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Molecular docking is a computational approach for predicting

the most probable position of ligands in the binding sites of

macromolecules and constitutes the cornerstone of structure-

based computer-aided drug design. Here, we present a new

algorithm called Attracting Cavities that allows molecular docking

to be performed by simple energy minimizations only. The

approach consists in transiently replacing the rough potential

energy hypersurface of the protein by a smooth attracting

potential driving the ligands into protein cavities. The actual pro-

tein energy landscape is reintroduced in a second step to refine

the ligand position. The scoring function of Attracting Cavities is

based on the CHARMM force field and the FACTS solvation

model. The approach was tested on the 85 experimental

ligand–protein structures included in the Astex diverse set and

achieved a success rate of 80% in reproducing the experimental

binding mode starting from a completely randomized ligand

conformer. The algorithm thus compares favorably with current

state-of-the-art docking programs. VC 2015 The Authors. Journal

of Computational Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24249

Introduction

Molecular docking is a computational approach for predicting the

most probable binding geometries of small molecules on macro-

molecular targets. Docking programs, which predict possible struc-

tures for ligand–target complexes and sometimes estimate the

corresponding binding affinities, constitute the cornerstone of

structure-based computer-aided drug design (SB-CADD). A dock-

ing program generally consists of a sampling algorithm and a scor-

ing function.[1–3] The sampling algorithm generates possible

positions for the ligand on the protein surface, while the scoring

function evaluates the goodness-of-fit to rank these putative bind-

ing modes and finally identifies the one most likely to correspond

to the native, experimental, binding mode.

A large number of sampling algorithms have been developed

over the last decades. They can roughly be divided into three

major categories: incremental reconstruction, stochastic search,

and simulation approaches.[2]

In incremental reconstruction, the molecule is divided into a

single rigid fragment and several shells of flexible extensions.

The rigid fragment, selected for its ability to make the highest

number of interactions with the receptor or for its central

position in the ligand, is docked first. The flexible moieties are

then reconnected incrementally.[4–6] A variant consists in

decomposing the molecule into several fragments that are

docked independently and later fused into the active site.[7–12]

Stochastic methods consider the ligand as a whole. Here,

the degrees of freedom for the ligand docking, e.g., the global

translation and rotation of the ligand in Cartesian space and

the values of the bond lengths, bond angles, and dihedral

angles are energy optimized using different approaches such

as evolutionary algorithms (EA),[13–17] Monte Carlo (MC) algo-

rithms,[18–21] or swarm intelligence (SI) approaches.[22–25]

Simulation approaches consist in molecular dynamics simu-

lations and geometry optimization methods to minimize the

energy of the ligand–target complex. These approaches are

generally unable to cross high-energy barriers of ligand–pro-

tein interaction. Therefore, the ligand–target complex geome-

try is often trapped in local energy minima corresponding to

nonnative binding geometries,[26] although it was shown

recently that the global minimum can be determined using

replica exchange simulations in some cases.[27] As a conse-

quence, simulation approaches are seldom used as stand-

alone sampling algorithms. However, they can efficiently

improve other search methods by locally refining poses sug-

gested by MC-, EA-, or SI-based algorithms, for instance. This

approach is used, for example, in AutoDock,[15] AutoDock

Vina,[19] ICM,[28] DOCK,[10] or EADock.[6,13,14]
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Energy minimization algorithms yield an inefficient sam-

pling procedure as the energy landscape is dominated by the

1/r212 repulsive component of the Lennard–Jones potential,

with no driving force toward the protein surface. To circum-

vent this problem, we tuned the energy landscape by replac-

ing the rough repulsive protein landscape by a smooth

attractive landscape generated by virtual attracting points

placed on a cloud surrounding the protein. In this so-called

attracting cavity landscape, the energy minimizations not only

drive the system very efficiently toward binding cavities but

are also much faster since the atoms of the protein are no

longer present. Once the algorithm has found a favorable

conformation in the attracting cavity landscape, the ligand

conformation can be optimized in the actual protein land-

scape to provide the final adjustments and to obtain a reli-

able energy value. Here, we describe a simple ligand–protein

docking algorithm, called “Attracting Cavities” (AC). The sam-

pling procedure of AC is constituted only of ligand energy

minimizations in the attracting cavity landscape, and its scor-

ing function is based on the CHARMM[29] force field and the

FACTS solvation model.[30] Although AC has been tested for

rigid-protein docking, it can be modified to account for the

flexibility of the protein.

After describing the method, we test AC on the 85 experi-

mental ligand–protein structures of the Astex diverse set[31]

and compare to state-of-the art docking programs.

Methods

Docking algorithm of the attracting cavities approach

In the AC approach, the direct docking of a small molecule in

the “actual” energy landscape of the protein (blue arrow in

Fig. 1) is replaced by the following procedure (red arrows in

Fig. 1):

1. First, two sets of points situated in the cavities and at the

surface of the protein are calculated. The points of the first

set, called the attracting cloud, are fitted with the attractive

part of a Lennard–Jones potential. The points of the second

set, called the electrostatic cloud, are fitted not only with

the same attractive part of a Lennard-Jones potential but

also with a charge mimicking the electrostatic potential cre-

ated by the protein charges on that point.

2. The protein is then removed, while the cloud points are

kept, creating a “mold” potential of the protein.

Figure 1. AC algorithm. The attracting and electrostatic cloud points are shown as green and orange spheres, respectively. The numbering of the arrows

corresponds to the description of the algorithm given in the text.
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3. The ligand conformation is stretched by applying 500 steps of

the adopted-basis Newton Raphson (ABNR) energy minimiza-

tion algorithm after imposing a 10.2e charge on all atoms.

The ligand native partial charges are reintroduced after this

minimization, before performing the sampling. The ligand

principal axes are aligned with the x, y, and z axes, and the

ligand is subsequently centered on each point of the attract-

ing cloud, in all the orientations obtained by systematic and

combinatorial rotations along the x, y, and z directions. The

rotation step can be 458, 608, or 908, defining the sampling

thoroughness. Starting from each position and orientation,

the ligand is minimized by 1500 steps of ABNR algorithm, in

the energy landscape created by the two clouds. The simple

potential energies created by the points of the attracting and

electrostatic clouds create a smooth and mainly attractive

potential. This allows the ligand to easily reach positions cor-

responding to local energy minima (e.g., fitting inside protein

cavities with complementary shape and charges) by energy

minimization. A soft-core correction is applied to the electro-

static and van der Waals potentials of the cloud points to pre-

vent energetic divergence when ligand atoms are

superimposed to them.

4. Then, the cloud points are removed, and the protein force

field is reintroduced in two steps. First, the ligand, starting

from each position determined in step 3, is energy-minimized

by 1000 steps of ABNR while the protein is described by a

soft-core potential. This procedure intends to correct steric

clashes caused by reintroduction of the protein.

5. Subsequently, the ligand, starting from each position deter-

mined in step 4, is energy-minimized using 200 steps of

ABNR in the protein energy landscape, as established by

the CHARMM22 or CHARMM27 force field without any cor-

rection. The ligand is flexible during the minimization proce-

dures of steps 4 and 5.

6. Finally, the ligand positions generated in step 5 are ranked

according to the EADock[13] scoring function[32,33] that

accounts implicitly for solvation energy. Binding modes are

clustered based on their Cartesian coordinates, with a 2 Å

cluster radius. For this, the top-ranked binding mode is cho-

sen as center for the first cluster. Binding modes closer than

2 Å from it are assigned to this first cluster. The next most

favorably ranked binding mode is chosen as the center for

the second cluster, and its neighbors are assigned to this sec-

ond cluster. This procedure continues until all binding modes

have been assigned to a cluster. Lastly, a maximum of eight

members are kept in each cluster. The remaining members,

corresponding to the less favorably scored binding mode in

each cluster, are discarded to limit the size of the output. The

score of a cluster corresponds to the average energy of its

three top-scored members, to limit the risk that a few com-

plexes penalize the whole cluster. This clustering and scoring

procedure was taken from that of EADock,[13] which shares

the same scoring function. EADock was developed and

benchmarked using the Ligand Protein Databank (LPDB)[34]

and not the Astex dataset. Therefore, this procedure was not

optimized to increase the success rate of AC on the Astex

dataset, limiting the risk of overfitting.

Determination of attracting cloud points

A simple geometric algorithm is used to define the points of

the attracting cloud. First, the search space, which is defined

as an orthorhombic box whose center and size are chosen by

the user, is filled with a 1 Å cubic lattice. Each lattice point is

surrounded by two spheres of radius Rin and Rout, with

Rout> Rin. A grid point is chosen to be an attracting point if

the number of protein heavy atoms in the inner sphere (Nin) is

null, if the number of protein heavy atoms in the outer sphere

(Nout) is larger than a chosen threshold value (NThr), and if it is

not closer than 1.5 Å from another attracting point (Fig. 2). Rin,

Rout, and NThr are parameters of the method, while Nin and

Nout are calculated values for a given position in space.

The Nin 5 0 condition excludes points within the volume occu-

pied by the protein. A value of 3.2 Å was determined for Rin.

This is 0.2 Å smaller than the smallest sum of van der Waals radii

for two protein heavy atoms in the CHARMM force field, i.e., 2

3 1.7 Å for two backbone oxygen atoms. This value was used

to fill even small yet relevant cavities with attracting points. The

second condition, Nout�NThr, concentrates the attracting points

close to the protein and provides a simple mean to fine-tune

the sampling procedure so that docking focuses more on deep

protein cavities or, on the contrary, also includes less concave

regions, such as shallow grooves on the protein surface (Figs. 2

and 3). Large values of NThr concentrate attracting points in pro-

tein cavities, while smaller values extend the distribution to less

concave portions of the protein surface. Very small NThr values

allow covering the entire surface of the protein, including con-

vex regions. Focusing the sampling algorithm on protein cavities

increases the docking speed but might lead to sampling failures

in case the experimental binding mode is not inside a well-

defined and buried binding pocket. A value of 8 Å was arbitrarily

chosen for Rout. This value of Rout was found to be large enough

to locate a significant number of protein atoms (Nout) in the cor-

responding sphere and small enough to consider only the topol-

ogy of the protein around the lattice point. Since the effect of

the Rout and NThr values are linked, we only tested the influence

of NThr. Values of 50, 60 and 70 for NThr were found to provide

the best compromise between speed and sampling thorough-

ness given this Rout value.

Determination of electrostatic cloud points

The points of the electrostatic cloud are chosen in the close

vicinity of the protein surface. First, the orthorhombic search

space is filled with a 1.5 Å cubic lattice. To be further consid-

ered, a lattice point must be situated at a distance larger than

Rp 1 0.3 Å from any protein atom (where Rp is the van der

Waals radius of the protein atom) and smaller than Rp 1 0.6 Å

from at least one protein atom. The pseudo-charge of each

retained lattice point, Clp, is calculated as Clp 5 f 3 Ep, where

Ep is the electrostatic potential created by the protein on the

point, and f 5 0.01e kcal21 mol. Finally, the lattice point is

selected as part of the electrostatic cloud if the absolute value

of its charge, Clp, is larger than 1.2e. This limits the number of

points in the electrostatic cloud so as to create a smooth

energy landscape.
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Energy calculation and scoring

All energy calculations were performed with the CHARMM[29]

Molecular Mechanics package versions 34a1 and 36b1. The

proteins and ions were modeled using the all-atom

CHARMM22[35] force field, while the ligands were modeled

using topology and parameters obtained from our SwissParam

server[32] (www.swissparam.ch). Noticeably, the CHARMM27

potential energy function can be used in place of CHARMM22

without changes in the AC code and does not affect docking

results, energy estimation, or success rate.

Docking poses were ranked according to the free energy of

the complex calculated using the molecular mechanics—gen-

eralized Born surface area method (MM-GBSA). The scoring

function, DGscore, can be written as

DGscore5Eintra;lig1Eintra;prot1Evdw1Eelec1DGsolv;elec1DGsolv;np

where Eintra;lig and Eintra;prot are the internal energies of the

ligand and the protein, respectively; Evdw and Eelec are the van

der Waals and Coulomb electrostatic energies of interaction

between the ligand and the protein, respectively; DGsolv;elec is

the electrostatic solvation energy of the complex calculated

with FACTS[30]; and DGsolv;np is the nonpolar solvation energy

that is estimated as being proportional to the solvent accessi-

ble surface area of the complex. We used a solute dielectric

constant of 2, a nonpolar surface tension coefficient of 0.015

kcal mol21 Å22 and a 12 Å cutoff on nonbonded interactions.

These values were found previously to provide the best per-

formance in docking experiment using the abovementioned

scoring function, which is described in detail in Zoete et al.[33]

Preparation of the Astex diverse set for validation

and benchmarking

We used the Astex diverse set,[31] comprising 85 high-quality

experimental structures of ligand–protein complexes, to vali-

date and benchmark the approach. This set has recently been

used to test several well-established docking approaches and,

therefore, allows a comparison of the AC algorithm with a

large number of docking programs.[36–43]

Setup of the 85 complexes for use with CHARMM was per-

formed as follows. Each experimental structure was down-

loaded from the Protein Databank[44] (www.rcsb.org).

Structures were visually inspected with the UCSF Chimera visu-

alization program.[45] Incomplete side chains were corrected

by UCSF Chimera using the Dunbrack rotamer library.[46] Titrat-

able groups were considered in their standard protonation

state at neutral pH. The protonation state of histidine residues

was defined based on inspection of their environment. Missing

hydrogen atoms in the crystal structure were added using the

HBUILD[47] procedure of CHARMM. Water molecules and non-

complexed ions were removed.

Before starting the docking process, the crystal structures

were minimized using 100 steps of steepest descent algorithm,

while applying a 5 kcal mol21 A22 constraint on all heavy

atoms. This short energy minimization was used to remove

Figure 2. Algorithm to determine the attracting cloud points. Brown crosses represent example grid points surrounded by their inner (brown) and outer

(green) spheres of radius Rin (3.2 Å) and Rout, (8.0 Å) respectively. Protein atoms are shown as van der Waals spheres. A grid point is elected attracting

point if the number of protein heavy atoms in the inner sphere (Nin) is null, if the number of protein heavy atoms in the outer sphere is larger than NThr,

and if it is not closer than 1.5 Å from another attracting point. Large values of NThr (70 and above) strictly concentrate attracting points in protein cavities,

while smaller values (50 to 60) extend the distribution to less concave regions of the protein surface. Even smaller NThr values allow covering the entire

surface of the protein, including convex regions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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clashes arising from the X-ray structures and hydrogen atom

placement without affecting the protein conformation. The

root-mean-square deviation (RMSD) between the starting and

final conformations, calculated for all heavy atoms, was always

lower than 0.15 Å. The ligand was removed before starting the

docking process. When several copies of the ligand were pres-

ent in the system, we redocked the one originally chosen in

the Astex diverse set and kept all other copies in the protein

structure during the docking.

Docking with AC, Autodock 4.2, and Autodock Vina

Docking with AC was performed as described earlier. The

search space was defined as a cubic box with an edge length

of 25 Å, centered on the geometrical center of the experimen-

tal pose of the ligand. Several docking campaigns were per-

formed, with different values of the NThr parameter (50, 60, or

70) for the determination of the attracting cloud, different val-

ues of the rotation step (458, 608, and 908) for the seeding pro-

cedure, and different starting conformations of the ligand. Two

different starting conformations were used: the native confor-

mation of the experimental binding mode or a conformation

generated by Open Babel,[48] version 2.3, from the SMILES of

the ligand. The latter was used to assess the ability of the

approach to redock the ligand starting from a random confor-

mation generated by a standard chemoinformatics package

and not from a simple randomization of the dihedral angles

starting from the bioactive conformation as is often done in

benchmark studies. This approach stands for a much more

realistic application, since it assesses the ability of the

approach to optimize also the value of the bond lengths and

angles and the conformation of nonplanar cycles during the

docking. The configuration of asymmetrical carbon atoms and

double bonds generated by Open Babel were visually checked

and corrected when necessary to preserve the chirality as

found in the co-crystallized ligand.

To complete the comparison of AC with well-established

docking software, we benchmarked Autodock 4.2[15] and Auto-

dock Vina[19] on the Astex diverse set. These two programs are

among the most cited open-source and freely available dock-

ing programs.[49,50] For the sake of comparison, the same 25

Å3 cubic search space was defined as for AC. We used the

default values for the parameters of both programs, with the

exception of the sampling parameters. For Autodock, we used

two different sets of sampling parameters: 100 genetic algo-

rithm runs with a maximum of 12,500,000 energy evaluations,

and 200 genetic algorithm runs with a maximum of

25,000,000 energy evaluations. For Autodock Vina, three differ-

ent exhaustiveness values were set: 8, 100 and 1000.

Determination of success rate

The success rate was defined as the ability of the docking pro-

gram to reproduce the experimental binding mode within 2 Å

RMSD. Two success rates were calculated, at rank 1 and at

rank 5, depending on whether the experimental binding mode

was reproduced by the top-scored calculated cluster of bind-

ing modes or by one of the five top-scored ones. The RMSD

Figure 3. Distribution of attracting points on the surface of HSP90 (2BSM

in the PDB), as a function of NThr. Attracting points calculated using

NThr 5 70, 60, and 50 are shown as orange, pink, and green spheres,

respectively. The experimental position of the HSP90 ligand is shown in

thick line to locate the binding pocket. NThr 5 70 concentrates the attract-

ing points in the binding pocket, while NThr 5 50 extends the distribution

to all protein invaginations. The distributions were calculated with Rin 5 3.2

Å and Rout 5 8.0 Å. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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between the calculated and experimental binding modes was

measured using heavy atoms only and taking the ligand sym-

metry into account using the approach described by Trott and

Olson.[19]

Results and Discussion

In the first step of the AC algorithm, the rough “actual” energy

landscape of the protein is replaced by a smooth attractive

energy landscape. Figure 4 illustrates this concept. The energy

minimization of a ligand submitted to the attractive energy

landscape (Fig. 4C) is expected to guide the ligand toward the

protein binding site, even when starting from a remote posi-

tion. On the contrary, the existence of several high-energy

regions in the actual energy landscape of the protein (Fig. 4B),

which correspond to steric clashes with the protein, prevents

the existence of a long-range driving force toward the binding

site. Note that energies are given in log-scale in Figure 4B but

not in Figure 4C.

Table 1 shows the success rate obtained by AC, using differ-

ent sampling conditions and ligand initial conformations.

When the AC approach uses the bioactive ligand conformer

during the initial ligand positioning, the success rate for the

top-ranked binding mode in reproducing the X-ray native

binding mode ranges from 83.5% to 88.2%. Not surprisingly,

the success rate is higher when the thoroughness of the sam-

pling is increased by applying smaller rotation steps during

the initial ligand positioning. In about 95% of the cases, the

native binding mode was found within the five top-ranked

docking solutions. This illustrates the good performance of the

scoring function, which is able to rank the native binding

mode first in about 90% of the cases when the native binding

mode is indeed present among the docking poses. Impor-

tantly, although starting from the experimental conformer pro-

vides an advantage for the sampling approach, this does not

correspond to a rigid body ligand docking. Indeed, during the

docking process, the ligand is prepositioned on the points of

the attracting cloud, which unless by chance does not contain

the geometrical center of the ligand in the experimental struc-

ture. In addition, the ligand is energy-minimized during the

docking and does not retain its bioactive conformation.

When the memory effect of the ligand geometry is totally

erased by recreating a 3D conformer with Open Babel from

the ligand SMILES, i.e., from a 1D chemical structure notation,

the success rate ranges from 74% to 84% for the top-ranked

docking solutions and 84% to 93% within the five top-ranked

docking solutions. The success of a docking is not determined

by the differences between the native and the randomized

conformations. Indeed, for the 69 docking successes obtained

starting from a randomized conformation and using NThr 5 50

and 458 rotation steps during the sampling, the RMSD calcu-

lated on the heavy atoms between the native and starting

randomized conformers (RMSDstart) ranges from 0.07 to 3.71 Å

(with a median RMSDstart of 1.6 Å). RMSDstart was larger than 2

Å for 17 ligands. For the 16 docking failures in the same con-

ditions, RMSDstart ranges from 0.12 to 3.66 Å (with a median

RMSDstart of 1.8 Å). RMSDstart was larger than 2 Å for 6 ligands.

This indicates that, despite the absence of a specific dihedral

optimization during the docking, the conformational sampling

of the ligand provided by simple energy minimization in the

AC environment is sufficient to generate native-like conforma-

tions and binding modes in most cases, even when starting

from remote conformers (Fig. 5A).

When a large rotation step is applied during the sampling

(i.e., 908, see Methods), a low value of NThr, which focuses the

sampling in protein cavities, provides a higher success rate

compared to larger NThr values, which extend the search on

less concave regions. This is easily explained by the fact that

most of the ligands in the Astex test set are buried in deep

Figure 4. Comparison between the “actual” energy landscape of the pro-

tein and the attracting cavity landscape. A) Experimental structure of the

Imatinib/c-Kit complex (PDB[44] ID 1T46[65]). C-Kit is displayed as a beige

ribbon and Imatinib in ball and stick representation. Green dots show the

plane on which the “actual” or the attracting cavivity energy landscapes

were calculated. (B) Log-scale of the “actual” energy landscape of the pro-

tein. (C) Attracting cavity energy landscape, calculated as described in the

Methods section for an aliphatic carbon atom with a charge of 20.09 e.

The energy minimum corresponds to the center of the binding site. The

attracting cavity energy landscape offers a smooth driving force for energy

minimization, contrarily to the rough actual energy landscape. Heat maps

were obtained using the gnuplot program (http://www.gnuplot.info).
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cavities: the limited sampling offered by a 908 rotation step is

sufficient if the search is limited to well-defined cavities, but

somewhat insufficient if extended to the whole protein

surface. When the sampling is strengthened by applying

smaller rotation steps (i.e., 608 or 458) high success rates are

also obtained when the entire surface of the protein is

included (NThr 5 50). Therefore, a sound choice for NThr and

the rotation steps enables the user saving time during the

docking with AC by focusing the search in cavities if the

ligand is known to be deeply buried or extending the search

to the entire protein surface with equivalent efficiency

otherwise.

We have chosen to validate the AC approach on the Astex

diverse set[31] of ligand-protein complexes since several dock-

ing algorithms, i.e., ICM,[28] Glide SP,[51,52] GOLD,[16] Surflex-

Dock,[53] FRED,[54] DOCK6,[10] MOE Docker,[55] and LEAD

Finder,[56] were benchmarked on this test set in a recent series

of concerted articles.[36–43]

To complete the comparison, we also benchmarked Auto-

Dock 4.2 and Autodock Vina, since they are currently the

most-cited free and open-source docking programs.[49,50] For

AutoDock and AutoDock Vina, the docking was performed

using exactly the same starting conformations of the ligand

and the same search space as for AC. Several values of the

sampling parameters were used to test the performance of

the programs in different conditions. Docking parameters and

search spaces were different for the other software and are

briefly mentioned in Table 1, when known. When starting

from the bioactive conformer, the success rate of Autodock

Vina ranges from 76.5% to 81.2% for the top-ranked calculated

binding modes, as a function of the search exhaustiveness,

and from 90.6% to 91.8% when considering the five top-

ranked binding modes. These results are comparable to the

80% success rate recently published for the same benchmark

set in similar conditions.[57] When starting from a ligand con-

formation generated by Open Babel, the rank1 and rank5 suc-

cess rates range from 62.3% to 65.9% and from 74.1% to

78.8%, respectively. Using large values for the sampling param-

eters, Autodock 4.2 success rate at rank1 and rank5 is around

55% and 80%, respectively, when starting from the bioactive

Table 1. Success rate, in %, considering only the top-ranked binding mode (Rank 1) or the 5 top-ranked binding modes (Rank 5) and average CPU time

for one docking run, in minutes, on a single Xeon E5440 2.83 GHz.

Random conformer X-ray conformer

Software Conditions Rank1 Rank5 Rank1 Rank5 CPU Time (min)

Attracting Cavities NThr 570 1 90 deg rot./(25 Å)3 box 81.2 90.6 84.7 95.3 134

NThr 560 1 90 deg rot./(25 Å)3 box 75.3 89.4 83.5 94.1 210

NThr 550 1 90 deg rot./(25 Å)3 box 74.1 83.5 83.5 92.9 360

NThr 570 1 60 deg rot./(25 Å)3 box 83.5 91.8 84.7 94.1 460

NThr 560 1 60 deg rot./(25 Å)3 box 77.7 87.1 87.1 96.5 730

NThr 550 1 60 deg rot./(25 Å)3 box 81.2 91.8 87.1 95.3 1250

NThr 570 1 45 deg rot./(25 Å)3 box 82.4 92.9 87.1 95.3 1000

NThr 560 1 45 deg rot./(25 Å)3 box 81.2 91.8 88.2 94.1 1600

NThr 550 1 45 deg rot./(25 Å)3 box 81.2 92.9 87.1 95.3 2650

Autodock Vina[19] Exhaustivity 5 8/(25 Å)3 box 62.3 74.1 76.5 90.6 4

Exhaustivity 5 100/(25 Å)3 box 65.9 77.7 80.0 91.8 35

Exhaustivity 5 1000/(25 Å)3 box 65.9 78.8 81.2 91.8 195

Autodock 4.2[15] run100; pop_size5150; num_evals5

12,500,000/(25 Å)3 box

47.1 65.9 55.3 78.8 200

run200; pop_size5150; num_evals5

25,000,000/(25 Å)3 box

45.6 65.9 55.3 80.0 1050

ICM[28] Search space is an orthorhombic box,

extending 4 Å from the native binding

mode in each direction. 10 runs.

91[36] 95 [a][36] NA NA NA

Surflex-Dock[53] ?? 66[37] NA NA NA NA

FRED[54] ?? 70[38] NA NA NA NA

DOCK6[10] Search space is extending 8 Å from heavy

atoms in native binding mode

70.3[39] NA 76.4[39] NA NA

Search space is extending 10 Å from heavy

atoms in native binding mode

65.2[39] NA NA NA NA

MOE Docker[55] ?? 80[40] NA NA NA NA

Glide SP[51,52] Search space dimension 5 14 1 0.8x (max

separation of ligand atoms in Å)

82[41] NA NA NA NA

GOLD[16] Search space defined as the residues with

at least one heavy atom within 6 Å from

the native binding mode of the ligand.

Important water molecules kept.

87[42] NA NA NA NA

LEAD Finder[56] Success if 10 runs within 2 Å out of 20. 74.1[43] NA NA NA NA

A success is defined as the ability to reproduce the experimental binding mode of a protein-ligand complex within 2 Å RMSD. For attracting cavities

(AC), the NThr parameter determines the thoroughness of the AC sampling procedure; NThr570 concentrates the sampling efforts on cavities, while

NThr550 samples the entire protein surface (see Methods). The rotation step of the initial ligand positioning procedure is also given, in degrees.

[a] Rank3 instead of Rank5. ??, no precise indication was given about the search space and the docking parameters in the literature; NA, not available.
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conformer, and 47% and 66% when starting from a conforma-

tion generated by Open Babel. These results show the exis-

tence of a memory effect in the success rates of Autodock 4.2

and Autodock Vina regarding the ligand starting geometry,

although these programs are generally considered to experi-

ence little or no such effect. We think that starting the docking

from a ligand conformer generated by a chemoinformatics

package, rather than just randomizing the dihedral angles as it

is often done, provides a more realistic assessment of the pro-

gram performance. Indeed, this process mimics real docking

campaigns where the ligand geometry is usually generated by

chemoinformatics programs with 1D or 2D chemical defini-

tions as input. This procedure requires the docking program

to also optimize the bond lengths, bond angles, and the con-

formation of nonaromatic cycles during the sampling process.

Noticeably, the performance of Autodock Vina on this bench-

mark set depends little on the value of the exhaustiveness

parameter.

Table 2 provides the number of sampling and scoring fail-

ures for each AC, Autodock 4.2, and Autodock Vina run. A run

was considered a sampling failure when no docking pose

within the five top-ranked clusters has a RMSD from the X-ray

binding mode lower than 2 Å. We considered only the five

top-ranked clusters rather than the entire population of poses,

since this would artificially favor AC, which can output many

very diverse poses including the highest energy ones. If a run

was not a sampling failure, it was considered a scoring failure

if no docking pose with a RMSD from the X-ray binding mode

lower than 2 Å was ranked first. When starting from the bioac-

tive conformer, the fraction of sampling and scoring failures of

the different AC runs (from 3.5% to 7.1% and from 6.3% to

11.3%, respectively) are comparable yet somewhat lower than

that of Autodock Vina (from 8.2% to 9.4% and from 11.5% to

15.6%, respectively) and significantly smaller than that of Auto-

dock 4.2 (from 20.0% to 21.2% and from 29.9% to 30.9%,

respectively). When starting from a random conformer, the

fraction of sampling failures increases twofold for AC (from

7.1% to 16.5%), threefold for Autodock Vina (from 21.2% to

26.9%), and significantly for Autodock 4.2 (34.1%). The rate of

scoring failures is unchanged for Autodock 4.2 and slightly

higher for AC (from 9.0% to 11.3%, with one run at 15.8%)

and for Autodock Vina (from 15.2% to 16.4%). Only nine test

cases lead to 80% of AC sampling failures. These complexes

are characterized by either direct contact between the ligand

and a metal ion, Zn (1HQ2), or several water molecules bridg-

ing the ligand–protein interactions (1W1P, 1XOQ, 1MEH, 1SQ5,

1HVY, and 1N2J). These explicit water molecules were removed

prior to the docking. Sampling failures occur systematically

when starting from the random conformer in only two test

cases: 1HVY and 1VCJ. Similarly, only nine test cases lead to

80% of the scoring failures. In four of them, i.e., 1P2Y, 1JD0,

1OQ5, and 1R1H, the ligand is interacting directly with a metal

ion (Zn, or the Fe atom of a heme moiety). Other cases, i.e.,

1N2J, 1GM8, 1G9V, 1HVY, and 1MEH, are characterized by a

large number of ligand–protein interactions bridged by water

molecules. The Astex test set contains one case where the

ligand is in direct interaction with a heme Fe atom and two

cases with a Mg atom, which all lead to docking failures. In 13

cases, where the ligand is in contact with a Zn atom, AC

obtains a success rate of 70% (so lower compared with the

entire Astex test set). This difficulty to predict binding modes

in proteins with important metal atoms in the binding site is a

known limitation of the scoring function employed here. This

can be corrected using a morse-like metal binding potential

(MMBP)[58] or a QM/MM rescoring.[59] In summary, nearly all

Figure 5. Examples of docking success and failure. (A) Top: ligand confor-

mation in the native binding mode (left) compared with the randomized

conformation (right) for 1YWR[66]. The RMSD between the two conforma-

tions calculated on the heavy atoms after fitting is 3.7 Å. Bottom: compari-

son between the experimental binding mode (ball and stick) and the top-

ranked binding mode calculated with AC (cyan stick). The RMSD between

the two binding modes is 1.0 Å, corresponding to a docking success. (B)

Top: ligand conformation in the native binding mode (left) compared with

the randomized conformation (right) for 1HVY[67]. The RMSD between the

two conformations calculated on the heavy atoms after fitting is 3.2 Å. Bot-

tom: comparison between the experimental binding mode (ball and stick)

and the top-ranked binding mode calculated with AC (cyan stick). The

RMSD between the two binding modes is 2.8 Å, corresponding to a dock-

ing failure. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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sampling and scoring failures of AC could be attributed to the

presence of a metal ion in the binding site or the fact that

numerous important water molecules were removed before

the docking. In all other complexes tested, AC provided satis-

factory results.

In comparison, six test cases lead to systematic sampling

failures with Autodock Vina, regardless of the starting confor-

mation or sampling exhaustivity. They are characterized by the

direct interaction of the ligand with a heme Fe atom (1P2Y) or

several important water molecules in the active site (1G9V,

1SQ5, 1W1P, 1GM8, and 1HVY). They account for 40% of the

sampling failures of Autodock Vina. However, 11 additional

test cases lead to a systematic sampling error when starting

from a random conformer, while leading to a docking success

or a scoring failure when starting from the bioactive conforma-

tion: 1L2S, 1L7F, 1MMV, 1MZC, 1N2J, 1OWE, 1Q41, 1T46, 1U4D,

1YWR, and 2BM2. Fourteen test cases account for 90% of the

scoring failures of Autodock Vina. Some are characterized by

the direct interaction of the ligand with a Zn atom (1JD0,

1R55) or important water molecules in the active site (1MEH,

1UOU, 1N2V, and 1U4D). For other test cases (1YGC, 1IG3,

1L2S, 1GPK, 1Q1G, 1Q41, 1XM6, and 2BR1), the native pose

was not ranked first, but its score was only 0.1 to 0.6 kcal/mol

higher than the one of the top-ranked pose. This could not be

attributed to the absence of an important water molecule dur-

ing the docking, the presence of a metal ion nor a crystal con-

tact in the X-ray structure and is, thus, likely to indicate some

limitation of the scoring function, which is difficult to predict.

In its current implementation, AC is 30 to 50 times slower

than Autodock Vina when the fastest sampling parameters are

used for both programs (Table 1), making AC more suitable

for a limited number of docking runs for which high precision

is required, than for high-throughput virtual screening.

In summary, AC compares well with AutoDock Vina and

AutoDock 4.2 in reproducing the experimental binding modes

of the Astex diverse set under similar conditions. AC also pro-

vides better results than Surflex-Dock, FRED, DOCK, and LEAD

Finder, despite the fact that, in some cases, these programs

concentrated their effort on a smaller search space or identi-

fied the best prediction using another criterion than the best

score. AC performance is comparable with that of MOE Docker

and Glide SP. ICM outperformed all docking programs on this

benchmark set, with a 91% success rate for the top-ranked cal-

culated binding mode; however, the search space is signifi-

cantly smaller.

Although the success rate of AC on the Astex test set is sat-

isfying, several improvements can be proposed. Currently, the

ligand conformation is optimized only by simple energy mini-

mizations. The reported results show that this is sufficient in

most cases, but this procedure is sometimes unable to per-

form the large rearrangement between the starting conforma-

tion of the ligand provided by the user and the bioactive one

(Fig. 5). Combining a dihedral optimization with the present

algorithm should significantly enhance its performance to this

regard. Several ways to increase the speed of AC will be inves-

tigated: a grid-based evaluation of the ligand–protein interac-

tion energy and a better consideration of the ligand and

binding-site shapes to filter the initial poses submitted to

energy minimization. In addition, the use of the CHARMM

force field and the CHARMM package to estimate ligand–pro-

tein interactions opens the way for including not only protein

flexibility but also on-the-fly QM/MM docking.[59]

Conclusion

A new docking algorithm, called AC, was presented and

tested. The idea behind AC is to replace the rough energy

landscape of the protein by a smooth attractive energy land-

scape generated by virtual attracting points surrounding the

protein surface. We demonstrated that simple energy minimi-

zations in this smooth landscape, followed by additional mini-

mizations in the actual protein energy landscape, become an

efficient sampling algorithm for docking. The scoring function

of AC is based on the CHARMM force field and the FACTS sol-

vation model. The use of this universal scoring ensures the

transferability of our results to other type of macromolecular

Table 2. Sampling and scoring failures for each AC, Autodock Vina, and Autodock 4.2 run.

Random conformer, n (%) X-ray conformer, n (%)

Software Conditions Samp. Fail. Scor. Fail. Samp. Fail. Scor. Fail.

Attracting Cavities NThr 570 1 90 deg rot. 8/85 (9.4) 6/77 (7.8) 4/85 (4.7) 9/81 (11.1)

NThr 560 1 90 deg rot. 9/85 (10.6) 12/76 (15.8) 5/85 (5.9) 9/80 (11.3)

NThr 550 1 90 deg rot. 14/85 (16.5) 8/71 (11.3) 6/85 (7.1) 8/79 (10.1)

NThr 570 1 60 deg rot. 7/85 (8.2) 7/78 (9.0) 5/85 (5.9) 8/80 (10.0)

NThr 560 1 60 deg rot. 11/85 (12.9) 8/74 (10.8) 3/85 (3.5) 8/82 (9.8)

NThr 550 1 60 deg rot. 7/85 (8.2) 9/78 (11.5) 4/85 (4.7) 7/81 (8.6)

NThr 570 1 45 deg rot. 6/85 (7.1) 10/79 (12.7) 4/85 (4.7) 7/81 (8.6)

NThr 560 1 45 deg rot. 7/85 (8.2) 9/78 (11.5) 5/85 (5.9) 5/80 (6.3)

NThr 550 1 45 deg rot. 6/85 (7.1) 10/79 (12.7) 4/85(4.7) 7/81 (8.6)

Autodock Vina[19] Exhaustivity 5 8 22/85 (26.9) 10/63 (15.9) 8/85 (9.4) 12/77 (15.6)

Exhaustivity 5 100 19/85 (22.4) 10/66 (15.2) 7/85 (8.2) 10/78 (12.8)

Exhaustivity 5 1000 18/85 (21.2) 11/67 (16.4) 7/85 (8.2) 9/78 (11.5)

Autodock 4.2[15] run100; pop_size5150;

num_evals512,500,000

29/85 (34.1) 16/56 (28.6) 18/85 (21.2) 20/67 (29.9)

run200; pop_size5150;

num_evals525,000,000

29/85 (34.1) 17/56 (30.4) 17/85 (20.0) 21/68 (30.9)
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targets (e.g., DNA) and to other type of ligands (e.g., molecular

fragments).

AC uses a new simple algorithm to identify protein cavities,

which allows fine-tuning the sampling procedure to focus

more on deep protein cavities or, on the contrary, to include

less concave regions.

The approach was assessed on the 85 ligand–protein com-

plexes of the Astex diverse set. AC achieved a success rate of

about 80% in reproducing the experimental binding mode

within 2Å RMSD, starting from a completely randomized ligand

conformer. The algorithm thus compares favorably with cur-

rent state-of-the-art docking programs.

The realistic prediction of ligand–receptor binding geometries

is an important task in SB-CADD. It has been observed that con-

sensus scoring, which consists in rescoring docking poses with

several scoring functions, performs better in identifying the

native binding mode than the best stand-alone scoring algo-

rithm.[60–62] It has also been shown that combining scoring

functions of different types (e.g., empirical and knowledge

based) provides a better performance than combining scoring

functions of similar types.[63] More recently, Houston and Wal-

kinshaw showed that consensus docking, i.e., combining differ-

ent sampling algorithms and not only different scoring

functions improves the reliability of docking in virtual screen-

ing.[64] AC is of particular interest in the context of consensus

docking since it is based on the combination of a unique sam-

pling algorithm and a universal physics-based scoring function.
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