums in
the di�erent scenarios and its decomposition into the two parts (the variance arising
from the acceptance function and the one from the claim size variability), showing
again a hump pattern. Figures 4.13-4.15 illustrate the sensitivity of the variances
of the pro�t with and without di�erentiation, when varying one of the parameters.
In Figure 4.13, we observe that under small price elasticity, with more customers
entering the contract, the hump behaviour disappears, since at the limit there is no
gap in di�erent risk types behaviour. The total variance is now mostly due to the
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underwriting process via the acceptance function, and claim size variance has little
e�ect on the total variance. In contrast, a high price elasticity pushes di�erent risk
types to stabilize around their pivotal point of their respective acceptance function,
accepting contracts only below this point, see Figure 4.14. All the variance of the
pro�t can then be explained by the claim size variance. Finally, Figure 4.16 gives
the mean-variance frontier in case of this sigmoid acceptance function.

(a) Perfect information case. Left-hand side: Var (Π) as function of PL. Right-hand side:
Var (Π) as function of PH .

(b) No di�erentiation case.
Var (Π) as function of P .

(c) Di�erentiation case. Left-hand side: Var (Π) as function
of P ∗

L. Right-hand side: Var (Π) as function of P ∗
H .

Figure 4.12: Decomposition of the variance.

(a) No di�erentiation case. (b) Di�erentiation case.

Figure 4.13: Parameter a = 0.1. Under small price-elasticity of demand, we observe
higher levels of underwriting for both risk types, hence higher and smoother variance.

We observe that the no-di�erentiation strategy changes depending on the form
of the acceptance function used in the analysis. This can be particularly relevant in
the case when a company conducts a study using a simpli�ed linear form instead of
a more realistic logistic approximation.
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(a) No di�erentiation case. (b) Di�erentiation case.

Figure 4.14: Parameter a = 10. Under big price-elasticity of demand, demand
concentrates around pivotal points, thus di�erent risk types only enter contract
until their pivotal point price, therefore steps are noticeable.

(a) No di�erentiation case.

(b) Di�erentiation case.

Figure 4.15: Parameter µH = 10. With a bigger expected claim size di�erence
between risk types, the relationship between the humps and the risk types becomes
clearer.

Sensitivities

Let us now investigate the sensitivity of the expected pro�t w.r.t. to each parameter.
The change in expected pro�ts will allow to compute the variation in the maximal
cost for which the di�erentiation policy is still advantageous.

Parameter a: In the sigmoid curve of the acceptance function f , a represents the
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Figure 4.16: E�cient frontiers in the mean-variance setup for the three scenarios.

steepness, giving the speed at which the function changes around its central point
(see Figure 4.11). We choose aL = aH = a, so we will vary it as a unique parameter.
We observe in Figure 4.17 that for higher levels of a, the steepness of the twist
increases, meaning that the values of the acceptance function grow closer to the
points bL and bH . Thus, the price can be set closer to the twisting point, allowing a
higher proportion of individuals to enter the contract. As in our initial parametriza-
tion bi > µi, we gain strictly positive pro�t when pricing around bi. In the case of
no di�erentiation, we cannot entirely bene�t from this feature, as one of our types
twisting point will end up far from the unique price P . Therefore, the maximum
cost the insurer is willing to invest into the classi�cation method is increasing in the
parameter a. We can determine the limit:

lim
a→+∞

c(a) = lim
a→+∞

E (Π(P ∗
L(a), P

∗
H(a)))− lim

a→+∞
E (Π(P (a)))

= lim
{P ∗

L→b−L ,P ∗
H→b−H}

E (Π(P ∗
L(a), P

∗
H(a)))−max

(
lim

P→b−L

E (Π(P (a))) , lim
P→b−H

E (Π(P (a)))

)
=pL(1− pH|L)(bL − µL)n+ pH(1− pL|H)(bH − µH)n+ pHpL|H(bL − µH)n

−max (pL(bL − µL)n+ pH(bL − µH)n, pH(bH − µH)n) ,

which in our case gives 0.63n.

Parameters bL and bH : Now we simultaneously vary the parameters bH and bL (the
central points of the acceptance functions), see Figure 4.18. Naturally, the higher
bi, the higher will be the overall pro�t, as customers accept premiums until higher
thresholds. Therefore, it becomes more and more attractive to di�erentiate cus-
tomers to actually get this pro�t. Conversely, if bH grows ceteris paribus, the pro�t
increase becomes smaller with di�erentiation as the proportion of high-risk types is
too low to strongly in�uence the non-di�erentiation premium.



120 CHAPTER 4. ON THE COST OF RISK MISSPECIFICATION. . .

(a) Function of a and n. (b) n �xed at 10000.

Figure 4.17: Maximum a�ordable investment cost for implementation of a di�eren-
tiation mechanism as a function of a and n.

Figure 4.18: Maximum a�ordable cost as a function of bH , bL and n = 10000.

4.6.2 Other risk measures

We give a short comparative analysis for two other risk measures replacing the
variance criterion (see P�ug and Römisch [115, Ch.5] for a more extensive list of
possible alternatives in the context of e�cient frontier studies in decision making).
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Lower semi-variance

The main drawback of a variance risk constraint is that positive deviations from
the mean are also penalized. In [101], Markowitz suggests the concept of the lower
semi-variance (LSV)

Var− (Π) := E
(
(min(0,Π− E (Π))2

)
of the pro�t Π to account for asymmetry of positive and negative deviations from
the pro�t target. In this case, analytical formulas are not feasible any more, but
one can obtain similar results by Monte Carlo simulation, using 1000 simulation
runs. For that purpose, rather than only specifying two moments, we need to take
an assumption of the entire distribution of claim sizes. The left plot in Figure 4.19
depicts the resulting e�cient frontiers for the three scenarios for an assumption of
Gamma distributions for the individual claim sizes with an additional atom at 0 with
probability 0.25 (parameters consistent with their �rst two moments from (4.23))
and all other parameters chosen as in (4.23). The right plot in Figure 4.19 shows

Figure 4.19: E�cient frontiers in the mean-LSV setup for the three scenarios under
the assumption of Gamma-distributed H (left) and Log-Normal H (right).

the results for H being log-normally distributed risks (and again matching the �rst
two moments). For instance, the intersection between the no-di�erentiation and
di�erentiation scenario takes place at a much higher threshold.

Value-at-risk

Let us now instead consider the Value-at-risk

VaRα(Π) := inf
{
x ∈ R : FΠ(x) > α

}
for some level 0 < α < 1. This measure is particularly focussing on the consequences
of the tails of the loss (negative pro�t), when using small values of α. As for the LSV,
we depict Monte Carlo results for the case of Gamma-distributed H and Log-normal
H (Figure 4.20) risk types, where α = 0.025. That is, the pro�t can be lower than
the value of the abscissa in Figure 4.20 only with probability α = 0.025, so that the
more left in the abscissa one gets, the more risk-averse the strategy is. One observes
that high values of VaR0.025(Π) can only be obtained by the no-di�erentiation case.
In regions where that VaR-value can be attained by all strategies, the di�erentiation
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strategy always dominates the one without di�erentiation. Note that for this level
of α, one virtually does not observe any di�erence between the case of light-tailed
and heavy-tailed losses, which is also due to the size of the portfolio.
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Figure 4.20: E�cient frontiers in the mean-VaR setup for the three scenarios for
Gamma-distributed H (left) and Log-Normal H (right).

4.6.3 Utility functions

Utility theory is a classical tool to combine risk and pro�tability of an insurance
undertaking in one function (see e.g. [123, 115]), so in this subsection we would like
to brie�y look at the problem posed in this chapter from the utility point of view.
Note that in this case the knowledge of the full loss distribution is needed, and not
only the �rst two moments as in Section 4.4. Assume that the insurer bases decisions
on a risk-averse (i.e., increasing and concave) utility function u(x). The insurer's
optimization problem is then modi�ed as follows:

max
PL,PH

E (u(Π)) , (4.32)

where the pro�t Π is given by the (4.4), which we can also write as

Π =

NL∑
j=1

ΠL
j +

NH∑
j=1

ΠH
j . (4.33)

Firstly, the moment-generating function of each ΠL
j is

MΠL
j
(t) = E

(
etΠ

L
j

)
= E

(
et(PL−L)

)
= etPLML(−t).

Analogously, MΠH
j
(t) = etPHMH(−t). By independence and classical collective risk

theory calculations (cf. [83]), we can then determine the moment generating function
of Π:

MΠ(t) =MNL
(logMΠL

j
(t)) ·MNH

(logMΠH
j
(t)).

The same reasoning applies to the non-di�erentiation case with setting PL = PH =
P . Finally, for di�erentiating pricing, an analogous derivation gives

MΠ(t) =MNL|L(logMΠL|L(t)) ·MNH|L(logMΠH|L(t))

×MNH|H (logMΠH|H (t)) ·MNL|H (logMΠL|H (t))e−tc(n).
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In each of the cases, MΠ(t) can be inverted to obtain the c.d.f. FΠ(x) of the pro�t,
and the expected utility is then given by E (u(Π)) =

∫
x
u(Π(x))dFΠ(x).

For a numerical illustration, assume now that L ∼ Exp(αL) and H ∼ Γ(αH , λH).
To be consistent with (4.23), we choose αL = µL = 1, αH = µ2

H/σ
2
H , λH = µH/σ

2
H .

Since an explicit calculation of E (u(Π)) is not feasible, we add here numerical results
from a Monte Carlo simulation, simulating its value for each choice of PL, PH (across
a discrete grid of mesh size 0.05) using 1000 runs. For the sake of comparison, we
use three popular utility functions:

� linear utility u(x) = x (leading to simply the expected value of the pro�t);

� exponential utility u(x) = −e−Ax for some risk aversion coe�cient A > 0;

� quadratic utility u(x) = x−Bx2, x ≤ 1
2B
.

The results in Figures 4.21, 4.22, 4.23 show the expected utility for each of the
available premium combinations and each strategy for these three utility functions.
Figure 4.21 serves as a reference point since it represents the simple expected pro�t as
before. One observes that the optimal solution clearly depends on the chosen utility
function. With the chosen parametrization of the exponential utility function, the
di�erence in the expected utility between the di�erentiation and not di�erentiation
case is less prominent than in the quadratic utility as the marginal utility of the
quadratic function is greater in this region.
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Figure 4.21: Expected linear utility as a function of premiums.

4.7 Conclusion

In this chapter, we investigated the problem of risk categorization under the possi-
bility of classi�cation errors for an insurance company. We highlighted the impact of
misspeci�cation of risk classes on the company's pro�t, which is a relevant topic due
to the growing use of black box techniques in classi�cation. Resulting pricing errors
may lead to adverse selection via a modi�ed acceptance behaviour of individuals to
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Figure 4.22: Expected exponential utility as a function of premiums (A = 0.0005).
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Figure 4.23: Expected quadratic utility as a function of premiums (B = 0.00005).

enter a contract, potentially leading to extra costs due to a loss of premium in�ow
and the loss of the share of customers underwriting insurance. In a simple model
with two risk types and piece-wise linear acceptance function, we distinguished three
pricing scenarios: full information, undi�erentiated pricing and costly price di�eren-
tiation under error assumptions. In this framework, we studied the optimal solution
for simply maximizing expected pro�t and more generally within a mean-variance
framework, establishing e�cient frontiers for the premium choices. The cost of the
risk categorization as a function of population size will then eventually determine
the optimal choice of premiums, and to what extent risk classi�cation is pro�table.

The simplicity of the introduced model allowed to quantify the e�ects and con-
sequences of misspeci�cation on the insurer's pro�t. Clearly, it will be of interest in
future research to generalize the model assumptions in various directions. Beyond
the extensions to more general acceptance functions and risk measures that we al-
ready address to a �rst extent in Section 4.6 of the chapter, it will be of interest
to extend the study to more than two risk categories. Another important direction
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will be to introduce market competition into this model (cf. [58, 108]), as well as
the lapse behavior of policyholders between the di�erent market players (see e.g.
[20, 106]). For example, one could extend the setting to include a second compet-
ing insurer in a Stackelberg competition setting [92, 147], where we distinguish the
"leader" who undertakes actions �rst and the "follower" who moves second. It is
important for the leader to anticipate the followers moves in order to take them in
account in the optimization problem. The �rst insurer obtains a market share that
is further targeted by the second insurer. In [58], the authors de�ne lapse functions
for the customers to switch from the current insurer to another as a function of
price-sensitivity. Also, customers incur some �xed cost for switching, so they need
to observe a su�ciently high price di�erence to be motivated to change the insurer.
This customer behaviour can be explained by administrative fees to terminate a
contract, cost e�orts to search a new insurer, but also by the customer's attachment
to his �rst choice. These factors have been studied extensively in the literature,
such as [80, 33, 131, 127] for consumer behaviour outside the insurance context. In
[44], the authors consider the di�erence between the average market premium and
the proposed insurer's premium as the driving factor of its market share. In [76],
the author uses empirical data to quantify the searching cost and the switching cost
for a customer in the US auto insurance market. This can be applied to our model
by supposing costs are directly related to the underlying premium or claim distri-
bution, so we can de�ne an overall switching cost and apply it to the insurer as the
cost of attracting customers, and to the customer as the minimal price di�erence for
which they are willing to change insurers. The natural extension to this competition
approach would be to allow for n > 2 insurers and thus reformulating the problem
in a matrix form.

As we have explained above, a time dynamic setting is a natural extension for
competition games. In the same spirit, one can introduce dynamism in the process
of risk classi�cation, as with every new period the insurer gains knowledge about the
customer's risk type. This can allow him to re�ne his classi�cation. Similar systems
are used in bonus-malus frameworks. In this way, the insurer aims to compute an
individual customer value.

Finally, while our probabilistic acceptance model already covers a certain de-
gree of randomness in the choice of insurance policies, it could be interesting to
more explicitly include bounded rationality as well as other elements of inertia of
policyholders and the markets in the modelling framework.
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