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The rate of germline mutation is fundamental to evolutionary processes, as it generates the variation upon which selection

acts. The guppy, Poecilia reticulata, is a model of rapid adaptation, however the relative contribution of standing genetic var-

iation versus de novo mutation (DNM) to evolution in this species remains unclear. Here, we use pedigree-based approaches

to quantify and characterize germline DNMs in three large guppy families. Our results suggest germline mutation rate in the

guppy varies substantially across individuals and families. Most DNMs are shared across multiple siblings, suggesting they

arose during early embryonic development. DNMs are randomly distributed throughout the genome, and male-biased mu-

tation rate is low, as would be expected from the short guppy generation time. Overall, our study shows remarkable var-

iation in germline mutation rate and provides insights into rapid evolution of guppies.

[Supplemental material is available for this article.]

Mutations underlie much of the diversity of life on earth.
Moreover, the timing, rate, and spectra of germline mutations
are fundamental aspects of molecular evolution and the capacity
of organisms to adapt (Lynch et al. 2016). The rate of mutations
is a product of several processes. De novo mutations (DNMs) arise
from errors that DNA damage repair mechanisms fail to correct
(Gao et al. 2019; Seplyarskiy et al. 2021; De Manuel et al. 2022),
and so the fidelity of replication and the efficacy of repair mecha-
nisms are major contributors to the DNM rate. Although all cell
divisions, somatic and germline, experience DNMs, only germline
mutations can be passed on to the next generation, and the rate of
DNMs is far higher in somatic versus germline tissue (Milholland
et al. 2017), likely representing different investment in costly re-
pair mechanisms.

Accurate mutation rate estimates are critical for phylogenetic
and systematic studies. However, because mutations are rare
events, it can be difficult to identify their timing and rate of occur-
rence. Recent sequencing-based approaches to study germlinemu-
tation have used pedigrees to characterize germline DNMs, and
revealed the influence of many factors, including generation time
(Francioli et al. 2015; Kong et al. 2012; Carlson et al. 2018; Wang
et al. 2022; Bergeron et al. 2023), life history (Bergeron et al.
2023), and number of cell divisions (Ellegren 2007). However,
these factors do not fully explain DNM variation across species
(Wu et al. 2020; Campbell et al. 2021; De Manuel et al. 2022),
and recentwork inhumans suggests stochastic biological processes
and, to a lesser extent, family-specific effects (Goldmann et al.
2021) may be important. Together, these findings indicate that a
complex interplay of multiple factors contributes to the variation
in the number of DNMs in families.

The guppy, Poecilia reticulata, is a model system for rapid eco-
logical adaptation (Reznick et al. 1990, 1997; Gordon et al. 2015;
Whiting et al. 2022) and the swift and convergent patterns of phe-
notypic adaptation in guppies can arise via two possible genetic

mechanisms in the absence of hybridization (Stern 2013; Lee
and Coop 2017). It is possible that DNMs underlie the rapid rates
of phenotypic adaptation observed in guppies. However, function-
al mutations are more often deleterious than adaptive (Yoder and
Tiley 2021), and a high germline rate of DNM fostering rapid adap-
tation could ultimately provemore of amutational burden than an
adaptive boon. Additionally, because somatic mutation rates are
strongly anticorrelated with life span (Cagan et al. 2022), which
is relatively short in guppies, on average 2–3 yr in captivity
(Reznick et al. 2006), and because poikilothermic organisms expe-
rience lower rates of DNA damage (Adelman et al. 1988), wemight
expect low mutation rates in guppies. Consistent with this, DNM
rates in fish are slightly lower than homeothermic vertebrates
(Feng et al. 2017; Bergeron et al. 2023).

Alternatively, rapid adaptation could be a product of selection
on standing genetic variation (Barrett and Schluter 2008), and con-
sistent with this, natural populations of guppies show extensive
genetic and phenotypic polymorphism (Almeida et al. 2021;
Whiting et al. 2021, 2022; Lin et al. 2022). The role of DNMs versus
standing genetic variation in the rapid adaptation of guppies has
important implications to the locus and nature of evolution in
this key ecological model, as well as what type of molecular signa-
ture we might expect to detect. Selection on adaptive DNMs will
produce a signature of hard sweeps and would most often be asso-
ciated with a few loci of large effect (Pritchard et al. 2010;
Matuszewski et al. 2015). In contrast, selection acting on standing
variation is associated with soft sweeps, and will more often result
in fixing many alleles of small effect (Hermisson and Pennings
2017).

The wealth of ecological data available for guppies, coupled
with the short generation time (3 mo) and ease of rearing con-
trolled pedigrees in the laboratory, makes them an ideal system
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for studying rates of DNMs, and the potential role of these rates in
adaptation. Here, we sequenced three large P. reticulata families, re-
constructed a high-quality genome from an individual collected
from Quare River in Trinidad, where our laboratory stock guppies
derive, and applied stringent parent-offspring trio-based variant
filtering criteria to accurately identify and quantify the number
of DNMs, providing insights into the role of germline mutations
in the rapid evolution of this species. Moreover, our large families,
each with ten offspring, allow us to estimate the timing of muta-
tions across germline development, revealing the mosaic nature
of the germline genome through developmental mutations
(Goldmann et al. 2019).

Results

Identifying DNMs from three guppy pedigrees

We resequenced 36 individuals from three guppy pedigrees, each
including unrelated parents, five sons, and five daughters
(Supplemental Figs. S1–S4), with individual mean sequencing
depth ≈ 25× (Table 1; Supplemental Table S1). To limit the impact
of genetic differences between the Ensembl female reference ge-
nome and the guppy populations in this study, we reconstructed
a high-quality pseudogenome with assembly contiguity metric
auN=26897868 and the number of Ns per 100 kb=2949, from a
10x assembly of a female individual taken from the Quare River
in Trinidad (see Almeida et al. 2021 for details), the original popu-
lation from which our laboratory stock population derives (for de-
tails, see Methods).

Germline mutations are rare events, and as such are notori-
ously difficult to differentiate from the various errors introduced
from sequencing, read alignments, genotyping, and variant filter-
ing. Thus, we applied step-by-step stringent filtering to minimize
false discovery rates (Supplemental Fig. S5; Supplemental Table
S2). First, we discarded all multiply mapped reads, retaining only
uniquelymapped reads for further analysis. Second, we genotyped
each parent-offspring trio separately, instead of all offspring
in each family together, using two independent genotype callers,
GATK v.4.2.6.1 (Van der Auwera and O’Connor 2020) and
BCFtools v.1.16 (Li et al. 2009), and used the intersection of
inferred DNMs from both methods. We called sites with
Mendelian violations, where the parents are homozygous for the
same allele and the child is heterozygous, as putativeDNMs. By ap-
plying the same individual-level and site-level filtering criteria,
and intersecting the results from the two genotype callers, we ob-
tained an average number of 5.20, 24.90, and 4.80 DNMs across
each pedigree (Fam1, Fam2, Fam3) (Table 1; Supplemental Table
S1). To calculate the germline mutation rate in each trio, we deter-
mined the denominator, the callable genome size, of each individ-
ual (seeMethods). After removing repetitive regions and restricting
the coverage>½× or <2× of the individual average sequencing
depth, we retained an approximate callable genome size of ≈430

Mb out of the 720 Mb reference genome across individuals
(Table 1; Supplemental Tables S1, S3).

We used the Integrative Genomics Viewer (IGV)
(Thorvaldsdóttir et al. 2013) to visualize read alignments and re-
move false positive DNMs, defined as those missing in the geno-
types because of local realignments and those in highly variable
genomic regions (see Methods). On average, 17% of initial
DNMs were removed as false positives (Supplemental Tables
S4–S6). To detect the false negative rate by simulation, we inserted
1000 artificial DNMs to our read data. Our pipeline yielded an
89.5% detection rate, suggesting a 10.5% potential false negative
rate, representing a good balance between Type I and Type II error.

Distribution and variation of DNMs among families

After stringent variant filtering processes (see Methods), we ob-
served a large variation in DNM rate across guppy pedigrees, with
an average DNM rate of 0.60×10−8, 2.90 ×10−8, and 0.56×10−8

per nucleotide per generation in Fam1, Fam2, and Fam3, respec-
tively (Table 1; Supplemental Table S1; Fig. 1A). The average muta-
tion rate in Fam2 is significantly different from those in Fam1
(Wilcoxon rank-sum test, P=2×10−4) and Fam3 (Wilcoxon rank-
sum test, P =2 ×10−4) (Table 1; Fig. 1A).

Even though the proportion ofDNMs in coding sequencewas
far lower than those in noncoding sequence (Fig. 1B), this was
nonsignificant after correcting for vast differences in callable ge-
nome size between these categories (Fisher’s exact test, P= 0.38,
Fig. 1B). We observed significantly more transitions associated
with CpG sites, including C>T transitions (χ2 test, adjusted P=
3.71×10−5, Fig. 1C; Supplemental Table S7) and the reverse com-
plement G>A transitions (χ2 test, adjusted P=1.19×10−4, Fig. 1C;
Supplemental Table S7), consistent with findings in other species
(Goldmann et al. 2016; Jónsson et al. 2017; Kessler et al.
2020). Because DNMs are rare, some types of mutations, including
G>C, G>T, T >A, T>C, T>G, are absent by chance in different
families in our study. However, there is no significant difference
in mutation spectra across families (χ2 test, P=0.20, Fig. 1C).

Theoretically, DNMs can occur at any stage of germline devel-
opment as well as through the process of gametogenesis itself.
DNMs occurring early in germline development are shared be-
tween a greater proportion of daughter cells compared to those oc-
curring later or in gametogenesis itself, and are therefore more
likely to be shared among siblings. DNMs occurring later, or in ga-
metogenesis itself, would result in a small proportion of affected
gametes and would not be expected to be shared across multiple
siblings. Importantly, averaging across all our families, less than
half of DNMs are observed in single offspring (Figs. 1D, 2;
Supplemental Tables S1, S4–S6, S8). This high proportion
of DNMs shared by at least two siblings suggests that many
DNMs result from replication errors during germline development
(Goldmann et al. 2019). Importantly, Fam2 has a higher propor-
tion of shared DNMs than either Fam1 (χ2 test, P=1.83×10−3) or
Fam3 (χ2 test, P=8.70×10−2), suggesting that the higher overall

Table 1. Summary statistics of DNMs in three guppy pedigrees

Pedigree Coveragea Mapping Ratea Callable Genome Sizea No. of DNMs (range) μ, 10−8 per site per generation (range)

Fam1 26.42× 99.36% 432,137,349 bp 5.20 (2.00–9.00) 0.60 (0.23–1.27)
Fam2 24.57× 99.37% 428,029,972 bp 24.90 (21.00–31.00) 2.90 (2.45–3.62)
Fam3 26.10× 99.31% 429,364,825 bp 4.80 (2.00–6.00) 0.56 (0.24–0.71)

aAll data are averaged across offspring in each pedigree; details can be found in Supplemental Tables S1, S6–S9.
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DNM rate in this family is largely the product of more early devel-
opmental mutations.

The greater number of cell divisions associated with sperma-
togenesis is expected in many species to result in a male-mutation
bias (Ellegren 2007), although wemight expect male-biased muta-
tion to be relatively low in guppies because of their short overall
generation time, typically 3 mo (Reznick et al. 1997). To estimate
malemutation bias in our guppy families, we phased each individ-
ual andmatched offspring haplotype blocks bearingDNMs to each
parent haplotype to determine parent of origin, omitting DNMs
with ambiguous phasing. Our data show a consistent male-to-fe-

male mutation rate ratio across all three guppy families of ≈1.5
(Supplemental Tables S4–S6, S9).

Germline mutation rates can vary across the genome, de-
pending on contextual genetic background (Carlson et al. 2018).
TheDNMswe observe are statistically random in terms of genomic
distribution (Fig. 2, χ2 test, see Supplemental Table S3).

Discussion

Germline DNMs are passed on from parent to offspring, and repre-
sent a major source of genetic variation upon which evolution

A B

C D

Figure 1. Summary statistics of DNMs in three guppy pedigrees. (A) Mutation rate in three families. Red line represents the averagemutation rate across
three families. Asterisks indicate statistical difference among families (Wilcoxon signed-rank test, [∗∗∗] P<0.001; NS: nonsignificant). Orange: Fam1; blue:
Fam2; green: Fam3. (B) Functional distribution of DNMs. There was no statistical difference (Fisher’s exact test, NS: nonsignificant) in the proportion of
DNMs between coding sequences (CDS), including synonymous mutations (Syn) and missense mutations (Mis), and noncoding sequence (nonCDS), in-
cluding upstream (Up), downstream (Down), intron (Int), intergenic (IG), and 3′ UTR variant (3′ UTR) once correcting for callable genome size.
(C) Mutation spectrum. Asterisks on the top of each category indicate significant difference to other categories (χ2 test, [∗∗∗] P<0.001). (D) Shared mu-
tations among siblings: 45.73%, 72.76%, and 57.14% of DNMs are shared by at least two siblings in Fam1, Fam2, and Fam3, respectively, likely reflecting
mutations occurring during early germline development. DNMs observed in only a single offspring represent 54.17%, 17.24%, and 42.86% of all DNMs in
Fam1, Fam 2, and Fam3, respectively, and these most likely represent mutations after the onset of gametogenesis (Goldmann et al. 2019). The relative
proportion of DNMs in a single offspring and DNMs shared by multiple siblings in Fam2 is significantly different from other two families (χ2 test, [∗∗] P
<0.01; [∗] P<0.1; NS: nonsignificant).
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acts. As such, the rate of germline DNMs is critical for defining the
adaptive potential and mutational burden of a population. Here
we assessed three large pedigrees for DNMs in the guppy, a long-
standing model of rapid ecological adaptation. Guppies can rapid-
ly adapt to shifting ecologies (Reznick et al. 1990), and this raises
important questions about whether selection acts in these cases
on DNMs or on standing genetic variation. The role of DNMs in
guppy adaptation has important implications to themolecular sig-
natures we might expect to detect, namely hard sweeps associated
with recent DNMs versus soft sweeps acting on standing genetic
variation (Hermisson and Pennings 2005, 2017; Harris et al. 2018).

Overall, our estimate of the germlineDNM rate, 1.35 ×10−8, is
roughly comparable to estimates of other vertebrate species (Fig. 3;
Supplemental Table S10), suggesting that rapid DNMs may not be
the primary locus of selection in rapidly adapting guppy popula-
tions. Indeed, relatively few sites in the guppy genome show evi-
dence of the hard sweeps associated with recent DNMs (Fraser
et al. 2015), and patterns are more consistent with soft sweeps
on standing genetic variation (van der Zee et al. 2022).

Our study design allows us to examine variation in the num-
ber of germline mutations across guppy individuals, and we ob-
serve a remarkable range in DNM rates across our families (Table
1). There is evidence of variation in germline mutation in some
mammals, either as a result of increased paternal age (Kong et al.
2012; Carlson et al. 2018;Wang et al. 2022) or stochastic processes
(Goldmann et al. 2021), however the degree of variation observed
in these species is far less than we observe in guppies. Our data
come from captive reared guppies kept under controlled, consis-
tent conditions, suggesting that the differences in DNM rate that
we observe are intrinsic, rather than the result of environmental
variation. Moreover, the short generation time (Reznick et al.
1997) and life span (Reznick et al. 2006) in guppies guarantees
that the parents in our families varied very little in overall age, sug-

gesting that paternal age may have little
effect in this variation we observe.

More importantly in the context of
guppies, the wide variation in DNM rate
suggests that some lineages, with higher
mutation rates, might in fact show
more potential for adaption by DNMs
than standing variation. Although over-
all, our results suggest that the rapid ad-
aptation often observed in guppy
populations (Reznick et al. 1990, 1997;
Gordon et al. 2015; Whiting et al. 2022)
is largely the product of selection on
standing genetic variation, the extensive
variation in DNM rate we observe sug-
gests that if heritable, DNM ratio might
vary extensively in natural populations
with concurrent variation in adaptive
potential. The role of heritable variation
in DNM rate and adaptive potential re-
mains an important area for further
exploration.

It is worth noting that alternative
bioinformatic pipelines have yielded
DNM rate estimates that vary by a factor
of two for the same parent-offspring trios
(Bergeron et al. 2022). This variation rep-
resents differences in the balance be-
tween stringent filtering to remove false

positives, and the minimization of false negatives. Although we
were stringent in our filtering and inclusion criteria, our simula-
tions reveal that the pipeline yielded an 89.50% detection rate,
suggesting a 10.5% potential false negative rate. Because we used
the same pipeline across all families, any error from false negatives
or false positives should affect all families similarly, allowing for di-
rect comparisons.

Moreover, compared to other poikilothermic species, the ab-
solute value of the mutation rate in the guppy is similar to whole
genome pedigree-based estimates in poikilotherms, and also simi-
lar to rates seen in some endothermic primates (Fig. 3;
Supplemental Table S10). The high DNM ratio in Fam2 largely ex-
plains the extensive range of DNM rate observed here (Fig. 1A;
Supplemental Tables S4–S6), and without this family, our esti-
mates would be similar to other fish species (Fig. 3). It might be ex-
pected that the lower metabolic rates in poikilothermic species
would produce less oxidative damage to the DNA molecule
(Adelman et al. 1988; Martin and Palumbit 1993). However, poiki-
lothermy does not itself explain DNM rate variation across verte-
brates (Bergeron et al. 2023), suggesting that the role of
homeostasis in DNM rate is small.

Our large pedigrees, each comprised of ten offspring, make it
possible to assessDNMsharing among siblings, and thus assess the
degree of mosaicism in the germline genome (Goldmann et al.
2019). Guppies are live-bearing fish and females store sperm
(Evans et al. 2002). Spermatogenesis starts at 3 mo of age (Evans
et al. 2002) and continues throughout adulthood (Billard and
Escaffre 1969). Oogenesis begins at 3 mo of age and continues
asynchronously thereafter (Droller and Roth 1966). Our results
suggest that the developmental timing of DNMs in the germline
is highly variable (Fig. 1D). If a DNM occurs early in germline de-
velopment, it will be passed on to a greater proportion of daughter
cells than those that occur later in development, and thus it is

Figure 2. Genomic distribution of DNMs in three guppy families for each chromosomal linkage group
(LG). The height of each bar represents the number of offspring sharing the same DNM in the family.
DNMs with an outline represent those in coding regions. Stars (★) indicate nonsynonymous mutations.
No chromosome shows significant deviation from the expected number of DNMs based on its propor-
tion of callable sites (χ2 test, see details in Supplemental Table S6). Fam1 (orange), Fam2 (blue), and
Fam3 (green).
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more likely to be transmitted to the next generations and shared by
multiple siblings. Although the number of shared mutations var-
ied among our three families, ranging from 50% to 73%, it was
nonetheless the majority of DNMs, indicating most inherited
DNMs occur during germline development instead of after the on-
set of gametogenesis. This is consistent with studies in smaller hu-
man families which nonetheless revealed substantial sharing of
DNMs among siblings and variation in the proportion among fam-
ilies (Rahbari et al. 2016).

We also assessed the male mutation bias in DNM generation.
Male mutation bias occurs from the increased number of cell divi-
sions in spermatogenesis compared to oogenesis (Ellegren 2007).
This male-biased mutation rate scales with increasing parental
age (Kong et al. 2012; Francioli et al. 2015; Carlson et al. 2018),
and the relatively short life span of guppies might suggest a mini-
malmalemutation bias. Indeed, our estimate of≈1.5 is on parwith
that of other short-lived species (Wilson Sayres andMakova 2011).

Overall, our results indicate that the developmental timing,
rate, and spectrum of DNMs varies substantially across families
in guppies, suggesting that mutation rate as a trait can vary across
at the level of individuals, families, and populations and
might be able to evolve under different conditions (Lynch et al.
2016). Our results also suggest that comparisons across species
based on just one or a few parent-offspring trios may experience
high error because of intraspecific variation. Taken together,
our results present an important advance in our understanding of
the variation ingermlineDNMs, and their contribution to adaption.

Methods

Samples and DNA sequencing

We selected three families from a previous laboratory experiment
(Morris et al. 2020), each of which contains one father, one moth-
er, five sons, and five daughters. During the experiment setup, all

the fishwere kept in the same flow-through aquarium rack, and ex-
perienced the same feeding and temperature regimes in the labora-
tory, as well as the same water within the cell flow system. All the
fathers and mothers were paired when they were 4 mo old. We
sampled offspring when they were sexually mature, which is
roughly 4 mo of age, from two consecutive clutches. In total, 36
samples from three pedigrees were collected. DNA was extracted
from whole head tissues with Qiagen DNeasy Blood & Tissue Kit,
following the manufacturer protocol. We prepared the shotgun li-
brary with IDT dual-index adaptor. After DNA quality control, all
the samples were sequenced individually on the Illumina
NovaSeq 4000 platform.

Reference genome reconstruction

Divergence between the individual of the Ensembl reference ge-
nome v.99 (Künstner et al. 2016) and our laboratory population
might trigger false positive DNM calls and complicate downstream
DNMdetection. Our laboratory population originated from a high
predation population of the Quare River in Trinidad. We, there-
fore, selected the most contiguous 10x Genomics Linked Read
female genome assembly from the Quare high predation
population, presented in Almeida et al. (2021).

We customized our reference genome first by assembling the
genomeusing LongRanger v2.1.1 (10xGenomics), removing redun-
dant short sequences forwhich95%of contigs overlappedwith lon-
ger ones. We further improved the assembly using a k-mer based
approach, ARKS+LINKS v1.0.4 (Coombe et al. 2018) and anchored
scaffolds into chromosomes using RAGTAG v2.1.0 (Alonge et al.
2019, 2022). Genome completeness was assessed by QUAST
v5.1.0 (Mikheenko et al. 2018) and BUSCO v 5.3.2 (Simão et al.
2015), see details in Supplemental Tables S11 and S12.

We performed de novo prediction and modeling of trans-
posable element (TE) families using RepeatModeler2 (Flynn
et al. 2020) with default parameters in both the Ensembl refer-
ence genome and the reconstructed genome. Repetitive sequenc-
es were then identified by RepeatMasker v.4.1.1 (Smit 1996)
using databases outputted by RepeatModeler2 (Flynn et al.
2020). In total, 27.04% of sequences were identified as repetitive
sequences and thus were removed (see details in Supplemental
Table S13).

Alignment, genotyping, and SNP filtering for DNM

detection

We used FastQC v0.11 (https://www.bioinformatics.babraham.ac
.uk/projects/fastqc/) and Trimmomatic v0.36 (Bolger et al. 2014)
to remove adapter sequences and low-quality reads. After quality
control, we recovered ∼25× average read depth per sample. High-
quality reads were aligned to the reconstructed female genome, us-
ing BWA-MEM v0.7.15 (Li and Durbin 2009) with default param-
eters. We filled in mate coordinates and mate-related flags, sorted
alignment by coordinates, andmarked PCR duplicates with Picard
(v2.0.1; https://broadinstitute.github.io/picard/).

To reduce the chance of removing trueDNMs in each individ-
ual, we conducted parent-offspring trio-based genotyping instead
of the joint genotyping with all offspring in a family.We called ge-
notypes with two independent haplotype-aware software, GATK4
andBCFtools, using only those sites called by both approaches (see
details in Supplemental Table S2).

First, we applied hard filtering to the raw SNP data set in tri-
os following the GATK best practice “QD<2.0, FS > 60.0, SOR>
3.0, MQ<40.0, MQRankSum<−12.5 and ReadPosRankSum<
−8.0” for raw GATK4 genotype data set and “MQBZ<−3 ||
RPBZ<−3 || RPBZ>3 || FORMAT/SP>32 || SCBZ>3 || TYPE=

Figure 3. Distribution of trio DNMs in different animals. Distribution of
trio DNM rate across different groups of poikilothermic animals, including
fishes and reptiles, and homeothermic animals, including birds and mam-
mals. Each data point represents a DNM rate in a parent-offspring trio.
Three families in the guppy categories: Fam1 (orange), Fam2 (blue), and
Fam3 (green). More details can be found in Supplemental Table S10.
Data points from Awadalla et al. (2010); Bergeron et al. (2022, 2023);
Besenbacher et al. (2015); Campbell et al. (2021); Conrad et al. (2011);
Feng et al. (2017); Harland et al. (2017); Jónsson et al. (2017); Koch
et al. (2019); Kong et al. (2012); Lindsay et al. (2019); Martin et al.
(2020); Pfeifer (2017); Rahbari et al. (2016); Roach et al. (2010); Smeds
et al. (2016); Tatsumoto et al. (2017); Thomas et al. (2018); Venn et al.
(2014); Wang et al. (2020, 2022); Wu et al. (2020).
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“INDEL”” for raw BCFtools genotype data set. We selected bial-
lelic SNPs in which genotypes are homozygous in parents but
heterozygous in offspring with Mendelian violation quality
score > 30 using GATK “SelectVariants”, and restricted SNPs
with genotype quality > 30 and with no genotype-level missing
data included for further analysis. The difficulty in definitively
mapping reads from repetitive regions makes it impossible to as-
sess DNMs in these regions, therefore we also excluded any SNPs
that fall in the genomic regions identified as low complexity by
RepeatModeler2 (Flynn et al. 2020) and RepeatMasker v.4.1.1
(Smit 1996) (results can be found on 3.7 Repetitive Genomic
Regions Identification).

To further limit the false DNM discovery rate, we filtered
SNPs at the individual level as well. We removed all sites in which
coverage <½×or >2× of individual average sequencing depth. For
each trio, all three family members were required to pass these
criteria for a site to be retained. Variant callers such as GATK4
and BCFtools determine individual genotypes based on calculat-
ed genotype likelihood. This in fact affects DNM calls, as the false
discovery rate can arise when heterozygous loci of parents are
miscalled as homozygous and from SNPs resulting from somatic
mosaicism. Thus, each parental genotypewas required to have al-
ternative allele depth to be zero (AD= 0). For heterozygous loci in
the offspring, we performed a two-sided binomial test, under the
null hypothesis of 0.5 relative frequency of reads supporting ref-
erence allele and alternative alleles, with a cutoff P-value of 0.05,
following methods in Wu et al. (2020) (Supplemental Table S2),
removing low-level somatic mosaicism.

SNPs that are in genomic regions with complex read align-
ments would be problematic for DNM detection and usually indi-
cate misalignments. Following methods in Wang et al. (2022), we
further filtered any DNMs located in genomic regions in which
>50% of aligned reads contain gaps or aremultiplymapped to oth-
er genomic locations.

Finally, we visualized each inferred DNM in IGV, an interac-
tive tool for the visual exploration of genomic data. We removed
inferred DNMs in which the DNM was observed in the parent,
but were removed during the realignment step in GATK4 and
BCFtools, which can exclude alternative alleles.

Kinship coefficient analysis

To verify parentage in our pedigrees, we first called genotypes
across each family using the GATK4 “HaplotypeCaller” with
the following parameters: “‐‐linked-de-bruijn-graph true ‐‐min-
pruning 0 ‐‐recover-all-dangling-branches true” in “-ERC GVCF”
mode. Then, we genotyped across individuals in each pedigree us-
ing GATK4 “CombineGVCFs” and “GenotypeGVCFs” with de-
fault parameters. Pairwise kinship coefficients within each family
among the six parents were calculated using KING (Manichaikul
et al. 2010) with default parameters.

Mutation rate and callable genome size estimation

To calculate the mutation rate, we estimated the callable genome
size using GATK4 “HaplotypeCaller” with the following parame-
ters: “‐‐linked-de-bruijn-graph true ‐‐min-pruning 0 ‐‐recover-all-
dangling-branches true” in “-ERC BP_SOLUTION” mode in each
individual. For each individual, we removed sites with coverage
that deviated from average individual sequencing read depth,
and sites located in the repetitive genomic regions predicted as de-
scribed above for filteringDNMsites. Lastly, SNPs thatwere hetero-
zygous in either parent were excluded from the callable genome
size estimation. The final callable genome size was intersected
across each trio (Supplemental Table S3).

Mutation rate calculation followed the equation below,
where μ is the mutation rate, Mi is the ith DNM, and Ci is the ith
intersected callable genome loci of each trio.

m =

∑x

i=1
Mi

2
∑n

i=1
Ci

Genotype phasing and male mutation bias estimation

To understand paternal and maternal effects on DNMs, we first
phased each individual using WhatsHap in read-based phasing
mode with default parameters (Martin et al. 2016). Phasing blocks
in offspring bearing DNMswere thenmatched back to the parent’s
phasing block to determine DNMphasing results. DNMs with am-
biguous phasing were left unphased. Finally, we visualized read
alignment from trios using IGV to check the linkage of DNMs
and adjacent variants and validate genotype phasing results and
inferred the parent of origin for phased DNMs.

Mutational spectra identification

Based on SnpEff (Cingolani et al. 2012) and the guppy reference
genome v.99 (Künstner et al. 2016), we were able to annotate
each variant and characterize the mutational spectra of DNMs.
To test whether the number of DNMs located in coding regions
are significantly different than expected based on the coding call-
able genome, we counted the total number of loci in coding re-
gions and noncoding regions in callable genome size, and used
Fisher’s exact test.

Functional annotation

For each DNM, we identified the gene, RNA transcript, protein
with annotation information from guppy reference genome v.99
(Künstner et al. 2016). We performed GO enrichment analysis us-
ing DAVID (Huang et al. 2009a,b) for the genes with a DNM in at
least one parent-offspring trio, and recovered no overrepresenta-
tion of any GO term.

Simulation of DNM detection pipeline

To determine the false negative rate of our DNM detection pipe-
line, we used a simulation approach by inserting artificial muta-
tions to the aligned reads of the offspring using BAMSurgeon
(Ewing et al. 2015). We randomly simulated 1000 DNMs and re-
stricted the insertion sites to the region of callable genomic region
as described above (inMethods subsection “Mutation rate and call-
able genome size estimation”) and nonvariable sites in which less
than half of reads contain indels and gaps, as described in previous
studies (Wu et al. 2020; Campbell et al. 2021). Then, we went
through the full pipeline (Supplemental Fig. S5) to detect the num-
ber of DNMs and determined the proportion of simulated DNMs
that we detected.

Data access

All raw sequence data of offspring and parents generated in this
study have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
numbers PRJNA970282 and PRJNA858015, respectively. The
codes used for processing the data are publicly available as
Supplemental Code and at GitHub (https://github.com/Lin-
Yuying/GuppyGermlineDNMs).

Lin et al.

1322 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277936.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277936.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277936.123/-/DC1
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277936.123/-/DC1
https://github.com/Lin-Yuying/GuppyGermlineDNMs
https://github.com/Lin-Yuying/GuppyGermlineDNMs
https://github.com/Lin-Yuying/GuppyGermlineDNMs
https://github.com/Lin-Yuying/GuppyGermlineDNMs
https://github.com/Lin-Yuying/GuppyGermlineDNMs


Competing interest statement

The authors declare no competing interests.

Acknowledgments

This work was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and a Canada 150
Research Chair (to J.E.M.) and a Doctoral Scholarship from the
China Scholarship Council (to Y.L., No. 201906040216). We
thank Tom Booker for helpful suggestions on the simulation and
Pedro Almeida for the Quare reference genome assembly. We
also thankmembers of theMank Lab for helpful feedback through
the course of this project, as well as constructive comments on a
previous version of this manuscript. We thank three anonymous
reviewers and Ahmet Denli for improving our manuscript.

Author contributions: J.E.M. and Y.L. conceived the study and
designed the experiments and analysis. I.D., J.M., and J.E.M. col-
lected the data. Y.L. and I.D. performed DNA extractions. Y.L.,
W.v.d.B., and I.D. performed the data analysis. J.E.M. and Y.L.
wrote the manuscript and all authors contributed to revisions.

References

Adelman R, Saul RL, Ames BN. 1988. Oxidative damage to DNA: relation to
speciesmetabolic rate and life span (aging/thymidine glycol/evolution).
Proc Natl Acad Sci 85: 2706–2708. doi:10.1073/pnas.85.8.2706

Almeida P, Sandkam BA, Morris J, Darolti I, Breden F, Mank JE. 2021.
Divergence and remarkable diversity of the Y chromosome in guppies.
Mol Biol Evol 38: 619–633. doi:10.1093/molbev/msaa257

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ,
Lippman ZB, Schatz MC. 2019. RaGOO: fast and accurate reference-
guided scaffolding of draft genomes. Genome Biol 20: 224. doi:10
.1186/s13059-019-1829-6

Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X,
Lippman ZB, Schatz MC, Soyk S. 2022. Automated assembly scaffolding
using RagTag elevates a new tomato system for high-throughput ge-
nome editing. Genome Biol 23: 258. doi:10.1186/s13059-022-02823-7

Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, CôtéM,
Henrion E, Spiegelman D, Tarabeux J, et al. 2010. Direct measure of the
de novo mutation rate in autism and schizophrenia cohorts. Am J Hum
Genet 87: 316–324. doi:10.1016/j.ajhg.2010.07.019

Barrett RD, Schluter D. 2008. Adaptation from standing genetic variation.
Trends Ecol Evol 23: 38–44. doi:10.1016/j.tree.2007.09.008

Bergeron LA, Besenbacher S, Turner TN, Versoza CJ, Wang RJ, Price AL,
Armstrong E, Riera M, Carlson J, Chen HY, et al. 2022. The mutationa-
thon highlights the importance of reaching standardization in esti-
mates of pedigree-based germline mutation rates. eLife 11: e73577.
doi:10.7554/eLife.73577

Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B,
Hoffman JI, Li Z, St. Leger J, Shao C, et al. 2023. Evolution of the germ-
linemutation rate across vertebrates.Nature 615: 285–291. doi:10.1038/
s41586-023-05752-y

Besenbacher S, Liu S, Izarzugaza JMG, Grove J, Belling K, Bork-Jensen J,
Huang S, Als TD, Li S, Yadav R, et al. 2015. Novel variation and de
novomutation rates in population-wide de novo assembled Danish trios.
Nat Commun 6: 5969. doi:10.1038/ncomms6969

Billard R, Escaffre A-M. 1969. La spermatogenèse de Poecilia reticulata. I-es-
timation du nombre de générations goniales et rendement de la
spermatogenèse. Ann Biol Anim Biochim Biophys 9: 251–271. doi:10
.1051/rnd:19690208

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/bio
informatics/btu170

Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders
MA, Lawson ARJ, Harvey LMR, Bhosle S, Jones D, et al. 2022. Somatic
mutation rates scale with lifespan across mammals. Nature 604: 517–
524. doi:10.1038/s41586-022-04618-z

Campbell CR, Tiley GP, Poelstra JW, Hunnicutt KE, Larsen PA, Lee HJ,
Thorne JL, dos Reis M, Yoder AD. 2021. Pedigree-based and phylogenet-
icmethods support surprising patterns ofmutation rate and spectrum in
the gray mouse lemur. Heredity (Edinb) 127: 233–244. doi:10.1038/
s41437-021-00446-5

Carlson J, Locke AE, Flickinger M, Zawistowski M, Levy S, Myers RM,
BoehnkeM, Kang HM, Scott LJ, Li JZ, et al. 2018. Extremely rare variants

reveal patterns of germlinemutation rate heterogeneity in humans. Nat
Commun 9: 3573. doi:10.1038/s41467-018-05936-5

Cingolani P, Platts A, Wang LL, CoonM, Nguyen T, Wang L, Land SJ, Lu X,
RudenDM. 2012. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–
92. doi:10.4161/fly.19695

Conrad DF, Keebler JEM, DePristo MA, Lindsay SJ, Zhang Y, Casals F,
Idaghdour Y, Hartl CL, Torroja C, Garimella KV, et al. 2011. Variation
in genome-wide mutation rates within and between human families.
Nat Genet 43: 712–714. doi:10.1038/ng.862

Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, Warren RL.
2018. ARKS: chromosome-scale scaffolding of human genome drafts
with linked read kmers. BMC Bioinformatics 19: 234. doi:10.1101/
306902

De Manuel M, Wu FL, Przeworski M. 2022. A paternal bias in germline mu-
tation is widespread in amniotes and can arise independently of cell
division numbers. eLife 11: e80008. doi:10.7554/eLife.80008

Droller MJ, Roth TF. 1966. An electron microscope study of yolk formation
during oogenesis in Lebistes reticulatus guppyi. J Cell Biol 28: 209–232.
doi:10.1083/jcb.28.2.209

Ellegren H. 2007. Characteristics, causes and evolutionary consequences of
male-biased mutation. Proc Biol Sci 274: 1–10. doi:10.1098/rspb.2006
.3720

Evans JP, Pitcher TE,Magurran AE. 2002. The ontogeny of courtship, colour
and sperm production in male guppies. J Fish Biol 60: 495–498. doi:10
.1006/jfbi.2001.1849

Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, Bare JC,
P’Ng C, Waggott D, Sabelnykova VY, et al. 2015. Combining tumor ge-
nome simulation with crowdsourcing to benchmark somatic single-nu-
cleotide-variant detection. Nat Methods 12: 623–630. doi:10.1038/
nmeth.3407

Feng C, Pettersson M, Lamichhaney S, Rubin CJ, Rafati N, Casini M,
Folkvord A, Andersson L. 2017. Moderate nucleotide diversity in the
Atlantic herring is associated with a low mutation rate. eLife 6:
e23907. doi:10.7554/eLife.23907

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF.
2020. RepeatModeler2 for automated genomic discovery of transpos-
able element families. Proc Natl Acad Sci 117: 9451–9457. doi:10
.1073/pnas.1921046117

Francioli LC, Polak PP, Koren A, Menelaou A, Chun S, Renkens I, Van Duijn
CM, Swertz M, Wijmenga C, Van Ommen G, et al. 2015. Genome-wide
patterns and properties of de novo mutations in humans. Nat Genet 47:
822–826. doi:10.1038/ng.3292

Fraser BA, Künstner A, Reznick DN, Dreyer C, Weigel D. 2015. Population
genomics of natural and experimental populations of guppies (Poecilia
reticulata). Mol Ecol 24: 389–408. doi:10.1111/mec.13022

Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, Jorde LB, Amster G,
Przeworski M. 2019. Overlooked roles of DNA damage andmaternal age
in generating human germline mutations. Proc Natl Acad Sci 116: 9491–
9500. doi:10.1073/pnas.1901259116

Goldmann JM, Wong WSW, Pinelli M, Farrah T, Bodian D, Stittrich AB,
Glusman G, Vissers LELM, Hoischen A, Roach JC, et al. 2016. Parent-
of-origin-specific signatures of de novo mutations. Nat Genet 48: 935–
939. doi:10.1038/ng.3597

Goldmann JM, Veltman JA, Gilissen C. 2019. De novo mutations reflect de-
velopment and aging of the human germline.Trends Genet 35: 828–839.
doi:10.1016/j.tig.2019.08.005

Goldmann JM, Hampstead JE, Wong WSW, Wilfert AB, Turner TN, Jonker
MA, Bernier R, Huynen MA, Eichler EE, Veltman JA, et al. 2021.
Differences in the number of de novo mutations between individuals
are because of small family-specific effects and stochasticity. Genome
Res 31: 1513–1518. doi:10.1101/gr.271809.120

Gordon SP, Reznick D, Arendt JD, Roughton A, Ontiveros Hernandez MN,
Bentzen P, López-Sepulcre A. 2015. Selection analysis on the rapid evo-
lution of a secondary sexual trait. Proc Biol Sci 282: 20151244. doi:10
.1098/rspb.2015.1244

Harland C, Charlier C, Karim L, Cambisano N, Deckers M, Mni M, Mullaart
E, Coppieters W, Georges M. 2017. Frequency of mosaicism points to-
wards mutation-prone early cleavage cell divisions in cattle. bioRxiv
doi:10.1101/079863

Harris AM, Garud NR, Degiorgio M. 2018. Detection and classification of
hard and soft sweeps from unphased genotypes bymultilocus genotype
identity. Genetics 210: 1429–1452. doi:10.1534/genetics.118.301502

Hermisson J, Pennings PS. 2005. Soft sweeps:molecular population genetics
of adaptation from standing genetic variation. Genetics 169: 2335–
2352. doi:10.1534/genetics.104.036947

Hermisson J, Pennings PS. 2017. Soft sweeps and beyond: understanding
the patterns and probabilities of selection footprints under rapid adap-
tation. Methods Ecol Evol 8: 700–716. doi:10.1111/2041-210X.12808

De novo mutations in Poecil ia ret iculata

Genome Research 1323
www.genome.org



Huang DW, Sherman BT, Lempicki RA. 2009a. Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large
gene lists. Nucleic Acids Res 37: 1–13. doi:10.1093/nar/gkn923

Huang DW, Sherman BT, Lempicki RA. 2009b. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 4: 44–57. doi:10.1038/nprot.2008.211

Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E,
Hardarson MT, Hjorleifsson KE, Eggertsson HP, Gudjonsson SA, et al.
2017. Parental influence on human germline de novo mutations in
1,548 trios from Iceland.Nature 549: 519–522. doi:10.1038/nature24018

Kessler MD, Loesch DP, Perry JA, Heard-Costa NL, Taliun D, Cade BE, Wang
H, Daya M, Ziniti J, Datta S, et al. 2020. De novo mutations across 1,465
diverse genomes revealmutational insights and reductions in the Amish
founder population. Proc Natl Acad Sci 117: 2560–2569. doi:10.1073/
pnas.1902766117

Koch EM, Schweizer RM, Schweizer TM, Stahler DR, Smith DW,Wayne RK,
Novembre J. 2019. De novo mutation rate estimation in wolves of
known pedigree. Mol Biol Evol 36: 2536–2547. doi:10.1093/molbev/
msz159

Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G,
Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, et al. 2012.
Rate of de novo mutations and the importance of father’s age to disease
risk. Nature 488: 471–475. doi:10.1038/nature11396

Künstner A, HoffmannM, Fraser BA, Kottler VA, Sharma E,Weigel D, Dreyer
C. 2016. The genome of the Trinidadian guppy, Poecilia reticulata, and
variation in the Guanapo population. PLoS One 11: e0169087. doi:10
.1371/journal.pone.0169087

Lee KM, Coop G. 2017. Distinguishing among modes of convergent adap-
tation using population genomic data. Genetics 207: 1591–1619.
doi:10.1534/genetics.117.300417

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/bioinfor
matics/btp324

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing
Subgroup. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078–2079. doi:10.1093/bioinformatics/btp352

Lin Y, Darolti I, Furman BLS, Almeida P, Sandkam BA, Breden F, Wright AE,
Mank JE. 2022. Gene duplication to the Y chromosome in Trinidadian
guppies. Mol Ecol 31: 1853–1863. doi:10.1111/mec.16355

Lindsay SJ, Rahbari R, Kaplanis J, Keane T, Hurles ME. 2019. Similarities and
differences in patterns of germline mutation between mice and hu-
mans. Nat Commun 10: 4053. doi:10.1038/s41467-019-12023-w

Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL.
2016. Genetic drift, selection and the evolution of the mutation rate.
Nat Rev Genet 17: 704–714. doi:10.1038/nrg.2016.104

Manichaikul A,Mychaleckyj JC, Rich SS, Daly K, SaleM, ChenW-M, Barrett
J. 2010. Robust relationship inference in genome-wide association stud-
ies. Bioinformatics 26: 2867–2873. doi:10.1093/bioinformatics/btq559

Martin AP, Palumbit SR. 1993. Body size, metabolic rate, generation time,
and the molecular clock. Proc Natl Acad Sci 90: 4087–4091. doi:10
.1073/pnas.90.9.4087

MartinM, PattersonM,Garg S, Fischer SO, Pisanti N, Klau GW, Schöenhuth
A, Marschall T. 2016. WhatsHap: fast and accurate read-based phasing.
bioRxiv doi:10.1101/085050

Martin SH, Singh KS, Gordon IJ, Omufwoko KS, Collins S, Warren IA,
Munby H, Brattström O, Traut W, Martins DJ, et al. 2020. Whole-chro-
mosome hitchhiking driven by a male-killing endosymbiont. PLoS Biol
18: e3000610. doi:10.1371/journal.pbio.3000610

Matuszewski S, Hermisson J, KoppM. 2015. Catchme if you can: adaptation
from standing genetic variation to a moving phenotypic optimum.
Genetics 200: 1255–1274. doi:10.1534/genetics.115.178574

Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. 2018.
Versatile genome assembly evaluation with QUAST-LG. Bioinformatics
34: i142–i150. doi:10.1093/bioinformatics/bty266

Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. 2017. Differences be-
tween germline and somatic mutation rates in humans and mice. Nat
Commun 8: 15183. doi:10.1038/ncomms15183

Morris J, Darolti I, van der Bijl W,Mank JE. 2020. High-resolution character-
ization of male ornamentation and re-evaluation of sex linkage in gup-
pies. Proc R Soc B: Biol Sci 287: 20201677. doi:10.1098/rspb.2020.1677

Pfeifer SP. 2017. Direct estimate of the spontaneous germ linemutation rate
in African green monkeys. Evolution 71: 2858–2870. doi:10.1111/evo
.13383

Pritchard JK, Pickrell JK, Coop G. 2010. The genetics of human adaptation:
hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20: R208–
R215. doi:10.1016/j.cub.2009.11.055

Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Al Turki S,
Dominiczak A, Morris A, Porteous D, Smith B, et al. 2016. Timing, rates
and spectra of human germline mutation. Nat Genet 48: 126–133.
doi:10.1038/ng.3469

Reznick DA, Bryga H, Endler JA. 1990. Experimentally induced life-history
evolution in a natural population. Nature 346: 357–359. doi:10.1038/
346357a0

Reznick DN, Shaw FH, Rodd HF, Shaw RG. 1997. Evaluation of the rate of
evolution in natural populations of guppies (Poecilia reticulata). Science
275: 1934–1937. doi:10.1126/science.275.5308.1934

Reznick D, Bryant M, Holmes D. 2006. The evolution of senescence and
post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol 4:
e7. doi:10.1371/journal.pbio.0040007

Roach JC, GlusmanG, Smit AFA, Huff CD, Hubley R, Shannon PT, Rowen L,
Pant KP, GoodmanN, BamshadM, et al. 2010. Analysis of genetic inher-
itance in a family quartet by whole-genome sequencing. Science 328:
636–639. doi:10.1126/science.1186802

Seplyarskiy VB, Soldatov RA, Koch E,McGinty RJ, Goldmann JM, Hernandez
RD, Barnes K, Correa A, Burchard EG, Ellinor PT, et al. 2021. Population
sequencing data reveal a compendium of mutational processes in the hu-
man germ line. Science 373: 1030–1035. doi:10.1126/science.aba7408

Simão FA,Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015.
BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics 31: 3210–3212. doi:10.1093/bioin
formatics/btv351

Smeds L, Qvarnström A, Ellegren H. 2016. Direct estimate of the rate of
germline mutation in a bird. Genome Res 26: 1211–1218. doi:10.1101/
gr.204669.116

Smit AFA. 1996. The origin of interspersed repeats in the human genome.
Curr Opin Genet Dev 6: 743–748. doi:10.1016/S0959-437X(96)80030-X

Stern DL. 2013. The genetic causes of convergent evolution. Nat Rev Genet
14: 751–764. doi:10.1038/nrg3483

Tatsumoto S, Go Y, Fukuta K, Noguchi H,Hayakawa T, TomonagaM,Hirai H,
Matsuzawa T, Agata K, Fujiyama A. 2017. Direct estimation of de novomu-
tation rates in a chimpanzee parent-offspring trio by ultra-deepwhole ge-
nome sequencing. Sci Rep 7: 13561. doi:10.1038/s41598-017-13919-7

Thomas GWC, Wang RJ, Puri A, Harris RA, Raveendran M, Hughes DST,
Murali SC, Williams LE, Doddapaneni H, Muzny DM, et al. 2018.
Reproductive longevity predicts mutation rates in primates. Curr Biol
28: 3193–3197.e5. doi:10.1016/j.cub.2018.08.050

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics
Viewer (IGV): High-performance genomics data visualization and ex-
ploration. Brief Bioinformatics 14: 178–192. doi:10.1093/bib/bbs017

Van der Auwera G, O’Connor B. 2020. Genomics in the cloud: using Docker,
GATK, and WDL in Terra (1st ed.). O’Reilly Media, Sebastopol, CA.

van der Zee MJ, Whiting JR, Paris JR, Bassar RD, Travis J, Weigel D, Reznick
DN, Fraser BA. 2022. Rapid genomic convergent evolution in experi-
mental populations of Trinidadian guppies (Poecilia reticulata). Evol
Lett 6: 149–161. doi:10.1002/evl3.272

Venn O, Turner I, Mathieson I, de Groot N, Bontrop R, McVean G. 2014.
Strong male bias drives germline mutation in chimpanzees. Science
344: 1272–1275. doi:10.1126/science.344.6189.1272

Wang RJ, Thomas GWC, RaveendranM, Harris RA, Doddapaneni H,Muzny
DM, Capitanio JP, Radivojac P, Rogers J, HahMW. 2020. Paternal age in
rhesus macaques is positively associated with germline mutation accu-
mulation but not with measures of offspring sociability. Genome Res
30: 826–834. doi:10.1101/gr.255174.119

Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn
MW. 2022.De novomutations in domestic cat are consistent with an ef-
fect of reproductive longevity on both the rate and spectrum of muta-
tions. Mol Biol Evol 39: msac147. doi:10.1093/molbev/msac147

Whiting JR, Paris JR, van der Zee MJ, Parsons PJ, Weigel D, Fraser BA. 2021.
Drainage-structuring of ancestral variation and a common functional
pathway shape limited genomic convergence in natural high- and
low-predation guppies. PLoS Genet 17: e1009566. doi:10.1371/journal
.pgen.1009566

Whiting JR, Paris JR, Parsons PJ,Matthews S, Reynoso Y, Hughes KA, Reznick
D, Fraser BA. 2022. On the genetic architecture of rapidly adapting and
convergent life history traits in guppies. Heredity (Edinb) 128: 250–260.
doi:10.1038/s41437-022-00512-6

Wilson Sayres MA, Makova KD. 2011. Genome analyses substantiate male
mutation bias in many species. Bioessays 33: 938–945. doi:10.1002/
bies.201100091

Wu FL, PrzeworskiM,Moorjani P, PrzeworskiM, Strand AI, Cox LA, Cox LA,
Ober C,Wall JD, Strand AI, et al. 2020. A comparison of humans and ba-
boons suggests germline mutation rates do not track cell divisions. PLoS
Biol 18: e3000838. doi:10.1371/JOURNAL.PBIO.3000838

Yoder AD, Tiley GP. 2021. The challenge and promise of estimating the de
novomutation rate from whole-genome comparisons among closely re-
lated individuals. Mol Ecol 30: 6087–6100. doi:10.1111/mec.16007

Received March 30, 2023; accepted in revised form July 7, 2023.

Lin et al.

1324 Genome Research
www.genome.org


