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Abstract

Term-document matrices feed most dis-
tributional approaches to quantitative tex-
tual studies, without consideration for
the semantic similarities between terms,
whose presence arguably reduce the con-
tent variety. This contribution presents a
formalism remedying this omission, and
makes an explicit use of the semantic
similarities as extracted from WordNet.
A case study in similarity-reduced cor-
respondence analysis illustrates the pro-
posal.

Introduction The term-document matrix N =
(n;x) counts the occurrences of n terms in p doc-
uments, and constitutes the privileged input of
most distributional studies in quantitative textual
linguistics: chi2 dissimilarities between terms or
documents, distance-based clustering of terms or
documents, multidimensional scaling (MDS) on
terms or documents; and, also, latent clustering
by non-negative matrix factorization (e.g. Lee and
Seung, 1999) or topic modeling (e.g. Blei, 2012);
as well as nonlinear variants resulting from trans-
formations of the independence quotients, as in
the Hellinger dissimilarities, or transformations of
the chi2 dissimilarities themselves (e.g. Bavaud,
2011).

When using the term-document matrix, the
semantic link between words is only indirectly
addressed through the celebrated “distributional
hypothesis”, postulating an association between
distributional similarity and meaning similarity
(Harris, 1954) (see also e.g. Sahlgren, 2008;
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McGillivray et al., 2008). Largely accepted and
much documented at it is, the distributional hy-
pothesis seems hardly tackled in an explicit way,
for lack of formal measure of semantic similarity,
precisely. By contrast, the present study distin-
guishes both kind of similarities. It also yields
a new measure of textual variety taking explic-
itly into account the semantic similarities between
terms.

Data After manually extracting the paragraphs
of each of the p = 11 chapters of Book I of “An
Inquiry into the Nature and Causes of the Wealth
of Nations” by Adam Smith (Smith, 1776), we
tagged the parts of speech and lemma for each
word of the corpus using the nlp4j tagger (Choi,
2016). Subsequently we created a lemma-chapter
matrix, retaining only the type of words serving
a specific task, such as verbs. Terms ¢, j present
in the chapters were then associated to their first
conceptual senses c;, c;, that is to their first Word-
Net synsets (Miller, 1995). We inspected several
similarity matrices §;; = §(c;, ¢;) between pairs of
concepts ¢; and c;.

Semantic similarities The classical similarities
8(c4, ¢j) between two concepts ¢; and c¢; computed
on WordNet take on different forms. The concep-
tually easiest is the path similarity, defined from
the number ¢(c;, ¢;) > 0 of edges of the shortest-
path (in the WordNet hierarchy) between ¢; and ¢;
as follows:
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The Leacock Chodorow similarity (Leacock
and Chodorow, 1998) is based on the same prin-
ciple but considers also the maximum depth D =
max; ¢(c;,0) (where O represents the root of the
hierarchy, occuped by the concept subsuming all



the others) of the concepts in the WordNet taxon-
omy:
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The Wu-Palmer similarity (Wu and Palmer,
1994) is based on the notion of lowest common
subsumer c; V c;, that is the least general concept
in the hierarchy that is a hypernym or ancestor of
both ¢; and ¢;:
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The following similarities are further based on
the concept of Information Content, proposed by
Resnik (Resnik, 1993a,b). The Information Con-
tent of a concept c is defined as — log(p(c)), where
p(c) is the probability to encounter a concept ¢ in
a reference corpus. The Resnik similarity (Resnik,
1995) is defined as:
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The Lin similarity (Lin et al., 1998) is defined as:
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Finally, the Jiang Coranth similarity (Jiang and
Conrath, 1997) is defined as:
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and obeys 8 (¢;, ¢;) = oo.

Among the above similarities, the path, Wu-
Palmer and Lin similarities obey the conditions

éij = §ji >0 and éii =1. (2)

In what follows, we shall use the path similarities
when required.

A similarity-reduced measure of textual vari-
ety Let f; > 0 be the relative frequency of
term ¢, normalized to Z?Zl fi. Shannon entropy
H = -, filn f; constitutes a measure of rela-
tive textual variety, ranging from O (a single term
repeats itself) to Inn (all terms are different). Yet,
the entropy does not take into account the possi-
ble similarity between the terms, in contrast to the
reduced entropy R (our nomenclature) defined as

R = —Zfilnbi where b; = Zéij fi - 3
i=1 j=1

O Shannon entropy Hk
B reduced entropy Rk
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Figure 1: Entropies Hy. and reduced entropies Ry, for each
chapter k; dashed lines depict H and R.
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Figure 2: Shannon varieties exp(H} ) and reduced varieties
exp(Ry) for each chapter k; dashed lines depict exp(H ) and
exp(R).

In Ecology, b; is the banality of species ¢, measur-
ing its average similarity to other species (Marcon,
2016), proposed by Leinster and Cobbold (2012),
as well as by Ricotta and Szeidl (2006). By con-
struction, f; < b; < 1 and thus R < H: the
larger the similarities, the lower the textual variety
as measured by the reduced entropy, as requested.

Returning to the case study, we have, out of
the 643 verb lemmas initially present in the cor-
pus, retained the n = 234 verb lemmas occur-
ring at least 5 times (“be” and “have” excluded).
Overall term weights f;, chapter weights p; and
term weights fz-k within a chapter obtain from the
n X p = 234 x 11 term-document matrix N =

(nix) as
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The corresponding entropies and reduced en-
tropies read H = 4.98 > R = 1.60. For each
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Figure 3: Biplot of the 234 x 11 term-document matrix.
Circles depict terms and triangles depict documents.

chapter, the corresponding quantities are depicted
in figure 1. One can observe the so-called concav-
ity property H > >, ppHp and R > >, pp Ry,
which says that the variety of the whole is larger
than the average variety of its constituents.

Shannon variety Ngymon = exp(H) < n rep-
resents the equivalent number of distinct types in
a uniformly constituted corpus of same richness
or diversity (in the entropy sense) as the currently
examined corpus. Likewise, the reduced vari-
ety Negeed = €xXp(R) < Ngpmon measures the
equivalent number of types if the latter were uni-
formly distributed and completely dissimilar (that
is 8;; = 0 for ¢ # j): see figure 2.

Ordinary correspondence analysis (recall)
Correspondence analysis (CA) permits a simul-
taneous representation of terms and documents
in the so-called biplot (figure 3). CA results
from weighted multidimensional scaling (MDS)
applied to the chi2 dissimilarities D), between
documents & and [

n
Dl)sl = Z fl(qlk - qil)2 where @;), =Ziklee  (5)
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or equivalently, on MDS applied to the chi2 dis-
similarities between terms. Note the ¢;z in (5)
to constitute the independence quotients, that is
the ratio of the observed counts to their expected
value under independence. Figure 3 constitutes
the two-dimensional projection of a weighted Eu-
clidean configuration of min(234—1,11—-1) = 10
dimensions, expressing a maximal proportion of

0.17 + 0.15 = 32% of dispersion or inertia A =
%Zkl PkPlD;fl-

Similarity-reduced correspondence analysis
In the case where documents k and [, differing by
the presence of distinct terms, contain semanti-
cally similar terms, the “naive” chi2 dissimilarity
(5), which implicitly assumes distinct terms to
be completely dissimilar, arguably overestimates
their difference. The latter should be downsized
accordingly, in a way both reflecting the amount
of shared similarity between k and [/, and still
retaining the squared Euclidean nature of their
dissimilarity — a crucial requirement for the
validity of MDS. This simple idea leads us to
propose the following reduced squared Euclidean
distance ﬁkl between documents, taking into
account both the distributional and semantic
differences between the documents, namely

Dy = Z bij(qin — aa) (g — a0)  (6)
ij

where (g;x — qi)(q;jk — ¢j1) captures the distribu-
tional contribution, and
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captures the semantic contribution. Matrix T =

(t;;) has been designed so that

where b =& f is the banality

o T = diag(f) for “naive” similarities S = T
(yvhere 1 is the identity matrix), in which case
D is the usual chi2-dissimilarity

o T = ff for “confounded types” S = J
(where J is the~unit matrix filled with ones),
in which case D is identically zero.

Also, one can prove D in (6) to be a squared Eu-
clidean dissimilarity iff S is positive semi-definite,
that is iff all its eigenvalues are non-negative, a
verified condition for path dissimilarities (see the
Appendix). Figure 4 depicts the corresponding
MDS.

Semantic MDS on terms Positive semi-definite
semantic similarities S of the form (2), such as the
path similarities, generate squared Euclidean dis-
similarities as

dij =1 -8 (7
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Figure 4: Weighted MDS of the document reduced dissim-
ilarities D (6), displaying the optimal two-dimensional pro-
jection of the reduced inertia A= % > ul pkplel = 0.025,
which is roughly 50 times smaller than the ordinary inertia
A =13, prpi DY, = 1.156 of usual CA (figure 3).

(see the Appendix), and this circumstance allows
a weighted MDS on semantic dissimilarities be-
tween terms, aimed at depicting an optimal low-
dimensional representation of the semantic inertia
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irrespectively of the distributional term-document
structure (figures 5 and 6).

A family of similarities interpolating between
totally distinct types and confounded types
The exact form of similarities S between terms
fully governs the similarity-reduction mechanism
investigated so far. Yet, little systematic investi-
gation seems to have been devoted to the formal
properties of similarities (by contrast to the study
of the dissimilarities families found e.g. in Critch-
ley and Fichet (1994) or Deza and Laurent (2009),
which may obey much more specific properties
than (2). In particular, é%- satisfies (2) for o > 0
if §;; does, and varying « permits to interpolate
between the extreme cases of “naive” similarities
S = I and “confounded types” S=.

Lists of synonyms' yield binary similarity ma-
trices s;; = 0 or 1. More generally, S can be
defined as a convex combination of binary syn-
onymy relations, insuring its non-negativity, sym-
metry, positive definiteness, with s; = 1 for all
terms ¢. A family of such semantic similarities in-
dexed by the bandwidth parameter 5 > (0 obtains
as

sij = exp(—p dij /) ©)

le.g. http://www.crisco.unicaen.fr/des/
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Figure 5: Weighted MDS on the term semantic dissimi-
larities (7) for the 234 retained verbs. The first dimension
opposes do and make (whose similarity is 1) to the other
verbs. The second dimension opposes appear and seem
(with similarity 1) to the other verbs.

e have

0.4

- «stock

0.2

- store be @ |

dimension 2 : proportion of inertia = 0.05
0.0

-0.2

T T T
-0.2 0.0 0.2 0.4

dimension 1 : proportion of inertia = 0.15

Figure 6: Weighted MDS on the term semantic dissimi-
larities (7) for the 643 verbs initially present in the corpus,
emphasizing the particular position of be and have
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Figure 7: The larger the bandwidth parameter 3, the less
similar are the terms, and hence the greater are the reduced

inertia A(3) as well as the reduced entropy R(3) (3)

where cﬂ,-j is the semantic dissimilarity (7) and A
the associated semantic inertia (8).

As a matter of fact, it can be shown that a binary
S makes the similarity-reduced document dissim-
ilarity bkl (6) identical to the chi2 dissimilarity
(5), with the exception that the sum now runs on
cliques of synonyms rather than terms. Also, the
limit 3 — 0 in (9) makes Dj; — 0 with a re-
duced inertia A(ﬁ) = %Zkl prpi Dy tending to
zero. In the opposite direction, 8 — oo makes
Dy, — DY, provided d;; > 0 for i # j, a cir-
cumstance violated in the case study, where the
n = 234 verbs display, accordingly to their first
sense in WordNet, 15 cliques of size 2 (among
which do-make and appear—-seem, already en-
countered in figure 5) and 3 cliques of size 3
(namely, employ—-apply-use, set—-lay-put and
supplyffurnishfprovide). In any case, the rel-
ative reduced inertia A(B)/A is increasing in f3
(figure 7).

Performing the similarity-reduced correspon-
dence analysis on the reduced dissimilarities (6)
between the 11 document, with similarity matrices
S(B) (instead of S as in figure 4) demonstrates the
collapseof the cloud of document coordinates (fig-
ure 8). As a matter of fact, the bandwidth param-
eter 0 controls the paradigmatic sensitivity of the
linguistic subject: the larger 3, the larger the se-
mantic distances between the documents, and the
larger the spread of the factorial cloud as measured
by reduced inertia A(j3) (figure 7). On the other
direction, a low 3 can model an illiterate person,
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Figure 8: In the limit 3 — 0, both diagonal and off
diagonal similarities s;; () tend to one, making all terms se-
mantically identical, thus provoking the collapse of the cloud
of document coordinates.

sadly unable to discriminate between documents,
which look all alike.

Conclusion and further issues Despite the
technicality of its exposition, the idea of this con-
tribution is straightforward, namely to propose a
way to take semantic similarity explicitly into ac-
count, within the classical distributional similarity
framework provided by correspondence analysis.
Alternative approaches and variants are obvious:
further analysis on non-verbs should be investi-
gated; other definitions of D are worth investigat-
ing; other choices of S are possible (in particular
the original § extracted form Wordnet). Also, al-
ternatives to WordNet path similarities (e.g., for
languages in which WordNet is not defined) are
required.

On the document side, and despite its numer-
ous achievements, the term-document matrix still
relies on a rudimentary approach to textual con-
text, modelled as p documents consisting of bag
of words. Much finer syntagmatic descriptions
are possible, captured by the general concept of
exchange matrix E, giving the joint probability
to select a pair of textual positions through tex-
tual navigation (by reading, hyperlinks or biblio-
graphic zapping, etc.). E defines a weighted net-
work whose nodes are the textual positions occu-
pied by terms (Bavaud et al., 2015).

The parallel with spatial issues (quantitative ge-



ography, image analysis), where E defines the
“where”, and the features dissimilarities between
positions D defines the “what”, is immediate
(see e.g. Egloff and Ceré, 2017). In all likeli-
hood, developing both axes, that is taking into ac-
count semantic similarities on generalized textual
networks, could provide a fruitful extension and
renewal of the venerable term-document matrix
paradigm, and provide a new approach to the dis-
tributional hypothesis, which can be reframed as a
spatial autocorrelation hypothesis.

References

Francois Bavaud. 2011. On the Schoenberg trans-
formations in data analysis: Theory and illustra-
tions. Journal of Classification 28(3):297-314.
https://doi.org/10.1007/s00357-011-9092-x.

Francgois Bavaud, Christelle Cocco, and Aris Xanthos.
2015. Textual navigation and autocorrelation. In
G. Mirkros and J. Macutek, editors, Sequences in
Language and Text. De Gruyter Mouton, pages 35—
56.

David M Blei. 2012. Probabilistic topic models. Com-
munications of the ACM 55(4):77-84.

Jinho D Choi. 2016. Dynamic feature induction: The
last gist to the state-of-the-art. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. pages 271-281.

Frank Critchley and Bernard Fichet. 1994. The partial
order by inclusion of the principal classes of dissim-
ilarity on a finite set, and some of their basic prop-
erties. In Classification and dissimilarity analysis,
Springer, pages 5-65.

Michel Deza and Monique Laurent. 2009. Geometry of
cuts and metrics, volume 15. Springer.

Mattia Egloff and Raphaél Ceré. 2017. Soft textual car-
tography based on topic modeling and clustering of
irregular, multivariate marked networks. In Infer-
national Workshop on Complex Networks and their
Applications. Springer, pages 731-743.

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146-162.

Jay J Jiang and David W Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxon-
omy. arXiv preprint cmp-1g/9709008 .

C. Leacock and M. Chodorow. 1998. Combining local
context and WordNet similarity for word sense iden-
tification, In C. Fellbaum (Ed.), MIT Press, pages
305-332.

Daniel D Lee and H Sebastian Seung. 1999. Learning
the parts of objects by non-negative matrix factor-
ization. Nature 401(6755):788.

Tom Leinster and Christina A Cobbold. 2012. Measur-
ing diversity: the importance of species similarity.
Ecology 93(3):477-489.

Dekang Lin et al. 1998. An information-theoretic def-
inition of similarity. In Icml. Citeseer, volume 98,
pages 296-304.

Eric Marcon. 2016. Mesurer la Biodiversité et la Struc-
turation Spatiale. These d’habilitation, Univer-
sit¢ de Guyane. https://hal-agroparistech.archives-
ouvertes.fr/tel-01502970.

Barbara McGillivray, Christer Johansson, and Daniel
Apollon. 2008. Semantic structure from corre-
spondence analysis. In Proceedings of the 3rd
Textgraphs Workshop on Graph-Based Algorithms
for Natural Language Processing. Association for
Computational Linguistics, pages 49-52.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39—
41.

Philip Resnik. 1993a. Semantic classes and syntactic
ambiguity. In Proceedings of the workshop on Hu-
man Language Technology. Association for Compu-
tational Linguistics, pages 278-283.

Philip Resnik. 1995. Using information content to
evaluate semantic similarity in a taxonomy. arXiv
preprint cmp-1g/9511007 .

Philip Stuart Resnik. 1993b. Selection and informa-
tion: a class-based approach to lexical relationships.
IRCS Technical Reports Series page 200.

Carlo Ricotta and Laszlo Szeidl. 2006. Towards a uni-
fying approach to diversity measures: bridging the
gap between the shannon entropy and rao’s quadratic
index. Theoretical population biology 70(3):237—
243.

Magnus Sahlgren. 2008. The distributional hypothesis.
Italian Journal of Disability Studies 20:33-53.

Adam Smith. 1776. An Inquiry into the Nature and
Causes of the Wealth of Nations; Book I. Project
Gutenberg, Urbana, Illinois. Also known as: Wealth
of Nations. http://www.gutenberg.org/ebooks/3300.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics
and lexical selection. In Proceedings of the 32nd an-
nual meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 133-138.


https://doi.org/10.1007/s00357-011-9092-x
https://doi.org/10.1007/s00357-011-9092-x
https://doi.org/10.1007/s00357-011-9092-x
https://doi.org/10.1007/s00357-011-9092-x
https://hal-agroparistech.archives-ouvertes.fr/tel-01502970
https://hal-agroparistech.archives-ouvertes.fr/tel-01502970
http://www.gutenberg.org/ebooks/3300

Appendix: proof of the squared Euclidean nature
of Din (7).

The number /;; of edges is the shortest path
(in the WordNet hierarchical tree) linking the con-
cepts associated to ¢ and j is a a tree dissimilarity?,
and hence a squared Euclidean dissimilarity (see
e.g. Critchley and Fichet, 1994). Hence, (1) and
(7) entail

- 1 lij
di=1—8.=1— _ J
“ % L+4&; 144

that is d;; = o (¢;5), where p(x) = 2/(1+x). The
function ¢(x) is non-negative, increasing, con-
cave, with ©(0) = 0. For r > 1, its even deriva-
tives ¢(?") () are non-positive, and its odd deriva-
tives (2~ () are non-negative. That, is, ¢(x)
is a Schoenberg transformation, transforming a
squared Euclidean dissimilarity into a squared Eu-
clidean dissimilarity (see e.g. Bavaud, 2011), thus
establishing the squared Euclidean nature of D in
(7) (and, by related arguments, the p.s.d. nature of
5).

2provided no terms posses two direct hypernyms, which
seems to be verified for the verbs considered here



