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Abstract

We analyze a model of irreversible investment with two sources of uncertainty. A risk-
neutral decision maker has the choice between two mutually exclusive projects under input
price and output price uncertainty. We propose a complete study of the shape of the rational
investment region and we prove that it is never optimal to invest when the alternative
investments generate the same payoff independently of their size. A key feature of this
bidimensional degree of uncertainty is thus that the payoff generated by each project is not
a sufficient statistic to make a rational investment. In this context, our analysis provides a
new motive for waiting to invest: the benefits associated with the dominance of one project
over the other. As an illustration, we apply our methodology to power generation under
uncertainty.

1 Introduction

Irreversible investment decisions by a public authority are highly difficult to take. Indeed, such

decisions usually generate very important cash-flows and their irreversibility makes the decision

taker quite prudent. Furthermore, he is usually confronted to a wide choice of possibilities to

undertake the investment. For instance, when a government wants to expand or to replace

the electricity capacity, different solutions have to be taken into account. It may decide to

invest in the nuclear technology or in the gas technology. The aim of this paper is to describe

such decisions in the case where different technologies are available. Our main result is that the

presence of such a choice makes the decision taker more reluctant to take a decision. He prefers to

wait to invest later in the technology that turns out to be the most profitable. Like Buridan’s ass

that hesitates between drinking and eating, a decision taker hesitates between each technology

that supplies electricity. But unlike Buridan’s ass story, we will characterize the event on which

a decision ends to be taken. Our model is quite general but has been more particulary designed

for the electricity sector. Therefore, our results could be a way to explain the lack of electricity

capacity investment. Indeed, according to the International Energy Agency, “electricity capacity
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reserve margins are declining in most OECD countries signalling the need for new investment.

The supply disruptions in parts of North America and Europe in summer 2006 have raised again

questions about the adequacy of generation margins and investment in network infrastructure.”1

Here our interpretation of this fact is that the simultaneous presence of different technologies

(coal, gas and nuclear plant, renewable resources) in the electricity sector delays any investment

decision.

This work is linked to the literature on investment under uncertainty that has developed

very quickly since the early works by Arrow and Fisher [2] or by Henry [11]. When an investor

has an investment opportunity, he faces a tradeoff: either he invests immediately or he waits

to obtain more information about the quality of the investment project. The classic rule saying

that investing is optimal as soon as the net present value is positive is not always valid since the

option to wait in order to be better informed has to be taken into account. Therefore, investment

under uncertainty creates what is commonly called a “time value”. The existence of such an

option value requires three features: first, the investment problem has to be dynamic, second,

there must be some uncertainty concerning the cash flow that will be generated in the future,

and finally, the investment decision has to be irreversible. McDonald and Siegel [16] were the

first to give an expression to the option value. Moreover, they showed that when the underlying

value of the investment project evolves as a geometric Brownian motion, the optimal strategy

is usually a trigger strategy, that is, invest as soon as the investment value is greater than a

threshold that can sometimes be explicitly computed using standard smooth-fit techniques (see

Dixit and Pindyck [8]). Many authors extended the original model in different directions. Dixit

[7], Kandel and Pearson [13] and Aguerrevere [1] studied how such an approach could be used

by a firm to choose both an optimal capacity and an optimal timing. Other authors rather

concentrated on a strategic viewpoint by considering not a monopolist but many firms and they

tried to characterize the competitive equilibrium. Leahy [14] showed that “the interaction of

competition does not affect the timing of irreversible investment decisions at all”.

In this work, we thus revisit an old simple problem, namely, the choice between mutually

exclusive investment projects by considering two sources of uncertainty. Despite its relative

simplicity, this is still a timely question, as illustrated for instance by Dias’ [5] recent survey

of real options in the petroleum industry or by our previous discussion on electricity capacity

needs. One of the major features of bidimensional investment problems is that the investment

value is no longer a sufficient statistic to undertake optimally the project. Indeed, as we show, it

may be optimal not to invest in any project even if their expected profit tends to infinity. This

fact makes unexpected an explicit computation of the optimal time to invest and that is the

main reason why the bidimensional investment models received little attention in the litterature.

In this paper, the two mutually exclusive investment projects N and G are affected by output

price uncertainty, but only the second one (project G) is affected by input price uncertainty. We
1See World Energy Outlook 2006 [12].
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do not make any assumption on the output flow ranking of each project, but we suppose that

the sunk capital cost of project N is higher than that of project G. This model is an extension

of the one developed by Décamps et al. [4] in which they study the choice of two mutually

exclusive investment projects under output price uncertainty: a project with high payoffs and

high costs and a project with low payoffs and low costs. They find that the investment strategy

is not a trigger strategy any more and that there exists an intermediate “inaction region”: if

the initial price had been lower, the investor would have invested in the small project, and had

it been higher, he would have invested in the large project. But in this intermediate region,

more information is needed to know in which direction the price will evolve and to be sure of

the decision that will be taken.

The introduction of input price uncertainty in addition to the usual output price uncertainty

makes the problem quite more complex from a mathematical viewpoint. Moreover, the presence

of the two uncertainty sources reinforces the applicability of our model. One of our major features

is that it is never optimal to invest when the two projects generate the same expected payoff

whatever size it has. This result is very interesting since the size of the payoff is not the unique

decision variable anymore. Moreover, this is quite new relative to Décamps et al. [4]: even if at

the begining, the state variables are very low, we prove that there exists a path for which even if

the expected payoff of each technology tends to infinity, no investment will be undertaken. Our

results are related to the literature concerning American options on multiple assets. Broadie and

Detemple [3] and Villeneuve [20] studied the exercise regions of such American options (they

mostly focused on convex payoff options) and both showed that exercise regions may exhibit

interesting shapes. In particular, in the case of an option on the maximum between two assets,

when the underlying assets are equal, it is not optimal to invest in one of them even if the

payoff process tends to infinity, but it is optimal to wait in order to collect information about

the evolution of the state variables. From an empirical viewpoint, Dias et al. [6] worked on a

model that is similar to the one of Décamps et al. [4]. They considered an investor who has

the choice between three projects: each project is affected by output price uncertainty and has

its own sunk capital cost. Although they did not present theoretical results, their simulations

showed the existence of intermediate “inaction regions” as in Décamps et al. [4]. Moreover, they

allowed the output to follow different processes: either a geometric Brownian motion or a mean

reverting process. Geltner et al. [9] considered an investor who has the choice to invest in a land

but for two different uses: if the first use is chosen, the value of the land follows a geometric

Brownian motion, but if the second use is chosen, the value is a different state variable that

also follows a geometric Brownian motion. The construction cost is assumed to be fixed and

to be the same in the two cases. The investor chooses the use that yields the highest payoff.

Geltner et al. studied the exercise region in this bidimensional setting and found that it can be

decomposed into two symmetric disjoints regions (one for each use). When the value of each

use generates the same profit, the investor prefers to wait than to invest in one of the two.

As already explained above, this paper focuses on a bidimensional setting. But in contrast
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to Geltner et al., the output process is the same for both projects and the second source of

uncertainty comes from the input price. Moreover, unlike Broadie and Detemple [3], we do not

consider an option on the maximum of two different assets, but on the maximum of two different

linear combinations of assets. In our setting, we prove the existence of an “inaction region”.

When both projects have the same value or very similar values, it is optimal to wait rather than

to invest in one of the two. In this bidimensional setting, the investment value is not a sufficient

statistic to take a decision. Indeed, we prove that the investor might decide not to invest in any

project even if each payoff tends to infinity. The shape of the exercise regions is quite different

depending on the ranking of the output flow of project N, βN , relative to the output flow of

project G, βG. This means that the investment decision not only depends on the level of the

state variable but also on the output flow. It is interesting to note that if each project had been

evaluated separately, exercise regions would have been quite different. Indeed we prove that the

introduction of the choice modifies the exercise regions of each project taken separately: it can be

optimal to delay investment whereas without this choice immediate investment would have been

optimal. We thus introduce the concept of “choice value” between the two alternative projects.

It is straightforward to extend these results to the case of n mutually exclusive projects.

Once the theoretical results have been presented, we turn to an application of our model

to power generation under uncertainty. We assume technology N produces electricity from a

nuclear power plant whereas technology G produces electricity from gas. Applying our results

to this example, we find that the investment decision not only depends on the values taken by

the state variables but also on the cash-flow generated by each technology (βN or βG). These

coefficients are function of the construction time and the lifetime of each technology. Leaving

aside social cost (CO2, nuclear waste) and taking into account almost realistic parameters’ values,

our model suggests that investment in the nuclear technology is more likely to be optimal.

The next section of this paper describes the model and gives the first properties of the value

function. In section 3, exercise regions are described for the different possible ranking of the

output flows and their different properties are carefully stated. In section 4, we illustrate the

theoretical model with power generation under uncertainty. Section 5 concludes.

2 The model

This is a model of choice between two technologies, technology N and technology G, both

producing the same output by different means. Technology G has a stochastic input. Time is

continuous and labeled by t ≥ 0. There is a single risk-neutral investor who can engage in one of

these two projects. To give a rigorous formulation to our model, we start with a probability space

(Ω,F ,P) equipped with a filtration (Ft)t≥0 representing the information available at time t. We

consider a bidimensional Ft-Brownian motion
(
W 1

t ,W 2
t

)
. The output price P = {Pt; t ≥ 0}

is a geometric Brownian motion with drift (r − δP ), strictly positive convenience yield δP and
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volatility σP .

dPt

Pt
= (r − δP ) dt + σP dW 1

t . (1)

Let P p
t be the solution of (1) starting from P p

0 = p. The input price X = {Xt; t ≥ 0} is also

a geometric Brownian motion with drift (r − δX), strictly positive convenience yield δX and

volatility σX

dXt

Xt
= (r − δX) dt + σX

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
. (2)

Let Xx
t be the solution of (2) starting from Xx

0 = x. The correlation between Pt and Xt is equal

to ρt. The instantaneous cash-flow generated by each project is equal to βiPt, i = N, G. We refer

to βi as the output flow or as the price sensibility of technology i. For a sake of completeness,

we study the three different cases: βN > βG, βN < βG and βN = βG. The sunk cost of project

N , IN , is greater than the sunk cost of project G, IG. The second project is the only one to

generate a strictly positive variable cost γGXt. The net expected profits are thus equal to

ΨN (p) = βNp− IN for technology N and, (3)

ΨG (p, x) = βGp− γGx− IG for technology G. (4)

Let T be the set of all stopping times adapted to Ft. Because the investor has the opportunity to

choose between the two projects, he shall invest in the project with the highest payoff. The value

function associated to this investment problem can thus be formulated as an optimal stopping

time problem

V (p, x) = sup
τ∈T

E
[
e−rτ max (ΨN (P p

τ ) , ΨG (P p
τ , Xx

τ ))
]
, (5)

that is defined for p ≥ 0 and x ≥ 0. We define the investment region as

I =
{
(p, x) ∈ R2

+ |V (p, x) = max (ΨN (p) ,ΨG (p, x))
}

. (6)

The investment region is the set where the decision maker can invest optimally. Since the func-

tion (p, x) 7→ max (ΨN (P p
t ) , ΨG (P p

t , Xx
t )) is continuous and since e−rt (ΨN (P p

t ) , ΨG (P p
t , Xx

t ))

converges to 0 as t ↑ +∞, Theorem 10.1.9 by Øksendal [17] gives that τI , defined by τI =

inf {t ≥ 0 | (Pt, Xt) ∈ I}, is an optimal stopping time. Analytically, this means that

V (p, x) = E
[
e−rτI

(
ΨN

(
P p

τI

)
, ΨG

(
P p

τI
, Xx

τI

))]
. (7)

We also define the indifference line as

D =
{
(p, x) ∈ R2

+|ΨN (p) = ΨG (p, x)
}

. (8)

For a vector (p, x) of output/input values that belongs to D, the two alternative technologies

deliver the same payoff and a decision maker who would be forced to immediately invest would

be indifferent between the two projects. If (p, x) ∈ D then the following relation holds

βNp− IN = βGp− γGx− IG,
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or written in a different way
{

p = 1
βN−βG

(IN − IG − γGx) if βN 6= βG,
x = IN−IG

γG
if βN = βG.

We denote p̃ the ratio
IN − IG

βN − βG
which corresponds to the output value for which the payoff of

the two projects are the same when the input price is equal to zero. We start our analysis with

a proposition that summarizes the most intuitive properties of the value function V . To clarify

the presentation of our results, all the proofs have been relegated to the Appendix.

Proposition 1 We have the following properties concerning the value function V :

1. ∀ (p, x) ∈ R2
+, V (p, x) < +∞,

2. p 7→ V (p, x) is an increasing function,

3. x 7→ V (p, x) is a decreasing function,

4. (p, x) 7→ V (p, x) is a convex function.

Results 2, 3 and 4 are intuitive. When the value of the output price increases, the investment

opportunity becomes more valuable since the promised payoffs are higher. Furthermore, when

the input price increases, the opportunity to invest becomes less valuable since technology G

induces a higher production cost. Concerning the convexity result 4, the decision maker is ready

to accept risky bets on the initial values for the output and input prices simultaneously.

3 Shape and properties of the investment region

We analyze in this section the properties of the investment region I. We first try to elicit

information from the one-dimensional setting. In the standard real option framework, an increase

in the output price does not change the decision to invest when it has already crossed the

investment threshold. If Pt lies in the investment region then it is also true for λPt for any

λ > 1. By analogy, it seems reasonable to claim that if (Pt, Xt) lies in I, so lie (λPt, Xt) and(
Pt,

1
λXt

)
. It seems also reasonable to claim that investment is optimal as soon as the payoff is

sufficiently large. We will see that these two conjectures turn out to be false.

In order to describe the investment region I, let us remind the investment thresholds corre-

sponding to the two competitive projects taken separately.2 If we only focus on an investment

in technology N, we consider

VN (p) = sup
τ∈T

E
[
e−rτ (βNPτ − IN )

]
. (9)

The investment threshold corresponding to this project is equal to

p∗N =
β

β − 1
IN

βN
, (10)

2These results can be found in Dixit and Pindyck, chapter V [8]
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where β is the positive root of the usual characteristic equation 1/2σ2
P β (β − 1)+(r − δP ) β−r =

0. Similarly, if we only focus on an investment in technology G, we consider

VG (p, x) = sup
τ
E

[
e−rτ (βGP p

τ − γGXx
τ − IG)

]
. (11)

In the special case where x = 0, we obtain

VG (p) = sup
τ∈T

E
[
e−rτ (βGPτ − IG)

]
, (12)

and the investment threshold that triggers investment is equal to

p∗G =
β

β − 1
IG

βG
. (13)

According to Loubergé et al. [15], the investment region corresponding to the general case

(x > 0) takes the following form

ĨG = {(x, p) |VG (p, x) = βGp− γGx− IG} ,

= {(x, p) |p ≥ C1x + p∗G} .

A more involved problem we can focus on is the special case of our bidimensional problem when

the input price is zero. In this case, the value function becomes

V (p) = sup
τ∈T

E
[
e−rτ max (βNPτ − IN , βGPτ − IG)

]
. (14)

This problem has been deeply studied by Décamps et al. [4]. Under the assumption that p∗N < p̃,

they find that there exist two thresholds p1 and p2 such that for every p ∈ [p∗G, p1[, it is optimal

to invest in technology G, and that ∀p ∈ ]p2, +∞[, it is optimal to invest in technology N. But

for p ∈ ]p1, p2[, it is not optimal to invest neither in technology N nor in technology G. They

called the interval (p1, p2) the “inaction region”.

Before giving further results in our setting, let us put some restrictions on the parameters’

values. From now on, we assume that

A1 : p∗N < p̃. (15)

Assumption A1 means that there exists an inaction region in the one dimensional setting (see

Décamps et al. [4] p.431). Since β > 1, then β
β−1 > 1. Therefore, if p∗N < p̃, then IN

βN
< IN−IG

βN−βG
,

implying that p∗G < p∗N . When the input price equals zero, another result allows to rank the

different thresholds.

Proposition 2 We have a lower bound for the threshold p2 given by

p2 >
β

β − 1
p̃.

We are now in a position to prove the existence of a similar inaction region in the bidimen-

sional setting.
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Theorem 1 The indifference line D never belongs to the investment region. Analytically, we

have V (p, x) > βNp− IN for all (p, x) ∈ D.

This result extends the one dimensional result obtained by Décamps et al. [4]. The investor’s

preference to wait in order to collect more information about the dominance of one project over

the other before investing creates an inaction region. In a two dimension space, the interpretation

is the same. When the variables are on the indifference line, the investor prefers to wait in order

to collect more information about the dominance of one project over the other. If the initial

output price decreases, the investor may optimally content to invest in the technology with the

lowest output flow rather than wait with the hope to reach the set of optimal investment in the

technology with the highest output flow. On the contrary, if the output price increases relative

to the input price, the investor has more chances to invest in the technology with the highest

output flow. In fact, this kind of result has already been obtained by Broadie and Detemple

[3] or Villeneuve [20] in the case of financial options. They show indeed that with an American

option on the maximum of two assets, it is never optimal to exercise the option when the prices

of underlying assets are equal. Our setting is close to this one, except that in our case, the

underlying assets are more complicated since we have linear combinations of state variables.

According to this result, we now have a more precise idea of the shape of the investment region.

It can be decomposed into two disjoint sets I = IN
⋃ IG. IN is the investment region in which it

is optimal to invest in technology N and IG the one in which it is optimal to invest in technology

G. IN and IG are defined by

IN =
{
(p, x) ∈ R2

+|V (p, x) = βNp− IN

}
and, (16)

IG =
{
(p, x) ∈ R2

+|V (p, x) = βGp− γGx− IG

}
. (17)

We focus on the shape of the investment regions and we give some general properties.

Proposition 3 Let (p0, x0) ∈ R2
+. The following properties hold

1. If (p0, x0) ∈ IG, then ∀x ≤ x0, (p0, x) ∈ IG,

2. If (p0, x0) ∈ IN , then ∀x ≥ x0, (p0, x) ∈ IN ,

3. If βN ≥ βG and if (p0, x0) ∈ IN , then ∀p ≥ p0, (p, x0) ∈ IN ,

4. If βG ≥ βN and if (p0, x0) ∈ IG, then ∀p ≥ p0, (p, x0) ∈ IG.

These four results are quite intuitive. Result 1 states that if it is optimal to invest in

technology G, it will remain so if the input price decreases. Indeed, its expected profit increases

whereas the expected profit generated by technology N remains constant. On the contrary,

when investment in technology N is optimal, it remains so if the input price increases (Result

2). Such an increase indeed has no effect on the expected payoff generated by technology N and
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at the same time it makes technology G less competitive. In the case where the price sensibility

of technology N is higher than the one of technology G, if it is already optimal to invest in

technology N for a given level of output price, it is all the more optimal to invest in technology

N with a higher output price and hence a higher profit (Result 3). Result 4 tells the same story

in the case where the price sensibility of technology N is lower than the one of technology G.

This proposition gives a first idea of the shape of the investment region. But a more precise

study requires a separation of the different cases depending on the ranking of the output flows.

Before going further, we present the graphs of the two investment regions in the three cases

βN > βG, βG > βN and βN = βG.

Figure 1: Shape of the investment regions when βN > βG
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Figure 2: Shape of the investment regions when βN < βG

Figure 3: Shape of the investment regions when βN = βG

We begin by carefully examining the case βN > βG. As the remaining two cases will exhibit

similar properties, developments will be shorter.
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3.1 The output flow of technology N is higher than the output flow of tech-
nology G: βN > βG

In this paragraph, we describe the exercise region that corresponds to the investor’s problem

when the output flow generated by technology N is greater than that generated by technology

G. First, we study the investment region for which it is optimal to invest in technology N, IN .

Let us define

P ∗
1,N (x) = inf {p ∈ R+| (x, p) ∈ IN} , (18)

which is the minimal level of output price for which it is optimal to invest in technology N given

that the input price equals x. The next proposition gives the main features of this function

P ∗
1,N .

Proposition 4 MacDonald and Siegel [16] or Dixit and Pindyck [8] We have the following

properties concerning function P ∗
1,N :

1. x 7→ P ∗
1,N (x) is a decreasing function,

2. x 7→ P ∗
1,N (x) is a convex function,

3. P ∗
1,N (0) = p1,

4. lim
x→+∞P ∗

1,N (x) = p∗N .

Proposition 4 describes the shape of the investment region IN . Result 1 states that when the

input price increases, the threshold value of the output price for which it is optimal to invest in

technology N decreases. Indeed, when the input price increases, the expected payoff generated

by technology G decreases whereas the expected payoff generated by technology N remains

constant. Knowing that technology G becomes less profitable, the investor chooses a threshold

value of the output price for which it is optimal to invest in technology N that is decreasing

with the input price. This effect decreases as the input price increases (Result 2): in this case,

technology G is less competitive and plays almost no role in the decision any more. Ultimately,

when the input price tends to infinity, project G totally disappears, coming back to the basic

setting where there is only one project. It is thus optimal to invest as soon as the output price

is greater than the usual threshold p∗N (Result 4).

Concerning investment region IG, we have to prove first that it is nonempty under Assump-

tion A1.

Proposition 5 Under Assumption A1, IG is nonempty.

We define function

p 7→ X∗
1,G (p) = sup {x ∈ R+|V (x, p) = βGp− γGx− IG} (19)

which has to be viewed as the maximal level of input price for which it is optimal to invest in

technology G given that the output price equals p. Its main features are summarized in the

following proposition.

11



Proposition 6 We have the following properties concerning function X∗
1,G:

1. p 7→ X∗
1,G (p) is a concave function,

2. X∗
1,G (p∗G) = 0.

Concavity of function X∗
1,G implies the existence of a maximum level of input cost above

which it is never optimal to invest in technology G. As soon as the input cost increases, the

set of output prices for which it is optimal to invest in technology G becomes smaller and tends

to disappear. Moreover, the shape of the investment region gives some counterintuitive results.

Let us imagine that the input/output prices are such that they are “just above” IG so that it is

not optimal to invest immediately. If the output price decreases and the input price increases in

such a way that they fall into IG, it becomes optimal to invest in technology G though both the

output and the input prices decreased. In this case, the investor is indeed sure that it will be too

long and thus costly to reach IN . He thus accepts to invest in the project with the lowest price

sensibility. When we consider the two projects simultaneously, the investment regions are quite

different from the case where each project is taken separately. The presence of the two projects

makes the investor more reluctant to invest in one of the two projects when the projects’ profits

are close and even if they are very high. He prefers to wait to obtain more information about

the dominance of one project over the other: a choice value is created. Let us now turn to the

case where the output flow from technology G is greater than the one of technology N.

3.2 The output flow of technology G is higher than the output flow of tech-
nology N : βG > βN

In order to study the shape of the investment regions, we define P ∗
2,G (x) = inf {p ∈ R+| (x, p) ∈ IG}.

To be more explicit, we have

P ∗
2,G (x) = inf {p ∈ R+|V (x, p) = βGp− γGx− IG} . (20)

P ∗
2,G has to be viewed as the minimal level of output price for which it is optimal to invest in

technology G given that the input price equals x. We first focus on investment region IG and

on the general properties of function P ∗
2,G.

Proposition 7 We have the following properties concerning function P ∗
2,G:

1. x 7→ P ∗
2,G (x) is an increasing function,

2. x 7→ P ∗
2,G (x) is a convex function,

3. P ∗
2,G (0) = p∗G.

These results are very similar to the ones obtained in Proposition 4 when βN > βG. As

the input price increases, the threshold value of the output for which it is optimal to invest
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in technology G increases. Indeed, for a given output price, when the input price increases,

the expected payoff generated by technology G decreases. Therefore, in order technology G to

remain the optimal choice, the optimal threshold has to increase (Result 1). Convexity of the

optimal threshold (Result 2) shows that the choice value created by the competition between

the two projects is all the more important as the input price increases. When the input price

is equal to zero, technology G clearly dominates technology N since it has a higher payoff and

a lower cost. It is indeed as if technology N did not exist any more and it is optimal to invest

in technology G as soon as the output price exceeds the usual threshold p∗G (Result 3). Next

proposition states precisely the behavior of function P ∗
2,G for large input price and confirms that

the choice value increases with the input price.

Proposition 8 We have the following result concerning function P ∗
2,G

lim
x→+∞

P ∗
2,G (x)

x
∈

]
γG

βG − βN
,

γG

βG − βN
κ∗

[
,

where κ∗ is defined by

κ∗ = inf {κ ≥ 0|∀p ≥ κx,Ce (p, x) = p− x} ,

and where Ce (p, x) is an exchange option defined by

Ce (p, x) = sup
τ
E

[
e−rτ (Xx

τ − P p
τ )

]
.

The limit of P ∗
2,G is difficult to obtain. However, its asymptote lies in an interval that we

determine. As the input price x increases, P ∗
2,G moves away the bisecting line. The choice value

is thus unbounded for large values of x. Now, we focus on the other investment region IN and

on function

p 7→ X∗
2,N (p) = inf {x ∈ R+|V (p, x) = βNp− IN} , (21)

which is the minimal level of input price for which it is optimal to invest in technology N .

Proposition 9 Function X∗
2,N has the following properties:

1. p 7→ X∗
2,N (p) is a convex function,

2. lim
p↓p∗N

X∗
2,N (p) = +∞.

The findings concerning the investment regions are symmetric with the case βN > βG. Along

the indifference line and despite the fact that the profit is unbounded, it is not optimal to invest

in any project due to the choice value generated by the competition between the two projects.

Moreover, there is a minimum level of input price that makes investment in technology N

optimal. For a given input price that is very low, investment can only occur in technology G.

On the contrary, for a given input price that is high enough, investment can occur in the two

technologies depending on the level of the output price. We study the last case where the two

technologies exactly generate the same output flow.
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3.3 The output flow of both technologies are equal: βN = βG

In this section, the two technologies present the same price sensibility. The indifference line is

then equal to x = IN−IG
γG

. It is interesting to note that the three different cases are described by

a rotation of the indifference line. Here, we are in the extreme case where the indifference line

is vertical. As in the first two cases, we define

P ∗
3,G (x) = inf {p ∈ R+|V (p, x) = βGp− γGx− IG} and (22)

P ∗
3,N (x) = inf {p ∈ R+|V (p, x) = βNp− IN} . (23)

Proposition 10 We have the following properties concerning functions P ∗
3,G and P ∗

3,N :

1. x 7→ P ∗
3,G (x) is an increasing and convex function,

2. x 7→ P ∗
3,N (x) is a decreasing and convex function,

3. P ∗
3,G (0) = p∗G and lim

x↑ IN−IG
γG

P ∗
3,G (x) = +∞,

4. lim
x↓ IN−IG

γG

P ∗
3,N (x) = +∞ and lim

x→+∞P ∗
3,N (x) = p∗N .

When the input price is equal to zero, this is as if technology G were unique and investment

in technology G is thus optimal as soon as the output price is greater than the usual threshold

p∗G. On the contrary, when the input price tends to +∞, this is as if there were only technology

N and investment is optimal as soon as the output price is greater than p∗N . Here the two

investment regions are clearly separated by a vertical line that corresponds to the indifference

line. When the input price is lower than IN−IG
γG

, any potential investment would only occur

in technology G, whereas when the input price is greater than IN−IG
γG

, it would only occur in

technology N. That P ∗
3,G is increasing and P ∗

3,N is decreasing illustrates the interaction between

the two technologies. This effect is at its height when the input price exactly equals IN−IG
γG

,

since the investor will never invest in any of the two projects even if the common profit tends to

infinity. Indeed, his indifference makes him wait to choose the most favorable technology. With

this extreme case, we see that the level of the future cash-flow is not a sufficient statistic to

take any decision in this bidimensional setting. We now have a precise idea of the shape of the

investment regions for different values taken by the pair input/output prices and by βN and βG.

We can go to the next section that proposes an application of this model to power generation

under uncertainty.

4 Application: power generation under uncertainty

As pointed out in the introduction, the multiple technologies to produce electricity makes any

investment decision difficult. For instance, what should an investor choose between a technology

with high sunk costs and a high price sensibility and a technology that is more flexible but that
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presents a lower price sensibility at the same time? Moreover, how to take into account the

characteristics of the electricity market? This is this kind of questions we are trying to answer

in this section. We consider two ways to produce electricity:

• technology N produces electricity with a nuclear power plant,

• technology G produces electricity with a gas power plant.

In this particular case, P can be considered as the electricity price, whereas X can be viewed

as the cost of supplying gas. More precisely, we have the following features concerning each

technology.

-Technology N TN years are needed to build the production unit. This means that once

the investment decision has been taken, the investor does not get any profit immediately:

there is a lag between the time at which investment is decided and the time at which power

generation starts. We assume moreover that the production unit lasts LN years, implying

that the profit flow only exists on the time period [TN , TN + LN ]. Sunk capital cost is

denoted IN . The profit is thus given by the following function:

ΨN (p) = e−rTNE
[∫ TN+LN

TN

P (t) e−rtdt|P (0) = p

]
− IN .

According to the dynamic of Pt, we have for t ≥ TN ,

Pt = PTN
exp

{(
r − δP − 1

2
σ2

P

)
(t− TN ) + σP

(
W 1

t −W 1
TN

)}
.

Therefore

E
[∫ TN+LN

TN

P (t) e−rtdt|P (0) = p

]
=

1
δP

(
1− e−δP LN

)
E

[
e−rTN PTN

|P (0) = p
]
,

=
p

δP
e−δP TN

(
1− e−δP LN

)
.

We finally have that

ΨN (p) = βNp− IN (24)

with βN = 1
δP

e−(r+δP )TN
(
1− e−δP LN

)
. We recover the expression of the initial model with

the output flow βN . βN that can also be seen as the price sensibility of the technology is

an increasing function of LN , and a decreasing function of TN . The more important is the

time lag between the decision and the effective electricity generation, the less profit the

investor gets.

-Technology G TG years are needed to build the production unit that lasts LG years. Sunk

capital cost is denoted IG. The amount of gas required to generate one electricity unit is

equal to lG. The profit is given by the following function:

ΨG (p, x) = e−rTGE
[∫ TG+LG

TG

P (t) e−rtdt|P (0) = p

]

−e−rTGE
[∫ TG+LG

TG

lGX (t) e−rtdt|X (0) = x

]
− IG.
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By making similar computations than in the case of the nuclear technology, we easily

obtain that

ΨG (p, x) = βGp− γGx− IG, (25)

with βG = 1
δP

e−(r+δP )TG
(
1− e−δP LG

)
and γG = lG

δX
e−(r+δX)TG

(
1− e−δXLG

)
.

As for technology N, βG is increasing in LG and decreasing in TG. But the effect on the

profit function is not clear, because here we have to take into account the variable cost

and γG is increasing in LG and decreasing in TG. Therefore, the total effect of LG and TG

on ΨG (p, x) is not determined.

We make the following assumptions on the parameters’ values:

- IN > IG,

- lG > 0 and so γG > 0.

Thanks to these assumptions and depending on the values taken by Ti and Li, for i = N,G, the

three cases concerning the ranking of the price sensibility βi may arise. We suppose that the

length of life of a nuclear power plant is twice longer than that of a thermal power plant and

that there exists ξ > 1 such that TN = ξTG. The three following cases arise:

−If ξ ∈
]
1, 1 +

1
(r + δP ) TG

ln
(

1− e−2δP LG

1− e−δP LG

)[
, then βN > βG,

−If ξ ∈
]
1 +

1
(r + δP ) TG

ln
(

1− e−2δP LG

1− e−δP LG

)
, +∞

[
, then βG > βN ,

−If ξ = 1 +
1

(r + δP ) TG
ln

(
1− e−2δP LG

1− e−δP LG

)
, then βN = βG.

With the assumption on the length of life, the output flow generated by the nuclear power plant

is greater than the one generated by the thermal power plant if the construction time of a nuclear

power plant is not too long relative to the thermal power plant. We recover the characteristics

of the investment regions obtained in the previous part. In the case where the output flow of

the nuclear power plant is greater than the one of the gas power plant, it can be optimal to

invest in a gas power plant after a fall in the electricity price and an increase in the gas price.

Indeed, the investor prefers to be sure he does not lose an opportunity to invest in the nuclear

power plant, therefore he waits until it becomes too costly to invest in the nuclear technology.

When the price sensibility of the gas power plant is higher than the one of the nuclear power

plant, the optimal choice goes from the gas power plant to the nuclear technology as the cost of

supplying gas increases. If gas is not too costly, it is preferred because the technology is more

flexible than a nuclear power plant.

Another surprising result occurs when βN = βG. Indeed, when x = IN−IG
γG

, we are on the

indifference line and even if the output price tends to infinity, the investor is indifferent between

the two projects. Although it is possible for him to obtain an infinite profit, he prefers to wait to

know in which direction the state variables are going to evolve and which technology to select.

We recover the fact that the profit level is not a decision variable any more.
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In this application, depending on the values given to the construction lag and to the lifetime

of the production unit, we may obtain very different results as far as the position of βN with

respect to βG may change. The results are thus highly dependent on the characteristics of each

power plant.

5 Concluding remarks

This paper studies the choice by an investor between two mutually exclusive projects under both

output price and input price uncertainty. In this bidimensional setting, the main difficulty is to

determine the set of values for which it is optimal to invest. Our main finding is that it is never

optimal to invest when the competitive projects yield the same profit, that is when the investor

is indifferent between the two. The interpretation is that the investor prefers to wait in order to

collect information rather than to invest too fast in a project that turns out to be unprofitable.

The study of the different possible investment regions shows us that they are quite different

depending on the ranking of the price sensibilities. When βG ≥ βN , for low values of the input

price, optimal investment may only occur in technology G, and for high values of the input

price, optimal investment occurs more likely in technology N. When βN > βG, for high values

of the input price, optimal investment can only occur in technology N, and for low values of

the input price, optimal investment may occur in both technology. The shape of the exercise

regions is very different than if each project were taken separately: the interaction between the

two projects creates what we shall call a “choice value”. It has to be added to the “time value”

that corresponds to the optimal moment to invest and that has been demonstrated by McDonald

and Siegel [16] or by Henry [11]. A natural extension could be to consider such a technology

choice in a competitive setting. Do firms still take the time to ensure their investment decision?

The fear of being preempted will certainly decrease the choice value but to which extent?
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6 Appendix

6.1 Proof of Proposition 1

To prove Result 1, we fix a stopping time τ and we have

E
[
e−rτ max (ΨN (P p

τ ) , ΨG (P p
τ , Xx

τ ))
] ≤ E

[
e−rτ (ΨN (P p

τ ))
]
+ E

[
e−rτ (ΨG (P p

τ , Xp
τ ))

]
,

= E
[
e−rτ (βNP p

τ − IN )
]
+ E

[
e−rτ (βGP p

τ − γGXx
τ − IG)

]
,

≤ E
[
e−rτ (βNP p

τ − IN )
]
+ E

[
e−rτ (βGP p

τ − IG)
]
,

≤ sup
τ
E

[
e−rτ (βNP p

τ − IN )
]
+ sup

τ
E

[
e−rτ (βGP p

τ − IG)
]
.

This implies that V (p, x) ≤ VN (p)+VG (p, 0). Because δP > 0 and δX > 0, VN (p) and VG (p, 0)

are explicit functions (see MacDonald and Siegel [16] or Dixit and Pindyck [8]) that are finite.

The value function V is thus finite.

Results 2 and 3 immediately follow from a composition of monotonic functions.

Concerning Result 4, we have to show that

V (λp0 + (1− λ) p1, λx0 + (1− λ) x1) ≤ λV (p0, x0) + (1− λ) V (p1, x1) ,

for any (p0, x0), (p1, x1) and λ ∈ [0, 1].

By definition, putting p(λ) = λp0 + (1− λ) p1 and x(λ) = λx0 + (1− λ) x1 we have

V (p(λ), x(λ)) = sup
τ∈T P

E
[
e−rτ max

(
ΨN

(
P p(λ)

τ

)
, ΨG

(
P p(λ)

τ , Xx(λ)
τ

))]
.

Focusing on the left hand side, we have

E
[
e−rτ max

(
βNP λp0+(1−λ)p1

τ − IN , βGP λp0+(1−λ)p1
τ − γGXλx0+(1−λ)x1

τ − IG

)]

= E
[
e−rτ max {βN (λP p0

τ + (1− λ) P p1
τ )− IN , βG (λP p0

τ + (1− λ) P p1
τ )− γG (λXx0

τ + (1− λ) Xx1
τ )− IG}

]

≤ λE
[
e−rτ max (βNP p0

τ − IN , βGP p0
τ − γGXx0

τ − IG)
]

+ (1− λ)E
[
e−rτ max {βNP p1

τ − IN , βGP p1
τ − γGXx1

τ − IG}
]
.

Because this inequality is true for every stopping times τ , it follows that

V (λp0 + (1− λ) p1, λx0 + (1− λ) x1) ≤ λV (p0, x0) + (1− λ) V (p1, x1) ,

what concludes the proof. 2
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6.2 Proof of Proposition 2

Let us introduce the value function

C (p) = sup
τ
E

[
e−rτ ((βN − βG)Pτ − (IN − IG))+

]
.

Using that max (x, y) = (x− y)+ + y, we have

E
[
e−rt max (βNPτ − IN , βGPτ − IG)

]
= E

[
e−rt ((βN − βG) Pτ − (IN − IG))+

]
+E

[
e−rt (βGPτ − IG)

]
.

Taking the supremum over the stopping times τ gives the inequality V (p) ≤ C (p) + VG (p).

According to MacDonald and Siegel [16] or Dixit and Pindyck [8], the optimal threshold above

which the value function C(p) has to be exercised is given by

β

β − 1
IN − IG

βN − βG
=

β

β − 1
p̃.

Therefore, for any p ≥ β
β−1 p̃, we have V (p) ≤ βNp− IN . It follows that V (p) = βNp− IN and

p2 ≥ β
β−1 p̃. 2

6.3 Proof of Theorem 1

For every t ≥ 0, we have by definition of the value function

V (p, x) ≥ E

[
e−rt max

(
βNpe

(
r−δP−σ2

P
2

)
t+σP W 1

t − IN , βGpe

(
r−δP−σ2

P
2

)
t+σP W 1

t

−γGxe

(
r−δX−σ2

X
2

)
t+σX

(
ρW 1

t +
√

1−ρ2W 2
t

)

− IG

)]
,

≥ E
[
max

(
βNpe−δP t+σP W 1

t −
σ2

P
2

t − IN , βGpe−δP t+σP W 1
t −

σ2
P
2

t

−γGxe
−δX t+σ2

X

(
ρW 1

t +
√

1−ρ2W 2
t

)
−σ2

X
2

t − IG

)]
,

≥ E
[
max

(
βNp

(
1 + σP W 1

t

)− IN , βGp
(
1 + σP W 1

t

)

− γGx
(
1 + σX

(
ρW 1

t +
√

1− ρ2W 2
t

))
− IG

)]
+ E

[
f

(
t,W t

1,W
t
2

)]
,

= βNp− IN + E
[
max

(
βNpσP W 1

t , βGpσP W 1
t − γGxσX

(
ρW 1

t +
√

1− ρ2W 2
t

))]

+ E
[
f

(
t, W t

1,W
t
2

)]
,

where the last equality comes from the fact that (p, x) belongs to the indifference line and where

the function f(.) is defined as

f (t, y1, y2) = max(βNpe−(δP +
σ2

P
2

)t+σP y1 − IN , βGpe−(δP +
σ2

P
2

)t+σP y1 − γGxe
−(δX+

σ2
X
2

)t+σX

(
ρy1+

√
1−ρ2y2

)

− IG)

− max
(
βNp− IN + βNpσP y1, βGp− γGx− IG + βGpσP y1 − γGxσX

(
ρy1 +

√
1− ρ2y2

))
.
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Now, we are going to show that for t small enough E|f (
t,W 1

t ,W 2
t

) | ≤ ct where c is a constant.

Using that max(a, b)−max(c, d) ≤ max(a− c, b− d), we have:

f (t, y1, y2) ≤ max
[
βNpe−(δP +

σ2
P
2

)t+σP y1 − βNp (1 + σP y1) , βGpe−(δP +
σ2

P
2

)t+σP y1 − βGp (1 + σP y1)

−
(

γGxe
−(δX+

σ2
X
2

)t+σX

(
ρy1+

√
1−ρ2y2

)
− γGx

(
1 + σX

(
ρy1 +

√
1− ρ2y2

)))]
,

≤
∣∣∣∣βNpe−(δP +

σ2
P
2

)t+σP y1 − βNp (1 + σP y1) |+ |βGpe−(δP +
σ2

P
2

)t+σP y1 − βGp (1 + σP y1)
∣∣∣∣

+

∣∣∣∣∣

(
γGxe

−(δX+
σ2

X
2

)t+σX

(
ρy1+

√
1−ρ2y2

)
− γGx

(
1 + σX

(
ρy1 +

√
1− ρ2y2

)))∣∣∣∣∣ .

For each of the three terms of the right hand side, we use the following inequality: |ey−1−y| ≤
y2

2 e|y|. So, for the first term, we obtain for t small enough,
∣∣∣∣βNpe−(δP +

σ2
P
2

)t+σP y1 − βNp (1 + σP y1)
∣∣∣∣ =

∣∣∣∣βNpe−(δP +
σ2

P
2

)t+σP y1 − βNp

(
1− (δP +

σ2
P

2
)t + σP y1

)

− βNpδP t| ,

≤ βNp

(
σP y1 − (δP + σ2

P
2 )t

)2

2
e|σP y1−(δP +

σ2
P
2

)t| + βNp(δP +
σ2

P

2
)t,

≤ c1t.

Hence, by repeating this operation twice, we obtain that E|f (
t,W 1

t ,W 2
t

) | ≤ (c1 + c2 + c3) t =

ct. It follows that

V (p, x) ≥ βNp− IN

+ E
[
max

(
βNpσP W 1

t , βGpσP W 1
t − γGxσX

(
ρW 1

t +
√

1− ρ2W 2
t

))]
+ o(t).

Because W 1
t (resp. W 2

t ) has the same law as
√

tg1 (resp.
√

tg2), where the gi are Gaussian

random variables, we have

V (x, p) ≥ βNp− IN +
√

tE [max (h1, h2)] + o(t),

where h1 = βNpσP g1 and h2 = (βGpσP − γGxσX)g1 −
√

1− ρ2γGxσXg2 are also Gaussian

random variables. According to the standard property:

If Eg = Eh = 0 and P (h 6= g) > 0, then Emax (g, h) > 0,

we have that V (x, p) > βNp− IN which concludes the proof.

6.4 Proof of Proposition 3

Case 1 : ∀x ≤ x0,

0 ≤ V (p0, x)− V (p0, x0)
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= sup
τ∈T P

E
[
e−rτ max (ΨN (Pτ ) , ΨG (Xx

τ , Pτ ))
]

− sup
τ∈T P

E
[
e−rτ max (ΨN (Pτ ) , ΨG (Xx0

τ , Pτ ))
]

≤ sup
τ∈T P

E
[
e−rτ (max (ΨN (Pτ ) , ΨG (Xx

τ , Pτ ))−max (ΨN (Pτ ) ,ΨG (Xx0
τ , Pτ )))

]
,

= sup
τ∈T P

E
[
e−rτ (max (0, γG (Xx0

τ −Xx
τ )))

]
,

≤ γG (x0 − x) .

Because V (p0, x0) ≤ βGp0 − γGx0 − IG, we get V (p0, x) ≤ βGp0 − γGx − IG, and thus (p0, x)

belongs to the investment region.

Case 2 : ∀x ≥ x0, V (p0, x) ≤ V (p0, x0). So, we have V (p0, x) ≤ βNp0 − IN .

It follows that V (p0, x) = βNp0 − IN , which ends the proof.

Case 3 : In this case, βN ≥ βG and we take p ≥ p0:

V (p, x0)−V (p0, x0) ≤ (p− p0) sup
τ∈T P

E
[
e−rτ max

(
βNe(r−δN− 1

2
σ2

N)τ+σNW 1
τ , βGe(r−δN− 1

2
σ2

N)τ+σNW 1
τ

)]
.

As βN ≥ βG, it follows that V (p0, x)−V (p0, x0) ≤ (p− p0) βN . Because we assume V (p0, x0) =

βNp0 − IN , we have: V (p, x0) ≤ βNp− IN and the result follows.

Case 4 : As p ≥ p0, we have the same inequality than above:

V (p, x0)−V (p0, x0) ≤ (p− p0) sup
τ∈T P

E
[
e−rτ max

(
βNe(r−δN− 1

2
σ2

N)τ+σNW 1
τ , βGe(r−δN− 1

2
σ2

N)τ+σNW 1
τ

)]
.

But, now, βG ≥ βN and consequently, V (p0, x) − V (p0, x0) ≤ (p− p0)βG. An analogous

argument as above with V (p0, x0) = βGp0 − γG − IG leads to the result. 2

6.5 Proof of Proposition 4

Result 1 : Let (x0, x1) ∈ R2 such that x0 < x1. By definition of P ∗
1,N ,

(
x0, P

∗
1,N (x0)

)
∈ IN .

According to the previous proposition,
(
x1, P

∗
1,N (x0)

)
∈ IN . By definition of P ∗

1,N ,

P ∗
1,N (x1) ≤ P ∗

1,N (x0). It follows that P ∗
1,N (.) is a decreasing function.

Result 2 : In order to show that P ∗
1,N is a convex function, we are going to proceed in several

steps. The first step consists in proving that IN is a convex set. We want to show that if (x0, p0)

and (x1, p1) ∈ (IN )2, then (λx0 + (1− λ)x1, λp0 + (1− λ) p1) ∈ IN .

V (λp0 + (1− λ) p1, λx0 + (1− λ) x1) ≤ λV (p0, x0) + (1− λ) V (p1, x1) ,

= λ (βNp0 − IN ) + (1− λ) (βNp1 − IN ) ,

= βN (λp0 + (1− λ) p1)− IN .
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But, knowing that

V (λp0 + (1− λ) p1, λx0 + (1− λ) x1) ≥ max {βN (λp0 + (1− λ) p1)− IN ,

βG (λp0 + (1− λ) p1)− γG (λx0 + (1− λ) x1)− IG} .

This implies that V (λx0 + (1− λ) x1, λp0 + (1− λ) p1) = βN (λp0 + (1− λ) p1)− IN and thus

(λx0 + (1− λ) x1, λp0 + (1− λ) p1) ∈ IN .

The second step consists in showing that P ∗
1,N is effectively a convex function. As IN is a convex

set, (
λx0 + (1− λ) x1, λP ∗

1,N (x0) + (1− λ) P ∗
1,N (x1)

) ∈ IN .

By definition, we have the following inequality:

P ∗
1,N (λx0 + (1− λ) x1) ≤ λP ∗

1,N (x0) + (1− λ) P ∗
1,N (x1) ,

and it follows that P ∗
1,N is a convex function.

Note that we have also proven that (p, x) 7→ V (p, x) is a convex function.

Result 3 : This result has been shown by Décamps, Mariotti and Villeneuve [4].

Result 4 : Once again, we are going to demonstrate this result using several steps.

Note that VN (p) ≤ V (p, x). Let us define the setN =
{(

§,√
)
∈ R∈+|βN√− IN > βG√− γG§ − IG

}

and take (p, x) ∈ N with p < p∗N . We have the following inequalities:

V (p, x) ≥ VN (p) ,

> βNp− IN .

It follows that (p, x) does not belong to IN . Moreover, we have lim
x→+∞V (p∗N , x) ≥ VN (p∗N ).

The next step consists in proving that lim
x→+∞V (p∗N , x) = V∞ (p∗N ).

We take (xn)n≥0 that tends to +∞. If n is high enough, (p∗N , xn) ∈ N .

0 ≤ V (p∗N , xn)− VN (p∗N ) ,

≤ E
[
e−rτn max

(
βNP

p∗N
τn − IN , βGP

p∗N
τn − γGXxn

τn
− IG

)]
− E

[
e−rτn

(
βNP

p∗N
τn − IN

)]
,

with τn = inf
{

t ≥ 0|
(
P

p∗N
t , Xxn

t

)
∈ I

}
. It follows that:

0 ≤ V (p∗N , xn)− VN (p∗N ) ,

≤ E
[
e−rτn

(
(βG − βN ) P

p∗N
τn − γGXxn

τn
− (IG − IN )

)
+

]
,

≤ E
[
e−rτn

(
IN − IG − γGXxn

τn

)
+

]
,

≤ sup
τ
E

[
e−rτ (IN − IG − γGXxn

τ )+
]
,

= P (γGxn) ,

where P (γGxn) is the price of a put option with a strike equal to IN − IG. But, we know that

lim
n→+∞P (γGxn) = 0.
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It follows that lim
n→+∞V (p∗N , xn) = VN (p∗N ). Note that we have also proven that

lim
n→+∞E

[
e−rτn

(
βNP

p∗N
τn − IN

)]
= βNp∗N − IN . (26)

The last step consists in proving that (τn)n tends in probability to 0. We have the following

inequalities:

E
[
e−rτn

(
βNP

p∗N
τn − IN

)]
≤ E

[
e−rτnVN

(
P

p∗N
τn

)]
,

= βNp∗N − IN + E
∫ τn

0
e−ru

(
rIN − δP P

p∗N
u

)
I
P

p∗
N

u ≥p∗N
du,

≤ βNp∗N − IN + (rIN − δP p∗N )E
∫ τn

0
e−ruI

P
p∗
N

u ≥p∗N
du.

Since rIN − δP p∗N is nonpositive, (26) gives

lim
n→+∞E

∫ τn

0
e−ru11

{P p∗
N

u ≥p∗N}
du = lim

n→+∞E
∫ τn

0
e−ru11{σP Wu+(r−δP− 1

2
σ2

P )u≥0}du,

= 0,

which implies that (τn)n tends in probability to 0.

Finally, suppose lim
x→+∞P ∗

1,N (x) = l > p∗N and let ε be such that ε < l − p∗N . Let us define M =

IN−IG
γG

and the stopping times τn
M = inf {t ≥ 0|Xxn

t ≤ M}, and τε = inf
{

t ≥ 0|P p∗N
t ≤ p∗N + ε

}
.

We have τn ≥ τn
M ∧ τε and lim

n→+∞ τn
M ∧ τε = τε, what leads to a contradiction

All these steps allow us to conclude that lim
x→+∞P ∗

1,N (x) = p∗N . 2

6.6 Proof of Proposition 5

We will make a proof by contradiction assuming that IG is empty. As a consequence, optimal

stopping theory (see Theorems 10.1.9 and 10.1.12 in Øksendal [17]) gives

V (p, x) = E
[
e−rτI max(ΨN (PτI ),ΨG(PτI , XτI ))

]
,

= E
[
e−rτI (βNPτI − IN )

]
,

≤ VN (p).

Therefore, we have V (p, x) = VN (p). But, for x < βN−βG
γG

(p̃− p∗N ), we get

βGp∗N − γGx− IG ≤ V (p∗N , x),

= VN (p∗N ),

= βNp∗N − IN ,

< βGp∗N − γGx− IG,

which yields to a contradiction. 2
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6.7 Proof of Proposition 6

Concerning Result 1, we are going to use the same steps as the ones used to prove the convexity

of the function P ∗
1,N . IG is a convex set which implies that

(
λX∗

1,G (p0) + (1− λ) X∗
1,G (p1) , λp0 + (1− λ) p1

) ∈ IG.

But, we also have that

(
X∗

1,G (λp0 + (1− λ) p1) , λp0 + (1− λ) p1

) ∈ IG.

Therefore by definition of X∗
1,G,

X∗
1,G (λp0 + (1− λ) p1) ≥ λX∗

1,G (p0) + (1− λ) X∗
1,G (p1) .

Concerning Result 2, recall that function VG defined in the previous section is such that

VG (p, x) ≤ V (p, x). It follows that X∗
1,G (p) ∈ ĨG. Therefore

0 ≤ X∗
1,G (p) ≤ p− p∗G

C1
.

By letting p tend to p∗G, we conclude that X∗
1,G (p∗G) = 0. 2

6.8 Proof of Proposition 8

Let us define the exchange option by:

Ce (p, x) = sup
τ
E

[
e−rτ

(
xe

(r−δX− 1
2
σ2

X)τ+σX

(
ρW 1

τ +
√

1−ρ2W 2
τ

)
− pe(r−δP

1
2
σ2

P )τ+σP W 1
τ

)]
.

Using

max (βNp− IN , βGp− γGx− IG) = max (βNp− IN + IG, βGp− γGx)− IG,

= max (− (IN − IG) , (βG − βN ) p− γGx)− IG + βNp,

≤ max (0, (βG − βN ) p− γGx)− IG + βNp,

we obtain

V (x, p) ≤ Ce ((βG − βN ) p, γGx) + C (βN , p, IG) ,

where C (βN , p, IN ) is defined by

C (βN , p, IG) = sup
τ
E

[
e−rτ (βNP p

τ − IG)
]
.

With κ∗ = inf {κ ≥ 0|∀p ≥ κx,Ce (p, x) = p− x}, if we take p > max
{

γG
βG−βN

κ∗x, β
β−1

IG
βN

}
, we

have

V (p, x) ≤ (βG − βN ) p− γGx− IG + βNp,

= βGp− γGx− IG.
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In fact, the condition p > max
{

γG
βG−βN

κ∗x, β
β−1

IG
βN

}
becomes p > γG

βG−βN
κ∗x for x high enough.

And for such an x, we finally have: V (p, x) = βGp− γGx− IG.

It follows that

lim
x→+∞

P ∗
2,G (x)

x
∈

]
γG

βG − βN
,

γG

βG − βN
κ∗

[
,

what concludes the proof. 2

6.9 Proof of Proposition 10

The proof of the first two results comes directly from the properties of functions x 7→ P ∗
2,G (x)

and x 7→ P ∗
1,N (x).

Concerning Result 3, as x 7→ P ∗
3,G (x) is an increasing and convex function, and as the

indifference line does not belong to the stopping region, lim
x↑ IN−IG

γG

P ∗
3,G (x) = +∞.

A similar arguments holds for Result 4, and the limit when x → +∞ comes from the limit

of x 7→ P ∗
1,N (x). 2
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