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Abstract

Connectome spectrum electromagnetic tomography (CSET) combines diffusion MRI-

derived structural connectivity data with well-established graph signal processing

tools to solve the M/EEG inverse problem. Using simulated EEG signals from fMRI

responses, and two EEG datasets on visual-evoked potentials, we provide evidence

supporting that (i) CSET captures realistic neurophysiological patterns with better

accuracy than state-of-the-art methods, (ii) CSET can reconstruct brain responses

more accurately and with more robustness to intrinsic noise in the EEG signal. These

results demonstrate that CSET offers high spatio-temporal accuracy, enabling neuro-

scientists to extend their research beyond the current limitations of low sampling fre-

quency in functional MRI and the poor spatial resolution of M/EEG.

K E YWORD S

Bayesian optimization, compressed sensing, connectome, electrical source imaging, graph
Fourier transform, tractography

1 | INTRODUCTION

The human brain is a network of deeply interconnected neurons and

complex architecture. Understanding its dynamic functioning at a sub-

second level is of critical importance for several fields in medicine and

technology (Douw et al., 2019; Gleichgerrcht et al., 2015;

Matthews & Hampshire, 2016; Roy et al., 2019). Neuroimaging tech-

niques have advanced to a point where functional mapping of whole-
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brain activity in small animal models is now possible at sub-second

level, thanks to techniques like calcium imaging (Cong et al., 2017;

Fürth et al., 2018; Macé et al., 2018).

However, human neuroimaging poses other challenges, as no

modality offers both high spatial and temporal resolution (Cichy &

Oliva, 2020). Modalities with high spatial resolution, such as func-

tional magnetic resonance imaging (fMRI) or positron emission tomog-

raphy, have lower temporal resolution compared to techniques such

as magneto/electro-encephalography (M/EEG), which have higher

temporal resolution but suffer from low or very poor spatial accuracy.

To address this limitation, electromagnetic tomography (ET), also

known as electrical or M/EEG source imaging, has been proposed as a

computational approach to estimate electrical neuronal activity at the

whole-brain scale. By combining M/EEG recordings and structural MR

images, ET aims to achieve better spatial resolution while maintaining

fast sampling of neural signals (Michel & Brunet, 2019) (Figure 1a). ET

has allowed significant advances in several fields of brain functional

mapping, including epilepsy (Kaiboriboon et al., 2012), sleep (Murphy

et al., 2009), cognition (Gevins et al., 1995), and brain-computer inter-

faces (Edelman et al., 2015).

ET focuses on solving two different processes or problems: the

forward problem and the inverse problem. The forward problem

involves determining the relationship between the effective electric

sources in the brain and the measurements recorded by scalp elec-

trodes or magnetometers. Specifically, it describes the propagation of

electric fields in the head (as seen in Figure 1a), from the electrical

depolarization of pyramidal cells in the cortex to the M/EEG sensors.

This problem is solved using Maxwell's equations, which take into

account the different conductivity properties of the brain tissue

(Sarvas, 1987).

Solving the forward problem accurately requires discretizing the

head volume and mapping realistic tissue conductivity values in it,

F IGURE 1 Connectome spectrum electromagnetic tomography (CSET) pipeline. (a) Illustration of the EEG inverse problem. The EEG inverse
problem is the process of estimating of the electrical sources in the brain that generated the measured electrode signal at the scalp. This problem
is ill-posed because the number of sources (N) is much larger than the number of electrodes (M). There exist an infinite number of source
combinations that could generate a single electrode signal. For this reason, mathematical regularization based on mechanistic or empirical

assumptions of brain activity are needed. (b) The high-resolution individualized connectomes are constructed by combining the long-range white-
matter connectivity (based on MR tractography) and the short-range cortical connectivity (based on Euclidean distance). (c) The harmonic modes
of a physical object refer to the different ways an object can resonate when a force is applied. In the case of a violin, the harmonic modes or
natural frequencies, are typically determined by the length of the string and its tension. (d) The harmonic modes of the high-resolution
connectome are determined by the connectivity pattern, they also have a notion of frequency, or smoothness. Connectome harmonics are
identified as the eigenvectors of the high-resolution connectome graph Laplacian. Here only the smoothest five eigenvectors are shown. (e) The
connectome spectrum, that is, the eigenvalues corresponding to the connectome harmonics, which indicate how smooth each harmonic is.
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which can be challenging. However, there are solid implementations

available in the literature that rely on finite element modeling and per-

sonalized mappings based on individual brain MRI scans

(Sarvas, 1987). These solutions have been shown to be effective in

addressing this challenge.

The inverse problem, on the other hand, is the mathematical for-

mulation of the tomography itself. It involves modeling the neuronal

activity as a function of the measurements recorded by scalp elec-

trodes or magnetometers. By combining the forward and inverse

problems, ET attempts to estimate the electrical neuronal activity

across the entire brain with high spatial and temporal resolution.

Each sensor in M/EEG recordings captures activity from multiple

sources within the brain's gray matter, and the source electric fields

propagate through the tissues non-uniformly, depending on local con-

ductivities and morphology. The inverse problem of discerning which

sources, or combination of sources, are responsible for a given

M/EEG measurement is ill-posed, meaning there is no unique solution

for the problem (Sarvas, 1987). There are infinitely many solutions

that can be consistent with the measured M/EEG data. Thus, regulari-

zation is needed to solve the inverse problem, which involves making

strong assumptions about the spatial distribution of the sources

(Michel & Brunet, 2019).

However, the current models used to solve the M/EEG inverse

problem are known to produce low-resolution reconstructions (Dale

et al., 2000; de Peralta Menendez et al., 2004; Pascual-Marqui

et al., 1999, 2002, 2011) or make unrealistic assumptions (Samuelsson

et al., 2021). These limitations pose significant challenges for accu-

rately mapping electrical brain activity, and there is a pressing need

for biologically plausible and realistic models to overcome these hur-

dles. Such models would be able to encompass a wide range of neural

activation patterns, making it possible to accurately solve the inverse

problem and improve our understanding of brain function.

Over the past two decades, a growing body of evidence has dem-

onstrated that the patterns of human brain activity are tightly con-

strained by the underlying structural connectivity (Deco et al., 2011;

Honey et al., 2009; Lynn & Bassett, 2019; Park & Friston, 2013;

Suárez et al., 2020; Vincent et al., 2007). It is widely recognized that

taking into consideration brain structural connectivity when analyzing

brain activity signal is of crucial importance for proper interpretation

(Higgins et al., 2018; Lei et al., 2015; Pascucci, Rubega, et al., 2022;

Rykhlevskaia et al., 2008). It seems that similar to any other physical

object, such as a metal plate or a vibrating rope, the resonant frequen-

cies of the brain are largely determined by its underlying structure

(Bolt et al., 2022). Recent data suggest that brain activity can be effi-

ciently represented as a combination of its normal modes (Atasoy

et al., 2016), which are known as connectome harmonics and form the

building blocks of well-known brain functional networks associated

with both rest and different tasks (Figure 1c, d). The representation of

brain activity in the basis defined by connectome harmonics, also

known as connectome spectral representation, is the result of a graph

Fourier transform (Shuman et al., 2013) on the connectome, which

involves the eigen-decomposition of the graph Laplacian. Studies have

found that brain activity during visual perception (Glomb et al., 2020;

Rué-Queralt et al., 2021) is characterized by a sparse connectome har-

monic representation, indicating that the connectome harmonics pro-

vide a powerful framework for understanding the functional

organization of the brain. Similarly, other studies have found similar

properties while investigating different states of consciousness

(Atasoy et al., 2018).

In this work, we introduce a new approach, called connectome

spectrum electromagnetic tomography (CSET), which aims to solve

the M/EEG inverse problem by taking advantage of the sparsity of

brain activity in its connectome spectral representation. Specifically,

we model this property as a prior probability of the sources

(Figure 1c–f), within a Bayesian optimization framework (very similar

in essence to the compressed sensing framework) (Candès

et al., 2006; Donoho, 2006). While prior methods have used sparsity

priors at the source domain (Friston et al., 2007; Gramfort

et al., 2012; Lim et al., 2017), these are limited to highly localized neu-

ral activity and do not capture distributed neural networks. The

underlying assumptions of CSET make it better suited for reconstruct-

ing distributed brain activity.

To evaluate the effectiveness of CSET, we applied it to both sim-

ulated EEG data from brain activity patterns corresponding to fMRI

task activation (Figure 2) and real EEG data from two experiments on

visual evoked potentials (Figure 3). Our results demonstrate that

incorporating the high-resolution connectivity structure of the brain

(Figure 1b) improves the signal-to-noise ratio (SNR) and the accuracy

of the reconstructed brain activity compared to state-of-the-art

approaches that do not use this information.

2 | MATERIALS AND METHODS

2.1 | The high-resolution structural connectome

The structural connectome defines how the axonal fiber bundles in

the brain's white matter (WM) support the connectivity between dif-

ferent gray matter regions. For the VEPCON dataset, we estimated

the tractograms from the diffusion-weighted imaging (DWI) data of

each participant, using Connectome Mapper 3 (Tourbier et al., 2022).

The tractography algorithm was performed after denoising the diffu-

sion data with MRTRIX MP-PCA, bias field correction with ANTS-N4,

eddy current, and motion correction from FSL. For each subject, we

launched 10 million deterministic streamlines (with ACT) in the WM,

which were posteriorly filtered with SIFT. After that, we followed the

approach presented by Mansour et al. (2021) to obtain high-resolution

individual connectomes at the resolution of approximately 8000

nodes on the brain's gray matter surface. To allow other scientists to

use our source imaging framework on data sets with no available dif-

fusion MRI data, we constructed a group consensus connectome from

the high-resolution individual connectomes of the VEPCON dataset.

The consensus connectome was created based on the distance-

dependent thresholding method (Betzel et al., 2019).
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2.2 | Connectome harmonics

The structural connectome defines a graph object G N ,Eð Þ, in which

the nodes N of the graph represent different regions in the brain cor-

tical surface, and the edges E of this graph describe the connectivity

strength between each pair of nodes as estimated from the high-

resolution connectome. Analogous to conventional signal processing

spectral analysis, graph signal processing allows us to study the signal

in terms of its graph (i.e., spatial) frequency content (for an in-depth

review of graph-signal processing, see Shuman et al., (2013)).

To obtain the connectome spectrum of the brain activity signal

we first need to perform an eigendecomposition of the normalized

connectome graph Laplacian:

L¼ I�D�
1
2WD�

1
2 ¼UΛU > , ð1Þ

where I is the identity matrix, W is the connectome graph's weight

matrix (here defined as the number of streamlines connecting each

pair of brain reagions), and D is the degree matrix (i.e., a diagonal

matrix with the degree value of each node as the diagonal elements).

U is a matrix that contains the eigenvectors of the graph Laplacian in

its columns, defining the connectome graph Fourier basis, and Λ is a

diagonal matrix contains its eigenvalues λi , which are associated to the

notion of frequency in traditional signal processing. The connectome

spectrum ex of the brain activity signal x is thus obtained by means of

the graph Fourier transform

exl¼XN�1
n¼0

ul n½ �x n½ � ¼ulx, ð2Þ

where l indexes the connectome harmonics (i.e., eigenvectors) and n

the nodes. The reader is referred to our previous publications for fur-

ther details on this representation of the brain activity signal (Glomb

et al., 2020; Rué-Queralt et al., 2021).

2.3 | The forward model

The forward model of the M/EEG imaging system describes how the

magnetic/electrical currents are propagated from their origin in

the active neurons residing in the gray matter toward the recording

sensors in the scalp. When a pyramidal neuron in the gray-matter

receives an excitatory postsynaptic potential, its voltage-dependent

sodium channels open, the positively charged sodium ions enter in the

neuron, and due to the electrical neutrality conservation principle, an

active source of current is produced in the apical region of that neu-

ron. This creates an electrical dipole. When many neighboring pyrami-

dal neurons activate simultaneously, they generate an electrical dipole

that is strong enough to traverse the different tissues of the head and

to be measured by M/EEG electrodes (Sarvas, 1987). The forward

model characterizes the probability of the M/EEG measurements on

the scalp p btjxtð Þ for bt �ℝM, conditioned xt �ℝN being the true corti-

cal source activity (M being the number of measuring sensors and N

the number of neuronal activity sources). The M/EEG system deals

with noise that is due to independent random perturbations at the

sensor level, following a zero-mean Gaussian distribution

(Sarvas, 1987):

bt�N Axt,Σð Þ, ð3Þ

F IGURE 2 Results of simulation experiment. (a) The ground truth signal used for simulating the EEG data corresponded to the fMRI response
of each subject to a face perception task. (b) The simulated EEG is obtained by applying the forward model to the ground truth signal, that is,
propagating the source activation to the electrodes through the lead-field matrix. (c) The performances (r2 between ground truth and
reconstructed signal) of the different reconstructions when using the full montage of 128 electrodes. (d) The performances of the different
reconstructions when using the full and sub-sampled montages. (e) Distributions of the connectome Fourier transform weights, that is, the
resulting coefficients of applying the Fourier transform on the source reconstructed signal, for the ground truth data and the different
reconstructions. In this histogram, the horizontal axis is scaled logarithmically. (f) Source reconstructions for each method for the same subject.
For the experiments yielding the results in subplots (c)–(e), the fMRI data were made positive, as explained in the Methods section.
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where A�ℝM�N is known as the lead-field matrix, and its components

Ai,j define the contribution of the jth cortical source to the ith M/EEG

scalp sensor, which are estimated by solving Maxwell's equations

(Sarvas, 1987). To model-independent and identically distributed

noise across sensors we use Σ¼ Iσ. Given our primary focus on the

inverse problem, we rely on the default forward computation pipe-

line implemented in MNE-Python (Gramfort et al., 2013), as it is a

well-documented method in an openly available software toolbox.

In particular, we used the default MNE-Python surface-based

boundary element method approach (Hamalainen & Sarvas, 1989),

where the boundary surfaces are tessellated into a mesh of

triangles with different conductivity values [inner-skull¼0:3,

outer-skull¼0:006,outer-skin-skull¼0:3].

In this work, we constrain the sources to be normally oriented to

the cortical surface of the brain. There exist two main reasons behind

this choice. First, the complexity of the algorithm is reduced by

F IGURE 3 Results of visual evoked potentials. (a), (a’) Residual visual evoked potentials (a): The EEG response to faces minus the response to
scrambled faces. (a’) The EEG response to coherent motion minus the response to random motion. The temporal traces correspond to the
difference in EEG measured potential evoked by the experimental condition and the control. The topographic maps corresponding to the
measured data at the peak-times of the traces are plotted on top. (b), (b’) The performances of the different reconstruction methods for ventral
(b), and dorsal (b’) visual systems (performance: r2 between reconstructed signal and fMRI signal from an equivalent task). (c), (c’) Signal-to-noise
ratio (SNR) dynamics for different reconstructions for pre- and post-stimulus presentation time (SNR defined as power of post stimulus vs. power
pre-stimulus). The curves plotted represent the grand average across participants and their colors match the methods in (b). (d), (d’) Region of
interest dynamics: right fusiform gyrus (FFA) for the face perception task; and the bilateral posterior middle-temporal area (MT area) for the
motion perception task. The curves plotted represent the grand average across participants and their colors match the methods in (b). (e), (e’)
Absolute differences in the reconstructions between the two experimental conditions (group average, mean) across different source
reconstruction methods. Group average (mean) reconstructions for the different source reconstruction methods.

RU�E-QUERALT ET AL. 5 of 14



reconstructing a single value per source rather than a value per each

coordinate axis (x, y, and z). Second, the dipoles originated due to the

excitation of pyramidal neurons are mostly oriented normally to

the cortical surface (Sarvas, 1987).

2.4 | The inverse problem

From a Bayesian perspective, the inverse problem can formulated as

trying to find the most likely electrical source configuration bx in the

gray matter given the scalp measurements b, the forward model A

and a prior probability over the distribution of x. This is known as the

maximum a posterior (MAP) estimate:

bxMAP¼ argmaxxp xjbð Þ¼ argmaxx
p bjxð Þp xð Þ

p bð Þ , ð4Þ

where p xjbð Þ is the posterior probability, p bjxð Þ is the likelihood func-

tion, and p xð Þ defines the prior. p bð Þ does not affect the maximizer

argument and can be ignored. In practice, we simplify the optimization

problem by taking the negative log-transform of the posterior distri-

bution, so that we minimize over a sum instead of maximize over a

product:

bxMAP¼ argminx � logp xjbð Þf g ð5Þ

¼ argminx � logp bjxð Þ� logp xð Þf g: ð6Þ

Given our assumption of normally distributed EEG data

(Equation (3)), the likelihood function of the data can be defined by a

Gaussian distribution:

p bjxð Þ¼
YM�1
i¼0

1

σ
ffiffiffiffiffiffi
2π
p exp � 1

2σ2
bi�a >i x
� �2� �

, ð7Þ

and its negative log-transform results in:

� logp bjxð Þ¼M log σ
ffiffiffiffiffiffi
2π
p� �

þ 1
2σ2

b�Axð Þ > b�Axð Þ: ð8Þ

This results in a likelihood function with a quadratic term plus

some constant term. The constant term does not affect the argument

of the minimization problem and can be ignored, thus leaving with the

well-known least-squares form:

� logp bjxð Þ¼ 1
2σ2

b�Axk k22: ð9Þ

For the prior distribution, we assume that brain activity follows a

sparse connectome spectral representation, which is well modeled by

the Laplacian probability distribution on the graph-Fourier trans-

formed coefficients:

p xð Þ¼
YN�1
i¼0

1
2β

exp �ju
>
i xj
β

� �
, ð10Þ

where β is a scale parameter related to the variance of the distribu-

tion. Its negative log-transform results in:

� logp xð Þ¼N log 2βð Þþ
XN�1
i¼0

j u>i x j
β

, ð11Þ

which, ignoring the constant term, results in the L1-norm:

� logp xð Þ¼1
β

Uxk k1: ð12Þ

Combining Equations (9) and (12), we can rewrite Equation (5) as:

bxMAP ¼ argminx
1
2σ2

b�Axk k22þ
1
β

U > x
		 		

1
, ð13Þ

¼ argminx b�Axk k22þ
2σ2

β
U > x

		 		
1
, ð14Þ

¼ argminx b�Axk k22þ λ U > x
		 		

1
, ð15Þ

where we have used the regularization parameter λ¼ 2σ2
β defines the

uncertainty trade-off between the likelihood and the prior. The

L1-norm acts as a regularization function that imposes structure (spar-

sity on some transform F). Another common way to look at this prob-

lem is the following. Given that the number of gray-matter sources N

is much larger than the number of M/EEG sensors M, the inverse

problem is under-determined or ill-posed. This means that there exists

an infinite number of source activity configurations (x) that can pro-

duce the measured EEG scalp potential (b) at a given time point. The

inclusion of a regularization function constraints the number of solu-

tions to a single one.

2.5 | Connectome spectrum electrical
tomography (CSET)

We have shown in previous publications that the neuronal activity is

sparsely represented by the connectome-based graph Fourier trans-

form (see Connectome Spectral Analysis), which decomposes brain

activity into a small number of active brain networks (Glomb

et al., 2020; Rué-Queralt et al., 2021). In addition to our research,

other studies have established a theoretical basis for the structural

constraint on functional connectivity (Atasoy et al., 2016; Atasoy

et al., 2018; Rue Queralt et al., 2022; Tewarie et al., 2019; Tewarie

et al., 2022). These works have revealed that neural mechanisms

relying on delayed excitatory-inhibitory interactions facilitate the

self-organization toward exciting a relevant set of eigenmodes
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(Atasoy et al., 2016; Tewarie et al., 2019). Moreover, previous investi-

gations have successfully applied structural eigenmodes to explain

brain activity during rest at very short timescale (Tewarie et al., 2022)

and evoked activity (Rue Queralt et al., 2022). These findings suggest

that these eigenmodes play a crucial role in dynamically integrating

and segregating information across the cortex, thus serving important

cognitive functions. In this study, we present CSET, a novel approach

that addresses the optimization problem outlined in Equation (13).

We achieve this by representing brain activity as a constrained combi-

nation of active eigenmodes, emphasizing sparsity within the connec-

tome spectrum basis:

bxCSETt ¼ argminx bt�Axk k22þλ U> x
		 		

1
, ð16Þ

where bxCSETt is the CSET source reconstruction at time t, bt is the EEG

data vector at time t, U is the connectome-based graph Fourier trans-

form matrix containing the approximately 8000 eigenvectors of the

structural connectivity normalized graph Laplacian. The following

steps are performed by CSET to reconstruct sources:

1. Depth normalization: The least squares term in Equation (16) term

is known to bias the optimized solution toward sources that are

closer to the electrodes (Uutela et al., 1999). This can be alleviated

by incorporating adding penalty function with a weighting factor

composed by an L2-norm term (Lin et al., 2006). Here, in order to

avoid the increased computational effort of this approach, we

adopt a strategy that is also implemented in MNE-Python, namely

weighting the rows of the lead field matrix prior to reconstruction:

eAi¼ Ai

Aik k2
: ð17Þ

2. M/EEG data normalization: The statistics of the measured signal will

affect the optimal parameter λ in Equation (16). To make the

choice of λ not rely on the measurements, we normalize the mea-

sured signal as follows:

ebt¼bt= btk k2: ð18Þ

3. Minimization via accelerated proximal gradient descent of:

bxt¼ argminx
ebt� eAx			 			2

2
þλ U> x

		 		
1: ð19Þ

Equation (19) contains a non-differentiable functional (L1-norm)

and iterative optimization methods based solely on the gradient, such

as gradient descent, cannot be used. Instead, we relied on the acceler-

ated proximal gradient descent method (Liang et al., 2022), a well-

known primal-dual splitting optimization algorithm. The steps to

reconstruct the sources from a single EEG time point using this algo-

rithm are explained in Algorithm 1.

The optimization is solved with Pyxu (pyxu-org.github.io/)

(Simeoni et al., 2023), a Python package for solving linear inverse

problems. The step τ¼1=ρ is selected with ρ being the gradient

Lipschitz constant of the least squares term in Equation (19), to fulfill

the convergence rates guarantees. As a stopping criterion, we

selected an absolute relative error of ϵ¼10�4. The proximity operator

is a mathematical tool that executes a step analogous to gradient

descent but is specifically designed for non-smooth functions, such as

those involving the L1-norm:

prox
λ

			U > �			,τ zð Þ¼ zþU Sτ U > z
� ��U> z

� �
,

where, given an input vector z and a threshold τ, the soft thresholding

operator is defined as:

Sτ zð Þ¼ sign zð Þmax zj�τj0ð Þ:

The soft thresholding operator has the effect of setting values of

x with magnitude less than or equal to λ to zero, and otherwise shift-

ing values of x toward zero by λ.

4. Re-scale reconstruction: As a final step, the normalization factors

obtained in steps 1 and 2 are re-scaled back to the solution to the

optimization problem, resulting in the final electrical source

reconstruction:

bxCSETt

� �
i
¼ bxtð Þi Aik k2 btk k2: ð20Þ

2.6 | Datasets

Recently, two multimodal neuroimaging datasets have been released

that have great potential to help develop source imaging tools as well

ALGORITHM 1 CSET

Require τ 1=ρ

k 0

xk�1,xk x0

While True do

k kþ1

a k�1
kþ2

y 1það Þxk�axk�1
z y� τ2A > Ay�bð Þ
If xk�xk�1k k2= xk�1k k2 ≤10�4then
break;

end if

xk�1 xk

xk prox
λ

			U > �			,τ zð Þ
end while

RU�E-QUERALT ET AL. 7 of 14

https://pyxu-org.github.io/


as validate their performance and clinical relevance (VEPCON datasets

from now on) (Pascucci, Tourbier, et al., 2022). In these datasets,

visual evoked potentials were recorded for 20 participants while they

discriminated between either briefly presented faces and scrambled

faces on one hand, or coherently moving stimuli and incoherent ones

on the other hand. This dataset is openly accessible (https://

openneuro.org/git/0/ds003505). Apart from high-density EEG of

visually evoked potentials, the datasets also include structural MRI,

DWI, and single-trial behavior. This allowed us to study the recon-

struction of brain activity maps that activate in response to very well-

studied paradigms.

Apart from the data released along the original publication, here

we also include fMRI spatial maps of the same participants, under a

similar experimental task. These spatial maps are used in this work for

two different purposes. In a first instance, for each subject of the

VEPCON datasets, we used the fMRI activation pattern correspond-

ing to the subjects' response to a face stimulation paradigm as ground

truth. This ground truth signal was used as simulated electrical brain

activity and then used to compare against the reconstruction from the

simulated measurements.

Although neurovascular coupling—the complex mechanism that

connects neural activity to the blood flow changes captured by

fMRI—is not fully elucidated (Kim & Ogawa, 2012; Logothetis, 2008),

a significant body of evidence supports the notion that both fMRI and

EEG signals are predominantly indicative of synaptic activity within

the gray matter (Logothetis et al., 2001; Viswanathan &

Freeman, 2007). Several studies have revealed a meaningful correla-

tion between the fMRI signals (specifically, the BOLD response) and

local field potentials, across an extensive frequency spectrum

(Goense & Logothetis, 2008). These findings intimate a shared origin

of cortical synaptic activity between EEG and fMRI (He et al., 2008;

Laufs, 2008), thereby highlighting their intertwined nature. Conse-

quently, although EEG and fMRI signals manifest differences in spatial

and temporal dimensions and are characterized by individual sensitiv-

ity, resolution, and specificity scales (Nunez & Silberstein, 2000), a

meticulous approach allows for a comparative analysis between the

sources of fMRI and the estimates of EEG source reconstruction (He

et al., 2018).

2.6.1 | MRI pre-processing

The acquisition of functional MRI data (fMRI) was performed at the

HFR Fribourg—Hôpital cantonal (Fribourg, CH), using a Discovery

MR750 3.0T (GE Healthcare, Chicago, USA). fMRI data were acquired

while each subject performed two different visual tasks, one on faces,

and another on moving dots.

Across subjects, the order of the two tasks was counterbalanced.

For each task, we used a block structure similar to the one adopted

for the EEG session (see “Methods”), but with 48 trials for each task

condition (instead of 200). At the end of each block, the instruction to

“REST” was presented, followed by a fixed break of 12 s (Rest period).

Exceptionally, the last Rest period had a duration of 60 s. In each trial,

subjects had a limited time of 1500 ms to respond, after which their

response was considered incorrect.

An MRI-compatible fiber optic response pad (Current Designs

Inc., Philadelphia, USA) was used to collect the participant responses.

The visual stimuli were presented on a NordicNeuroLab (Bergen, NO)

MRI-compatible LCD monitor (32 inches diagonal size, 1920 � 1080

resolution, 405 c/m2 surface luminance, 4000:1 contrast, 60 Hz

refresh rate, 6.5 ms response time), placed above the scanner-bed at

244 cm from the subject's eyes and made visible to the subject

through a mirror placed on the head coil. Those subjects who suffered

from some eye disorder (e.g., myopia) wore MRI-compatible glasses

with appropriate lenses for optical correction. The fMRI data were

acquired using a T2*-weighted EPI sequence with 40 slices each, with

slice-thickness of 3 mm, between-slices spacing of 0.3 mm, inter-

leaved bottom-up slice acquisition, anterior-to-posterior phase encod-

ing direction, repetition time (TR) of 2500 ms, echo time (TE) of

30 ms, and flip-angle of 85�. The first 4 volumes of each run were

discarded.

The Statistical Parametric Mapping (SPM) toolbox was used for

preprocessing the fMRI data (toolbox version SPM12; University

College London, UK; https://www.fil.ion.ucl.ac.uk/spm/). First, the

functional images were aligned to the mean of each session, using a

two-pass realignment procedure for motion correction, and then a

slice-timing correction was applied 35. After realignment, the mean

functional image was co-registered to the anatomical image using the

normalized mutual information as the cost function. The SPM12 stan-

dard segmentation procedure was adopted to obtain the masks for

cerebrospinal fluid (CSF) and WM, which were used to extract the

time courses of CSF and WM signals for each subject. All images were

then normalized to the Montreal Neurological Institute and Hospital

stereotaxic space with a fourth-order B-spline interpolation and

smoothed with a Gaussian filter with 8 mm FWHM kernel.

2.6.2 | fMRI statistical maps

A two-stage approach based on a general linear model (GLM) was

employed to analyze the functional images. In this approach, the first-

level analysis was implemented using a block design with two regres-

sors of interest, each modeled with a boxcar function convolved with

the canonical hemodynamic response function. Two regressors of

interest were defined to model the two stimuli conditions (Faces

vs. Scrambled, on vs. off motion of the disk). The GLM included also a

set of nuisance regressors that modeled the six motion realignment

parameters, the mean signals in CSF and WM, and a constant term.

Finally, a high-pass filter (200 s cutoff) was applied to the functional

images time series, which allowed removing noise at very low fre-

quencies. The second-level group analysis was implemented on the

previously obtained statistical maps and involved voxel-wise t-test

comparison across participants. The obtained volumetric statistical

maps were mapped to the same surface used for source reconstruc-

tion in the native space, using the Freesurfer's mri_vol2surf function. A

group estimate of the response pattern to the stimuli was estimated
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by morphing each surface map to the same space (subject “sub-01”
native space). The average map was finally morphed back to the indi-

vidual's native space and used to assess the performance of source

reconstruction.

2.7 | Simulation of EEG data from fMRI data

To simulate the EEG signal, we used the entire fMRI map, incorporat-

ing both positive and negative BOLD responses. The fMRI pattern

was first standardized by dividing each voxel value by the standard

deviation of the entire fMRI map. Subsequently, the pattern was

shifted by its minimum value to exclude any negative values. This

approach was taken under the assumption that regions showing deac-

tivation in fMRI still engage in neural activity, albeit of a different

nature compared to the areas of activation. The process results in a

distributed simulated map with varying amplitudes across different

brain regions. We then applied the forward model with a matrix–

vector multiplication with the lead-field matrix. To mimic realistic con-

ditions, the generated EEG signals were corrupted with Gaussian

noise. The noise power was calculated based on a predefined SNR of

3 decibels (dB) as follows. While the spatio-temporal evolution of the

neural sources is an important consideration, it was not explicitly

modeled in this study for the sake of simplification and we limited our

analysis to a single time point. Future studies are planned to incorpo-

rate the temporal dynamics in the simulation. While the use of dec-

orrelated Gaussian noise in simulations allows us to assess the

efficacy of our regularizer prior to its application on real data, we rec-

ognize the simplicity of this simulation approach. In future studies, we

intend to include actual EEG background signals and adjust the brain-

to-skull conductivity ratio, thereby providing a more comprehensive

evaluation of the regularizer's performance.

3 | RESULTS

3.1 | Increased sensitivity toward physiological
patterns

In-silico simulations are a versatile tool for testing source reconstruc-

tion algorithms under various conditions, including different parame-

ter configurations, data sampling strategies, and assumptions

underlying the generative model of the signal. To minimize bias asso-

ciated with selecting the generative model and to generate brain

activity signals that are physiologically plausible, we used fMRI data as

ground truth signals (Figure 2a). Specifically, we utilized task fMRI to

obtain a detailed spatial response to faces and moving dots for each

participant. Figure 2a shows the activation pattern in response to

faces: the Fusiform Gyrus (FFA) is activated with some slight right

dominance while the default-mode network is suppressed, as it is

expected during the performance of a global visual discrimination task

(Singh & Fawcett, 2008).

We evaluated the performance of our proposed method, CSET,

and four state-of-the-art methods available in MNE-Python, Minimum

Norm Estimate (MNE), dynamic Statistical Parametric Mapping (Dale

et al., 2000), and exact and standardized LOw Resolution Electric

TomogrAphy (Pascual-Marqui et al., 2002), eLORETA (Pascual-Marqui

et al., 2011), by computing the r-squared metric, that is, the square of

the Pearson correlation coefficient, between the ground truth and

reconstructed signals. These tools use the EEG signal covariance in

their optimization algorithm. We model this covariance as a diagonal

matrix, with a standard deviation equivalent to the noise introduced in

the simulation. For real data, the covariance was computed for the

pre-stimulus time interval (�200 ms to 0 ms) using the compute_cov-

ariance function fromMNE-Python (Engemann & Gramfort, 2015). This

computation employed the “shrunk” and “empirical” methods. In the

determination of the regularization parameter λ, we employed a loga-

rithmic scale spanning 20 distinct values, ranging from 10�5 to 0:3.

Our analysis showed that CSET, which utilizes the subject-specific

brain connectivity map to reconstruct brain activity, outperformed the

other methods in terms of reconstruction accuracy under different

electrode montages (Figure 2c, d). In fact, CSET recovered the ground

truth signal with over twice the accuracy of the second-best method

(r=0.46 vs. r=0.23 with MNE). Furthermore, although CSET slightly

overestimates the sparsity in the distribution of Fourier coefficients

with respect to the fMRI graph, it offers the best approximation com-

pared to other methods, as shown in Figure 2e. This indicates that

state-of-the-art methods significantly underestimate the sparsity of

brain activity in this space. The Kolmogorov–Smirnov distance for

CSET is 0.42, compared to 0.59, 0.59, 0.62, 0.62, and 0.61 for the

other methods. Furthermore, CSET approximated the distribution of

Fourier coefficients from the fMRI graph better than the other

methods (Figure 2e), indicating that state-of-the-art methods signifi-

cantly underestimate the sparsity of brain activity in this space KS-dis-

tance=0.42 versus [0.59, 0.59, 0.62 0.62, 0.61].

Qualitative assessment of the reconstructions also revealed that

while the state-of-the-art methods tended to concentrate all the sig-

nal energy in frontal and parietal regions (i.e., regions close to the elec-

trodes), CSET was able to capture ventral activation (Figure 2f), which

are notoriously difficult to capture given their distance to the

electrodes.

3.2 | Improved EEG source reconstruction
accuracy

Visual evoked potentials of well-known neurophysiological paradigms

(such as face or motion perception) provide data with high SNR

(in comparison to other types of EEG experimental paradigms) and

their activation response is well documented in other imaging modali-

ties or animal models. We reconstructed brain activity maps from the

VEPCON EEG dataset (Pascucci, Tourbier, et al., 2022) (Figure 3a). This

dataset contains two sets of recordings of visual evoked potentials:

the face-stimuli dataset (response to faces vs. response to scrambled
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faces), and the motion-stimuli (response to coherent motion

vs. response to incoherent motion) (see “Methods”). We focus our

analysis of the spatial distribution of the reconstruction on each par-

ticipant's main activation peak, that is, the time point at which the dif-

ference in the measured EEG response between the experimental and

contrast stimuli is maximal in absolute terms. As a ground truth, we

compared the EEG reconstructions with the previously used fMRI

response.

Figure 3 shows two improvements in reconstructing brain

response during face and motion perception by the proposed CSET

method over state-of-the-art methods: first, their reconstructions

more accurately capture the expected activation pattern (retrieved

from fMRI), as shown by higher r-squared values (Figure 3b). Second,

the reconstruction is more precise for the CSET method, as shown by

the boosted signal-to-noise ratio (Figure 3c), and the enhanced

dynamics of each task's region of interest (Figure 3d, right fusiform

gyrus (FFA) in the face task and bilateral posterior middle-temporal

area (MT) in the motion task). The reconstructions are shown in

Figure 3e. The contrast between the activation levels for coherent

and random motion is generally smaller than that for faces versus

scrambled faces, resulting in less significant findings and a higher

apparent noise level in the data for the motion stimuli.

Recognizing the potential for variability, it is noteworthy that the

optimal λ value might differ across individual subjects. To assess

the sensitivity of our results to changes in λ, we conducted an analysis

wherein we perturbed the optimal λ value by a margin of 5%. The out-

comes of this sensitivity analysis, specifically focusing on the perfor-

mance metrics under near-optimal λ ranges, are detailed in Table 1.

4 | DISCUSSION

When planning an experiment requiring non-invasive neuroimaging,

choosing between high temporal and high spatial resolution is a classic

dilemma as usually these characteristics are mutually exclusive. ET is

in theory a promising answer to this dilemma, as it combines M/EEG

recordings with structural MRI to maximize resolution in both

domains. However, existing ET methods still lack accurate regulari-

zers, resulting in limited spatial resolution and unreliable outcomes

(Samuelsson et al., 2021).

To address this issue, we propose in this article a novel ET method,

CSET, which promotes sparsity in the connectome spectrum of brain

activity. Emerging research underscores the significance of connectome

harmonics or structural eigenmodes in providing a compact and function-

ally meaningful representation of electrophysiological activity (Glomb

et al., 2020; Rué-Queralt et al., 2021). This representation has demon-

strated efficacy in tracking fast brain dynamics and in elucidating the

intricate interplay between structural connectivity and cognitive func-

tions (Tewarie et al., 2022; Yang et al., 2023).

A sparse connectome spectrum implies that, at a given time point,

only a limited number of eigenmodes are actively contributing to brain

activity while others may have negligible contributions. The connec-

tome Laplacian eigenmodes represent specific spatial distributions of

brain connectivity that can be associated with different functional

processes or cognitive functions (Atasoy et al., 2016). By utilizing the

eigenvectors of the Laplacian, the CSET approach leverages

the brain's intrinsic organization to identify the most relevant spatial

modes that contribute to brain activity, thus helping in efficiently

characterizing and understanding brain dynamics.

Based on well-established signal processing tools for solving

inverse problems with signal sparsity, we incorporate diffusion MRI-

derived structural connectivity data into the solution, exploiting the

close relationship between brain function and brain structural connec-

tivity (Glomb et al., 2020; Rué-Queralt et al., 2021).

Previous research has explored the use of structural connectivity

priors to solve the M/EEG inverse problem. While these studies have

shown positive effects on reconstruction performance by enforcing

smoothness among connected sources (Belaoucha &

Papadopoulo, 2020; Kojči�c et al., 2021), sparsity (Hammond

et al., 2012), or temporal continuity among connected sources

(Deslauriers-Gauthier et al., 2019), we demonstrate that our method

significantly increases the accuracy and precision of reconstructed

brain activity signals. Using simulated EEG signals from fMRI

responses, we show that Bayesian optimization methods with brain

connectivity-derived regularizers capture realistic neurophysiological

patterns with better accuracy than uni-modal state-of-the-art

methods based on the temporal statistics of the data.

We also show that our method can reconstruct brain responses

with higher spatial localization and more robustness to intrinsic noise

in the EEG signal during two different perceptual processes using

measured EEG signals. The SNR of the reconstructed signal and the

signal energy in the brain regions most involved in the task are

increased. Our method takes advantage of the latest advances in

graph signal processing, compressive sensing, and connectomics,

addressing the problems of reliability and spatial resolution

simultaneously.

TABLE 1 Performance drop for near-optimal λ ranges metrics across subjects. This table summarizes the distributions of percentage of
performance drop (with respect to optimal performance) when varying the λ parameter 10% around the optimal value λ� ([0:95� λ�,1:05�λ�]). All
methods show a decline in performance with a median central tendency falling below 1%.

CSET MNE dSPM sLORETA eLORETA

5th Percentile 0.19 0.01 0.01 0.02 0.01

Median 0.84 0.04 0.05 0.05 0.04

95th Percentile 3.28 0.26 0.53 0.68 0.57
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It is important to note that while high-density EEG systems are

generally expected to offer more accurate source localization, the

relationship between the number of channels and source localization

accuracy isn't necessarily straightforward (see, e.g., Mikulan

et al., 2020). Various factors, including the SNR and the quality of the

forward model, can influence the outcome, potentially introducing

variability.

While the type of regularization is an important aspect in recon-

structing electromagnetic activity, other parts of the pipeline, such as

the data preprocessing, the optimization scheme, and the forward

model can be equally important in influencing the reconstruction. In

this work, we have not studied these other parts of the pipeline

in order to focus on the inverse problem. Future studies should assess

whether the performance of the proposed inverse problems is sys-

tematically affected by any steps of the pre-processing and forward

modeling.

In this work, we have only tackled regularization in the spatial

domain of the reconstruction. State-of-the-art approaches leverage

the temporal smoothness of the data to enforce continuity in the

reconstruction. In future approaches, we recommend tackling

the combination of regularization in the spatial and temporal domains.

While using the full rank matrix U in our analysis has its advan-

tages in preserving all available information, it is worth acknowledging

that the adoption of a smaller number of eigenmodes could present a

viable alternative, particularly in contexts where computational effi-

ciency is a priority. By selecting a subset of the most significant eigen-

modes, it might be possible to substantially reduce the computational

cost of the algorithm without markedly compromising the integrity of

the results. This approach could strike a balance between complexity

and performance, allowing for quicker analyses or application to larger

datasets. Future studies may explore the optimal selection criteria for

eigenmodes, considering both computational efficiency and the fidel-

ity of the underlying neurophysiological interpretation.

While the regularization parameter λ was tuned using a grid

search, we observed that the results demonstrated relatively low sen-

sitivity within the near-optimal range (see Table 1). Nevertheless,

meticulous tuning remains essential for our problem. Future work

should explore sophisticated methods that leverage the statistics of

the data and/or incorporate physiological measurements.

Recently, others have shown that cortical geometrical modes,

derived from the cortical geometry without long-range connectivity

derived, better explain the fMRI data than the connectome eigen-

modes (Pang et al., 2023). On a similar note, others have also demon-

strated that is the local cortical geometry connections that plays a

crucial role for the emergence of well-known functionally relevant

network harmonics (Naze et al., 2021). These results suggest that con-

nectome harmonics are robust to differences in long-range connectiv-

ity. This robustness indicates that our method is likely to be resilient

to potential anatomical connection errors stemming from the intrinsic

limitations associated with diffusion MRI data, such as missed or spu-

rious connections.

The main limitations of assessing the performance of EEG

source localization with fMRI measurements stem from the

differences in their physiological sources. The distance between

the EEG-generating neuronal population and the vascular supply

can lead to misalignment of EEG and fMRI sources due to BOLD

signal being haemodynamic. Additionally, various physiological pro-

cesses requiring energetic support, such as neurotransmitter syn-

thesis and glial cell metabolism, can cause haemodynamic BOLD

changes without corresponding EEG activity. In some cases, unsyn-

chronized electrophysiological activity or closed-source configura-

tions may result in differential sensitivity or invisibility to EEG.

Furthermore, transient electrophysiological activity may not induce

significant detectable metabolic changes (Daunizeau et al., 2010).

For the specific case of spatially localized neural activity patterns,

we foresee that solving ET by imposing sparsity the spectral graph

wavelet domain using spectral graph wavelet transform (Hammond

et al., 2011) will be advantageous. Wavelets can be understood as

band-pass filters on the graph spectral domain (see Figure 1d),

allowing to parameterize the signal of interest according to spatial

localization and spectral scale.

In conclusion, CSET is a unique non-invasive functional neuroim-

aging method that offers at the same time high spatial and temporal

resolution and accuracy of brain electrical activity. This is achieved by

a principled combination of readily available MRI and EEG measure-

ments. This method acknowledges the potential mismatch between

fMRI and EEG sources but also leverages the statistical properties of

the Bayesian approach to mitigate the risks of overfitting or artificial

bias. The strategy may not resolve all discrepancies or uncertainties

between fMRI and EEG, but it provides a reasoned, mathematically

grounded methodology that builds upon the known function–

structure connectivity relationship. It's an evolving field, and continu-

ous investigation and methodological refinement will be key to fully

elucidate these complex interconnections. This method will enable

neuroscientists to extend their current research by revisiting the

already collected MRI/EEG data or plan new projects that were up to

now out of reach.
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