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ABSTRACT  55	

 56	

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the 57	

decrease in M content is consequent to aging per se or to decreased physical activity.  58	

Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise 59	

could improve M function in older adults.  60	

Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing 61	

M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing 62	

chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) 63	

a 4-month exercise intervention in S.  64	

Setting: University-based clinical research center 65	

Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, 66	

electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in 67	

M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by 31P-MR spectroscopy. Peak 68	

oxygen uptake (VO2peak) was measured by GXT. 69	

Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S 70	

revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed 71	

that S are able to recover Mv, ATPmax and specific transcription factors. 72	

Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 73	

2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content 74	

and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.   75	

 76	

KEYWORDS 77	

Mitochondria volume density, Electron transport chain complexes, PGC-1a, TFAM, NRF-1, NRF-2, 78	

endurance exercise intervention, Phosphorus magnetic resonance spectroscopy, in vivo oxidative capacity 79	
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INTRODUCTION  81	

 Mitochondrial dysfunction and reduced oxidative capacity in skeletal muscle have been linked to 82	

the pathogenesis of sarcopenia, aging disabilities and frailty	 (1). Sedentary lifestyle, an escalating 83	

epidemic in western societies, is associated with loss of mitochondrial content and function (2, 3).  84	

Increased mitochondrial content in response to exercise training was first reported by Holloszy in 1967 85	

(4). Since then, exercise training has been shown to be an effective strategy to improve muscle oxidative 86	

capacity (5, 6).  87	

 Aerobic exercise training up-regulates mitochondrial genes (7). Adaptations of skeletal muscle to 88	

exercise (8) include upregulation of the master regulator of mitochondrial biogenesis, the peroxisome 89	

proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α)(9). PGC-1α is a transcriptional 90	

regulator that induces mitochondrial biogenesis by coactivating a large spectrum of transcription factors, 91	

including the nuclear respiratory factors 1 and 2 (NRF-1, NRF-2)(10, 11). In turn, NRF-1 and 2 control 92	

the expression of a significant number of the proteins that make up the five respiratory complexes (12, 13) 93	

and modulate the expression of the mitochondrial transcription factor A (TFAM), which regulates 94	

mitochondrial DNA replication (13, 14). Several studies to date indicate that, in addition to PGC-1a, 95	

aerobic exercise also up-regulates TFAM and NRF1 in humans (2, 15, 16).  96	

 Aging is associated with a loss of mitochondrial content (17, 18) and function (18-20) in muscle. 97	

However, studies comparing younger to older subjects are conflicting (21, 22). Indeed, it is not clear 98	

whether the decrease in mitochondrial content is associated with aging per se or with the decreased 99	

physical activity that comes with aging. Given the important role of aerobic exercise in up-regulating 100	

genes and transcription factors controlling mitochondrial content and function, it remains to be seen 101	

whether aerobic exercise training could play a protective role for mitochondria in aging and if training can 102	

help older individuals recover mitochondrial content. Therefore, this study had two main objectives: first 103	

to examine the relationship between mitochondrial content and physical fitness in older men and women 104	

focusing on external validity with a broad population in terms of physical fitness and body composition. 105	

Secondly, focusing on internal validity using a comprehensive picture of mitochondrial biology from the 106	

molecular level (mRNA transcripts, protein expression), the organelle level (mitochondrial density), the 107	

whole muscle level (in vivo organelle capacity), and whole-body level (VO2peak), combining invasive 108	
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and non-invasive techniques, to assess whether exercise could improve mitochondrial content and 109	

function in older adults through up-regulation of mitochondrial master regulators.  110	

 111	

RESEARCH DESIGN AND METHODS 112	

Study design 113	

 Three distinct studies were conducted. Study 1 is a cross-sectional study comparing baseline 114	

levels of mitochondrial content and physical fitness in a heterogeneous cohort of older adults across a 115	

spectrum of fitness levels. Study 2 is a case-control study comparing chronically endurance trained older 116	

adults and sedentary subjects matched for age and gender. Study 3 is an interventional study comprising a 117	

four-month exercise intervention in sedentary older adults.  118	

Study 1 was partially conducted at the University of Pittsburgh and finished at the University of 119	

Lausanne as the last author was in the process of changing institutions. All tests were conducted exactly 120	

under the same conditions and the analyses were conducted exactly the same way. Studies 2 and 3 were 121	

conducted at the University of Lausanne. The institutional review boards of both sites approved all studies 122	

and all subjects provided written informed consent. 123	

Subjects 124	

 Volunteers between 60 and 80 years of age in good general health and stable weight were 125	

recruited for the studies. Active smokers and participants with abnormal thyroid, liver or kidney function, 126	

anemia, taking anticoagulation agents or medication known to affect skeletal muscle homeostasis (such as 127	

glucocorticoids or insulin sensitizers) were excluded. All subjects underwent a standard 75g oral glucose 128	

tolerance test to rule out diabetes. For study 2 (case-control) and 3 (interventional), volunteers were 129	

considered physically active or sedentary based on their self-declared levels of physical activity. 130	

Physically active volunteers (named here “active”) were engaging in 3 or more structured aerobic exercise 131	

sessions per week for more than one year. “Sedentary” individuals were defined as those participating in a 132	

structured exercise session no more than one day per week. 133	

Exercise intervention (study 3) 134	

 The exercise training was a 16-week, supervised, moderate-intensity aerobic protocol. Sedentary 135	

subjects were asked to engage in at least three supervised sessions in the gym. Each session was 136	
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progressively increased from 30 to 60 minutes. Moderate intensity was defined as 75% of the subjects’ 137	

heart rate (HR). Exercise prescription was individualized based on the subject’s peak HR achieved during 138	

the baseline VO2peak test and adapted at midpoint of the intervention with a submaximal ergometer test 139	

as described in details in Dubé et al (23). HR monitors (Polar Electro Oy, Kempele, Finland) and exercise 140	

logs were used to monitor intensity. Subjects could bike, walk, run or row within their HR target range 141	

with at least 80% of the training as walking or biking. Frequency, duration and volume of exercise were 142	

recorded and computed as described elsewhere (23). During the training regimen subjects were instructed 143	

to follow their typical food intake and not to undertake dietary changes while engaged in the study. 144	

Clinical outcome measures 145	

 Height was measured using a wall-mounted stadiometer and weight using a calibrated medical 146	

digital scale (Seca, Hamburg, Germany). Lean body mass (LBM) was determined by dual-energy X-ray 147	

absorptiometry (DiscoveryA, Hologic Inc., Bedford, MA). Physical fitness was determined by peak 148	

oxygen consumption (VO2peak) using a graded exercise test on an electronically braked cycle ergometer 149	

(Lode B.V., Groningen, The Netherlands). HR, blood pressure and ECG were recorded before, during and 150	

after the exercise test. VO2 was computed via indirect calorimetry (Metalyzer3B, Cortex GmbH, Leipzig, 151	

Germany). The protocol was adapted from previously used protocols well suited for older volunteers of 152	

various degrees of fitness or fatness (24). Briefly, after an initial warm-up consisting in 2 minutes of no-153	

load pedaling, the graded exercise test began at 25W for women or 50W for men for the first 2 minutes 154	

and was then increased 25-50W thereafter until volitional exhaustion or if one of the American College of 155	

Sports Medicine established criteria for maximal testing had been reached. 156	

Ex-vivo skeletal muscle outcome measures 157	

 Percutaneous muscle biopsies were obtained in the fasted state from the vastus lateralis under 158	

local anesthesia (buffered lidocaine) as previously described (24). Controlled conditions included no 159	

exercise for 48-hours, a standardized dinner followed by an overnight fast prior to the biopsy. After 160	

trimming of visible adipose tissue with a dissecting microscope (MZ6; Leica Microsystems, Wetzlar, 161	

Germany), one portion of the specimen (~5mg) was fixed for transmission electron microscopy and two 162	

portions (~30mg each) were flash-frozen in liquid nitrogen and stored at -80°C for western blotting and 163	

RT-PCR. Analyses were performed in a blind manner. Transmission electron microscopy (TEM) 164	
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(study 1, 2 and 3): TEM was used to measure mitochondrial volume density (MitoVd) as a marker of 165	

mitochondrial content. A recent validation and detailed description of this stereological method has been 166	

described elsewhere (25). Protein expression (study 2 and 3):  Frozen tissue was homogenized in 200µl 167	

of ice-cold lysis buffer containing 50mM Tris-HCl, pH7.5, 150mM NaCl, 1%(v/v)Nonidet P-40, 1mM 168	

EDTA and freshly added protease inhibitor cocktail tablet (Roche Diagnostics International, Rotkreuz, 169	

Switzerland), using a motor-driven Eppendorf homogenizer. Homogenates were then rotated for 170	

30minutes at 4°C before centrifugation at 15,000rpm for 10min at 4°C. The pellet was discarded, and the 171	

supernatant was collected and stored at –80°C until used. Protein was measured by the BCA method 172	

(Pierce, ThermoFisher Scientific Inc., Rockford, IL). Western blotting was performed as previously 173	

described (26). Protein band intensity was measured by ImageJ and the target protein levels were 174	

normalized over the corresponding a-tubulin loading controls for each subject.  All antibodies for 175	

mitochondrial complex subunits have been purchased from Mitosciences (Abcam, Cambridge, UK). The 176	

list of antibodies can be found in supplemental Table 1. Gene expression analysis (study 2 and 3): Total 177	

mRNA preparations, cDNA synthesis and RT-qPCR were performed as described previously (26). 178	

Primers are described in supplemental Table 2. Target mRNA levels were normalized over the geometric 179	

mean of b-Actin and CyclophilinB, that were selected as housekeeping genes after having checked their 180	

expression stability (27). Relative mRNA expression levels were calculated with the ∆∆Ct method, where 181	

we used the mean of the ∆Cts from 5 sedentary subjects as ∆Ct calibrator. 182	

In-vivo skeletal muscle outcome measures (study 2 and 3) 183	

 The rate of post-exercise phosphocreatine (PCr) recovery reflects oxidative ATP synthesis rate 184	

and was shown to be correlated with in vitro measurements of oxidative capacity (28).  PCr Recovery 185	

experiments were performed on a 3T MR-system (VERIO, Siemens, Erlangen, Germany) in supine 186	

position. A double-tuned 31P/1H surface coil (RAPID Biomedical, Rimpar, Germany) was placed on the 187	

center of the quadriceps muscle and spectra were collected with an adiabatic excitation pulse. One fully 188	

relaxed spectrum was obtained on resting muscle with a repetition time (TR) of 20s and 4averages. For 189	

the PCr recovery spectra, the TR was 2s with 2scans per spectrum, resulting in a time resolution of 4s 190	

before, during and for 9minutes after dynamic knee extensions against a rubber band. Contraction 191	

frequency was 1extension per second (acoustic cues). The resistance of the rubber band was adapted to 192	
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each subject’s strength, which got determined beforehand by maximal isokinetic torque of the knee 193	

extensors. Default exercise duration was 28s. If the relative decrease of PCr was outside the target of 20 194	

to 40%, exercise duration was changed to 22s, 36s, or 44s; otherwise it was unchanged for a 2nd 195	

repetition. Since pH did not decrease below 6.8 in any experiment and recovery rates of experiment 1 and 196	

2 were not significantly different from each other (p=0.92), results are shown as average of the 2 197	

experiments. For the post-processing, spectra were analyzed with jMRUI (29) using AMARES for 198	

quantitation. The recovery of PCr was fitted to the formula PCr(t)=PCr0+ΔPCr(1-e-k·t); with PCr0=PCr 199	

intensity at the beginning of recovery; ΔPCr=exercise-induced decrease of the PCr signal. pH was 200	

calculated from the chemical shift between inorganic phosphate and PCr. The oxidative phosphorylation 201	

capacity (ATPmax) was computed as previously suggested (20) as the product of the recovery rate k and 202	

the resting PCr content obtained from the resting spectrum and assuming a constant ATP concentration of 203	

8.2mM. 204	

 205	

Statistical Procedures 206	

 Data are presented as means±SEM. For study 1 (cross-sectional), the relationship between 207	

variables was explored using linear regression. For studies 2 (case-control) and 3 (interventional), data 208	

was first explored using nonparametric statistical tests appropriate for small sample sizes including the 209	

Wilcoxon Rank-Sum Test (between-group comparison study 2) and the Wilcoxon signed rank test (pre-210	

post comparison, study 3). After assessing normality, parametric tests were performed. These included 211	

independent t-tests for study 2 and paired t-tests for study 3. P-values reported in the results are two-tails 212	

and from parametric tests unless otherwise specified. Correlations were performed with Spearman 213	

correlation coefficient. Significance level was set at 0.05. Statistical analyses were performed using JMP 214	

version9 (SAS, Cary, NC), SPSS version20 (IBM, Amonk, NY) and Prism version6c (GaphPad, San 215	

Diego, CA) for Macintosh. 216	

 217	

RESULTS 218	

Mitochondria content correlates with exercise capacity in older adults (study 1: cross-sectional study) 219	
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 A total of 80 subjects, 33 men and 47 women, were included in this study. The cohort was 220	

heterogeneous with wide ranges of MitoVd, VO2peak, BMI and body fatness (Table 1). A strong 221	

relationship was observed between MitoVd and VO2peak  (Figure 1). This relationship was similar when 222	

VO2peak was normalized by LBM or body weight. These data show that skeletal muscle mitochondrial 223	

content is positively associated with peak oxygen uptake in the elderly.  224	

 225	

Case-control comparison between age-matched sedentary and chronically trained older volunteers 226	

(study 2) 227	

 In an attempt to evaluate the effects of chronic exercise on mitochondrial content and function, 228	

we compared 60-80 years old active to age and gender matched sedentary adults. Subjects’ characteristics 229	

are presented in Table 2.  230	

 The active exhibited significantly higher MitoVd (+48.9%) compared to sedentary peers (Figure 231	

2A). At the protein level, differences between groups could be observed for the electron transport chain 232	

(ETC) complexes (C) I, IV and V, which were significantly higher in the active subjects (Figure 2B-C). 233	

Complexes IV and V were positively correlated with MitoVd (rho=0.52 and 0.70, respectively; p<0.05). 234	

Complexes I, IV and V were positively correlated with VO2peak/LBM (rho=0.56, 0.76 and 0.55, 235	

respectively; p≤0.03). Complexes IV and V were negatively correlated with fat mass (rho≤-0.59,p≤0.01) 236	

and percent body fat (rho≤-0.52,p≤0.05).  No significant differences were detected in the expression 237	

levels of genes involved in mitochondrial biogenesis (i.e.PGC-1α, PGC-1β, NRF-1, NRF-2 and TFAM; 238	

Figure 2D), despite a clear tendency for PGC-1a to have a higher expression in the active group.  239	

 In vivo oxidative phosphorylation capacity (reflected in the recovery time constant and ATPmax) 240	

was greater in the active than in the sedentary volunteers (+22.0% for k and +21.2% for ATPmax, Table 241	

2). MitoVd and ATPmax were positively correlated (rho=0.74, p<0.0001); the same was observed for 242	

MitoVd and k (rho=0.61,p=0.002). When taking the ratios rate constant k/MitoVd or ATPmax/MitoVd as 243	

a marker of mitochondrial function per volume, there was no difference between groups (Table 2). This 244	

suggests that the increase in ATPmax is due to a higher mitochondrial number or content, but not to 245	

intrinsic changes per mitochondria. 246	

 247	
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Exercise intervention in previously sedentary older subjects (study 3) 248	

 To investigate the capacity of skeletal muscle from untrained elderly individuals to respond to 249	

aerobic training, the sedentary subjects followed a 16-week training program (endurance exercise 250	

intervention) with a post-intervention evaluation.  Two subjects were excluded from the final data 251	

analyses: one man initiated a calorie restriction diet during intervention and had substantial weight loss; 252	

the second was a woman who received steroid treatment for acute rheumatoid disease during intervention. 253	

Out of the 12 finishers, muscle specimen data was obtained in 10 subjects (6 males, 4 females).  254	

 Subjects’ characteristics and effect of the intervention on clinical outcomes are presented in Table 255	

3. On average, subjects exercised 3.1±0.1 sessions/week, with an average of 55±1.9 minutes per session. 256	

Based on their recorded HR, exercise intensity was of 8.5±0.6 kcal/min, thus achieving the goal of a 257	

moderate endurance exercise program corresponding to an average of 5.2±0.4 kcal/kg of body weight 258	

expanded per session. The exercise intervention promoted modest, but significant, changes in body 259	

weight and BMI (both-2.2%). Body composition changed with improvements in LBM (+1.5%), and 260	

marked decrease in FM (-6.6%) and percent body fat (-5.9%). Overall fitness was remarkably improved 261	

by the exercise program, with a change of +13.9% in absolute VO2peak, corresponding to +12.5% 262	

relative VO2peak/LBM. 263	

 MitoVd increased by 50.7% with training (Figure 3A). Furthermore, the levels of complex III, IV 264	

and V were significantly increased post-intervention, accompanied by a strong tendency for complex I 265	

towards up-regulation (+29.1%) (Figure 3B-C). In line with previous reports (30), we also observed a 266	

significant increase in PGC1a and TFAM expression levels following the 4-months of exercise 267	

intervention (Figure 3D). The changes in the expression levels of PGC1a and NRF2 were significantly 268	

correlated to the increase in TFAM expression (rho=0.86 and rho=0.76 respectively,p≤0.03). The above 269	

observations indicate that exercise training increases MitoVd and VO2peak in older sedentary subject, 270	

probably by up-regulating key orchestrators of the mitochondrial biogenesis program.  271	

 ATPmax improved by 22.5% (Table 3). ATPmax/MitoVd was not significantly changed with 272	

intervention (Table 3). This, again, highlights that the increase in ATPmax is due to enhanced 273	

mitochondrial content, not to intrinsic changes in mitochondrial function.  274	

 275	
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DISCUSSION 276	

 It is well established that mitochondrial dysfunction and reduced oxidative capacity are associated 277	

with insulin resistance and type 2 diabetes. Aging is similarly associated with a loss of mitochondrial 278	

content and function (17-20), which might contribute to the development of age-related insulin resistance 279	

and physiological decline. While the positive relationship between mitochondrial content and physical 280	

fitness has been acknowledged in younger populations (31, 32), the relationship in older populations has 281	

yet to be recognized. Furthermore, it is not clear whether the mitochondrial function decline during aging 282	

is a direct consequence of the aging process per se or secondary to the sedentary lifestyle that is more 283	

prevalent in the aging population (33). Finally, it is also not clear if the possible mitochondrial defects in 284	

the aged population are due to a defective ability to trigger mitochondrial biogenesis programs.  285	

 Herein we demonstrate that physical fitness is exquisitely correlated with mitochondrial density 286	

in skeletal muscle in older adults (60-80 years old). Similarly, using a comprehensive picture of 287	

mitochondrial biology from the molecular level (mRNA transcripts, protein expression), the organelle 288	

level (mitochondrial density), the whole muscle level (in vivo organelle capacity), and whole-body level 289	

(VO2peak), we demonstrate that the mitochondrial content and function of aged individuals can be largely 290	

enhanced by an endurance exercise program. As a whole, our results indicate that ageing per se does not 291	

impede mitochondrial biogenesis in response to exercise, and that the decreases in mitochondrial function 292	

observed in elder adults are likely due to decreased physical activity. 293	

 To our knowledge, this is the largest cohort used to date to evaluate this relationship with a direct 294	

measure of skeletal muscle mitochondrial content. Thus, while the overall mitochondrial content is known 295	

to decrease with age, its positive relationship with whole body oxygen uptake persists. Further confirming 296	

this, in the case-control comparison between older sedentary and age-matched active adults, the active 297	

exhibited higher levels of fitness with greater mitochondrial volume density. While our study uses direct 298	

measures of mitochondrial content and objective measures of physical fitness, our results are consistent 299	

with previous reports in smaller cohorts of both young and old individuals or using indirect markers of 300	

mitochondrial content (24, 34, 35).  301	

Interestingly, sedentary older individuals submitted to an exercise intervention displayed large 302	

improvements in MitoVd.  Actually, post-intervention MitoVd values were similar to levels observed in 303	
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the active group (sedentary post intervention vs. active p>0.05). This, again, clearly indicates that aged 304	

individuals do not have any acquired problem to enhance mitochondrial biogenesis. Although one of the 305	

limitations of our study is the lack of comparison with a younger cohort and the fact that other authors 306	

suggested that chronic exercise is not able to completely restore mitochondrial content in older subjects 307	

(2), it is important to note that post-intervention MitoVd are in the range of younger cohorts (36) or 308	

previously published chronically trained older subjects (24).  309	

To further solidify the information from MitoVd, we also evaluated mitochondrial function in our 310	

patients by means of in vivo oxidative capacity. Our endurance trained active subjects displayed greater in 311	

vivo oxidative capacity, as determined by the rate of PCr recovery and ATPmax, compared to age-312	

matched sedentary subjects. However, sedentary subjects improved their in vivo oxidative capacity by 313	

~22% after training. Importantly, neither active, nor sedentary subjects pre or post intervention, displayed 314	

changes in the ratio of ATPmax/MitoVd. This suggests that the increase in the ability to replenish ATP is 315	

not primarily due to mitochondrial intrinsic changes in oxidative function but rather to the higher 316	

mitochondrial content. Remarkably, a recent paper by Conley et al. (37) (based on a previous study from 317	

the same group (20, 38) showed an increase in the ratio of ATPmax (23%) but no significant increase in 318	

mitochondrial volume (8.8%) after 6 months of endurance training in older men and women. Thus, their 319	

reported ratio of ATPmax/MitoVd, which the authors termed “energy coupling”, was increased.  However, 320	

a large difference in comparing our study is that their intervention (one-legged press exercise described in 321	

Jubrias et al. (38)) only improved VO2max by ~5%. Further initiatives will be required to evaluate how 322	

different exercise protocols mitigate the enhancement of ATP synthesis by increasing the intrinsic 323	

respiratory coupling or by inducing mitochondrial biogenesis. Another important difference with the work 324	

of Conley et al. is that their sedentary subjects were less fit than ours to start with (average VO2peak 1.7 325	

vs 2.0l/min with equivalent body weight); this could mean that a certain minimal activity is needed to 326	

keep up the “energy coupling”, but this again would point to the effect of exercise and lifestyle, and not to 327	

aging per se. 328	

 This higher mitochondrial content in chronically trained individuals was concurrent to an increase 329	

in electron transport chain complexes content, particularly in complexes I, IV, and V. Similar differences 330	

in complex IV levels were observed between sedentary knee osteoarthritic older patients and age-matched 331	
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active controls (39). Interestingly, in our cohort, sedentary older adults have lower MitoVd than 332	

physically active; yet exhibit no differences in complexes II and III concentrations. Similarly, a recent 333	

study (40) of young healthy volunteers showed no relationship between MitoVd and the content of 334	

complexes I and IV, but a strong correlation with complexes II, III and V. In light of these cumulative 335	

data, we propose that MitoVd appears to provide a better representation of mitochondrial content than 336	

individual or relative abundance of ETC complexes. It must be kept in mind that analyzing mitochondrial 337	

content or function through the evaluation of mitochondrial complexes subunit abundance or by in vitro 338	

single complex activities, may be misleading. This overlooks possible additional layers of regulation such 339	

as supercomplex assemblies or post-translational modifications, which can heavily affect ETC complexes 340	

function without necessarily changing their global content.  341	

 Consistent with the increase in mitochondrial content induced by our exercise intervention, 342	

transcriptional regulators of mitochondrial biogenesis were markedly upregulated. We observed 343	

significant increases in the gene expression of both PGC-1a and TFAM following the 16-week training, 344	

but not in NRF-1 and NRF-2. Prior reports demonstrate that protein expression levels of PGC1a, TFAM 345	

and NRF1 are increased following 10-weeks of endurance training (2). For PGC1a, the magnitude 346	

observed in our study (~50%) was similar to the one observed in a 16-week (30) intervention in both 347	

younger and older subjects, as well as the one observed for PGC1a protein content in a recent 12-week 348	

intervention (41). Therefore, exercise can stimulate mitochondrial biogenesis in aged populations and 349	

increase this way global respiratory capacity.   350	

 This work is not without limitations. First, the common thread between the three parts of this 351	

work was the relationship between physical fitness and mitochondrial content/function in older adults. 352	

Further studies are needed to address other controversial debates, such as the relationship between 353	

mitochondrial function and insulin sensitivity or with the genesis and development of sarcopenia in aged 354	

patients. Secondly, we did not explore gender differences, which are thought to influence mitochondrial 355	

ATP production (42). Indeed, our measurements of in vivo mitochondrial function (study 2 and 3) were 356	

performed in a relative small number of volunteers not permitting further stratifications. Lastly, we did 357	

not compare our older adults cohorts to a control group of young individuals. Thus, we cannot rule out 358	
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that exercise training in a younger population would have enhanced effects in mitochondrial content and 359	

function compared to the changes we observed in our 60 to 80 years old population of interest.  360	

 In summary, our work, using in-vivo and ex-vivo methodologies thus allowing a comprehensive 361	

model of mitochondrial biology, demonstrates (A) that physical fitness is tightly linked to mitochondrial 362	

content in a broad and heterogeneous population of older individuals, (B) that aging per se is not the 363	

primary culprit leading to mitochondrial dysfunction, as (C) aged individuals largely enhance 364	

mitochondrial function in response to exercise training. Therefore, the lower oxidative capacity observed 365	

in old individuals is likely due to a higher tendency towards a sedentary lifestyle and lower energy 366	

demand, as mitochondrial biogenesis programs can be efficiently activated upon stimulation. Accordingly, 367	

commencing an aerobic exercise program, even at an older age, can help ameliorate the loss in skeletal 368	

muscle mitochondrial content and may prevent muscle aging comorbidities such as sarcopenia and insulin 369	

resistance. 370	

 371	
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TABLES 529	

Table 1:  Study 1, subjects’ characteristics 530	

 
Mean ± SEM Minimum Maximum 

Age 66.6 ± 0.5 60 79 

Body weight (kg) 79.3 ± 1.5 55.4 106.6 

BMI 28.1 ± 0.5 19.9 37.3 

Body fat (%) 35.0 ± 1.4 7.7 51.8 

LBM (kg) 47.9 ± 1.01 31.3 71.0 

VO2peak (l/min) 1.91 ± 0.08 0.87 4.05 

VO2peak/BW (ml/min/kg) 25.2 ± 1.3 11.0 59.1 

VO2peak/LBM (ml/min/kg) 39.2 ± 1.2 21.9 66.4 

MitoVd (%) 3.78 ± 0.21 1.09 10.02 

BW = Body Weight; LBM = Lean Body Mass; MitoVd = Mitochondria volume density. 531	

 532	

 533	

  534	
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Table 2:  Study 2, subjects’ characteristics and in vivo skeletal muscle oxidative capacity (PCr 535	

recovery) 536	

Subjects characteristics Active Sedentary p-value* 

N 14 14  

Gender (M/F) 7/7 8/6  

Age (years) 67.4 ± 1.2 65.6 ± 0.7 0.21 

Body weight (kg) 59.6 ± 2.2 83.9 ± 4.7 <0.0001 

BMI (kg/m2) 21.5 ± 0.5 27.8 ± 1.3 <0.0001 

LBM (kg) 45.7 ± 2.2 54.7 ± 3.1 0.03 

FM (kg) 12.0 ± 0.7 27.9 ± 3.0 <0.0001 

Body fat (%) 20.2 ± 1.2 32.3 ± 2.5 0.0003 

VO2 peak (l/min) 2.16 ± 0.15 2.06 ± 0.14 0.64 

VO2 peak/LBM (ml/min/kg) 46.1 ± 2.02 37.7 ± 1.8 0.005 

PCr recovery    

N 12 14  

k (1/min) 2.33 ± 0.11 1.91 ± 0.11 0.009 

ATPmax (mmol/l/s) 1.37 ± 0.07 1.13 ± 0.05 0.01 

pH end exercise 7.11 ± 0.01 7.12 ± 0.01 0.39 

pH min 6.94 ± 0.01 6.96 ± 0.01 0.16 

Decrease in PCr (%) 28.3 ± 1.9 32.1 ± 1.5 0.13 

k/MitoVd (1/min/%) 0.35 ± 0.03 0.41 ± 0.03 0.16 

ATPmax/MitoVd (mmol/l/s/%)  0.21 ± 0.04 0.24 ± 0.01 0.13 

 537	

Data are means±SEM. LBM = Lean Body Mass, FM = Fat Mass; k = PCr recovery rate constant; 538	

ATPmax = maximal rate of ATP regeneration. * 2-tailed independent t-test. 539	

  540	
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Table 3: Study 3, subjects’ characteristics and in vivo skeletal muscle oxidative capacity (PCr 541	

recovery) before and after a 4-months endurance training intervention  542	

Subjects characteristics Sedentary Pre Sedentary Post p-value* 

N 12  12  

Gender (M/F) 7/5   

Body weight (kg) 83.3 ± 5.4 81.5 ± 5.1 0.04 

BMI (kg/m2) 27.5 ± 1.3 26.9 ± 1.3 0.04 

LBM (kg) 54.6 ± 3.7 55.4± 3.5 0.04 

FM (kg) 27.4 ± 3.0 25.6 ± 2.9 0.0008 

Body fat (%) 32.0 ± 2.6 30.1 ± 2.6 0.0005 

VO2 peak (l/min) 2.01 ± 0.16 2.29 ± 0.17 0.006 

VO2 peak/LBM (ml/min/kg) 36.97 ± 1.92 41.60 ± 2.03 0.004 

PCr recovery    

N 12 12  

k (1/min) 1.88 ± 0.12 2.41 ± 0.13 0.0009 

ATPmax (mmol/l/s) 1.11 ± 0.06 1.36 ± 0.06 0.006 

pH end exercise 7.13 ± 0.01 7.12 ± 0.01 0.30 

pH min 6.96 ± 0.01 6.96 ± 0.02 0.35 

Decrease in PCr (%) 31.4 ± 1.4 30.5 ± 2.0 0.72 

k/MitoVd (1/min/%) (N=10) 0.42 ± 0.04 0.35 ± 0.04 0.22 

ATPmax/MitoVd (mmol/l/s/%) (N=10)  0.24 ± 0.02 0.20 ± 0.02 0.13 

 543	

Data are means±SEM. LBM = Lean Body Mass, FM = Fat Mass; k = PCr recovery rate constant; 544	

ATPmax = maximal rate of ATP regeneration. * 2-tailed paired t-test. 545	

 546	

  547	
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FIGURE LEGENDS 548	

 549	

Figure 1: Study 1 (N=80). Linear relationship between physical fitness (VO2peak) and mitochondrial 550	

volume density (MitoVd).  551	

 552	

Figure 2: Study 2, skeletal muscle comparison between age-matched older active and sedentary 553	

subjects. A. Mitochondrial volume density (active N=13 and sedentary N=12). *, p=0.0003. B Western 554	

Blots from representative subjects belonging either to the active (Act) or sedentary (Sed) group. C. 555	

Electron transport chain complex relative abundance (active N=7; sedentary N=8; the values normalized 556	

over the corresponding a-tubulin levels are shown). *, p≤0.02; **, p=0.0001. D. Relative mRNA 557	

abundance (active N=7 and sedentary N=9). For all panels, Error Bar = SEM; black bar = active; white 558	

bar = sedentary. 559	

 560	

Figure 3: Study 3, skeletal muscle of older sedentary adults before and after 4-month endurance 561	

training intervention. A. Mitochondrial volume density (N=10). B. Paired Western Blots on ETC 562	

complexes from representative subjects before and after intervention. C. Electron transport chain complex 563	

relative abundance (N=7; the values normalized over the corresponding a-tubulin levels are shown). D. 564	

Gene expression profiles (N=8). For all panels, error Bar = SEM; black bar = pre-intervention; white bar 565	

= post-intervention; *, p=0.03 (1-tail); **, p<0.05.  566	

 567	

 568	
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Supplemental material 
 
Supplemental table 1: Western-blotting antibodies 
 
Antibody anti- Brand Number 
a-Tubulin Sigma-Aldrich T9026 
Complex I 
NDUFA9 Mitosciences ab14713 

Complex II 
SDHA Abcam ab14715 

Complex III 
UQCRC1 Abcam ab14705 

Complex IV 
MTCO1 Abcam ab14748 

Complex V 
ATP5A Abcam ab109865 

 
 
Supplemental table 2: qRT-PCR primers  
 
PCR Primers 
Gene 

Sequence 

b-Actin F : 5'-TCGTGCGTGACATTAAGGAG-3' 

 R : 5'-GTCAGGCAGCTCGTAGCTCT-3' 
cyclophilin B F : 5'-CTTCCCCGATGAGAACTTCAAACT-3' 

 R : 5'-CACCTCCATGCCCTCTAGAACTTT-3' 
PGC1a F : 5'-TCTGAGTCTGTATGGAGTGACAT-3' 

 
R : 5'-CCAAGTCGTTCACATCTAGTTCA-3' 

PGC1b F : 5'-GCGAGAAGTACGGCTTCATCA-3' 

 
R : 5'-AGCGCCCTTTGTCAAAGAGA-3' 

NRF1 F : 5'-GGTGCAGCACCTTTGGAGAA-3' 

 
R : 5'-CCAGAGCAGACTCCAGGTCTTC-3' 

NRF2 F : 5'-CAAGAACGCCTTGGGATACC-3' 

 
R : 5'-AAACCACCCAATGCAGGACTT-3' 

TFAM F : 5'-GCACCGGCTGTGGAAGTCGAC-3' 

 
R : 5'-CAGGAAGTTCCCTCCAACGCTGG-3' 
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