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abstract: The evolutionary stability of quantitative traits depends
on whether a population can resist invasion by any mutant. While
uninvadability is well understood in well-mixed populations, it is
much less so in subdivided populations when multiple traits evolve
jointly. Here, we investigate whether a spatially subdivided popula-
tion at a monomorphic equilibrium for multiple traits can withstand
invasion by any mutant or is subject to diversifying selection. Our
model also explores the correlations among traits arising from diver-
sifying selection and how they depend on relatedness due to limited
dispersal. We find that selection tends to favor a positive (negative)
correlation between two traits when the selective effects of one trait
on relatedness is positively (negatively) correlated to the indirect fit-
ness effects of the other trait. We study the evolution of traits for which
this matters: dispersal that decreases relatedness and helping that has
positive indirect fitness effects. We find that when dispersal cost is low
and the benefits of helping accelerate faster than its costs, selection leads
to the coexistence of mobile defectors and sessile helpers. Otherwise,
the population evolves to a monomorphic state with intermediate help-
ing and dispersal. Overall, our results highlight the effects of popu-
lation subdivision for evolutionary stability and correlations among
traits.

Keywords: social evolution, infinite-island model, multitrait pheno-
types, evolutionary game theory, behavioral syndromes, dispersal
syndromes.

Introduction

One of the main goals of evolutionary biology is to explain
patterns of phenotypic diversity, not only between but also
within species. Among the most variable and striking phe-
notypes are social traits, that is, traits that affect their
carriers as well as other individuals in the population, such
as cooperative or aggressive behavior. Recent years have
witnessed an accumulation of evidence for the coexistence
of individuals exhibiting diverse correlated quantitative
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social traits within populations of insects, mammals, birds,
reptiles, and fishes (e.g., Sih et al. 2004a; Ducrest et al.
2008; Pruitt et al. 2008; Carter et al. 2010; Cote et al.
2010a; Edenbrow and Croft 2011; Wang et al. 2013). In
sticklebacks, for example, social individuals that tend to
be exploratory and aggressive to intruders coexist with in-
dividuals that are less social but also less exploratory and
less aggressive (Laskowski and Bell 2014). In addition,
nonrandom associations among traits often influence the
reproductive success of individuals (reviewed in Sih et al.
2004a; Pruitt et al. 2008) and are, to some extent, heritable
(Drent et al. 2003; van Oers et al. 2004; Sinn et al. 2006;
Ariyomo et al. 2013; Wang et al. 2013; Dochtermann et al.
2014; Purcell et al. 2014). These empirical findings have gen-
erated considerable interest, yet how selection either leads
a population to exhibit little phenotypic variation or favors
phenotypic diversification maintaining correlations among
traits remains, in general, poorly understood.

The effects of selection on quantitative traits can be stud-
ied by looking at the adaptive dynamics of traits, which are
the gradual phenotypic changes displayed by a population
under the constant influx of mutations (e.g., Eshel 1983,
1996; Parker and Maynard Smith 1990; Christiansen 1991;
Grafen 1991; Abrams et al. 1993; Geritz et al. 1998). Unfor-
tunately, a detailed description of adaptive dynamics is com-
plicated to achieve. In order to understand the long-term
effects of selection on jointly evolving traits, it is often more
fruitful to study the equilibria of the adaptive dynamics and
their evolutionary stability. Importantly, investigating evo-
lutionary stability provides insight into the fundamental
features of adaptation in the absence of genetic constraints
(Parker and Maynard Smith 1990) and into the conditions
that lead to phenotypic diversification (e.g., random environ-
ments, sexual selection, niche partitioning, trophic interac-
tions, and social behavior; de Mazancourt and Dieckmann
2004; van Doorn et al. 2004; Leimar 2005; Dercole and Rinaldi
2008; Brännström et al. 2010).

Evolutionary stability rests on two questions about trait
values that are equilibria of adaptive dynamics (also known
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as singular values; Eshel 1983; Taylor 1989; Christiansen
1991). The first is whether a mutant whose trait is closer
to the singular value than the trait of the monomorphic
population it arose in will invade. If that is the case, the
population will converge to the singular value through re-
current substitutions, and such an evolutionary attractor
is said to be convergence stable. The second question asks
whether a population that is monomorphic for a singular
value can resist invasion by any mutant whose trait is close
to the singular value. When that is the case, the singular
value is said to be locally uninvadable. A singular trait
value that is both convergence stable and locally un-
invadable is an evolutionary endpoint: a population will
gradually converge to it and, in the absence of genetic drift
or exogenous changes, remain there forever (Eshel 1983).
Alternatively, a convergence stable trait value may also be
locally invadable. In that case, the population approaches
the convergence stable value but then diversifies, possibly
undergoing evolutionary branching, whereby a unimodal
phenotypic distribution becomes bimodal, leading to the
stable coexistence of highly differentiated morphs (Geritz
et al. 1998). Evolutionary branching has been shown to oc-
cur in a number of scenarios of social interactions like
mutualism, helping, or competition (Ferriere et al. 2002;
Doebeli et al. 2004; Dercole and Rinaldi 2008 and refer-
ences therein). Understanding both evolutionary conver-
gence and uninvadability are therefore necessary to under-
standing how selection leads to phenotypic diversification
in social traits.

The evolutionary convergence and local uninvadability
of traits evolving in isolation from one another are well
understood in well-mixed populations (or panmixia; e.g.,
Eshel 1983; Taylor 1989; Christiansen 1991). But to un-
derstand patterns of diversification and covariation among
multiple traits requires looking at the evolutionary stabil-
ity of jointly evolving traits. When multiple traits are un-
der selection, selection on one trait may affect selection on
other traits (Lande and Arnold 1983; Phillips and Arnold
1989; Brodie et al. 1995), and when a population becomes
polymorphic for multiple traits, selection can preferentially
target certain combinations of traits over others, thereby
creating phenotypic correlations (Phillips and Arnold 1989).
The evolutionary stability of phenotypes that consist of mul-
tiple traits is also well understood in well-mixed popula-
tions (e.g., Lessard 1990; Leimar 2009). Studies on the un-
invadability of multiple traits in well-mixed populations have,
for instance, shown that interactions among traits can facil-
itate evolutionary phenotypic diversification (Leimar 2009;
Doebeli and Ispolatov 2010; Débarre et al. 2014; Ito and
Dieckmann 2014; Svardal et al. 2014).

The vast majority of natural populations, however, are
spatially structured. When dispersal is limited, spatial struc-
ture creates genetic structure: interacting individuals are
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more likely to carry identical alleles than individuals sam-
pled at random from the population. As a result, selec-
tion depends on the genetic structure and indirect fitness
effects (i.e., the effects that traits in neighboring individ-
uals have on the fitness of a focal individual; Hamilton 1964;
Eshel 1972; Rousset 2004). Evolutionary convergence in
subdivided populations has been well studied, and whether
a singular trait value is convergence stable can be determined
solely from Hamilton’s selection gradient, which uses the
probability that two neutral genes are identical by descent
(i.e., genetic relatedness) as a measure of genetic structure
(Frank 1998; Day 2001; Rousset 2004). The joint study of
Hamilton’s selection gradients on multiple traits then in-
forms on the convergence stability of multiple traits (Brown
and Taylor 2010), and this type of analysis has yielded intu-
itive insights into the evolutionary convergence of many co-
evolving social traits, such as dispersal and sex ratio, altruism
and dispersal, altruism and punishment, or altruism and kin
recognition (e.g., Gandon 1999; Perrin and Mazalov 2000;
Reuter and Keller 2001; Lehmann and Perrin 2002; Rousset
and Gandon 2002; Gardner and West 2004; Leturque and
Rousset 2004).

By contrast, local uninvadability in subdivided popula-
tions has received far less attention and is significantly more
challenging to study than it is in well-mixed populations
(Day 2001; Metz and Gyllenberg 2001; Ajar 2003; Massol
et al. 2009; Wakano and Lehmann 2014; Svardal et al. 2015).
Computational methods that determine uninvadability in
subdivided populations are available (Metz and Gyllenberg
2001; Massol et al. 2009), but they do not straightforwardly
reveal how uninvadability depends on genetic structure and
fitness effects, which are central components of biological
evolution (e.g., Hamilton 1964; Frank 1998; Rousset 2004;
Wenseleers et al. 2010; but see Svardal et al. 2015 for environ-
mental effects on uninvadability when local populations are
infinitely large). Two studies so far have helped reveal the
influence of genetic structure and fitness effects by interpret-
ing the uninvadability of a singular trait value in terms of
relatedness and indirect fitness effects when local popula-
tions are small (Ajar 2003; Wakano and Lehmann 2014).
In particular, it was shown that whether a trait value is
uninvadable depends on how selection on the trait affects
genetic structure. However, the works of Ajar (2003) and
Wakano and Lehmann (2014) looked at a trait that is evolv-
ing in isolation from any other traits. Thus, how popula-
tion subdivision influences the diversification and the main-
tenance of correlations among jointly evolving traits is still
poorly understood.

In this article, we investigate mathematically when mul-
tiple evolving traits in a subdivided population are locally
uninvadable or, alternatively, when diversification occurs.
In the case of diversification, we also study the type of cor-
relations among traits that are favored by selection. In or-
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Multitrait Stability in Metapopulations 177
der to perform our analysis of selection, we use the geo-
metric growth rate of a mutation when rare (Tuljapurkar
2003). We highlight the influence of spatial genetic struc-
ture by expressing the conditions for uninvadability, diver-
sification, and the among-trait correlations favored by selec-
tion in terms of genetic relatedness coefficients and indirect
fitness effects.
Model

Life Cycle

We consider a haploid population divided into an infinite
number of patches, each with N adult individuals (Wright’s
1931 island model). The life cycle is as follows: (1) patches
may go extinct and do so independently of one another;
(2) each of the N adults in a surviving patch produces off-
spring (in sufficient numbers for each patch to always be of
size N at the beginning of stage 1 of the life cycle) and then
either survives or dies; (3) dispersal and density-dependent
competition for vacated breeding spots occur.

This life cycle allows for one, several, or all adults to die
per life cycle iteration, thereby encompassing overlapping
and nonoverlapping generations as well as metapopulation
processes where whole patches go extinct before reproduc-
tion. We assume that each offspring has a nonzero probabil-
ity of dispersal so that patches are not completely isolated
from one another and that dispersal occurs to a randomly
chosen patch (i.e., there is no isolation by distance). How-
ever, dispersal is allowed to occur in groups and before or
after density-dependent competition so that more than one
offspring from the same natal patch can establish in the same
nonnatal patch.
Multidimensional Phenotypes

Each individual expresses a genetically determined multi-
dimensional phenotype that consists of n continuous traits.
These traits can affect any event of the life cycle, under the
assumption that the expression of these traits and their ef-
fects are independent of age. For instance, the fertility or
mortality of an individual is assumed to be independent from
its age and that of any other individual who may affect it.
Uninvadability of a Multidimensional Phenotype

A resident phenotype z p (z1, z2, :::, zn), where zp is the
value of the pth quantitative trait, is said to be uninvadable
if any mutation that arises as a single copy in the population
and causes the expression of phenotype z p (z 1, z 2, :::, zn)
goes extinct with probability 1. The uninvadability of a res-
ident phenotype z is therefore assessed by considering the
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evolutionary success of all possible mutations z that would
arise when the population is monomorphic for the resident.
Lineage Fitness, Uninvadability, and
Selection on Multiple Traits

Lineage Fitness and Global Uninvadability

In order to measure the evolutionary success of a muta-
tion, we use the fact that it is very rare in the population
when it arises as a single copy. Because the total number of
patches is infinite, it will initially continue to remain rare,
even if it increases in frequency due to selection and/or ge-
netic drift and starts to spread to other patches. As a re-
sult, interactions among mutants from different patches
are very unlikely and can be neglected in the initial growth
phase of the gene lineage initiated by the mutation. The
evolutionary success of a mutation can therefore be as-
sessed by measuring the individual fitness of a carrier of
the mutation that is randomly sampled from the mutant
lineage, when the rest of the population is monomorphic
for z. We define the lineage fitness of a mutant z that arises
as a single copy in a resident z population as

v(z , z)p
XN

kp1

wk(z , z)qk(z , z), ð1Þ

where wk(z , z) is an individual fitness function that gives
the expected number of adult offspring produced by an in-
dividual carrying the mutation when there are k mutants
in a patch (including the individual itself, if generations
overlap). The quantity qk(z , z) is the probability that a ran-
domly drawn member of the mutant lineage resides in a
patch with a total number k of mutants and is calculated
from the asymptotic distribution of mutant patch types in
the initial growth phase of the mutant lineage (before ex-
tinction or eventual invasion). The lineage fitness of a mu-
tation, therefore, gives the expected individual fitness of a
randomly sampled carrier of the mutation from its lineage
(Day 2001; Lehmann et al. 2015).

If the lineage fitness of a mutation is greater than 1, then
we expect it to invade the population because, in that case,
the individual fitness of an average carrier of the mutation
is greater than the individual fitness of a resident, which is
1. In fact, building on the branching process approach of
Wild (2011), we find that v(z , z) provides an exact assess-
ment of the evolutionary success of a mutation because if,
and only if, v(z , z) ≤ 1, the mutation goes extinct with
probability 1, but if v(z , z) 1 1, there is a nonzero probabil-
ity that the mutant persists in the population (see the “Lin-
eage Fitness and Uninvadability” section of the appendix;
appendix available online). We can therefore formulate the
following uninvadability condition:
3.049.028 on September 13, 2016 02:43:54 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



178 The American Naturalist
z is uninvadable ⇔ v(z , z) ≤ 1 for all z ∈ ℝn, ð2Þ

that is, a phenotype z is uninvadable if, and only if, a mu-
tation that causes its bearers to express z has the greatest
lineage fitness when all other individuals in the population
also express z (also see Lehmann et al. 2015).
Lineage Fitness and Other Measures of Fitness

Lineage fitness can be linked to other measures of fitness
that have been used to study mutant invasion. The links
depend on the properties of the mutant lineage, which
are captured by the patch profile distribution, qk(z , z).
Lineage Fitness and Geometric Growth Rate. In general,
qk(z , z) can always be expressed as the probability that a
member of the mutant lineage, randomly drawn from the
asymptotic distribution of the lineage, resides in a patch with
k mutants (i.e., in terms of the eigenvectors of the matrix
describing the mean of the branching process before ex-
tinction or eventual invasion; eq. [A8]; eqq. [A1]–[A72] in the
online appendix; Harris 2002, p. 44). In that case, lineage fit-
ness is also equal to the geometric growth rate of the mu-
tant (eq. [A2]; Caswell 2001; Tuljapurkar et al. 2003). Con-
dition (2) is then equivalent to the condition that the leading
eigenvalue of the linearized deterministic dynamical system
describing the growth rate of the mutant when rare in the
population is less than 1 (Caswell 2001) or less than 0 in con-
tinuous time (Metz 2011).
Lineage Fitness Proxy and Rm. When a local mutant line-
age (i.e., a lineage confined to a single patch) can be ini-
tiated by only a single founding mutant, it is possible to ob-
tain a proxy for the geometric growth rate (i.e., an invasion
fitness proxy) that is of the same functional form as lineage
fitness (eqq. [A9]–[A20]). In that case, the only difference
with lineage fitness is that the probability qk(z , z) stands for
the probability that a randomly drawn member of a local
mutant lineage resides in the focal patch when there are
k mutants (see eq. [A19]; box 2 of Lehmann et al. 2015).
Written as an invasion fitness proxy, lineage fitness is eas-
ier to evaluate explicitly because it requires only a matrix
inversion rather than the explicit computation of eigen-
vectors. The expected number Rm of emigrants produced
by a local lineage founded by a single immigrant is also an
invasion fitness proxy, which can be computed as the lead-
ing eigenvalue of the matrix that gives the total expected
offspring production over the local lifetime of the mutant
lineage in a patch (Metz and Gyllenberg 2001; Massol et al.
2009; Mullon and Lehmann 2014). Although Rm and line-
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age fitness proxy are sign equivalent around 1, they are
not equal to one another. In contrast to Rm, lineage fitness
proxy is expressed directly in terms of individual fitness
wk, which in some cases makes it easier to interpret or ma-
nipulate.
Evolution When Mutations Have
Weak Phenotypic Effects

When mutations have weak phenotypic effects, the lineage
fitness of a mutation can be approximated in terms of the
deviation between resident and mutant phenotype (z 2 z)
by way of a Taylor expansion

v(z , z) p 1 1 (z 2 z)Ts(z) 1
1
2

(z 2 z)TH(z)(z 2 z)

1 O(kz 2 zk3),
ð3Þ

where O(kz 2 zk3) is a remainder of order kz 2 zk3. Here,
the n-dimensional vector s(z) is the selection gradient at z,
that is, each of its entry p,

sp(z) p
∂v(z , z)
∂z p

, ð4Þ

measures the change in lineage fitness due to varying only
the trait at position p, henceforth referred to as trait p,
when the population is monomorphic for z (all derivatives
here and hereafter are evaluated at the resident value z).
Each (p, q) entry of the n# n Hessian matrix H(z),

hpq(z) p
∂2v(z , z)
∂z p∂z q

, ð5Þ

measures how simultaneously varying traits p and q affect
lineage fitness (i.e., the nonadditive or interaction effects of
p and q on lineage fitness).

Singular Phenotype. A multidimensional phenotype z is
called singular if the selection gradient vanishes at z, namely
if

s(z) p 0: ð6Þ

Singularity is a necessary condition for an interior pheno-
type to be convergence stable and/or uninvadable.
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Convergence Stability. When the difference between a
nonsingular resident (s(z) ( 0) and the mutant is small
(kz 2 zk ≪ 1), the selection gradient in the island model
is sufficient to determine whether the mutant will go extinct
or fix in the population (Rousset 2004). When the muta-
tion rate is very low, fixation of a new mutation occurs be-
fore another mutant arises—as traditionally assumed in the
adaptive dynamics framework (Dercole and Rinaldi 2008)
or the weak-mutation, strong-selection regime of popula-
tion genetics (Gillespie 1991)—and evolution proceeds by a
trait substitution sequence whereby the population jumps
from one monomorphic state to another. A singular phe-
notype z will then be approached by gradual evolution, that
is, is convergence stable (Leimar 2009), if the n# n Jacobian
J(z) matrix with (p, q) entry,

(J(z))pq p
∂sp(z)
∂zq

, ð7Þ

is negative definite at z or, equivalently, if all of its eigen-
values are negative.

Local Uninvadability. At a singular resident (s(z) p 0),
H(z) determines whether the resident phenotype is locally
uninvadable. From equation (3), z is uninvadable when
(z 2 z)TH(z)(z 2 z) ≤ 0 for all z, that is, when the matrix
H(z) is negative definite or, equivalently, when its eigen-
values are negative (e.g., Horn and Johnson 1985, p. 104).
Denoting l1(z) as the dominant eigenvalue of H(z), we
can sum up that z is locally uninvadable when

s(z) p 0 and,
l1(z) ≤ 0:

�
ð8Þ

The eigenvalue l1(z) determines the maximal lineage fitness
of a mutant, 1 1 kz 2 zk2l1(z)=2, at a singular phenotype
when the mutant deviates by small magnitude kz 2 zk from
the resident (see “The Eigenvectors of H(z) and the Molding
of Phenotypic Correlations by Selection” in the online ap-
pendix).

Diversifying and Stabilizing Selection. Because H(z) is sym-
metric and composed of real entries, if any diagonal entry
of H(z) is positive, then H(z) has at least one positive ei-
genvalue (Horn and Johnson 1985, p. 398). Hence, it is nec-
essary that all the diagonal entries of H(z) are nonpositive
for z to be uninvadable. The evolutionary significance of
these diagonal entries can be seen by considering the line-
age fitness of a mutation that only changes the value of
trait p by a small amount dp p (z 2 z)p. From equation
(3), the lineage fitness of such a mutation at a singular phe-
notype is v(z , z) p 1 1 d2

phpp(z)=2. When hpp(z) 1 0, selec-
tion favors the invasion of any mutation that changes the
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value of trait p (since d2
p 1 0), that is, selection on trait p

is diversifying or disruptive. Conversely, when hpp(z) ! 0,
selection on trait p is stabilizing. Hence, the sign of the di-
agonal entries of H(z) reflects whether selection on each
isolated trait is either diversifying or stabilizing (also re-
ferred to as concave and convex selection, respectively;
Phillips and Arnold 1989).

Synergy among Traits. As equation (5) shows, each off-
diagonal entry of H(z) captures the synergistic effects
among pairs of traits on lineage fitness. If hpq(z) is positive,
then the effects of trait p and trait q on lineage fitness are
synergistically positive, and a joint increase or decrease
in both trait values increases lineage fitness. Conversely,
if hpq(z) is negative, opposite changes in trait values in-
crease lineage fitness. The mathematical relationship be-
tween the eigenvalues of H(z) and its off-diagonal entries
is less straightforward than with its diagonal entries, but
negative eigenvalues and, thus, uninvadability, tend to be
associated with off-diagonal entries that are close to 0 (us-
ing results for positive-definite matrices; Horn and John-
son 1985, p. 398). Therefore, uninvadability is associated
with weak synergy among traits (as found in well-mixed
populations; Débarre et al. 2014; Svardal et al. 2014).

Predicting the Buildup of Correlations among Traits. The
synergistic effects among traits on lineage fitness indicate
whether selection favors joint or opposite changes in pairs
of traits, that is, when hpq(z) is positive, selection favors a
positive correlation among p and q, and conversely, when
hpq(z) is negative, selection favors a negative correlation.
This type of selection has thus been referred to as correla-
tional selection (Phillips and Arnold 1989). From H(z), it is
possible to predict how diversifying selection leads to the
buildup of phenotypic correlations among n traits under
scrutiny. As shown in “The Eigenvectors of H(z) and the
Molding of Phenotypic Correlations by Selection” section
of the online appendix, diversifying selection is greatest
along the right eigenvector e1(z) that is associated with
l1(z), that is, the vector such that

l1(z)e1(z) p H(z)e1(z): ð9Þ

Thus, mutations that are most likely to invade when the
resident population expresses a singular phenotype lie on
e1(z) in phenotypic space (see fig. 1 and “The Eigenvectors
of H(z) and the Molding of Phenotypic Correlations by Se-
lection” and, as implied by the calculations of Doebeli and
Ispolatov [2010], in well mixed-populations). Thus, the cor-
relations among n traits that are most likely to develop are
those given by the direction of e1(z) (fig. 1).

The interpretation of H(z) in terms of the mode of selec-
tion on isolated traits—and of the synergy among them—
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mirrors the interpretation of the matrix of second-order
effects of selection in well-mixed populations (sometimes de-
noted g and referred to as the matrix of quadratic selection
coefficients; Lande and Arnold 1983; Phillips and Arnold
1989; Lessard 1990; Leimar 2009; Doebeli and Ispolatov
2010; Débarre et al. 2014; Svardal et al. 2014). However, it
should be noted that in well-mixed populations, the ma-
trix of second-order effects of selection collects the second-
order effects of traits on individual fitness only (effects on
w only). By contrast, H(z) here summarizes the second-
order effects on lineage fitness, which depend on indi-
vidual fitness as well as on population structure and local
demography. In the next section, we highlight how popu-
lation subdivision affects selection by expressing the second-
order effects on lineage fitness in terms of individual fitness
and relatedness.
Uninvadability and Relatedness

In order to gain greater insight into the effects of pop-
ulation subdivision on selection on jointly evolving traits
and uninvadability, as well as to connect our results to so-
cial evolutionary theory (e.g., Hamilton 1964; Frank 1998;
Rousset 2004; Wenseleers et al. 2010), we seek to express
the selection gradient and the Hessian matrix in terms of
individual fitness and relatedness.

Individual fitness and relatedness can both be recovered
from lineage fitness. Lineage fitness depends on wk(z , z),
which is the individual fitness of a mutant when there
are k mutants in its patch (eq. [1]). More generally, we
can write the fitness of mutant and resident alike as
w(zi, z21, z), which is the fitness of individual indexed i ∈
f1, :::,Ng in a focal patch with phenotype zi, when the vec-
tor of phenotypes among its N – 1 neighbors is z2i p
(z1, :::, zi21, zi11, :::, zN) and the phenotype carried by all
other individuals in the population is the resident pheno-
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type z (see box 1 for an example). Then, the fitness of a
mutant when there are k mutants in its patch that appears
in lineage fitness (eq. [1]) is

wk(z , z) p w(z ,~zk21, z), ð10Þ

where~zk21 is a vector of multidimensional phenotypes con-
sisting of k2 1 entries with phenotype z and N 2 k entries
with phenotype z. Note that because the population under
consideration is not class structured, the fitness of a focal
individual is not affected by which precise individual
in the patch is a mutant; what matters is how many resi-
dents and how many mutants there are in a patch (i.e.,
w(z ,~zk21, z) is invariant under permutations of the entries
of the vector ~zk21). In order to illustrate what an individual
fitness function typically looks like and to simultaneously
provide a basis for examples to come, we present in box 1
a fitness function for an iteroparous population.

Lineage fitness also depends on the probability qk(z , z)
that a randomly sampled member of the mutant lineage has
k2 1 patch neighbors that are also members of the mutant
lineage. The probability mass function qk(z , z) characterizes
identity by descent within a patch and, therefore, related-
ness. The function

rl(z , z) p
XN

kp1

Yl21

ip1

k2 i
N 2 i

qk(z , z), ð11Þ

gives the probability that l–1 randomly drawn neighbors
without replacement of a randomly sampled mutant from
its lineage are also mutants (i.e., that they all descend from
the founder of the lineage; for 2 ≤ l ! N). For example,
r2(z , z) is the probability of sampling a mutant among the
neighbors of a random mutant individual and thus provides
a measure of pairwise relatedness between patch members.
z1 

z2 

z 

e1 

e2 

z1 

z2 

z 

e1 

e2 

z2 

z1 

z e1 

e2 

a b c 

Figure 1: Leading eigenvector and phenotypic correlations favored by selection. The multidimensional phenotype consists of two traits, z1

and z2. The population is monomorphic for a singular phenotype z. The eigenvectors of the Hessian matrix, e1 and e2 (gray lines), are po-
sitioned to intersect at z. A positive eigenvalue, l1 1 0, indicates that selection along its associated eigenvector e1 is diversifying, as shown by
the outward-facing arrows. In contrast, a negative eigenvalue, l2 1 0, tells us that selection along e2 is stabilizing, as shown by the inward-
facing arrows. Selection on phenotypic correlations within individuals depends on the direction of e1. a, The direction of e1 indicates that se-
lection favors a positive correlation; b, it shows no correlation; c, it shows a negative correlation.
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Box 1: Individual fitness under a Moran process

A patch goes extinct with probability e(zi,z2i,z). In nonextinct patches, individual i produces a large number f (zi,z2i,z) of offspring.
Then, exactly one adult individual dies on each nonextinct patch. Individual i has a death rate function m(zi,z2i,z), so that it dies with
probability m(zi,z2i,z)=

PN
jp1m(zj,z2j,z) in the current time step. Its offspring disperse independently from one another with probability

d(zi,z2i,z), during which they survive with probability s(zi,z2i,z). Then, the fitness of individual i is

w(zi,z2i,z) p (1 2 e(zi,z2i,z)) #

�
1 2

m(zi,z2i,z)PN
jp1m(zj,z2j,z)

1
1
N

�
wp(zi,z2i,z) 1 wd(zi,z2i,z)

��
; ðbox 1aÞ

where the first term is the probability that the patch of individual i does not go extinct. The first term within the largest set of parentheses
is the probability that individual i survives to the next generation, while the second term is the expected number of offspring colonizing
vacant breeding spots, which breaks down between those that remain in the philopatric patch, wp(zi,z2i,z)=N , and those that disperse
and establish into other patches, wd(zi,z2i,z)=N . The philopatric component of fitness is given in terms of life-history traits by

wp(zi,z2i,z) p
f (zi,z2i,z)(1 2 d(zi,z2i,z))PN

jp1 f (zj,z2j,z)(1 2 d(zj,z2j,z))=N 1 (1 2 e(z,z,z))f (z,z,z)d(z,z,z)s(z,z,z)
, ðbox 1bÞ

where the numerator is the expected number of offspring of individual i that stay in their natal patch, and the denominator is the com-
petition faced by an offspring of individual i for a philopatric breeding spot. The allopatric component of fitness is given by

wd(zi,z2i,z) p (1 2 e(z,z,z))
f (zi,z2i,z)d(zi,z2i,z)s(zi,z2i,z)

f (z,z,z)(1 2 d(z,z,z) 1 (1 2 e(z,z,z))d(z,z,z)s(z,z,z))
1 Ne(z,z,z)

f (zi,z2i,z)d(zi,z2i,z)s(zi,z2i,z)
(1 2 e(z,z,z)) f (z,z,z)d(z,z,z)s(z,z,z)

,

which is the sum between the expected number offspring that colonize nonextinct patches and those that colonize extinct patches. In
nonextinct patches, offspring compete for a single breeding spot with offspring from that patch and those that come from other patches.
In extinct patches, they compete for N breeding spots, which explains the factor N in the second summand, and only against offspring
that come from other patches.

ðbox 1cÞ

Multitrait Stability in Metapopulations 181
Under neutrality, all individuals in the patch have the same
phenotype (z p z), and therefore, rl(z, z) reduces to the
probability of sampling l individuals without replacement
whose lineages are identical by descent, which is the stan-
dard lth order measures of relatedness for the island model
(e.g., Roze and Rousset 2008, eqq. [22]–[27]). Using the
relationships (10) and (11), the selection gradient and Hes-
sian matrix can be expressed in terms of individual fitness
and relatedness.
Uninvadability in Subdivided Populations

The Selection Gradient: Classical Kin Selection Effects.
First, we find that the selection gradient on trait p can be
written as

sp(z) p
∂w(zi, z2i, z)

∂zip
1 r2(z, z)(N 2 1)

∂w(zi, z2i, z)
∂zjp

, ð12Þ

where zip is the value of trait p of individual i (appendix
section “First-Order Effects of Selection”). The first deriv-
ative measures the change in fitness of a focal individual as a
result of a change in its own trait p (i.e., it measures the direct
fitness effects of trait p). The second derivative measures the
This content downloaded from 130.22
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change in fitness of the focal due to the change in trait p in a
patch neighbor (i.e., it measures the indirect fitness effect
of trait p). Owing to the permutation invariance of patch
members on focal fitness (eq. [10]), we arbitrarily choose this
neighbor to be individual j ( i. The indirect fitness effect
is weighted by the neutral coefficient of relatedness r2(z, z)
between two neighbors (eq. [11]). Hence, equation (12) is
the usual selection gradient on a single trait for the island
model of dispersal, which is Hamilton’s (1964) selection gra-
dient on trait p, or the so-called inclusive fitness effect of
trait p (Rousset 2004).

The Hessian Matrix: Kin Selection Effects beyond Neutral
Relatedness. Next, we find that the (p, q) entry of H(z)
can be decomposed as the sum of two terms,

hpq(z) p hw,pq(z) 1 hr,pq(z) ð13aÞ

(appendix section “Second-Order Effects of Selection”).
The first term, hw,pq(z), measures the effect that joint
changes of traits p and q have on individual fitness, while
holding the distribution of mutants at neutrality. The sec-
ond term, hr,pq(z), captures the effect that a change in each
trait p and q has on the local distribution of mutants. As we
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next see, both terms depend on population subdivision and
demography.

The first term of equation (13a) is

hw,pq(z) p
∂2w(zi, z2i, z)

∂zip∂ziq
1 r2(z, z)(N 2 1)

#
∂2w(zi, z2i, z)

∂zip∂zjq
1

∂2w(zi, z2i, z)
∂ziq∂zjp

1
∂2w(zi, z2i, z)

∂zjp∂zjq

� �

1 r3(z, z)(N 2 1)(N 2 2)
∂2w(zi, z2i, z)

∂zjp∂zhq
:

ð13bÞ

The first derivative measures the change in fitness of a fo-
cal individual as a result of a joint change in its traits p and
q. The first and second derivatives on the second line of
equation (13b) measure the change in focal fitness due
to a change in one trait of the focal individual and a joint
change in the other trait of a neighbor. The third deriva-
tive on the second line is the change in focal fitness due
to a neighbor expressing joint changes in p and q. Finally,
the last derivative of equation (13b) is the change in focal
fitness due to a change in one trait of a neighbor ( j) and a
joint change in the other trait of another neighbor (h ( j).
The fitness effects arising from phenotypic changes in a sin-
gle neighbor are weighted by r2(z, z) and in two different
neighbors by r3(z, z), which is the probability of sampling
two mutants without replacement among the neighbors of
a random mutant individual (which is also equal to the prob-
ability of sampling three mutants without replacement from
a random patch under neutrality, z p z).

Overall, the expression for hw,pq(z) measures the direct
and indirect fitness effects due to a joint change in the val-
ues of traits p and q while holding the demography constant.
It shows how synergistic effects among two traits can arise
due to indirect fitness effects alone: from the fitness effects
due to one genetically related neighbor changing both traits
and from those due to two different genetically related neigh-
bors, each changing different traits.

The second term in equation (13a) is

hr,pq(z) p (N 2 1)
∂w(zi, z2i, z)

∂zjp

∂r2(z , z)
∂z q

1
∂w(zi, z2i, z)

∂zjq

∂r2(z , z)
∂z p

� �
,

ð13cÞ

where the first (second) product between derivatives mea-
sures the change in fitness to the focal resulting from a
patch neighbor changing its trait p (q), weighted by the
change in the probability that a randomly sampled neigh-
bor of a mutant is also a mutant due to a change in trait
q (p).
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Equation (13c) shows that synergy among traits can be
due to the combination of indirect fitness effects of one
trait and of a change in mutant relatedness due to a change
in another trait value. For example, when a change in p in a
neighbor causes an increase in a focal mutant’s fitness and,
simultaneously, a change in q increases the probability that
the neighbor carries the mutation, equation (13c) shows that
this causes synergy between p and q to increase and, as a
result, so does selection for mutations that change p and q
jointly. Therefore, in subdivided populations, selection can
favor a positive correlation between a trait with indirect fit-
ness effects and another trait that affects local demography
if, overall, it results in related individuals reaping greater
benefits than unrelated ones.

Equation (13) for a single trait (p p q) substituted into
the condition for uninvadability (8) reduces to equation
(B-22) of Lehmann et al. (2015), which was derived under
the assumption that only a single mutant can initiate a lo-
cal lineage. In addition, equation (13c) for a single trait
(p p q) is consistent with previous interpretations that
the second-order effects of selection on an isolated trait
depend on how selection affects relatedness (eq. [29] of
Wakano and Lehmann 2014; and under the assumption
that generations do not overlap, see the second line of
eq. [9] in Ajar 2003). Hence, our analysis not only confirms
previous conditions for the uninvadability of a single trait,
but it also shows that these hold under more general con-
ditions, allowing for local patch extinctions or dispersal in
groups from the same patch. But, more importantly, we
have extended previous analyses to consider selection on
multiple traits under limited dispersal. This highlights that
interactions among traits, which are important to unin-
vadability and selection on phenotypic correlations, can
arise through the effects of traits on genetic structure and
on the fitness of neighbors. We now proceed to study how
uninvadability is computed explicitly, in particular showing
how the effect of selection on relatedness is evaluated (i.e.,
∂r2(z , z)=∂z p).
The Moran Process and Weak Selection

Uninvadability under a Moran Process

If the population follows a birth-death Moran process, in-
dividual fitness is as in box 1. Since offspring disperse in-
dependently from one another in this model, local lineages
can only ever be initiated by a single individual in a patch
(see eq. [A12]). We can therefore use the lineage fitness
proxy to determine uninvadability (see the “Lineage Fitness
Proxy and Rm” section). For simplicity, we also assume in this
section that there is no patch extinction. Pairwise and three-
way neutral relatedness are found using standard techniques
(e.g., Karlin 1968) and are given in table 1. Together with
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the fitness function (eqq. [box 1a]–[box 1c]), they allow
for the evaluation of the selection gradient sp(z) (eq. [12])
and for the hW,pq(z) (eq. [13b]) component of the Hessian
matrix.

The remaining term necessary for the second-order ef-
fects of selection, hr,pq(z) (eq. [13c]), depends on the first-
order effect of trait p on pairwise relatedness, which we
find is

∂r2(z , z)
∂z p

p
a(z)

m(z, z, z)
2
∂m(zi, z2i, z)

∂zip
1

∂m(zi, z2i, z)
∂zjp

� �

1 b(z)
∂wp(zi, z2i, z)

∂zip
1 g(z)

∂wp(zi, z2i, z)
∂zjp

,

ð14Þ

where m(zi, z2i, z) is the death rate of individual i and
philopatric fitness wp(zi, z2i, z) is its expected number of
offspring that remain in the natal patch (box 1; “First-
Order Effects on Pairwise Relatedness under a Moran Pro-
cess” in the appendix for derivation of eq. [14]). The func-
tions a(z), b(z), and g(z) are positive and decrease with the
neutral measures of relatedness (expressed in terms of de-
mographic parameters in table 2). The second line of equa-
tion (14) shows that mutant relatedness increases if the
trait causes the mutant lineage to locally grow faster than
a resident lineage, consistent with the effect on relatedness
in a Wright-Fisher model (eq. [A56] for a link between
eq. [14] and the Wright-Fisher model). Because generations
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overlap in the Moran model, relatedness among mutants
is different than among residents when the mutant affects
the chance of individuals to survive from one generation
to the next, and this is captured by the first line of equa-
tion (14). This first line shows that relatedness increases
if a change in a trait decreases the death rate of its carrier
but increases that of a randomly sampled patch neighbor.
Such a trait results in the longer coexistence of multiple
mutant generations in the same patch and therefore in-
creases relatedness between mutants.

Equations (12)–(14) provide all the necessary compo-
nents to characterize the uninvadability of multidimensional
phenotypes in subdivided populations under a Moran life
cycle. We note that if the evolving traits affect only adult fer-
tility and/or offspring survival, philopatric fitness can be writ-
ten as

wp(zi, z2i, z) p
(1 2 d)f (zi, z2i, z)

(1 2 d)
P

N
jp1 f (zj, z2j, z)=N 1 dsf (z, z, z)

,

ð15Þ

where f (zi, z2i, z) is the number of offspring produced by
individual i, d is the probability that an offspring disperses,
and s is the probability that it survives dispersal (box 1). Sub-
stituting equation (15) into equation (14) shows that when
z is a singular phenotype, traits have no effects on related-
ness; that is,

∂r2(z , z)
∂z p

p 0 ð16Þ

(eq. [A58]). So, when assessing the uninvadability of z un-
der a Moran process, the effect of traits on relatedness can
be ignored if there are only fecundity effects, thereby facil-
itating mathematical analysis. As we show in the next sec-
tion, uninvadability conditions can also be made simpler
for a large class of demographic models when traits have
weak effects on fitness.
Table 2: Weights for the first-order effects of traits on relatedness
(eq. [14])
Symbol
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Function
a(z)
 N(N21)m(z)(12m(z))

(21m(z)(N22))(11m(z)(N21))2
b(z)
 N
(11m(z)(N21))2
g(z)
 2N(N21)(12m(z))
(21m(z)(N22))(11m(z)(N21))2
Note: Parameters were derived for a Moran life cycle in the absence of
patch extinction. See the “Uninvadability under Weak Effects” section of the
online appendix for derivation.
Table 1: Backward dispersal, neutral relatedness, and spatial scale
of competition
Symbol
 Function
m(z)
 s(z,z,z)d(z,z,z)
12d(z,z,z)1s(z,z,z)d(z,z,z)
r2(z, z)a
 12m(z)
12m(z)(N21)
r3(z, z)a
 2(12m(z))2

(21m(z)(N22))(11m(z)(N21))
a(z)b
 (N21)(12m(z))2

N2(12m(z))2
Note: Functions were derived for a Moran life cycle in the absence of patch
extinction. Here, m(z) refers to the backward probability of dispersal (i.e., the
probability that a breeding spot is filled by a dispersing offspring in a monomor-
phic population; Gandon 1999), which may depend on the evolving phenotype z.

a See “Neutral Pairwise and Three-Way Relatedness for a Moran Process”
in the online appendix for derivation.

b The coefficient a(z) is the spatial scale of competition when the evolving trait
affects payoffs, which in turn affects fertility. It is found by Taylor expanding in-
dividual fitness to the first order of ε and rearranging to take the form of equa-
tion (A60) in the online appendix. If payoffs affect other life-history traits like
adult survival, then a(z) will take a different form.
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Uninvadability under Weak Selection

Within an arbitrary life cycle as laid out in the “Model”
section, suppose that as a result of social interactions within
patches, individuals receive a material payoff, like food,
shelter, immunity from pathogens, or some material re-
sources. The expected material payoff obtained by individ-
ual i in a focal patch during social interactions is written
p(zi, z2i, z) if its phenotype is zi, its N 2 1 neighbors have
phenotypes z2i, and the remainder of the population has res-
ident phenotype z. We assume that the evolving traits only
affect the payoffs received during social interactions within
patches and that the payoffs only weakly affect life-history
traits, such as fecundity, adult survival, or dispersal.

A given life-history trait, written as g(zi, z2i, z) for a fo-
cal individual with phenotype zi, can then be expressed as

g(zi, z2i, z) p gb(z) 1 εp(zi, z2i, z) 1 O(ε2), ð17Þ
where gb(z) is a baseline value for all individuals that may
depend on the resident population, and ε 1 0 is the effect
of payoff on the life-history traits, which is assumed to
be small. We assume that the fitness w(zi, z2i, z) of the focal
individual increases with its material payoffs, but decreases
or is unaffected by the material payoffs of its neighbors.
Also, it is assumed that the effect on the fitness of the fo-
cal of changing the payoffs of a single of its neighbors is
weaker than the effect of changing the payoffs of the focal.

When the above assumptions hold, individual fitness
can be expressed as a linear function of ε (eq. [A60]). As
a consequence, we find that the entries of the selection
gradient s(z) are

sp(z) p εaf (z)
∂p(zi, z2i, z)

∂zip
1 k(z)(N 2 1)

∂p(zi, z2i, z)
∂zjp

� �
,

ð18Þ
(where af (z) is positive and model dependent; see eqq.
[A60]–[A61]). This expression closely resembles the gen-
eral selection gradient equation (12), with the first term
within brackets capturing direct fitness effects and the
second capturing indirect effects. However, instead of be-
ing expressed in terms of the individual fitness function
(w(zi, z2i, z)), equation (18) depends directly on the payoff
function, and instead of r2(z), the indirect effects of selec-
tion are weighted by the quantity k(z), which is a scaled
measure of relatedness among two individuals that bal-
ances the effects of relatedness and local competition (e.g.,
Queller 1994; Lehmann and Rousset 2010; Akçay and Van
Cleve 2012; Van Cleve 2015). Relatedness and local com-
petition tend to have opposite effects on selection on social
traits, as the former promotes the evolution of traits with
positive indirect fitness effects, while the latter favors the
evolution of traits with negative indirect fitness effects.
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Scaled relatedness is therefore useful toward understand-
ing how the balance between relatedness and local compe-
tition affect social evolution (Queller 1994; Lehmann and
Rousset 2010). The explicit expression and interpretation
of k(z) are given in box 2 (eq. [box 2b]).

Importantly, we find that when traits have weak effects
on fitness, they have no effect on pairwise relatedness,
∂r2(z , z)=∂z p p 0. As a result, the second component of
the Hessian matrix is zero (hr,pq(z) p 0), and the (p, q) en-
try of H(z) is

hpq(z) p εaf (z)

∂2p(zi, z2i, z)
∂zip∂ziq

1 i(z)(N 2 1)

�
∂2p(zi, z2i, z)

∂zip∂zjq
1

∂2p(zi, z2i, z)
∂ziq∂zjp

� �

1 k(z)(N 2 1)
∂2p(zi, z2i, z)

∂zjp∂zjq

1 h(z)(N 2 1)(N 2 2)
∂2p(zi, z2i, z)

∂zjp∂zkq

�
ð19Þ

(eqq. [A66], [A67]). This equation bears close resemblance
to equation (13b), and its elements can be interpreted sim-
ilarly. However, equation (19) depends directly on the pay-
off instead of fitness functions and on two additional scaled
relatedness measures, which, like k(z), balance the effects
of relatedness and local competition: i(z), between two ran-
domly sampled individuals; and h(z) between three indi-
viduals (see box 2 for a detailed interpretation of these co-
efficients; and when there is only one evolving trait, n p 1,
and interactions are pairwise, eq. [19] is proportional to
eq. [37] of Wakano and Lehmann 2014).

Equations (18) and (19), along with box 2, are all that
is necessary to evaluate the uninvadability of multidimen-
sional phenotypes in subdivided populations, provided traits
affect only the payoffs received during interactions and se-
lection is weak. Because equations (18) and (19) depend on
the payoff rather than the fitness function, they tend to be
easier to explore mathematically. In addition, the expres-
sions for scaled relatedness reveal more clearly the effects
of demography on two antagonistic forces on social traits:
relatedness and competition among kin.

However, one should be cautious that the equilibrium
values found for life-history traits using equation (17)
may not correspond to the equilibrium values that would
be found by considering the evolution of the life-history
trait itself. For instance, while it is possible to model the
evolution of game strategies when payoffs affect the ability
to disperse using equations (17)–(19), equilibrium strate-
gies found in this case may not predict the same equilib-
rium values for dispersal if we modeled the evolution of
dispersal itself. When directly modeling the evolution of

ð19Þ
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Box 2: Scaled relatedness and competition

Each scaled relatedness term, k(z), i(z), and h(z), balances relatedness with local competition as

1
1 2 a(z)r2

(relatedness 2 (direct competition 1 indirect competition)); ðbox 2aÞ

where 0 ≤ a(z) ≤ 1 measures how much of the competition is between individuals of the same patch and r2 p r2(z, z). When a(z)
is small, competition is mostly global, when a(z) is close to 1, competition is mostly local. It is found according to the fitness function
(eq. [A60] in the “Uninvadability under Weak Selection” section of the online appendix). Scaled relatedness therefore discounts the ef-
fects of local competition from the effect of relatedness on selection. In

k(z) p
1

1 2 a(z)r2

�
r2 2

a(z)
N 2 1

(1 1 (N 2 2)r2)

�
, ðbox 2bÞ

the factor 1 within 1 1 (N 2 2)r2 captures direct competition among two individuals within a patch because when the focal interacts
with an individual j, it directly affects its payoff and thereby directly affects the competition for its own offspring. For example, if z
is an altruistic trait, ∂p(zi,z2i,z)=∂zjp is positive, so the focal increases the fertility of j and increases the local competition for its own
offspring. The term (N 2 2)r2 reflects that the neighbor j also affects the payoff of the other (N 2 2) individuals of the patch, and if
those are related to the focal (with probability r2), this indirectly affects competition among related mutants. The term

i(z) p
1

1 2 a(z)r2

�
r2 2

a(z)
N 2 1

(r2 1 (N 2 2)r3)

�
, ðbox 2cÞ

where r3 p r3(z, z) is a scaled measure of relatedness term among two individuals that incorporates the local competition arising from
the interactions among two mutants. The term r2 within r2 1 (N 2 2)r3 reflects the competition arising from the effects of the focal on
the payoffs of j when they are related. The term (N 2 2)r3 reflects that j also changes the payoffs of the other individuals in the patch
related to itself, and that, in turn, affects the competition for the focal if they are all related to the focal, which occurs with probability r3.
Similarly, in

h(z) p
1

1 2 a(z)r2

�
r3 2

a(z)
(N 2 1)(N 2 2)

(2(N 2 2)r2 1 (N 2 2)(N 2 3)r3)

�
, ðbox 2dÞ

which is a scaled measure of relatedness term among three individuals, the term 2(N 2 2)r2 is the effect of the competition that emerges
from the focal interacting with individuals, and that interaction affects the payoffs of a third individual. Finally, the term (N 2 2) #
(N 2 3)r3 is the indirect competition among related mutants that arises as a consequence of neighbors related to the focal interacting
with two other individuals related to the focal.
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dispersal, it is not possible to use the simpler equations
(18) and (19) because dispersal typically affects the prob-
ability that individuals of the same patch carry the same
mutation (i.e., ∂r2(z , z)=∂zp ( 0). We show this explicitly
in the next section by considering the evolution of dispersal
itself, together with another social trait.

The Joint Evolution of Helping and Dispersal

In order to illustrate the above results and how to apply
them, we now study the joint evolution of helping and dis-
persal. The evolutionary paths of helping and dispersal are
intimately intertwined (Lehmann and Perrin 2002; Le Gal-
liard et al. 2005; El Mouden and Gardner 2008; Hochberg
et al. 2008; Purcell et al. 2012; Parvinen 2013) because in
subdivided populations, the level of dispersal determines
relatedness and therefore tunes selection on helping traits
(e.g., Rousset 2004). Simultaneously, dispersal evolution di-
rectly responds to the level of kin competition within a
patch (Hamilton and May 1977).
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The complicated interaction between helping and dis-
persal has meant that, so far, theoretical studies of the evo-
lution of these two traits have either focused on evolution-
ary convergence and ignored the problem of uninvadability
(Lehmann and Perrin 2002; Le Galliard et al. 2005; El
Mouden and Gardner 2008; Hochberg et al. 2008) or relied
on simulations and numerical methods to study invad-
ability (Purcell et al. 2012; Parvinen 2013). Using our
framework, we are able to analytically study not only the
joint invadability of helping and dispersal but also the cor-
relation among those two traits that are favored by selection
when evolutionary branching occurs.

Biological Scenario

The life cycle is assumed to follow the Moran process in the
absence of patch extinction (see “The Moran Process and
Weak Selection” and box 1). During the adult stage, individ-
uals pair up randomly and engage with one another in the so-
called continuous snow drift game, which is a model of help-
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ing behavior that can lead to evolutionary branching among
helpers and defectors (Doebeli et al. 2004; Wakano and
Lehmann 2014). In this model, the payoff received by indi-
vidual i when it interacts with j is expressed as

b1(xi 1 xj) 1 b2(xi 1 xj)
2 2 c1xi 2 c2x2

i , ð20Þ
where 0 ≤ xi ≤ 1 is the level of helping expressed by individ-
ual i and xj that of individual j. The constants b1 and b2 tune
the benefit to i of both interacting partners investing into
helping, while c1 and c2 tune the cost to i. Individual fertility
increases with the average payoff received,

f (zi, z2i, z) p 1 1 εp(xi, x2i)

p 1 1 ε
XN

j(i

b1(xi 1 xj) 1 b2(xi 1 xj)
2 2 c1xi 2 c2x2

i

N 2 1
,

ð21Þ
where the parameter ε 1 0 measures the effect of payoffs on
fertility. After reproduction, an adult in each patch is selected
at random to die, with each adult having the same death rate.
The offspring of an individual i disperses with probability
di ∈ (0, 1]. Dispersing offspring survive during dispersal
with probability s.

Setup

From these assumptions, the fitness of individual i is given
in box 1, with no patch extinction (e(zi, z2i, z) p 0), con-
stant adult survival (m(zi, z2i, z) p m), and constant sur-
vival during dispersal (s(z, z, z) p s). The vector of trait
values of an individual i consists of its level of helping
and dispersal probability, zi p (xi, di). The vector of pheno-
types in the rest of the patch is z2i p ((x1, d1),:::, (xi21, di21),
(xi11, di11),:::, (xN , dN)), and z p (x, d) stands for resident
strategies. Hence, trait p p 1 corresponds to helping, and
trait p p 2 corresponds to dispersal. The neutral related-
ness functions, r2(z, z) and r3(z, z), are those given in table 1.
We now have all the elements to use our framework and
start by considering the evolution of each trait in isolation
and then study their coevolution.

Uninvadability of Helping with Fixed Dispersal

Substituting fitness (eq. [box 1a]) into the selection gradi-
ent (eq. [12]) for helping, we find that when dispersal is
fixed at d for all individuals, there is a unique singular
helping strategy for which the selection gradient vanishes,
which is

x p
c1(N 1 1 2m) 2 b1(N 1 2 2 2m)

4b2(N 1 2 2 2m) 2 2c2(N 1 1 2m)
, ð22Þ

where m p m(z) is the probability that a breeding spot is
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filled by a dispersing offspring (i.e., the backward dispersal
probability; see table 1). The invadability of this singular
point is assessed by calculating h11(z), which is found by
substituting fitness (eq. [box 1a]) into equation (13) and
evaluating it at equation (22). Although such a computa-
tion yields an analytical expression for h11(z), it is too com-
plicated to generate useful insights. Therefore, we first
study the invadability of helping under weak selection, that
is, with ε small in equation (21) and using equation (19) to
compute h11(z) at equation (22). Using the spatial scale of
competition given in table 1 and the scaled relatedness
coefficients of box 2, fitness (eq. [box 1a]) into equation
(19) gives

h11(z) ∝ 22c2 1 2b2

(4 1m(N 2 4))(N 1 2 2 2m)
(2 1m(N 2 2))(N 1 1 2m)

� �
,

ð23Þ
where we have ignored ε and af(z) since they are both
positive and we are only interested in whether h11(z) ! 0.
Equation (23) shows that the singular point (eq. [22]) is
uninvadable, that is, h11 ! 0, only if

b2 ! c2

(2 1m(N 2 2))(N 1 1 2m)
(4 1m(N 2 4))(N 1 2 2 2m)

, ð24Þ

where the factor of c2 on the right-hand side is positive and
decreases with backward dispersal (m) and patch size (N), so
that it correlates positively with patch relatedness.

When dispersal is complete (d p 1 so that m p 1),
equation (24) reduces to the results previously found for
well-mixed populations: the singular helping strategy (eq.
[22]) is uninvadable only if b2 ! c2 (Doebeli et al. 2004).
In other words, the benefits of helping should accelerate
at the same rate or slower than its cost. Otherwise, the ac-
celerating returns of helping favor the diversification of
helping strategies and leads to the evolutionary branching
between helpers and defectors (fig. 2).

As dispersal decreases (d ! 1 so that m ! 1), relatedness
among individuals within patches increases, and indirect
effects become increasingly important in the fate of newly
arising mutations, consequently affecting the stable level of
helping. Insights into the effects of population subdivision
on the stability of helping can be obtained by expressing h11

(z) close to full dispersal (m ∼ 1),

h11(z) ∝ 2(b2 2 c2) 1
6(1 2m)

N
b2 1 O((1 2m)2): ð25Þ

The first and second summands of equation (25) respec-
tively capture direct and indirect fitness effects. The latter
increases with relatedness, here measured by (1 2m)=N .
Indirect effects also increases with b2 because the payoffs
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to a focal individual increase by a factor of b2 whenever
neighbors change their helping strategy. So if b2 is positive,
indirect effects favor the invasion of mutations that change
the degree of helping and thereby destabilize the singular
helping strategy. Conversely, if b2 is negative, then focal pay-
offs decrease, and indirect effects disfavor any change in
helping strategy, stabilizing the existing degree of helping.

For a given patch size, equation (24) shows that there is
a threshold value for dispersal under which helping, oth-
erwise invadable in well-mixed populations, becomes unin-
vadable. For example, when N p 4, if m ! 2 1 2(b2=c2) 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 2 4(1 2 (b2=c2))(b2=c2)
p

, helping is uninvadable in sub-
divided populations but invadable in well-mixed popula-
tions (fig. 3). This is consistent with previous results found
for the Wright-Fisher process (Wakano and Lehmann
2014) and highlights that when the benefits of helping are
decelerating (b2 ! 0), indirect fitness effects combined with
high relatedness promote the stability of helping in the pop-
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ulation. Because relatedness is greater under the Moran
model, the threshold value for dispersal is greater than un-
der the Wright-Fisher model.

In order to check the robustness of our weak selection
conclusions against increased selection strength, we gener-
ated random values for the model parameters and asked
whether the sign of h11 given by equation (23) was of the
same sign as h11 calculated under strong selection (ε p 1).
Both expressions showed the same sign for all combinations
of values tested (100% of 465,943 trials; “Agreement be-
tween Weak and Strong Selection Modes” in the appendix),
suggesting that the sign of h11 given by equation (23) is an
excellent predictor of the sign of h11 under strong selection.
In addition, individual-based simulations with strong selec-
tion behave as predicted by the analysis performed under
weak selection (fig. 2). This suggests that uninvadability
condition computed under weak selection for traits that af-
fect fertility is robust to increases in selection strength.
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Figure 2: Evolution of helping in a subdivided population. The top panel shows the phenotypic variance of helping in a simulated popu-
lation for different values of m (other parameters were held at N p 8, b1 p 6, b2 p21:4, c1 p 4:56, c2 p21:6, number of patches p 1,000;
for details on simulations, see the “Individually Based Simulations” section of the online appendix). The variance is averaged over 5 # 103

generations after 1:45 # 105 generations of evolution. Circles indicate variance for parameter values under which h11 (eq. [23]) is negative,
predicting a stable monomorphic population, while squares correspond to a positive h11, predicting a polymorphic population. The bottom
panels show snapshots of the level of helping in a simulated population after 1:5 # 105 generations for four different values of m.
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Uninvadability of Dispersal with Fixed Helping

Substituting fitness (eq. [box 1a]) into the selection gradient,
equation (12), with its derivatives with respect to the proba-
bility of dispersal, we find a single singular dispersal strategy,

d p
1

1 1 N(1 2 s)
: ð26Þ

Equation (26) does not depend on helping because all indi-
viduals exhibit the same level of helping, and there is thus no
variation in offspring production among patches. Since kin
competition decreases with patch size (N), the candidate
dispersal strategy decreases with N, and since the cost to dis-
persal decreases with the survival rate during dispersal (s),
the candidate dispersal strategy increases with s. Qualita-
tively, equation (26) is the same as the equation obtained
by the classical models of dispersal evolution, which assume a
Wright-Fisher reproductive process (Frank 1998; Gandon
and Rousset 1999). However, because there is more compe-
tition among kin when generations overlap, the singular dis-
persal strategy under the Moran model is always greater
than under the Wright-Fisher model.

Computing h22(z) from equation (13) and evaluating it at
equation (26), we find that the singular strategy (eq. [26]) is
uninvadable only if

h22(z)p2
2s(N(1 2 s) 1 1)3

N2(N(1 2 s) 1 s)(2 2 s)
! 0, ð27Þ

which is always true. Therefore, when dispersal is the only
evolving trait, dispersal is always stable in a Moran popu-
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lation. This corroborates the results found under the Wright-
Fisher process (Ajar 2003), but the result for the Moran
process is more straightforward, with equation (27) simpler
than the Wright-Fisher condition (eq. [15] in Ajar 2003). In-
terestingly, in a Moran population monomorphic for the un-
invadable dispersal level, pairwise relatedness is simply

r2(d, d) p 1 2 s, ð28Þ

the probability of dying during dispersal.
The Coevolution of Helping and Dispersal

When helping and dispersal evolve jointly, singular strat-
egies are found by solving simultaneously for vanishing se-
lection gradients for both traits, s1(z) p 0 and s2(z) p 0,
which produces the singular point

(x, d)p
c1(N(1 2 s) 1 1) 2 b1(N(1 2 s) 1 2 2 s)

4b2(N(1 2 s) 1 2 2 s) 2 2c2(N(1 2 s) 1 1)
,

1
1 1 N(1 2 s)

� �
:

ð29Þ

The singular dispersal strategy is the same as in equation
(26), while the singular helping strategy is equation (22) with
m p m(z), as in table 1, and dispersal d given by the singu-
lar phenotype equation (26).

The joint stability of helping and dispersal is deduced
from the leading eigenvalue of H(z) (eq. [13]), which is
a complicated function of the model parameters. However,
when the effects of helping on fertility are weak (when ε is
small in eq. [21]), it is possible to express the eigenval-
ues of H(z) as a perturbation of the simpler eigenvalues of
H(z) with ε p 0 (see “First-Order Perturbation of the Eigen-
vectors and Eigenvalues of a Matrix” in the appendix). Using
this method, we find that the eigenvalues of H(z) under weak
selection on helping are

l1(z) ≃ ε
s(N(1 2 s) 1 1)
N2(1 2 s) 1 Ns

�
22c2 1 2b2

(2 2 s1 N(1 2 s))(4 2 3s)
(N(1 2 s) 1 1)(2 2 s)

�
,

l2(z) ≃ 2
2s(N(1 2 s) 1 1)3

N2(2 2 s)(N(1 2 s) 1 s)
! 0,

ð30Þ

which, respectively, are proportional to equation (23) and h22

(eq. [27]) at the singular dispersal strategy (i.e., with m and d
as in table 1 and eq. [29], respectively). Therefore, when the
effects of helping on fertility are weak, the condition for help-
ing and dispersal to be jointly stable is the same as the con-
dition for helping to be stable when dispersal is held fixed at
the singular dispersal strategy (eq. [24]).

Numerical comparisons between the sign of l1 in equa-
tion (30) and the sign of the exact leading eigenvalue of

ð29Þ

ð30Þ
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Figure 3: Uninvadability of helping in subdivided populations. The
region above the curves gives the combination of values of b2/c2 and
the backward migration rate m for which helping is uninvadable,
while the region under the curve gives values for which helping is
invadable. Different curves correspond to different patch sizes (from
black to light gray, N p 2, 4, 8, and 20, respectively). Thus, small
patch size and low migration rate stabilize helping in subdivided pop-
ulations.
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H(z) calculated under strong selection (with ε p 1) shows
that the former is a very good predictor of the latter, with
both having the same sign in 99.86% (of 464,686 cases; see
see “Agreement between Weak and Strong Selection Modes”
in the appendix), and therefore suggests that the uninvad-
ability condition (24) should also hold when the effects of
helping on fertility are strong. In addition, individual-based
simulations with strong selection (ε p 1) match theoretical
predictions very well (fig. 4).

Our results, therefore, show that invadability of helping
strategy also leads to invadability in dispersal strategy. In
order to predict whether helpers and defectors evolve dif-
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ferent dispersal strategies, we now study the level of cor-
relation among helping and dispersal that is favored by se-
lection at the singular phenotype. Recall that among-trait
correlation is given by the direction of the eigenvector as-
sociated with the leading positive eigenvalue of H(z) (see
“Predicting the Buildup of Correlations among Traits”).
Since l2(z) (eq. [30]) is always negative, l1(z) is the lead-
ing eigenvalue. If the effects of helping are weak (small ε),
then it is possible to express the eigenvector associated
with l1(z) as a perturbation of the eigenvectors of H(z)
in the absence of helping (ε p 0; see “First-Order Pertur-
bation of the Eigenvectors and Eigenvalues of a Matrix” in
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Figure 4: Coevolution of helping and dispersal in a subdivided population. The top panel shows the phenotypic variance of helping (black,
left scale) and dispersal (gray, right scale) in a simulated population for different values of s (other parameters are as in fig. 2; for details on
simulations, see the “Individually Based Simulations” section of the online appendix; code is deposited in the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.01f0f (Mullon et al. 2016). The variances are averaged over 5 # 103 generations after 1:45 # 105 generations
of evolution. Circles indicate variance for parameter values under which the leading eigenvalue of the Hessian matrix is negative, predicting a
stable monomorphic population, while squares correspond to a positive eigenvalue, predicting a polymorphic population. The bottom panel
shows snapshots of the phenotypes in a simulated population after 1:5 # 105 generations for four different values of s. Each point represents
the phenotypic values in helping and dispersal of an individual.
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the appendix). We find that in this case, the leading eigen-
vector has direction

e1(z)∝
2

1
h12

h22

0
BB@

1
CCA

p

2

1
(2b2c1 2 b1c2)s

4b2(N(1 2 s) 1 2 2 s) 2 2c2(N(1 2 s) 1 1)

0
BB@

1
CCA:

ð31Þ

Equation (31) shows that, since h22 ! 0, selection promotes
a positive (negative) correlation among helping and dis-
persal if the synergy h12 among them is positive (negative).
In order to garner greater insight into the synergy h12, we
approximate it as

h12(z) ≃ ε
2
N

�
2b2c1 2 b1c2

2b2 2 c2

�
s(1 2 s)

�
1
2
2

1
2 2 s

�
ð32Þ

to the first order of ε and neglecting terms of order
O(1=N2) (eq. [A68]). Looking at equation (32), we see that
the term inside the first parentheses is the effect that a
change in the degree of helping of neighbors has on focal
payoff at the singular level of helping: (N 2 1)∂p(xi, x2i)=
∂xj p (2b2c1 2 b1c2)=(2b2 2 c2) 1 O(1=N), that is, the in-
direct effects on the focal’s payoff. Since helping always has
positive indirect effects, this term is positive. Then, because
the rest of equation (32) is negative, synergy among helping
and dispersal on fitness is always negative.

Since synergy among helping and dispersal is negative,
we expect that if polymorphism arises in the population,
selection will favor a negative correlation among helping
and dispersal. A closer look at the synergy reveals why this
is so. Equation (32) is negative due to the large negative
term 21=(2 2 s), which stems from the fact that an in-
crease in dispersal has a negative effect on relatedness,

∂w(zi, z2i, z)
∂xj

∂r2(z , z)
∂z2

p
4b2c1 2 2b1c2

2b2 2 c2

s(1 2 s) 2
1

2 2 s

� �
1 O ε2,

1
N

2
� �

:

ð33Þ

Therefore, selection promotes a negative correlation among
helping and dispersal because a simultaneous increase in
helping and dispersal leads to greater benefits to unrelated
individuals, and conversely, a simultaneous decrease in
helping and dispersal leads to lesser benefits to related indi-
viduals. By contrast, lesser dispersal coupled with greater
helping leads to greater benefits to related individuals. We
find by numerical simulations that the sign of equation
(32) is a very good predictor of the sign of the exact h12(z)
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value with arbitrary population size and under strong selec-
tion (ε p 1; see the “Agreement between Weak and Strong
Selection Modes” section of the online appendix), so that
we also expect a negative correlation among helping and dis-
persal under strong selection. In fact, individual-based simu-
lations under strong selection show that when evolutionary
branching occurs, the population splits into very mobile de-
fectors and more sessile helpers (fig. 4), thereby befitting
our analytical predictions.

Our analytical finding of a negative correlation among
helping and dispersal corroborates previous simulation re-
sults when patches do not vary in size (Purcell et al. 2012;
Parvinen 2013). When patches experience different demog-
raphies, simulations show that it is possible for selection to
favor a positive correlation among helping and dispersal be-
cause helpers and defectors experience different benefits from
dispersing: helpers benefit from invading patches with few
individuals, whereas defectors benefit from invading patches
with a large number of individuals (Parvinen 2013). Other
works that have looked at the correlation among helping
and dispersal have done so by studying either the conver-
gence stable level of helping according to dispersal strategy
(El Mouden and Gardner 2008) or the convergence stable
level of dispersal according to helping strategy (Hochberg
et al. 2008), and found results similar to the ones mentioned
here. However, it should be noted that in those studies, the
presence of helpers and defectors or of disperser and non-
dispersers was a starting point and a built-in assumption
rather than a product of evolution, as in our analysis.
Discussion

Understanding uninvadability is key to understanding the
evolution of quantitative traits because uninvadability de-
termines whether selection favors a population to remain
monomorphic or become polymorphic (e.g., Eshel 1983;
Taylor 1989; Christiansen 1991; Geritz et al. 1998). So far,
how genetic structure and indirect fitness effects influence
uninvadability had only been studied when single isolated
traits evolve (Ajar 2003; Wakano and Lehmann 2014), but or-
ganisms consist of a multitude of traits that rarely, if ever,
evolve in isolation from one another (Lande and Arnold
1983; Phillips and Arnold 1989). Here, we have presented
a framework to study the uninvadability of phenotypes that
consist of multiple quantitative traits, as well as the among-
trait correlations arising from diversifying selection, in sub-
divided populations when local populations can be of any
size and are connected by limited dispersal.

In order to analyze the effects of selection under limited
dispersal, we used the lineage fitness of a mutation, which
is the expected number of mutant copies in the offspring
generation that are produced by an individual randomly
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drawn from the mutant lineage (for other applications of
this fitness concept, see Lehmann et al. 2015; Akçay and
Van Cleve 2016; Lehmann et al. 2016). Lineage fitness thus
gives the average individual fitness over the possible ge-
netic backgrounds in which a carrier of the mutation can re-
side. It allowed us to reveal the effects of genetic structure
through relatedness coefficients and of indirect fitness ef-
fects on the uninvadability of multiple traits. We found
that relatedness and indirect fitness effects influence the
synergy among traits (or strength of correlational selection).
Because strong synergy tends to disfavor uninvadability and
thus promote diversification, relatedness, and indirect fitness
effects may be critical for the evolution of multiple traits un-
der limited dispersal. In particular, we showed that synergy
among two traits can arise through the effects of one trait
on genetic structure and the indirect fitness effects of the
other trait. When positively correlated change in two traits
results in related individuals reaping greater fitness benefits
than unrelated ones, synergy tends to be positive, and con-
versely, when negatively correlated changes in two traits re-
sult in related individuals reaping greater fitness benefits,
synergy tends to be negative.

We further found that, since the synergy among pairs of
traits determines the among-trait correlations that develop
when polymorphism arises, relatedness and indirect fitness
effects also influence the evolution of phenotypic correla-
tions. Because behavioral traits tend to have the greatest in-
direct fitness effects, our results suggest that synergy due to
the combination of traits’ effects on genetic structure and
indirect fitness effects is important to the evolution of be-
havioral syndromes (correlations among behavioral traits
within individuals; Sih et al. 2004a, 2004b). Previous studies
have suggested that behavioral syndromes may be main-
tained mechanistically by pleiotropic mutations (Ducrest
et al. 2008) and by fitness trade-offs between life-history traits
(Wolf et al. 2007; Réale et al. 2010). Here, our model shows
that selection promotes a positive correlation among two
traits when one trait has positive indirect benefits and the
other trait increases pairwise relatedness (i.e., when two indi-
viduals that show an increase in the value of the trait have a
greater probability of being related than two resident indi-
viduals).

In this context, dispersal syndromes, which refer to pat-
terns of covariation between the tendency to disperse and
other traits, are of particular interest (Clobert et al. 2009).
Dispersal syndromes are ecologically and evolutionarily
relevant as they influence the demographic and genetic
consequences of movement (Clobert et al. 2012; Edelaar
and Bolnick 2012). In Western bluebirds, for example, in-
dividuals that disperse further away from their natal site
also tend to be more aggressive toward conspecifics and
toward sister species, and this has caused a shift in the
range of these two species (Duckworth and Badyaev 2007;
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Duckworth and Kruuk 2009). Since dispersal decreases re-
latedness, our model predicts that the tendency to disperse
should be negatively correlated with behaviors that have
positive indirect fitness effects. In our model of helping,
we indeed found that when evolutionary branching occurs,
the population splits between full defectors that always dis-
perse and full helpers that are more sessile. This negative
correlation among helping and dispersal also matched pre-
vious simulation results when patches did not vary in size
(Purcell et al. 2012; Parvinen 2013). Similarly, our model
predicts dispersal to be positively correlated with behaviors
that have negative indirect fitness effects, like aggressive-
ness. Interestingly, both a negative correlation between dis-
persal and prosocial behavior (Ims 1990; Mehlman et al.
1995; O’Riain et al. 1996; Sinervo and Clobert 2003) and
a positive correlation between dispersal and aggressive be-
havior have been observed in natural populations of voles,
mole rats, rhesus macaques, mosquito fish, and side-blotched
lizards (Myers and Krebs 1971; Mehlman et al. 1995; Cote
et al. 2010b; Aguillon and Duckworth 2015; see also Cote
et al. 2010a for a review).

Our work also paves the way for a more in-depth un-
derstanding of uninvadability and evolutionary branching
in subdivided populations. One difficulty in studying un-
invadability in subdivided populations stems from the ne-
cessity to calculate the effects that selection on traits has
on pairwise relatedness. In this endeavor, our work is help-
ful in three ways. First, we have explicitly calculated the ef-
fects of selection on relatedness for the Moran process, there-
fore opening the door to studying uninvadability under this
standard model of reproduction. Second, we have shown that
the leading effects of selection on relatedness are zero at
a singular phenotype when the evolving traits affect only
adult fertility or offspring survival before dispersal under
the Moran process, thus facilitating stability analysis for
this case. Third, and more generally, the effect of selection
on relatedness has no bearings on uninvadability when traits
influence material payoffs that, in turn, weakly affect fitness
(i.e., weak selection), and this holds for any demographic
model that fits our general assumptions (see the “Model”
section). As illustrated by our study of the joint evolution
of helping and dispersal, this method is useful to reach ana-
lytical results. In addition, we were able to relate the un-
invadability of traits directly to the effects of traits on pay-
off and to the level of local competition when fitness effects
are weak. Since relatedness and local competition have an-
tagonistic effects on the evolution of social traits, our de-
composition is useful to understand the forces at play for
the uninvadability of social traits. We expect that our method
to study uninvadability under weak selection should be
particularly useful to understand adaptation in multiple
strategies within complex games in the presence of genetic
structure. Despite our progress, calculating the effect of se-
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lection on pairwise relatedness for arbitrary selection and
demographic models under our general assumptions remains
challenging, and explicitly characterizing uninvadability may
require extensive additional computations depending on
model choice.

In order to reach tractable results, we have made a num-
ber of assumptions. Many of them—infinite population size,
clonal reproduction of haploid genomes, rare mutation with
weak effects—are common to those of the adaptive dynam-
ics framework and have been extensively discussed else-
where (e.g., Geritz and Kisdi 2000; Geritz and Gyllenberg
2005; Champagnat et al. 2006; Dercole and Rinaldi 2008).
We have also assumed that the population is subdivided
according to Wright’s (1931) classic infinite-island model.
This model ignores important biological realities like isola-
tion by distance or temporal and spatial heterogeneity in
the environment. By changing genetic structure in space,
isolation by distance makes selection on social traits more
complicated (Rousset 2004). Yet, most relevant insights on
how selection molds social traits are revealed by the infinite-
island model (e.g., for cooperation and altruism; Lehmann
and Rousset 2010), and we therefore expect results qualita-
tively similar to ours under isolation by distance, at least
when patches are homogeneous. It would be interesting to
extend our framework to study the effects of temporal and
spatial heterogeneity in the environment on the uninvad-
ability of traits, in particular when traits can themselves in-
fluence the environment locally (Rousset and Ronce 2004).
As shown by simulations, temporal heterogeneity in patch
sizes due to dispersal patterns may be important for the syn-
ergy among helping and dispersal (Parvinen 2013). More
generally, in order to study age-, sex-, or caste-specific effects
or demographic stochasticity, it is necessary to incorporate
class structure (i.e., when the effect of a trait on the fitness
of an individual is contingent on the class to which the indi-
vidual belongs). Like the vast majority of stability analyses
of adaptive dynamics, our model falls short of predicting
the course of evolution once evolutionary branching has
occurred. This would require describing the postbranching
phenotypic distribution in the population (as in Sasaki and
Dieckmann 2011).

In conclusion, we have provided a framework to study
the evolutionary stability of intertwined traits in sub-
divided populations. In particular, with uninvadability ex-
pressed in terms of relatedness coefficients and indirect fit-
ness effects, our model sheds light onto the consequences
of population structure for evolutionary stability, diversifi-
cation, and the evolution of correlations among traits.
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Appendix from C. Mullon et al., “Evolutionary Stability of Jointly
Evolving Traits in Subdivided Populations”
(Am. Nat., vol. 188, no. 2, p. 175)

Lineage Fitness and Uninvadability
We show here that a mutation causing the expression of phenotype z that initially appears as a single copy in a resident
population expressing z will vanish with probability 1 if, and only if, the lineage fitness of this mutation is less or
equal to 1 (v(z , z) ≤ 1; eq. [1]).
Multitype Branching Process

We denote by Xi(t) the random number of patches in the population with i ∈ I p f1, 2,::: ,Ng mutants at time t, which are
collected into the vector X(t) p (X 1(t),::: ,XN (t)). We assume that the stochastic process fX(t)gt≥0 is a multitype
branching process (as in Wild 2011), which is equivalent to assuming that when the mutant is globally rare, only residents
can immigrate to a patch that already contains mutants. Under this assumption, the expected change in X(t) over one
generation is governed by a matrix A(z , z), called the mean matrix, whose (i, j) element, denoted aij(z , z), gives the
expected number of patches with i ∈ I mutants that are generated by a patch when it has j ∈ I mutants, and the population
is otherwise monomorphic for z,

E[X(t 1 1)jX(t)] p A(z , z)X(t), ðA1Þ
where the expectation is taken over replicates of the one-generational demographic process (i.e., over one life cycle
iteration).

It follows from standard results in stochastic demography that the geometric growth rate of the mutant population is the
leading eigenvalue of A(z , z) (Caswell 2001; Tuljapurkar et al. 2003). More precisely, the leading eigenvalue of A(z , z),
denoted r(A(z , z)), gives the time-averaged mean cumulative growth over different replicates or sample paths of the
invasion dynamics, that is,

log(r(A(z , z))) p lim
t→∞

1

t
log lim

n→∞

1

n

Xn

jp1

Lj(t)

L(0)

 !
, ðA2Þ

where Lj(t) is the total random number of patches with at least one mutant at generation t for replicate population j (i.e., the
sum of the Xi(t)’s for a given replicate j), n is the total number of replicate populations, and L(0) p 1 when the mutation
arises as a single copy. Since the expected number of patches of each type grows asymptotically with r(A(z , z)), the
expected total mutant lineage size, E

�P
N
ip1iX i(t)

�
, also grows asymptotically at rate r(A(z , z)), Furthermore, the mutant

lineage goes extinct at some time t 1 0 with probability 1 (i.e., PrfX(t) p 0 for some tjX(0) p (1, 0,:::0)g p 1) if,
and only if, the leading eigenvalue of A(z , z) is less or equal to 1 (Karlin and Taylor 1975; Harris 2002, p. 41), that is,
if, and only if, r(A(z , z)) ≤ 1.
Lineage Fitness as the Geometric Growth Rate of the Mutation

We now show how the growth rate r(A(z , z)) can be expressed as lineage fitness (eq. [1]). Writing u(z , z) as the right
eigenvector of A(z , z) associated with r(A(z , z)), we have by definition

r(A(z , z))u(z , z) p A(z , z)u(z , z): ðA3Þ
The right eigenvector is normalized such that its entries sum to 1,

P
N
jp1uj(z , z) p 1. The eigenvector u(z , z) is the

asymptotic distribution of mutant patch types as it is invariant to multiplication by A(z , z) (eq. [A3]; Harris 2002, p. 44).
Thus, ui(z , z) can be interpreted as the frequency of patches with i mutants among patches with at least one mutant.
1
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Left multiplying equation (A3) by xT p (1, 2, : : : N ) gives

r(A(z , z))xTu(z , z) p xTAu(z , z) p
XN
ip1

XN
jp1

iaij(z , z)uj(z , z), ðA4Þ

where xTu(z , z) p
P

i∈ I iui(z , z) 1 0 is the average number of mutants among mutant patches (i.e., patches that contain at
least one mutant). Then, note that the expected total number of mutants produced over one generation by the mutants
residing in a patch with j mutants may be written in two ways:

XN
ip1

iaij(z , z) p wj(z , z) j, ðA5Þ

where wj(z , z) is the expected total number of adult offspring produced by a mutant over one iteration of the life cycle
when there are j mutants in its patch and the remaining individuals in the population have phenotype z. So,

r(A(z , z)) p

PN
ip1

PN
jp1iaij(z , z)uj(z , z)P
i∈ I iui(z , z)

p

PN
jp1 jwj(z , z)uj(z , z)P

i∈ I iui(z , z)
: ðA6Þ

The growth rate of the mutation can therefore be written in the form of lineage fitness,

r(A(z , z)) p
XN
jp1

wj(z , z)qj(z , z), ðA7Þ

where

qj(z , z) p
juj(z , z)P
i∈ I iui(z , z)

ðA8Þ

is the probability that a randomly sampled mutant from the mutant lineage belongs to a patch with j mutants.
Lineage Fitness as Proxy to the Growth Rate and Other Proxies

The expression for r(A(z , z)) in equation (A7) depends on the eigenvectors of A(z , z), which are difficult to evaluate
in practice. In order to circumvent this problem, we seek a proxy whose sign around 1 is equivalent to that of the growth
rate and that is also easier to evaluate. The usual fitness proxy in evolutionary biology is the basic reproductive number
(Ellner and Rees 2006), which will be the starting point to our derivation.

The basic reproductive number of a metapopulation can be obtained from the matrix describing mutant growth when
rare, here A(z , z), by noting that it can be decomposed as

A(z , z) p Q(z , z)1 B(z , z), ðA9Þ
where Q(z , z) is a matrix whose element (i, j) gives the probability that the focal patch with j ∈ I mutants turns into a patch
with i ∈ I mutants. By the properties of multitype branching processes, the transition probabilities are independent of
the state of the process {X(t)}. Therefore, Q(z , z) is the transient matrix of the Markov chain describing the subpopulation
of mutants in the focal patch on the state space I, which has the local extinction of the mutant as its only absorbing
state since only residents immigrate into the patch. Meanwhile, the (i, j) entry of matrix B(z , z) is the expected number
of patches with i mutants that are produced by mutant emigration from the focal patch when the latter is in state j (i.e.,
with j mutants).

Then, we follow Massol (2009) and define the basic reproductive number Rm(z , z) as the leading eigenvalue of the
transition matrix giving lifetime reproduction (Caswell 2001; Ellner and Rees 2006), that is, the leading eigenvalue of
the matrix

R p B(z , z)(I2Q(z , z))21 ðA10Þ
2
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(Ellner and Rees 2006). By construction of A(z , z) (eq. [A9]) and the properties of Q(z , z) and B(z , z), the next-generation
theorem (Thieme 2009, theorem 1) implies the equivalence

r(A(z , z)) ≤ 1 ⇔ Rm(z , z), ðA11Þ
which shows that Rm(z , z) is a proxy for the growth rate, which can be computed by way of matrix inversion only.

We can further simplify the expression for Rm(z , z) when only a single mutant can establish into a resident patch by
immigration. In that case, only the first row of B(z , z) is nonzero, that is,

B(z , z) p

b1(z , z) b2(z , z) ::: bN (z , z)
0 0 ::: 0
⋮ ⋮ ⋱ ⋮
0 0 ::: 0

0
BB@

1
CCA, ðA12Þ

where bj(z , z) is the expected number of patches with one mutant that are produced by mutant emigration from the
focal patch when in state j. The elements of the matrix B(z , z) below its first line are 0 since the probability that two
or more offspring from the same patch settle in the same patch through dispersal is 0. Note that in the infinite-island
model of dispersal, only a single mutant can establish into a resident patch by immigration when offspring disperse
independently from one another. This can be understood by noting that if the number of patches is Nd and migration
probability of mutant offspring is m, then the probability that a given breeding spot on a given patch is settled through
dispersal by an offspring from the focal patch is of the order O(m/(Nd)), and the probability that two or more such offspring
settle in the same patch is of the order O(m2/(Nd)2). Summing over all patches, the probability that two or more
offspring from the same individual settle on the same patch through dispersal is at most of the order O(m2/(Nd)), which
goes to 0 as Nd→∞. Hence, the focal patch with j mutants can only turn a patch with zero mutants into a patch with
a single mutant.

With B(z , z) as in equation (A12), the matrix R(z , z) is 0 everywhere except in its first row. Since the eigenvalues of
a triangular matrix are its diagonal entries, the only eigenvalue of R(z , z) that may be greater than 1 is simply its first
diagonal element (since all the other eigenvalues are 0). In this case, the leading eigenvalue of R(z , z) (eqq. [A10],
[A11]) is

Rm(z , z) p
XN
kp1

bk(z , z)tk(z , z), ðA13Þ

where tk(z , z) denotes the expected number of generations a patch that started with a single mutant spends with k mutants.
Thus, when offspring disperse independently from one another, Rm(z , z) is equal to the expected number of successful
emigrant mutants produced by a patch that started with a single mutant, which is the definition of the proxy by Metz and
Gyllenberg (2001).

We now seek to obtain a fitness proxy expressed in terms of individual fitness, which will turn out to be of the form of
lineage fitness (eq. [A7]). To that end, note that the expected number of successful emigrants from a patch may be
expressed as bk(z , z) p kek(z , z), where ek(z , z) is the expected number of successful emigrants produced by a single
mutant in a patch with k mutants when the rest of the population is monomorphic for z. So, we find

XN
kp1

bk(z , z)tk(z , z) ≤ 1 ⇔
XN
kp1

kek(z , z)tk(z , z) ≤ 1

⇔
XN
kp1

kek(z , z)tk(z , z)2 1 ≤ 0:

ðA14Þ

As shown in Mullon and Lehmann (2014), we can rewrite
PN

kp1kek(z , z)tk(z , z)2 1 in terms of the fitness of a mutant type
z, wk(z , z), which is the expected total number of adult offspring produced by a mutant when there are k mutants in
the patch and the remaining individuals in the population have phenotype z:

XN
kp1

kek(z , z)tk(z , z)2 1 p
XN
kp1

(wk(z , z)2 1)ktk(z , z): ðA15Þ
3
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So, condition (A14) may be expressed as

XN
kp1

kek(z , z)tk(z , z)2 1 ≤ 0 ⇔
XN
kp1

(wk(z , z)2 1)ktk(z , z) ≤ 0

⇔ �k(z , z)
XN
kp1

wk(z , z)
ktk(z , z)
�k(z , z)

2 1

 !
≤ 0,

ðA16Þ

where

�k(z , z) p
X

k

ktk(z , z) 1 0 ðA17Þ

is the expected number of mutants present in a mutant patch. Now, since �k(z , z) 1 0, (A16) is equivalent to

�k(z , z)
XN
kp1

wk(z , z)
ktk(z , z)
�k(z , z)

2 1

 !
≤ 0 ⇔

XN
kp1

wk(z , z)
ktk(z , z)
�k(z , z)

≤ 1: ðA18Þ

Then, note that

qk(z , z) p
ktk(z , z)
�k(z , z)

ðA19Þ

is a probability mass function, which returns the probability that a randomly drawn member of the mutant local lineage
resides in a patch with a total of k ∈ f1, 2,:::,Ng mutants. Therefore, a mutation coding for phenotype z in a resident
population with phenotype z will eventually go extinct with probability 1 if, and only if,

r(A(z , z)) ≤ 1 ⇔
XN
kp1

wk(z , z)qk(z , z) ≤ 1: ðA20Þ

This shows that when only a single mutant can establish into a resident patch by immigration, the conditions that cause the
leading eigenvalue of A(z , z) to be less or equal to 1 are the same as those that cause v(z , z) to be less or equal to 1
when qk(z , z) is defined in terms of sojourn times (eq. [A19]) rather than the eigenvector of A(z , z) (eq. [A8]). While
qk(z , z) in terms of the eigenvector of A(z , z) takes into account all possible patch composition starting with different
numbers of mutant immigrants, qk(z , z) in terms of sojourn times only considers a typical local lineage that starts with a
single mutant. Lineage fitness v(z , z) with qk(z , z) given by equation (A19) (i.e., lineage fitness as an invasion fitness
proxy) is then sufficient to characterize uninvadability.
The Eigenvectors of H(z) and the Molding of Phenotypic Correlations by Selection

Here, we show that when a singular phenotype is invadable, the phenotypic correlations that are most likely to
emerge are given by the eigenvector associated with the greatest positive eigenvalue of H(z). Each eigenvector el(z)
for l p 1, 2, :::, n of H(z) is a linear combination of the n traits. In addition, because H(z) is Hessian, these eigenvectors
are perpendicular to one another (Horn and Johnson 1985, p. 104), that is, el(z) ⋅ em(z) p 0 for l ( m (the middle
dot refers to the dot product). They can therefore be represented as perpendicular lines in multidimensional phenotypic
space (fig. A1). The unique feature of each eigenvector el (z) is that, at a singular phenotype, both the strength and
direction of selection along it is only determined by its associated eigenvalue ll (z). To see this, consider a mutation that
appears precisely along e1(z) (fig. A1). With each eigenvector scaled to have unit length (∥el(z)∥ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el(z) ⋅ el(z)

p
p 1), the

vector z 2 z that connects the mutant z to the resident z can be expressed as z 2 z p kz 2 zke1(z). From equation (3)
and the above identities, the lineage fitness of this mutation is

v(z , z) p 11
1

2
∥z 2 z∥2e1(z)

TH(z)e1(z) p 11
1

2
∥z 2 z∥2l1(z): ðA21Þ
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Since kz 2 zk2
1 0, whether equation (A21) is greater than 1 depends only on the sign of the eigenvalue l1(z), and the

magnitude of lineage fitness is directly related to the magnitude of l1(z).
The eigenvectors of H(z), along with their associated eigenvalue, therefore, provide a geometric representation of

the direction and intensity of selection in the neighborhood of a singular phenotype. The eigenvectors associated with
negative eigenvalues give lines along which any mutation is counterselected, while those associated with positive
eigenvalues give lines along which selection favors mutation invasion (fig. A1). In addition, the intensity of selection
along an eigenvector, whether it is stabilizing or diversifying, is reflected in the absolute value of its associated eigenvalue.
This can be seen from the lineage fitness of a mutation that causes the expression of phenotype z, which can be written as
a composite sum of the selection acting on all eigenvectors, each weighted according to the proximity of the mutation
to the eigenvector,

v(z , z) p 11
1

2
∥z 2 z∥2

Xn

lp1

ll(z)(cos vl(z , z))
2 ðA22Þ

(using the eigenvalue decomposition of H(z); e.g., Horn and Johnson 1985, p. 104), where vl(z , z) is the angle between the
eigenvector of H(z) that is associated with ll(z) and the vector that connects the mutant phenotype z to the resident z in
phenotypic space (i.e., cos vl(z , z) p el(z) ⋅ (z 2 z)=kz 2 zk; see fig. A1). The squared cosine of the angle vl(z , z) in
equation (A22), 0 ≤ (cos vl(z , z))

2 ≤ 1, measures how closely the lth eigenvector is aligned to the vector that connects
the mutant phenotype z to the resident z: when it is 0, they are perpendicular, and when it is 1, they are parallel.
Because all eigenvectors of a Hessian matrix are perpendicular to one another, the sum of weights is equal to 1,Pn

lp1(cos vl(z , z))
2 p

Pn
lp1(el(z) ⋅ (z 2 z)=∥z 2 z∥)2 p 1. As a consequence, the maximum force that diversifying

selection on a mutation can take, measured by
Pn

lp1 ll(z)(cos vl(z , z))
2, is the largest eigenvalue among the ll (z)’s, and

the only mutations that will be affected by the maximum force of diversifying selection are those that appear on the
eigenvector associated with the leading eigenvalue.
First-Order Effects of Selection

We derive here equation (12) of the main text. To do so, we first reformulate the fitness function of a mutant wk(z , z) as
a fitness function that depends explicitly on phenotypic values of all individuals in the population and set wk(z , z) p
w(z ,~zk21, z) (see eq. [10]). The first argument of this function is the phenotype of a focal individual whose fitness is
under scrutiny, here a mutant with phenotype z. The second argument, ~zk21, is the collection of N 2 1 phenotypes that
express the neighbors of the focal, which is composed of k 2 1 other mutants and N 2 k residents. The last argument
is the resident phenotype z expressed in the rest of the population. Therefore, from equation (1), we have

sp(z) p
∂v(z , z)
∂zp

p
XN
kp1

∂w(z ,~z
k21
, z)

∂zp

qk(z, z)1
∂qk(z , z)

∂zp

� �
, ðA23Þ

where all derivatives, here and throughout the entire appendix, are evaluated at the resident value z. Then, because the
total probability

P
N
kp1qk(z , z) p 1 is constant, we are left with

sp(z) p
XN
kp1

∂w(z ,~zk21, z)

∂zp

qk(z, z): ðA24Þ

The derivative of mutant fitness with respect to mutant phenotype can be expressed in terms of individual fitness derived
with respect to individual and representative neighboring phenotypes as

∂w(z ,~zk21, z)

∂zp

p
∂w(zi, z2i, z)

∂zip
1

∂w(zi, z2i, z)

∂zjp
(k 2 1Þ, ðA25Þ

where w(zi, z2i, z) is the same function as w(z ,~zk21, z) but now refers to the fitness of a focal individual, arbitrarily indexed
as the individual i ∈ f1,:::,Ng, which depends on its own phenotype z, the collection of phenotypes of its N 2 1
5
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neighbors z2i p (z1,:::, zi21, zi11,:::, zN ), as well as the resident phenotype z expressed in the rest of the population
(e.g., Rousset 2004). The first derivative in equation (A25) measures the effect of changing trait p in the focal i, and the
second derivative measures the effect of changing trait p in a representative neighbor j ( i of the focal. Substituting
equation (A25) into equation (A24), we have

sp(z) p
∂w(zi, z2i, z)

∂zip
1

∂w(zi, z2i, z)

∂zjp

XN
kp1

(k 2 1Þqk(z, z)

p
∂w(zi, z2i, z)

∂zip
1 (N 2 1Þ ∂w(zi, z2i, z)

∂zjp

XN
kp1

(k 2 1)

(N 2 1)
qk(z, z)

p
∂w(zi, z2i, z)

∂zip
1 (N 2 1Þ ∂w (zi, z2i, z)

∂zjp
r2(z, z),

ðA26Þ

where the last line follows from the definition of r2(z, z) (eq. [11]) and thus gives equation (12) (for similar arguments, see
also Day 2001; Lehmann et al. 2015).
Second-Order Effects of Selection

We derive here equation (13) of the main text. The derivative of v(z , z) with respect to zp and zq at z p z reads

∂2v(z , z)
∂zp∂zq

p
XN
kp1

∂2w(z ,~zk21, z)

∂zp∂zq

qk(z, z)1
∂w(z ,~zk�1, z)

∂zp

∂qk(z , z)

∂zq

1
∂w(z ,~zk�1, z)

∂zq

∂qk(z , z)

∂zp

� �
: ðA27Þ

Similarly to the first derivative (eq. [A25]), the second derivative of mutant fitness can be expressed in terms of individual
fitness derivatives as

∂2w(z ,~zk�1, z)

∂zp∂zq

p
∂2w(zi, z2i, z)

∂zip∂ziq
1 (k 2 1Þ ∂2w(zi, z2i, z)

∂zjp∂zjq
1

∂2w(zi, z2i, z)

∂zip∂zjq
1

∂2w(zi, z2i, z)

∂ziq∂zjp

� �

1 (k 2 1Þ(k 2 2Þ ∂
2w(zi, z2i, z)
∂zjp∂zhq

:

ðA28Þ

Substituting equation (A28) into

hw,pq(z) p
XN
kp1

∂2w(z ,~zk21, z)
∂zp∂zq

qk(z, z) ðA29Þ

and using the definition of relatedness equation (11) yields equation (13b).
Substituting equation (A25) into equation (A27) and using the fact that

P
N
kp1qk(z , z) p 1, the second term of equation

(A27) can be written as

XN
kp1

∂w(z ,~zk21, z)

∂zp

∂qk(z , z)

∂zq

p
∂w(zi, z2i, z)

∂zjp

XN
kp1

(k 2 1)
∂qk(z , z)

∂zq

p (N 2 1)
∂w(zi, z2i, z)

∂zjp

∂
∂zq

XN
kp1

k 2 1

N 2 1
qk(z , z)

 !
:

ðA30Þ

So, using the definition of r2(z , z) (eq. [11]), we have

XN
kp1

∂w(z ,~zk�1, z)

∂zp

∂qk(z , z)

∂zq

p (N 2 1)
∂w(zi, z2i, z)

∂zjp

∂r2(z , z)
∂zq

: ðA31Þ
6



Appendix from C. Mullon et al., Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations
Similarly, the second term of equation (A27) is

XN
kp1

∂w(z ,~zk�1, z)

∂zq

∂qk(z , z)

∂zp

p (N 2 1)
∂w(zi, z2i, z)

∂zjq

∂r2(z , z)
∂zp

: ðA32Þ

Substituting the last two equations into

hr,pq(z) p
XN
kp1

∂w(z ,~zk�1, z)

∂zp

∂qk(z , z)

∂zq

1
∂w(z , zk�1, z)

∂zq

∂qk(z , z)

∂zp

� �
ðA33Þ

gives equation (13c).
First-Order Effects on Pairwise Relatedness under a Moran Process

Here, we calculate the first-order effects of trait p on pairwise relatedness, ∂r2(z , z)=∂zp when the population follows a
Moran life cycle. In this case, uninvadability can be characterized using the lineage fitness in the form of a proxy for
invasion fitness. We therefore calculate ∂r2(z , z)=∂zp with the local mutant distribution qk(z , z) given by equation (A19).
Substituting, equation (A19) into equation (11), relatedness can be expressed as

r2(z , z) p
k
p

(z , z)2 �k(z , z)

(N 2 1)�k(z , z)
p

1

(N 2 1)

k
p

(z , z)
�k(z , z)

2 1

 !
, ðA34Þ

where

k
p

(z , z) p
X

k

k2tk(z , z): ðA35Þ

Taking the derivative of equation (A34) with respect to mutant trait value zr then reads

∂r2(z , z)
∂zp

p
1

(N 2 1)�k(z, z)

∂ k
p

(z , z)

∂zp

2
k
p

(z, z)
�k(z, z)

∂�k(z , z)
∂zp

 !
, ðA36Þ

which depends on mean sojourn times under neutrality given that the patch started with a single mutant present (tk(z, z))
and under selection (tk(z , z)). We derive those below for the Moran process.

The general mean sojourn times (tij(z , z)) spent with i mutants before absorption starting with j mutants (so that
tk(z , z) p tk1(z , z)) are obtained as the elements of

T(z , z) p (I2Q(z , z))21, ðA37Þ
where Q(z , z) is as in equation (A9). For a Moran process (a birth and death process), the elements of the transient matrix
Q(z , z), that is, the transient transition probability qij(z , z) from j to i, can be written as

qij(z , z) p

bj(z , z), if   i p j1 1  ðbirth of a mutantÞ,
dj(z , z), if   i p j2 1  ðdeath of a mutantÞ,
12 bj(z , z)2 dj(z , z), if   i p j   ðno changeÞ,
0, otherwise:

8>><
>>:

ðA38Þ

In that case, equation (A37) reads

tij(z , z) p

1

di(z , z)

�
11

Xi21

hp1

Yh
kp1

bi2k(z , z)

di2k(z , z)

�
if   i p 1, 2,::: , j

tjj(z , z)

�Yi21

kpj

bk(z , z)

dk11(z , z)

�
if   i p j1 1, 2,::: ,N

8>>>><
>>>>:

ðA39Þ
7
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(e.g., Ewens 2004, eq. [2.160]). In particular, the mean number of generations with i mutants starting with a single mutant
( j p 1) is

ti(z , z) p ti1(z , z) p
1

d1(z , z)

Yi21

kpi

bk(z , z)

dk11(z , z)
: ðA40Þ

For the life cycle described in the main text (see “Uninvadability under a Moran Process”), the birth and death
probabilities when k mutants are present are

bk(z , z) p
(N 2 k)m(z,~zk , z)

(N 2 k)m(z,~zk , z)1 km(z ,~zk21, z)
wp(z ,~zk21, z)

k

N

� �
, ðA41aÞ

dk(z , z) p
km(z ,~zk21, z)

(N 2 k)m(z,~zk , z)1 km(z ,~zk21, z)
12 wp(z ,~zk21, z)

k

N

� �
: ðA41bÞ

They are explained as follows and use the notation given in box 1 in the main text. For the birth of a mutant (eq. [A41a]),
two events must occur. First, a resident dies, with a probability that is given by the first term of equation (A41a). Second,
the offspring who settles in the vacated breeding spot descends from a mutant in that patch, which occurs with a
probability that is given by the second term of equation (A41a). Similarly, the death of a mutant (eq. [A41b]) requires
the death of a mutant and replacement by a resident.

The neutral sojourn times tk(z, z) are found using equation (A41) substituted into equation (A40), evaluated at z p z.
Doing so, we find

�k(z, z) p
X

k

ktk(z, z) p
N

m(z)
,

k
p

(z, z) p
X

k

k2tk(z, z) p
N 2

m(z)(11 m(z)(N 2 1))
,

ðA42Þ

where m(z) p 12 wp(z, z, z) is the backward migration rate.
The first-order effects of trait p on pairwise relatedness (eq. [A36]) also depends on the sojourn times under selection,

�k(z , z) (eq. [A17]) and ��k(z , z) (eq. [A35]). These terms can be rewritten as the following matrix operation:

�k(z , z) p uT(z , z)n1,

k
p

(z , z) p u2T(z , z)n1,
ðA43Þ

where u p (1, 2,::: ,N ), u2 p (1, 4,::: ,N 2), and n1 p (1, 0,::: , 0)T. The first-order effect of a trait on relatedness (eq.
[A36]) depends on the derivatives of equation (A43) with respect to the mutant trait value. Using equation (A37) and the
fact that the derivative of the inverse of a matrix A is given by

∂A21

∂zp

p 2A21 ∂A
∂zp

A21, ðA44Þ

the derivatives of equation (A43) with respect to mutant trait value zp are

∂�k(z , z)
∂zp

p u
∂T(z , z)
∂zp

n1 p uT(z, z)
∂
∂zp

Q(z , z)T(z, z)n1,

∂ k
p

(z , z)

∂zp

p u2
∂T(z , z)
∂zp

n1 p u2T(z, z)
∂
∂zp

Q(z , z)T(z, z)n1:

ðA45Þ
8
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Now, using equations (A39)– (A41) at neutrality (z p z), some algebraic manipulations show that

(uT(z, z))j p
XN
ip1

itij(z, z) p
N

m(z)
j,

(u2T(z, z))j p
XN
ip1

i2tij(z, z) p
N 2

m(z)(11 m(z)(N 2 1))
12

m(z)

2

� �
j1

m(z)

2
j 2

� �
,

ðA46Þ

which in matrix form reads

uT(z, z) p
N

m(z)
u,

u2T(z, z) p
N 2

m(z)(11 m(z)(N 2 1))
12

m(z)

2

� �
u1

m(z)

2
u2

� �
:

ðA47Þ

Substituting equation (A47) into equation (A45) then gives

∂�k(z , z)
∂zp

p
N

m(z)

∂
∂zp

(uQ(z , z)T(z, z)n1),

∂ k
p

(z , z)

∂zp

p
N 2

m(z)(11 m(z)(N 2 1))

∂
∂zp

12
m(z)

2

� �
u1

m(z)

2
u2

� �
Q(z , z)T(z, z)n1

� �
:

ðA48Þ

Writing F1, j(z , z) and F2, j(z , z) as the first and second moments of the number of mutants in the focal patch after a
generation conditional on there being j mutants before the transition, we have

(uQ(z , z))j p
XN
ip1

iqij(z , z) p F1, j(z , z),

(u2Q(z , z))j p
XN
ip1

i2qij(z , z) p F2, j(z , z),

ðA49Þ

and by definition,

(T(z, z)n1)j p tj(z, z): ðA50Þ

Thus, equations (A49) and (A50) substituted into equation (A48) give

∂�k(z , z)
∂zp

p
N

m(z)

X
k

∂F1,k(z , z)

∂zp

tk(z, z),

∂ k
p

(z , z)

∂zp

p
N 2

m(z)(11 m(z)(n2 1))

X
k

12
m(z)

2

� �
∂F1,k(z , z)

∂zp

1
m(z)

2

∂F2,k(z , z)

∂zp

� �
tk(z, z):

ðA51Þ

We now find an expression for the derivatives of F1,k(z , z) and F2,k(z , z). Conditional on k, the first and second moments of
the number of mutants in the focal patch after a life cycle iteration are

F1,k(z , z) p (k 1 1)bk(z , z)1 (k 2 1)dk(z , z)1 k(12 bk(z , z)2 dk(z , z)),

F2,k(z , z) p (k 1 1)2bk(z , z)1 (k 2 1)2dk(z , z)1 k2(12 bk(z , z)2 dk(z , z)):
ðA52Þ
9



Appendix from C. Mullon et al., Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations
In order to get the derivatives of equation (A52) with respect to zr, we substitute equation (A41), using the chain rule and
the following identities:

∂m(z ,~zk21, z)

∂zp

p
∂m(zi, z2i, z)

∂zip
1 (k 2 1)

∂m(zi, z2i, z)

∂zjp
,

∂m(z,~zk , z)
∂zp

p k
∂m(zi, z2i, z)

∂zjp
,

∂wp(z ,~zk21, z)

∂zp

p
∂wp(zi, z2i, z)

∂zip
1 (k 2 1)

∂wp(zi, z2i, z)

∂zjp
:

ðA53Þ

Thus, we eventually obtain

∂F1, k(z , z)

∂zp

p
k(N 2 k)

N 2

∂m(zi, z2i, z)

∂zip
1

k(k 2 1)(N 2 k)

N 2

∂m(zi, z2i, z)

∂zjp

1
k

n

∂wp(zi, z2i, z)

∂zip
1

k(k 2 1)

N

∂wp(zi, z2i, z)

∂zjp
,

∂F2,k(z , z)

∂zp

p
k(N 2 k)(2k(N 1 12 m)2 N )

N 3

∂m(zi, z2i, z)

∂zip

1
k(k 2 1)(N 2 k)(2k(N 1 12 m)2 N )

N 3

∂m(zi, z2i, z)

∂zjp

1
k(2k(N 2 1)1 N )

N 2

∂wp(zi, z2i, z)

∂zip

1
k(k 2 1)(2k(N 2 1)1 N )

N 2

∂wp(zi, z2i, z)

∂zjp
:

ðA54Þ

Finally, we substitute equation (A54) into equation (A51), which is in turn substituted into equation (A36), and we use the
first and second moments of sojourn times (eq. [A42]), as well as the third and fourth moments,

X
k

k3tk(z, z) p
N 3

m(z)
22 m(z)

(11 m(z)(N 2 1))(21 m(z)(N 2 2))
,

X
k

k4tk(z, z) p
N 3

m(z)
6N 2 m(z)(12 m(z)1 N (62 m(z)))

(11 m(z)(N 2 1))(21 m(z)(N 2 2))(31 m(z)(N 2 3))
,

ðA55Þ

to obtain the result of equation (14) and table 2 in the main text.
The first-order effects of a trait on pairwise relatedness that we have derived for the Moran process (eq. [14]) can

be written in a form similar to the one that has been used for the Wright-Fisher process (Ajar 2003; Wakano and Lehmann
2014). In the absence of variation among death rates, m(zi, z2i, z) p m for all i, equation (14) with table 2 can be
expressed as

∂r2(z , z)
∂zp

p rR
2 (z, z) NrR

2 (z, z)
∂wp(zi, z2i, z)

∂zip
1

�
N 2rR

3 (z, z)2 NrR
2 (z, z)

�
∂wp(zi, z2i, z)

∂zjp

� �
, ðA56Þ

where

rR
2 (z, z) p

1

11 m(N 2 1)
,

rR
3 (z, z) p

22 m

(11 m(N 2 1))(21 m(N 2 2))

ðA57Þ
10
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are the probabilities of sampling two and three individuals with replacement that are identical by descent, respectively.
Equation (A56) bears close resemblance to the parts of equation (18) of Ajar (2003) and equation (C-2) of Wakano
and Lehmann (2014) that correspond to the first-order effects of a trait on pairwise relatedness for the Wright-Fisher
process. Differences with equation (A56) are due to the fact that generations overlap in the Moran process but not in the
Wright-Fisher process.

We now show that the first-order effects of a trait on pairwise relatedness vanishes at singular phenotypes if the
evolving traits only affect adult fertility or offspring survival. If that is the case, then the death rate m(zi, z2i, z) p m is
constant for all individuals in the population, and the philopatric component of fitness may be written as equation (15).
Substituting equation (15) into equation (14) and using table 2, we find that

∂r2(z , z)
∂zp

p
(12 m)N 2

(21 m(N 2 2))(11 m(N 2 1))
sp(z) p 0, ðA58Þ

since at a singular phenotype, sp(z) p 0.
Neutral Pairwise and Three-Way Relatedness for a Moran Process

The stability criteria also depend on the probabilities that two and three individuals are related in the resident population.
These are found using standard identity-by-descent arguments (e.g., Karlin 1968) by solving the recursions

r2(z, z) p
N 2 2

N
r2(z, z)1

2

N
(12 m(z))

1

N
1

N 2 1

N
r2(z, z)

� �
,

r3(z, z) p
N 2 3

N
r3(z, z)1

3

N
(12 m(z))

2

N
1

N 2 2

N
r2(z, z)

� � ðA59Þ

for a Moran process, whose solutions are given in table 1.
Uninvadability under Weak Effects

In order to derive the selection gradient and Hessian matrix when payoffs have weak effects (eqq. [18], [19]), we
follow the line of arguments developed in Lehmann et al. (2015) and first observe that under weak effects (i.e., ε→0 in
eq. [17]), the fitness of a focal mutant in the focal patch with k mutants can be expressed as

w(z ,~zk21, z) ≈ 11 ε af (z)(p(z ,~zk21, z)2 p(z, z, z))2 an(z)
k 2 1

N 2 1
p(z ,~zk21, z)1

N 2 k

N 2 1
p(z,~zk , z)2 p(z, z, z)

� �� �
,

ðA60Þ
to the first order of ε (and where we used the zero-sum effect of selection on fitness in populations of constant size;
for an explanation, see p. 96 of Rousset 2004). The difference p(z ,~zk21, z)2 p(z, z, z) is the difference between the
payoff received by the focal and the payoff of a resident from another patch, and (k 2 1)=(N 2 1)p(z ,~zk21, z)1 (N 2 k)=
(N 2 1)p(z,~zk , z)2 p(z, z, z) is the difference between the average payoff in the focal patch, excluding the focal
individual, and the payoff of a resident from another patch. So, the difference between these two differences measures how
well the focal does compared to the rest of her patch, relative to an individual from another patch. Focal fitness depends on
the difference between these two, but where each is weighted by a coefficient, af (z) and an (z), respectively, that put
together measure the spatial scale of competition in the resident population (Frank 1998).

The spatial scale of competition is given by 0 ≤ a(z) p an(z)=af (z) ≤ 1 (since 0 ! af (z) ≤ 1 and an(z) ≤ af (z),
according to our assumptions listed in the main text; see the “Uninvadability under Weak Selection” section). To see how
a(z) measures the spatial scale of competition, we rewrite equation (A60) as

w(z ,~zk21, z) ≈ 11 εaf (z) (12 a(z))(p(z ,~zk21, z)2 p(z, z, z))1 a(z)
k 2 1

N 2 1
p(z ,~zk21, z)2

N 2 k

N 2 1
p(z,~zk , z)2 p(z, z, z)

� �� �
,

ðA61Þ
11
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which shows that if a(z) is small, then the payoff of neighbors has little effect on focal fitness compared to the
payoff of individuals from other patches; that is, competition tends to occur globally. This would occur, for instance,
if dispersal is strong. Conversely, if a(z) is close to 1, then competition tends to occur locally. The coefficients
af(z) and an(z)—and, therefore, a(z)—are model specific and will depend on the demographic properties of the
population, such as patch size, dispersal rate, or the number of open breeding spots at each generation, as well as the
evolving trait. The coefficients af (z) and an(z) are found by Taylor expanding the fitness function in the form of
equation (A60).

Lineage fitness (eq. [1]) is found by marginalizing equation (A60) over the distribution of mutants qk(z , z). However,
since ε is small and equation (A60) is of O(ε), it is sufficient to marginalize over the probability mass function for
the number of mutants under neutrality, q ∘

k p qk(z, z),

qk(z , z) p q ∘
k 1 O(ε), ðA62Þ

where q ∘
k is independent of the mutant type. Substituting equations (A60) and (A62) into lineage fitness equation (1) gives

to the order of O(ε)

v(z , z) p 11 εaf (z)
XN
kp1

p(z ,~zk21, z)2 p(z, z, z)2 a(z)
k 2 1

N 2 1
p(z ,~zk21, z)1

N 2 k

N 2 1
p(z,~zk , z)2 p(z, z, z)

� �� �
q ∘
k :

ðA63Þ
First-order condition. Taking the derivative of equation (A63) with respect to zp at z p z reads

∂v(z , z)
∂zp

p εaf (z)
XN
kp1

∂p(z ,~zk21, z)

∂zp

2 a(z)
k 2 1

N 2 1

∂p(z ,~zk21, z)

∂zp

1
N 2 k

N 2 1

∂p(z,~zk , z)
∂zp

� ��
q ∘
k :

�
ðA64Þ

Then, after substituting for the derivatives

∂p(z ,~zk21, z)

∂zp

p
∂p(zi, z2i, z)

∂zip
1 (k 2 1)

∂p(zi, z2i, z)

∂zjp
,

∂p(z,~zk , z)
∂zp

p k
∂p(zi, z2i, z)

∂zjp
,

ðA65Þ

some rearrangement, and using the definition of relatedness equation (11), equation (A64) gives the result of
equation (18).

Second-order condition. Taking the derivative of equation (A63) with respect to zr and zq at z p z yields

∂2v(z , z)
∂zp∂zq

p εaf (z)
XN
kp1

∂2p(z ,~zk21, z)

∂zp∂zq

2 a(z)
k 2 1

N 2 1

∂2p(z ,~zk21, z)

∂zp∂zq

1
N 2 k

N 2 1

∂2p(z,~zk , z)
∂zp∂zq

� �� �
q ∘
k: ðA66Þ

The derivatives can be expressed as

∂2p(z ,~zk21, z)

∂zp∂zq

p
∂2p(zi, z2i, z)

∂zip∂ziq
1 (k 2 1)

∂2p(zi, z2i, z)

∂zjp∂zjq
1

∂2p(zi, z2i, z)

∂zip∂zjq
1

∂2p(zi, z2i, z)

∂ziq∂zjp

� �

1 (k 2 1)(k 2 2)
∂2p(zi, z2i, z)

∂zjp∂zhq
,

∂2p(z,~zk , z)
∂zp∂zq

p k
∂2p(zi, z2i, z)

∂zjp∂zjq
1 k(k 2 1)

∂2p(zi, z2i, z)

∂zjp∂zhq
:

ðA67Þ:

Substituting equation (A67) into equation (A66) and using the definitions of relatedness equations (11) and table 1
generates the result equation (19).
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Appendix from C. Mullon et al., Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations
Agreement between Weak and Strong Selection Modes

Here, we show that the sign of h11(z) derived under weak selection (eq. [23]) is the same as the sign of h11(z) for strong
selection (equation not shown). In order to do so, we used Mathematica 10.0.1.0 (Wolfram Research 2014) to generate
random values for the parameters b1, b2, c1, and c2 between 2100 and 100, for the patch size N between 2 and 1,000,
and for effective dispersal m between 0 and 1 (code available on request). Then, if these values generated admissible
singular helping strategies, equation (22) (i.e., between 0 and 1), and admissible individual fertility at singular helping
strategy, equation (21) (i.e., positive), then we compared the sign of h11(z) derived under the weak and strong selection
modes. Out of 2# 106 random samples, 465,943 produced admissible singular strategies and individual fertility, and
in all cases, the sign of h11(z) between weak and strong selection modes matched. We show similarly that the sign of
h11 given by equation (23) and the sign of the leading eigenvalue of H(z) with ε p 1 (equation not shown) are very
often equivalent. Out of 2# 106 random samples, 465,359 produced admissible singular strategies and individual fertility,
and in 464,686 cases (99.86%), the sign of h12(z) given by equation (32) matched the sign of h12(z) for strong selection
and arbitrary patch size.

We also show that the sign of h12(z) derived under weak selection and large patch size (eq. [32]) is very often the
same as the sign of h11(z) for strong selection and arbitrary patch size (equation not shown). Out of 2# 106 random
samples, 465,600 produced admissible singular strategies and individual fertility, and in 465,589 cases (99.998%), the
sign of h12(z) given by equation (32) matched the sign of h12(z) for strong selection and arbitrary patch size. We remark
here that h12(z) to the first order of selection ε but with arbitrary patch size is

h12(z) p 2ε
(2b2c1 2 b1c2)s

4b2(N (12 s)1 22 s)2 2c2(N (12 s)1 1)

2s(N (12 s)1 s)3

N 2(N (12 s)1 s)(22 s)
1 O(ε2)

p ε
(2b2c1 2 b1c2)s

4b2(N (12 s)1 22 s)2 2c2(N (12 s)1 1)
h22(z)1 O(ε2):

ðA68Þ

Individually Based Simulations

We used Mathematica 10.0.1.0 (Wolfram Research 2014) to simulate the joint evolution of helping and dispersal in a
population with N p p 1,000 patches, each populated by N p 8 individuals (M-file available from Mullon et al. 2016).
Starting with a population monomorphic for singular helping and dispersal strategies, we track the evolution of the
multidimensional phenotypic distribution as small mutations continuously arise. Each individual is characterized by a
level of helping xi and dispersal probability di. At the beginning of a generation, we calculate the fertility fi of each
individual according to its helping strategy and that of its neighbors (eq. [21] with ε p 1). We use parameter values for
the benefit and cost of helping (b1 p 6 , b2 p21:4 , c1 p 4:56 , c2 p21:6) that are known to lead to evolutionary
branching in infinite well-mixed populations (Doebeli et al. 2004). Then, in each patch, an individual is chosen at random
to die. We replace it by means of the weighted sampling of an individual in the population, where each individual is
weighted according to whether they belong to the patch on which the breeding spot is filled or not. If an individual belongs
to the same patch in which a breeding spot is filled, then its weight is f i(12 di). If it belongs to another patch, then
its weight is f idi=(Np 2 1). Once an individual is chosen to fill the breeding spot, its phenotypic values mutate with
probability 0.01. If they do not mutate, then the offspring has the same phenotypic values as its parents. If they mutate,
then we add small perturbations to the parental level of helping and dispersal probability that are sampled from a binormal
distribution with mean (0, 0), variance 0.022 in each trait, and no covariance. The resulting phenotypic values are
controlled to remain between 0 and 1. Once a breeding spot has been opened and filled in each patch, the generation
is over and we repeat the iteration. For each value of s ∈ f0:04, 0:2, 0:5, 0:8, 0:91, 0:92, 0:93, 0:94, 0:95, 0:96g, the
population is initially monomorphic for the singular strategies and we simulate 1:5# 105 generations.

To simulate the evolution of helping alone, the same procedure as above is used, except that survival in dispersal is
fixed at s p 1, and dispersal is held constant at m ∈ f0:6, 0:68, 0:69, 0:71g for each individual. In the case of a mutation,
only helping is perturbed by an amount sampled from a normal distribution with mean 0 and variance 0.022.
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Appendix from C. Mullon et al., Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations
First-Order Perturbation of the Eigenvectors and Eigenvalues of a Matrix

Here, we derive equations (30) and (31) from the main text. To do this, we note that if we can express the Hessian
matrix as H(z) p H*(z)1 εH•(z), where ε is small, and we label l*

l (z) and e*l (z), the lth eigenvalue of H*(z) and its
associated eigenvector, respectively, then the corresponding eigenvalues and eigenvectors of H(z) are approximately

ll(z) ≈ l*
l (z)1 e*l (z)

TεH•(z)e*l (z),

el(z) ≈ e*l (z)1
X
k(l

e*l (z)
TεH•(z)e*l (z)

l*
l (z)2 l*

k(z)
e*k(z)

ðA69Þ

(Golub and Van Loan 1996, p. 323). In our example of the joint evolution of helping and dispersal, we find that
substituting fitness (eq. [box 1a]) into equation (13) together with the perturbation of relatedness equation (14) and
evaluating it at equation (29), to the first order of ε, the Hessian matrix can be decomposed as H(z) p H*(z)1 εH•(z),
where

H*(z) p
0 0

0 2
2s(N (12 s)1 1)3

N 2(N (12 s)1 s)(22 s)

0
B@

1
CA ðA70Þ

and

H•(z) p
s(N (12 s)1 1)

N 2(12 s)1 Ns

#

22c2 1 2b2

(22 s1 N (12 s))(42 3s)

(N (12 s)1 1)(22 s)

s(11 N (12 s))(2b2c1 2 b1c2)

N (22 s)(c2 2 [2b2(22 s1 N (12 s))=11 N (12 s)])

s(11 N (12 s))(2b2c1 2 b1c2)

N (22 s)(c2 2 [2b2(22 s1 N (12 s))=11 N (12 s)])
0

0
BBB@

1
CCCA:

ðA71Þ

The eigenvalues and eigenvectors of H*(z) are then

l*
1(z) p 0, e*1(z) p

1
0

� �
,

l*
2(z) p 2

2s(N (12 s)1 1)3

N 2(N (12 s)1 s)(22 s)
, e*2(z) p

0
1

� �
,

ðA72Þ

which substituted into equation (A69) give the approximate results of the main text (eqq. [30], [31]).
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Figure A1: Selection close to a singular phenotype in two-trait space. The multidimensional phenotype consists of two traits, z1 and z2.
The population is monomorphic for a singular phenotype z. The eigenvectors of the Hessian matrix, e1 and e2 (gray lines), are positioned
to intersect at z. a, A mutation appears along the eigenvector e1, causing the expression of trait value z (black circle). The vector that
connects z to z is shown in black. b, An example of selection direction for an invadable singular phenotype is shown. A positive ei-
genvalue, l1 1 0, indicates that selection along its associated eigenvector e1 is diversifying, as shown by the outward-facing arrows. In
contrast, a negative eigenvalue, l2 ! 0 , tells us that selection along e2 is stabilizing, as shown by the inward-facing arrows. c, Selection on
mutations away from eigenvectors. The vector that connects z to z is shown in black. The angles between this vector and both eigenvectors,
v1 and v2, are represented by dashed curved arrows.
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