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The GIAB genomic stratifications resource
for human reference genomes

Nathan Dwarshuis 1, Divya Kalra2, Jennifer McDaniel 1, Philippe Sanio3,
Pilar Alvarez Jerez 4,5, Bharati Jadhav6, Wenyu (Eddy) Huang 7,
Rajarshi Mondal 8, Ben Busby 9, Nathan D. Olson 1, Fritz J. Sedlazeck 2,7,
Justin Wagner1, Sina Majidian 10,11,12 & Justin M. Zook 1,12

Despite the growing variety of sequencing and variant-calling tools, no work-
flow performs equally well across the entire human genome. Understanding
context-dependent performance is critical for enabling researchers, clinicians,
and developers to make informed tradeoffs when selecting sequencing hard-
ware and software. Here we describe a set of “stratifications,” which are BED
files that define distinct contexts throughout the genome. We define these for
GRCh37/38 as well as the new T2T-CHM13 reference, adding many new hard-
to-sequence regions which are critical for understanding performance as the
field progresses. Specifically, we highlight the increase in hard-to-map and GC-
rich stratifications in CHM13 relative to the previous references. We then
compare the benchmarking performance with each reference and show the
performance penalty brought about by these additional difficult regions in
CHM13. Additionally, we demonstrate how the stratifications can track
context-specific improvements over different platform iterations, using
Oxford Nanopore Technologies as an example. The means to generate these
stratifications are available as a snakemake pipeline at https://github.com/
usnistgov/giab-stratifications. We anticipate this being useful in enabling
precise risk-reward calculations when building sequencing pipelines for any of
the commonly-used reference genomes.

The last few decades have brought a vast array of increasingly-
powerful sequencing platforms and associated software to read DNA
molecules. However, no tool or pipeline performs equally across all
genomic contexts within the human genome. Particularly difficult
genomic contexts include large duplications and large repeats.

Additionally, many sequencing platforms have relatively low perfor-
mance in homopolymers, and platforms that perform better in
homopolymers use short-reads which lack the mapping advantage
long reads have in large repeats. Themappers and variant callers used
to analyze reads from these platforms also bring context-specific

Received: 7 November 2023

Accepted: 7 October 2024

Check for updates

1Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD., USA. 2Human Genome Sequencing Center, Baylor
College of Medicine, Houston, TX, USA. 3University of Applied Sciences Upper Austria - FH Hagenberg, Hagenberg im Mühlkreis, Austria. 4Center for
Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of
Health, Bethesda, MD 20892, USA. 5Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London,
London, UK. 6Department of Genetics and Genomic Sciences andMindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess
Center for Science and Medicine, New York, NY, USA. 7Department of Computer Science, College of Engineering, Rice University, Houston, TX, USA.
8Department of Bioinformatics, Pondicherry University, Pondicherry, India. 9DNA Nexus, Mountain View, CA, USA. 10Department of Computational Biology,
University of Lausanne, Lausanne, Switzerland. 11SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. 12These authors contributed equally: Sina
Majidian, Justin M. Zook. e-mail: sina.majidian@unil.ch; justin.zook@nist.gov

Nature Communications |         (2024) 15:9029 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0001-9615-0243
http://orcid.org/0009-0001-9615-0243
http://orcid.org/0009-0001-9615-0243
http://orcid.org/0009-0001-9615-0243
http://orcid.org/0009-0001-9615-0243
http://orcid.org/0000-0003-1987-0914
http://orcid.org/0000-0003-1987-0914
http://orcid.org/0000-0003-1987-0914
http://orcid.org/0000-0003-1987-0914
http://orcid.org/0000-0003-1987-0914
http://orcid.org/0000-0002-5812-1898
http://orcid.org/0000-0002-5812-1898
http://orcid.org/0000-0002-5812-1898
http://orcid.org/0000-0002-5812-1898
http://orcid.org/0000-0002-5812-1898
http://orcid.org/0009-0000-0318-048X
http://orcid.org/0009-0000-0318-048X
http://orcid.org/0009-0000-0318-048X
http://orcid.org/0009-0000-0318-048X
http://orcid.org/0009-0000-0318-048X
http://orcid.org/0009-0002-6566-9322
http://orcid.org/0009-0002-6566-9322
http://orcid.org/0009-0002-6566-9322
http://orcid.org/0009-0002-6566-9322
http://orcid.org/0009-0002-6566-9322
http://orcid.org/0000-0001-5267-4988
http://orcid.org/0000-0001-5267-4988
http://orcid.org/0000-0001-5267-4988
http://orcid.org/0000-0001-5267-4988
http://orcid.org/0000-0001-5267-4988
http://orcid.org/0000-0003-2585-3037
http://orcid.org/0000-0003-2585-3037
http://orcid.org/0000-0003-2585-3037
http://orcid.org/0000-0003-2585-3037
http://orcid.org/0000-0003-2585-3037
http://orcid.org/0000-0001-6040-2691
http://orcid.org/0000-0001-6040-2691
http://orcid.org/0000-0001-6040-2691
http://orcid.org/0000-0001-6040-2691
http://orcid.org/0000-0001-6040-2691
http://orcid.org/0000-0001-5345-6982
http://orcid.org/0000-0001-5345-6982
http://orcid.org/0000-0001-5345-6982
http://orcid.org/0000-0001-5345-6982
http://orcid.org/0000-0001-5345-6982
http://orcid.org/0000-0003-2309-8402
http://orcid.org/0000-0003-2309-8402
http://orcid.org/0000-0003-2309-8402
http://orcid.org/0000-0003-2309-8402
http://orcid.org/0000-0003-2309-8402
https://github.com/usnistgov/giab-stratifications
https://github.com/usnistgov/giab-stratifications
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53260-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53260-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53260-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53260-y&domain=pdf
mailto:sina.majidian@unil.ch
mailto:justin.zook@nist.gov
www.nature.com/naturecommunications


performance implications due to the assumptions (implicit or explicit)
they often make when processing sequencing data1. Therefore,
improving and fully utilizing the sequencing landscape will require
detailed analysis of how different tools perform in a given genomic
context.

To this end, we previously developed “genome stratifications”
which are carefully-defined browser extensible data (BED) files that
divide the human genome into meaningful contexts for benchmark-
ing. The genomic stratifications were originally developed in colla-
boration with the Global Alliance for Genomics and Health (GA4GH)2

and are being further developed by the Genome in a Bottle Con-
sortium (GIAB). Coding regions, low mappability regions, high GC
content regions, and various types of repetitive regions are examples
of such genomic stratifications, and these are currently defined with
regard to two linear references, GRCh37 and GRCh38. These stratifi-
cations are designed to be used with benchmarks such as those
developed by GIAB, which generates variant benchmarks for a set of
humangenomes to enable development, optimization, evaluation, and
comparison of sequencing technologies and variant detection
methods3–5. GIAB has expanded its variant calling benchmark sets to
include increasingly challenging genomic regions and variants as
sequencing technologies, variant detection methods (for single
nucleotide variants (SNVs), insertions and deletions (INDELs), and
structural variants), and assembly algorithms improve6–8. As these
benchmarks include highly challenging regions, stratifications become
increasingly important to understand where methods perform well or
have limitations1,2. While stratifications are designed for stratifying
variant-calling performance when using a benchmarking tool such as
hap.py2 or truvari9, the stratifications in principle are tool- and
application-agnostic.

Genomic stratifications provide value for many users in the
genomics community, including bioinformatics method developers,
sequencing technology developers, and clinical laboratories. For those
developing software tools, stratifications can be used to better
understand the advancements or limitations of new methods and
identify biases across methods or technologies. For example, stratifi-
cations were used in the precisionFDA challenge V2 to evaluate the
performance of different technologies across different repetitive
regions, such as homopolymers or segmental duplications1. Addi-
tionally, with respect to evaluating the performance of calling INDELs,
this study revealed that the INDEL recall and precision metrics are
lowerwhen using PCR amplification compared to PCR-free sequencing
calculated for the whole genome. However, these values are almost
equal when considering all regions except homopolymers or tandem
repeats. This observation demonstrates the importance of genomic
stratifications and how they can highlight differences between differ-
ent technologies and pipelines, allowing for critical investigation2. This
information can help end users make informed tradeoffs when
selecting tools, where performance versus runtime, server cost,
hardware requirements, reagent costs, and user expertise must be
balanced.

Stratifications are also important in medical practice, both at the
research level and in the clinic. For the researcher, stratifications
indicate genomic regionswhere “difficult” variantsmight be found and
as such might require additional resources to study accurately. Stra-
tifications also carry some functional and/or structural information,
such as specifying which regions contain coding genes10 or high GC
content, which is useful for designing experiments and association
studies. For the clinician, stratifications provide a means to assess
confidence in a result. Guidelines for validating clinical pipelines
include validating “representative” variants of different types and
genome contexts, and stratifications define genome contexts that are
challenging11. If a patient presents with a pathogenic variant, stratifi-
cations can show if this variant resideswithin a “difficult” region, which
in turn could provide a proxy for howmuch the clinician can trust the

result. Thus, stratifications are instrumental in the development and
understanding of variants across different disciplines.

Here we present an update to the previous stratifications, both
defining them in terms of the new CHM13 reference as well as
exploring novel genome contexts that may be useful stratifications in
the future. CHM13 was recently published as the first Telomere-to-
Telomere (T2T) reference12 which completed the remaining 8% of gaps
present in the existing references, adding ~2000 genes and ~100 pro-
tein coding sequences. In other words, CHM13 provides gapless
assemblies for all chromosomes by introducing about 200 Mbp, cov-
ering both euchromatic and heterochromatic regions. Furthermore, it
includes centromeric satellite arrays, segmental duplications, and the
short arms of all five acrocentric chromosomes12,13. Overall CHM13 has
been shown to improve sequencing data analysis including variant
calling12. To fully leverage such a reference genome and assess the
reliability of existing methods, a set of genomic stratifications for
CHM13 is needed. This will facilitate the study of hundreds of new
genes and their role in phenotypes or diseases. Moreover, developers
of sequencing technology and genome assessment pipelines can
benefit from CHM13 and associated stratifications in understanding
performance in difficult, newly assembled regions.

The current study also explores new genomic contexts corre-
sponding to different error mechanisms, which may become addi-
tional stratifications in the future. For example, it is much easier to call
a variant in a tandem repeat if it is the only variant in the repeat;
additional variants could “shift” the representation of the variant being
calledwhichmakes variant calling and variant comparison challenging.
Similarly, current stratifications do not account for read coverage or
distance between variants. The former is important as higher coverage
may imply less difficulty. The latter hinders variant calling where var-
iants are closer together probably due to representational challenges.

Results
The GIAB stratification resource is a publicly available dataset for the
human reference genome. Here we describe the extension of this
resource to theCHM13 referencegenome (Table 1).We alsoprovide an
insight to the differences between three reference genomes: GRCh37,
GRCh38 and CHM13. Furthermore, we explore three new features for
future stratifications of GRCh38 which include variant complexity in
tandem repeats, distribution of genomic distance between con-
secutive variants, and read coverage of each variant. We now auto-
mated generating all stratifications to further facilitate the creation
across upcoming complete human genomes or other reference gen-
omes that have been annotatedwithRefSeq, RepeatMasker, segmental
duplications, and Tandem Repeat Finder: https://github.com/
usnistgov/giab-stratifications.

Extending CHM13 stratifications
Coding sequences (CDS) are the regions of the genome that code for
proteins which are usually targeted for many clinical tests6. Using the
CHM13v2.0 assembly and available RefSeq annotations10, we were able
to extract gene coding regions and compare them with those of
GRCh38 and GRCh37. The methods used for generating CDS stratifi-
cations for GRCh38 were applied to CHM13v2.01. Figure 1 shows the
comparison between the total length of the CDS region and its ratio
over chromosome length (excluding unknown bases in the assembly
which are noted with N) for the all three references, GRCh37, GRCh38
and CHM13. All three reference genomes have similar CDS coverage
across chromosomes. Also, the differences that we see in chromo-
somes 9, 19, and 22 are likely due to the fact thatmany new bases were
added in CHM13 relative to GRCh38 on these chromosomes as they
have large centromeres and heterochromatin that were excluded in
GRCh3812.

Reference mappability is a metric that can be used to identify
whether reads of a given length will align uniquely to that region of the
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genome (lowermeans to harder-to-map). The regions that are found to
be of low mappability had been previously generated for GRCh37 and
GRCh38.We calculated such regions for the CHM13 reference genome
at two different stringencies. For moderately low-mappable regions,
we permitted up to two mismatches and one INDEL between each
100bp region and anyother region.However, for highly low-mappable
regions, we permitted no mismatches or INDELs between each 250 bp
region and any other region. Note that 100 and 250bp correspond
approximately to two common lengths used for short-read sequen-
cing, so these regions can be interpreted as those that are difficult to
map for short reads. The total length of low mappability regions for
each chromosome is depicted in Fig. 2 for all three reference genomes.
The total length of the regions in the CHM13 is higher than that of the
older references.

To further explore the differences in hard-to-map regions
between references, we plotted intra-chromosomal coverage of all
low-mappability regions for CHM13 and GRCh38 (i.e., 100 and 250 bp
stratifications together, Supplementary Fig. 1). Generally, each

reference had large spikes near the center of each chromosome, cor-
responding to the centromeres which are known to be repetitive.
However, there were some major increases in CHM13 relative to
GRCh38. First, we observed large increases in chromosomes 1 and 9;
both of these chromosomes have large satellite repeats which would
explain this increase. Additionally, we observed large increases in the
short arms of chromosomes 13, 14, 15, 21, and 22, which contain large
rDNA arrays which are highly repetitive and thus difficult to map14.
Finally, chromosome Y showed a large increase for over half the
chromosome, which can be explained by the large number of ampli-
conic regions which were added to CHM1313.

Defining high and low GC-content regions (i.e., the fraction of G
and C bases is high or low) is important as different sequencing
technologies can producedistinct error profiles in GC-rich and AT-rich
regions15. This stratification delineates regions with specific amounts
of GC content. These are based on the method used for generating
standardized GC content BED files by the GA4GH Benchmarking Team
and the GIAB. Of note, we consider 10 different ranges from 15 to 85%

Table 1 | Overview of existing and newly-added stratification types for the three reference genomes

Stratifications GRCh37 GRCh38 CHM13

Established set Gene coding regions ✓ ✓ This study

Functional, technically difficult to sequence ✓ ✓ NA

GC content ✓ ✓ This study

Genome specific ✓ ✓ NA

Regions with low complexity sequences ✓ ✓ This study

Other difficult genomic regions ✓ ✓ This study

Segmental duplications ✓ ✓ This study

Chromosome XY specific regions ✓ ✓ This study

Patterns of local ancestry X ✓ NA

Low mappability regions ✓ ✓ This study

Exploratory set for future versions Variant complexity in tandem repeats This study

Distribution of genomic distance between consecutive variants This study

Read coverage of each variant This study

Checkmarks denote existing stratifications. “X” denotes stratifications that were not produced previously for a given reference. “This study” denotes stratifications that were added in this work.
Stratifications denoted with NA are not covered in this study.
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Fig. 1 | Statistics of the gene coding sequences (CDS). a Total length of CDS regions for GRCh37, GRCh38 and CHM13. b The ratio of length of CDS regions over
chromosome length (excluding unknown bases) for GRCh37, GRCh38 and CHM13.
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of GC content with interval length of 5% in addition to two cases of
regions with GC content of smaller than 15% and greater than 85%.

As an example, we depicted the total length of regions for each
chromosome of the human reference genomes GRCh37, GRCh38 and
CHM13 with the GC content in the range of 20-25% in Fig. 3a. The ratio
of total length of regions over chromosome length (excluding
unknown bases) is illustrated in Fig. 3b and d. As we can see, three
reference genomes follow a similar pattern except for chromosome 13
in CHM13. Moreover, Fig. 3c shows the total length of regions with GC
content higher than 85% for GRCh37, GRCh38 and CHM13. Upon
investigating intra-chromosomal coverage of regions with >85% GC
content, we observed a large increase in the short arms of chromo-
somes 13, 14, 15, 21, and 22 in CHM13 relative to GRCh38, corre-
sponding to the rDNA arrays (Supplementary Fig. 2).

Three challenging, medically-relevant regions within human
genomes including the Major Histocompatibility Complex (MHC),
variable/diversity/joining (VDJ) and Killer-cell immunoglobulin-like
receptor (KIR) are considered here16. These three regions are all highly
polymorphic and underpin key immunological functions: the MHC
region contains the Human Leukocyte Antigen (HLA) genes which
determine “donormatches,” theVDJ regions are randomly recombined
to produce the T and B cell receptors in T and B cells, respectively, and
the KIR region codes for one of the key effector receptors on natural
killer cells. The total length of each region on the three reference
genomes, GRCh37, GRCh38 and CHM13, are reported in Table 2. As
shown, the regions are located on the same chromosome across dif-
ferent reference genomes with comparable total length.

Evaluating the utility of stratifications for benchmarking
We demonstrated the usefulness of these stratifications for their most
common use case which is benchmarking variant caller performance
across the genome using a benchmarking tool called hap.py from the
GA4GH Benchmarking Team2.

First, we assessed the differences between the three references
within different region types. To do this we utilized our draft assembly-
based benchmark for HG002, which was constructed from the HG002
T2T Q100 v1.0 diploid assembly (see Methods)13. This benchmark is
made from a complete, accurate assembly as opposed to the current
mapping-based callsets from GIAB. Thus, it includes more difficult
regions than were previously available and can be created from the

alignments of the assembly to any reference, which makes it well-
suited to comprehensively test these three references. We then
benchmarked a HiFi-Deepvariant callset (as the query) using the draft
assembly-based benchmark (as the truth) and evaluated precision and
recall of variants (Fig. 4A). In this figure, the value of each bar is the
aggregated Phred-scaled score, and the error bars are the estimated
95% binomial confidence intervals.

Across many stratification categories, CHM13 had a lower score
than GRCh38, which in turn also had a lower score than GRCh37. This
can be explained by the fact that each new reference progressively
added more difficult regions to the human genome as technology
improved with time. The largest differences between references were
for SNVs in segmental duplications and low-mappability regions,
which have been increasingly included in GRCh38 and CHM13. CHM13
corrected some false segmental duplications in GRCh38 and added
segmental duplications missing in GRCh38 and GRCh3717, which can
cause lower accuracy in GRCh38 and GRCh37. However, these callsets
used the GIABv3 refined version of GRCh38 that masks the false
duplications and adds decoys for a few missing sequences18, as well as
the version of GRCh37 that includes the hs37d5 decoy. In addition, the
overall SNV precision and recall for TRs and HomoPolymer (HPs) was
lower than some other stratification types such as low-mappability
regions (lowmap) and high/low GC. This is likely due to the HiFi plat-
form used to generate the callset, which is known to be more error-
prone in these repeat regions1. However, when focusing on our stra-
tification excluding difficult regions, performance was similar across
references. Furthermore, the scores for INDELs were lower than SNVs
across all stratifications and metrics, which tend to be more challen-
ging than SNVs due to alignment challenges. INDELs also likely bias to
lower scores due to hap.py using vcfeval19 for comparing variants,
which does not give partial credit for complex INDEL variants that
frequently occur in TRs and HPs20. In summary, this shows how stra-
tifications can be used to understand how performance differs across
the three references. It also justifies the use of CHM13 over the other
previous references, as using GRCh38/37 could result in an inflated
score depending on the regions under study.

Next, we askedhowthenew regions (i.e., “nonsyntenic”) inCHM13
relative to GRCh38 specifically impacted performance. The non-
syntenic regions contain 1000 s of variants (Supplementary Fig. 3),
many of which probably have biological significance but have been

Fig. 2 | Statistics of low-mappability regions in GRCh37, GRCh38 and CHM13. a Total length of low-mappable regions, and b Ratio of total length over chromosome
length (excluding unknown bases) for GRCh37, GRCh38 and CHM13.
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difficult to study without a complete reference such as CHM13. We
modified the analysis in Fig. 4A to subset to either the syntenic or
nonsyntenic regions prior to benchmarking using the targeted flag in
hap.py (see Methods) (Fig. 4B). 93% of the benchmark variants in
nonsyntenic regions were in our stratification that contained all diffi-
cult regions. For INDELs and SNVs, the difference in Phred score
between syntenic and nonsyntenic regions were about 5 and 15
respectively for both precision and recall across all stratifications
(nonsyntenic beingmuch lower in general). In summary, this indicated
that the changes fromGRCh38 to CHM13 indeed includedmuchmore
difficult regions, and our stratifications enable understanding of the
differences between performance metrics across references.

Additionally, we used the stratifications to assess theperformance
improvements of recently published software components in the
Oxford Nanopore Technologies (ONT) variant calling pipeline, speci-
fically guppy and clair, which are a base caller and variant caller

respectively developed specifically for ONT reads (Fig. 4C)21. The ONT
reads were acquired from HG003, and the same reads were used for
both versions of guppy/clair (guppy4+clair1 and guppy5+clair5). The
experimental setup was similar to that of Fig. 4A and B except that we
used the v4.2.1 GIABHG003 benchmark since the GIAB team has yet to
build an assembly-based benchmark for HG003. We observed that in
general, there was a substantial performance gain (up to 10 Phred-
scaled) between theoldandnewcaller versions, asexpected.However,
this gain was not uniform. For HPs and/or TRs, the precision/recall
metrics were less than that for “Autosomes” (representing a global
mean for all autosomes), which in turn was less than stratifications
which excluded HPs and TRs. For SNVs in particular, HPs and TRs had
modest performance gain for precision but substantial gain for recall.
This agrees with previous results that the ONT platform has a higher
error rate in homopolymers1. In totality, this shows how the stratifi-
cations canbe used to benchmarkperformance of new technologies as
they evolve, which can serve as a valuable resource both for those
developing these platforms as well as consumers who need to buy or
update their workflows.

Finally, we used the draft Q100 benchmark with our new stratifi-
cations to compare performance metrics for variants called from HiFi
and Illumina reads aligned to the CHM13 reference genome and called
with DeepVariant (Fig. 4D). While performance in many regions is
similar between these HiFi and Illumina DeepVariant callsets, the
stratifications highlight a few notable differences. For example,
regions with low-mappability (defined for short reads) and segmental

Table 2 | Total length of three difficult genomic regions,
namely MHC, VDJ and KIR, on reference genomes GRCh37,
GRCh38 and CHM13

Chromosome(s) GRCh37 GRCh38 CHM13

MHC 6 4,970,558 4,970,558 4,920,493

VDJ 2, 7, 14, and 22 3,232,649 3,348,726 3,541,519

KIR 19 155,001 155,044 156,419

ba

dc

107

Fig. 3 | Statistics of regions with specific GC content for GRCh37, GRCh38
and CHM13. a Total length of regions with GC content in the range of 20–25%.
b Ratio of total length of regions with 20-25% GC content over chromosome length

(excluding unknown bases). c Length of regionswithGC content higher than85% in
log scale.dRatioof total length of regionswithGC content >85% over chromosome
length in log scale (excluding unknown bases).
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duplications experienced lower recall of both SNVs and INDELs for
Illumina-DeepVariant. Additionally, recall in low-mappability and seg-
mental duplication regions for HiFi-DeepVariant was lower than the
other stratifications at about 85% for INDELS and 90-95% for SNVs,
indicating that there is still room for improvement even with long
reads. Because CHM13 includes more low-mappability regions and

segmental duplications, our stratifications for CHM13 are particularly
important. In addition, our stratifications for GC vs. AT homopolymers
help highlight how AT homopolymers are similar between the callsets,
whereas HiFi-DeepVariant had higher accuracy for SNVs in GC homo-
polymers and Illumina-DeepVariant had higher accuracy for INDELs in
GC homopolymers. Importantly, our stratifications help the

A.

D.

B.

C.
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community continue to evaluate the performance of long and short
read sequencing technologies in different genomic contexts as new
technologies and analysis methods are developed.

Exploring new features for future stratifications
In this studywe expandedmany of the stratifications to CHM13.We also
exploredpossible threenew stratifications forGRCh38 in addition to the
so far described well-established stratifications (Table 1). We examined
variant complexity in tandem repeats, distribution of genomic distance
between consecutive variants, and read coverage of each variant.

Tandem repeats frequently contain complex variants (e.g., mul-
tiple SNVs and INDELs), which can cause errors in variant calling and
benchmarking22. Variant callers tend to producemore errors in repeats
because variants could be mis-identified among the repeat, particu-
larly if reads are insufficiently long to contain the entire repeat. Nota-
bly, such errors are likely to increase when there is more than one
variant in the region, because if any variants are filtered incorrectly
then all variants in the region can be counted as FPs and FNs due to
differences in representation20. It may thus be sensible to create new
stratifications for tandem repeats categories by number of variants,
where number of variants corresponds to difficulty.

To understand how variants were distributed in tandem repeats,
we intersected the Q100 variant benchmark of the HG002 sample23

with the GIAB tandem repeat and homopolymer stratification BED
files. This variant call format (VCF) file includes both small variants and
structural variants (SVs) (except for inversions and translocations), so
that we can assess the full spectrum of variants in tandem repeats4.
After splittingmultiallelic variants, we additionally filtered any variants
that overlapped repeat boundaries (~1500 variants), though these
would be important sources of complexity to explore in the future.We
found that the vast majority (~90%) of the repeats in GRCh38 did not
have any variation, but >10,000 tandem repeats contain more than
one variant and >1,000 contain more than three variants, resulting in
complex variants that can cause challenges in variant calling and var-
iant representation (Fig. 5a).

We further investigated the distributions of repeat region size and
variants inside repeats with only one variant. About 30% of such var-
iants were SNVs, and about 50% were INDELs between 1 bp and 2 bps
(Fig. 5b). Therewere several hundred SVs associatedwith these repeats
as well, indicating that some SVs in repeat regions exist without any
smaller variants in the same repeat. This distribution was mostly con-
sistent across chromosomes. Furthermore, we investigated the size
distribution of repeats with a single variant according to variant type
(Fig. 5c). We found that small INDELs are disproportionately more
likely to be in repeats <80bp long compared to other variant types. Of
note, the variant density in tandem repeats is more than four times of
that in segmental duplications (Fig. 5d, e).

We also assessed the quality of variant calling when variants are in
tandem repeat regions. To do so, we considered the Illumina HiSeq X
DeepVariant callset as the query and used the HG002 Q100 small
variant benchmark as the truth. We stratified the repeat regions based
on the number of variants inside. Overall, the results show that more
variants in a tandem repeat region corresponds to lower precision and
recall in variant calling. In fact, false positive and false negative rates for
both SNVs and INDELs are more than 10 times higher in tandem
repeats with >10 variants relative to thosewith a single variant (Fig. 5f).

Tandem repeats with a single variant have lower error rates than var-
iants outside tandem repeats on average.

Next, we explored the distribution of genomic distance between
consecutive variants. Understanding variant distribution is important,
since the likelihood of representational difficulties increases as the
distance between any two variants decreases. Furthermore, in extreme
cases, too many variants within a region can lead to a reference allele
bias due to e.g., mapping biases24,25. In addition, high variant density
can result from tandemrepeats andgene conversions, whichcan cause
mapping errors26. Conversely, read-based phasing of variants becomes
more challenging as distance between heterozygous variants
increases27–29, which can cause diploid assembly errors6.

To calculate distance between variants, we again use the draft
GIAB benchmark based on the HG002 Q100 diploid assembly aligned
to GRCh38. Supplementary Fig. 4 depicts the distribution of the
genomic distance between any two consecutive variants for all auto-
somal chromosomes. This draft benchmark is a relatively compre-
hensive characterization of variants, though variant density can
depend on how variants are represented. To assess how accuracy
depends on distance between variants, we analyzed variants called
with DeepVariant for HG002 sequenced with Illumina HiSeq X plat-
form (Fig. 5g).

We observed that when variants are close to each other (within 1-
10 bp of another variant), the quality of called variants is lower than
those variants that are further apart (100–1000bp), with SNVs having
the highest precision (25.5 Phred) with recall (19.8 Phred). Of note, 3.4
million (49.3%) of the 6.9 million variants have a neighboring variant
within 100 bp. Interestingly, around one-fifth of the variants are in
repetitive regions including tandem repeats and segmental duplica-
tions, which may cause variant calling and representation challenges.
However, a very high distance (>10kbp) between variants corresponds
to lower quality called variants, especially lower precision. This lower
precision in part appears to result from the lower density of true var-
iants in the region, decreasing the denominator in the precision cal-
culation, andmany false positives are in clusters due tomis-mapping in
segmental duplications.

In addition to stratifications mentioned above, here we con-
sidered HG002 to explore the read coverage of each variant, where
abnormal coverage implies that the region flanking the variant is a
difficult region to align or call variants due to potential mapping
challenges and/or misrepresentations (e.g., copy number variants).
Additionally, the idea behind calculating coverage values is to look for
new informativemetrics, which can be fed as an additional feature into
machine learning models to predict the quality of called variants30.
Obviously, one would expect sufficient coverage leads to higher var-
iant calling accuracy. However, too high coverage may indicate mis-
mapped reads due to duplications in the individual, which can result in
false variant calls. Another cause of abnormal coverage is small dele-
tions and insertions, sowe have chosen to look at two different variant
types: INDELs and SNVs.

Accordingly, we calculated the average read coverage of geno-
mic positions for each variant in an Illumina-DeepVariant callset with
40xmean coverage (seeMethods). As expected, precision and recall
were highest near 40x coverage. Variants in regions with low cov-
erage (<20×) had 1–2 orders ofmagnitude lower precision and recall,
likely due to mapping and genotype errors and filtering of true

Fig. 4 | Stratifications reveal nuances in precision and recall performancewhen
benchmarking using hap.py. A Performance within important stratifications
using assembly-based HG002 benchmark and GRCh37, GRCh38, or CHM13 as
reference and a HiFi-DeepVariant query callset. B The CHM13 performance results
from (A) comparedwith the samebenchmarking pipeline restricted to nonsyntenic
regions relative toGRCh38.CPerformancewithinall autosomesor tandem repeats/
homopolymer regions for ONT callsets created with either guppy4+clair1 or gup-
py5+clair3. D Comparison of HiFi and Illumina callsets on CHM13 using the Q100

benchmark. Each bar is the mean of the given metric which is also shown as text.
Error bars are 95%binomial confidence intervals computedwith theWilsonmethod
(seeMethods). Stratificationmeaningon y axes: Lowmap= low-mappability regions
(100 and 250 bp sizes); High/Low GC=GC content > 25% or > 65%; SegDup =
segmental duplications >= 1 kb; TRs = tandem repeats; HPs = homopolymers >=
7 bp or imperfect homopolymers >= 11 bp; Difficult = SegDup+LowMap+HPs+TRs
+XY PAR/XTR/Ampliconic+High/Low GC; Autosomes = all autosomal regions;
2-mer TRs = repeats with unit size 2; Short TRs = tandem repeats <50bp long.
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variants (Fig. 5h). Very high coverage >80 also resulted in higher
error rates, likely due to mapping errors resulting from duplications
in HG002 and/or in GRCh38. These show that variants are most
accurate when coverage is near the mean of 40× (i.e., between 20×
and 60×), with a Phred score larger than 20, equivalent to precision/
recall > 0.99 (Fig. 5h).

Discussion
In this work, we present a complete set of genomic stratifications
across GRCh37, GRCh38 and CHM13. We highlight how these unique
stratifications are broadly important for deeply understanding accu-
racy of sequencing and analysis methods, which are continually being
improved by the genomics community. These stratifications are
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designed to be used with benchmarks like those from GIAB, so that
benchmarking tools (e.g., hap.py) can output performancemetrics for
a variety of challenging genomic regions. This enables users to opti-
mize sequencing and analysismethods, or select the bestmethod for a
particular application. In addition to benchmarking methods, these
stratifications can be leveraged for a variety of other applications in
genomics.

For example, GIAB has used these stratifications to exclude
problematic regions from particular technologies or from all tech-
nologies when defining benchmark regions. In previous benchmarks,
variants from long reads were trusted more than short reads in
difficult-to-map regions, whereas variants from PCR-free short reads
were trusted more in homopolymers. For a new assembly-based
benchmark for chromosomes X and Y, long homopolymers are
excluded because the assembly was found to be less reliable in these
regions31. In addition, segmental duplications and satellite stratifi-
cation regions were excluded from the benchmark region if any
breaks occurred in these regions in the assembly to reference
alignment. In these ways, robust stratifications are critical for defin-
ing these widely-used benchmarks, and similar stratifications for the
CHM13 reference are important for ongoing work creating bench-
marks on this new reference.

This resource will be beneficial for other applications outside of
variant benchmarking. First, the stratifications of regions with low
complexity sequences could be used to filter variants in repeat
regions32 and abnormal coverage values could be utilized for quality
control of haplotype phasings33. Second, the GC content and repeat
stratifications could be utilized for assessing the quality of genome
assemblies34,35. Third, stratifications can be used to systematically
assess the sequencing biases in different genomic contexts36,37. Such
features also have the potential to be used for improving and filtering
gene annotations38, gene expression39, genome-wide association
studies40. Fourth, stratifying variant callsets by region can comple-
ment the variant quality scores provided by the caller itself, which is
often based on a more localized and limited set of data such as read
depth and read quality. Finally, our pipeline has enabled stratifica-
tions to be generated for additional assemblies, such as the T2T
diploid assembly for HG00241, which can be used to flag difficult
regions, which in turn will enable easier constructure of future
human diploid assemblies23,42.

Providing new stratifications for CHM13 is also a valuable addition
for the community. Compared to GRCh38 (which is only 92% com-
plete), CHM13 has no gaps (100% complete) and therefore has many
new regions that potentially have biological significance, particularly
in segmental duplications and centromeres. We showed using our
HG002 Q100 benchmark that the nonsyntenic regions include thou-
sandsofnewvariants (Supplementary Fig4), whichcannowbe studied
if one uses CHM13 instead of GRCh37/38 as the reference. Further-
more, moving to a complete reference such as CHM13 raises the
standard for performance required to accurately call variants. When
comparing short and long reads using our HG002 Q100 benchmark
with variants called on CHM13 (Fig. 4D) we found that long reads
excelled over short reads in low-mappability and segmental duplica-
tions (which comprises most of the nonsyntenic regions). However,
these scores (particularly recall) were still lower than other regions

such as homopolymers and GC-rich regions, indicating that even with
long reads there are still improvements to be made. Thus, using
CHM13 as a reference (as well as our corresponding stratifications for
it) provides ameasuring stick by which future progress in calling these
particularly difficult variants in different classes of challenging regions
can be assessed.

While previous iterations of these stratifications (https://github.
com/genome-in-a-bottle/genome-stratifications) have been partially
used in past work1,2, this manuscript provides a holistic overview and
analysis of this resource. In addition to adding CHM13 and several new
stratification categories (Table 1), all prior code was unified into a fully
automated, reproducible Snakemake pipeline based on publicly-
accessible resources which are hashed to verify integrity. This level
of transparency and rigor allows this resource to be more trustworthy
and accurate for end users. Since previous iterations of the stratifica-
tions were generated in a semi-automated fashion, using this unified
pipeline also helped us fix several bugs and inconsistencies between
each reference, as well as improve naming conventions. We also
expanded on some of the previous stratification categories. For
example, we added homopolymer stratifications subset to A/T or G/C
regions since these pose distinct challenges for many sequencing
platforms. Finally, some stratifications were improved by using newer
source data, such as SEDEF in the case of segmental duplications
(which previously used the superdups track from UCSC). A summary
of all changes throughout thedevelopment historyof this resourcecan
be found in the CHANGELOG.md file at https://github.com/usnistgov/
giab-stratifications.

Having a unified snakemake pipeline also allows other users to
generate their own stratifications on a reference of their choice,
assuming certain conditions are met. First, this was designed for and
tested on human haploid references (with diploid in development),
but theoretically any haploid (and eventually diploid) reference for
any species should work without issue. Second, generating certain
stratifications requires external data sources (RepeatMasker and
TandemRepeatFinder for example). Some stratifications such as
many of the homopolymer files and mappability files only require a
FASTA file as input. These requirements are described in Supple-
mentary Table 2. Also, the pipeline can be configured to run with no/
partial external data sources, in which case it will generate what it can
with the available data. Thirdly, the pipeline currently assumes an X
and Y chromosome in the case of sex-specific stratifications, which is
appropriate formost applications that rely onmapping to references
like GRCh37, GRCh38, and T2T-CHM13v2.0 that include both X and Y
chromosomes. XX karyotype compatibility is in development to
enable generating stratifications for XX diploid assemblies. Finally,
most of the pipeline does not require much memory as many of the
steps are stream-based. However, there are hundreds of steps to
generate all stratifications for one reference, so having many cores
will be beneficial. With 16 CPU cores at 3 GHz, the full pipeline will
generally take 12 hours for one reference. A few steps are also
memory intensive; generatingmappability stratifications will require
16 G of RAM, and running hap.py to test the stratifications in a
benchmark scenario will require 48G of RAM (both for human hap-
loid references). Installing the pipeline should only require Conda or
Mamba after the repository is cloned.

Fig. 5 | Distribution of SNV and small INDEL variants within tandem repeats
throughout GRCh38 using the HG002 Q100 variant benchmark. a The dis-
tribution of the number of variants per repeat. Y-axis shows the number of tandem
repeats and x-axis is the number of variants in each tandem repeat. b, c Among
repeatswith onlyone variant, the fraction of the variant class bychromosomeb and
the distribution of intersecting variants classified by type according to repeat
length (c) INDEL2; INDELs with length <= 2, INDEL49; INDELs with length > 2 and
length <= 49, SNV; single nucleotide variants, SV; structural variants. d Number of
variants in tandem repeats, segmental duplications and all other regions. e Variant

density in regions of tandem repeats and segmental duplications. f Performance
within new stratifications using HG002 Q100 benchmark and an Illumina Deep-
Variant query callset for tandem repeat regions with different number of variants
inside. g Performance within regions with different genomic distance between
variants. h Performance within regions with different coverage values for a variant
set called from a BAM file withmean coverage of 40×. For (f–h) each bar represents
the mean of the given metric. Error bars are 95% binomial confidence intervals
computed with the Wilson method (see Methods).
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In addition to previously used stratifications, we now introduce
several new ones that should yield even further insights into different
methods. Understanding variant density in tandem repeats will enable
one to flag potential representation issues, as multiple variants in a
repeat often have multiple valid representations depending on align-
ment parameters. The variant distance stratifications reflect the com-
plexity of regions enriched for variants with several possible
representations, which are generally difficult for software tools to
reliably interpret (especially if they are also in repeats). The variant
coverage stratification will provide deeper insights into biases due to
too high or too low coverage regions (e.g., due to repetitive regions or
reduced sequencing performance).

GIAB continues maintaining the current stratifications and gen-
erating new ones. Specifically, additional stratifications could be gen-
erated for additional pangenome references in the future, such as
those being developed by the Human Pangenome Reference Con-
sortium. This work represents a rosetta stone to better understand
variant analysis and will be utilized across consortia and single sample
projects that rely on standardized stratifications to filter and optimize
their methodologies.

Methods
Exploring mappability of CHM13 using GEM
We used GEnome Multitool (GEM)-Mapper43 (version pre-release 3)
on the CHM13v2.0 reference genome to create BED files of low
mappable regions. We followed available scripts https://github.com/
genome-in-a-bottle/genome-stratifications/tree/master/GRCh38/
mappability. Briefly, we generated raw mappability files under two
stringency levels: low stringency (100 bp single-end reads, two
mismatches, and one INDEL) and high stringency (250 bp single-end
reads, 0 mismatches, and 0 INDELs). These mappability BED files
were then processed with SAMtools and BEDtools to find the union
of the two stringency levels for the final BED file with lowmappability
regions for CHM13v2.0.

After running bothmappability scripts, we had four final BED files
containing nonuniquely mapped regions for each stringency level, as
well as a final BED file containing all low mappability regions when
performing the union for both stringencies.

Generate CDS regions for CHM13v2.0
We used the R script provided for GRCh38 https://github.com/
genome-in-a-bottle/genome-stratifications/blob/master/GRCh38/
FunctionalRegions/create_GRCh38_cds_bed.Rmd and ported it over to
identify the gene coding regions (CDS) in the CHM13v2.0 assembly. It
requires R packages - rmarkdown, tinytex, knitr, tidyverse, devtools.

We used the following files from the NCBI FTP site:
• FTBL: https://ftp.ncbi.nlm.nih.gov//genomes/refseq/vertebrate_
mammalian/Homo_sapiens/all_assembly_versions/GCF_
009914755.1_T2T-CHM13v2.0/GCF_009914755.1_T2T-CHM13v2.0_
feature_table.txt.gz

• GFF: https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_
mammalian/Homo_sapiens/all_assembly_versions/GCF_
009914755.1_T2T-CHM13v2.0/GCF_009914755.1_T2T-CHM13v2.0_
genomic.gff.gz

Additionally, the script required a .fai index file whichwas created
from the CHM13v2.0 reference assembly.

Generating GC content BED files using seqtk for CHM13v2.0
We use an existing script created to generate the GRCh38 GC Content
Stratification BED files. The script required seqtk version-1.3-r106 tool,
bedtools v2.27.1, and tabix v1.9. Three essential datafileswere required
to run the script file: the CHM13v2.0 FASTA, the CHM13 genome file.
The genomewas converted to BED format by adding a middle column
of 0 (such that each line had the length of the entire chromosome).We

ran seqtk for various fractions of GC content, all within windows of
100bp. After running seqtk, we added 50bp slop to each BED file and
merged.

Lift-over for OtherDifficult regions
In order to find the coordinate of well-studied genes including MHC,
KIR, and VDJ that are considered as difficult regions, we performed
liftover for such regions from GRCh38 to CHM13v2.0. To obtain the
OtherDifficult regions data of the GRCh38we referred to the reference
sample released by the GIAB https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/genome-stratifications/v3.1/GRCh38/
OtherDifficult/. To perform the lift-over, we used theminimap2 (v2.24)
aligner with arguments -ax asm5 followed by bedtools bamtobed and
merge (v2.30.0). The resulting BED files are provided as part of the
GIAB stratification resource.

Snakemake pipeline
Overview. This work (first done as part of a hackathon) was incorpo-
rated into a snakemake pipeline which can be found at https://github.
com/usnistgov/giab-stratifications-pipeline and https://github.com/
usnistgov/giab-stratifications. The latter repository holds the global
configuration for the three references in this work, and references the
former repository as a submodule. The former repository is reference-
agnostic and encodes the build rules for the stratification files
themselves.

For the identity of every input file used to make these stratifica-
tions (including hashes), refer to https://github.com/usnistgov/giab-
stratifications/blob/master/config/all.yml.

Stratification validation. Each stratificationfile prior to publishingwas
ensured to meet the following criteria:

• Only contained valid chromosomes (i.e., 1-22, X, Y).
• File was bgzip compressed.
• File was a valid BED file (three columns, tab-delimited, with 2nd
and 3rd columns as non-negative integers with 3rd greater
than 2nd).

• All regions in the BED file were sorted in numeric order (i.e.,
chromosomes ordered 1-22, X, then Y with each region then sor-
ted by start and end).

• No regions overlapped with each other.
• No region overlapped a gap region (which included the PAR on
chromosome Y)

• No region fell outside chromosomal boundaries.

Evaluating the utility of stratifications for benchmarking
Wecreated anassembly-basedbenchmark from theQ100assembly for
HG002. Specifically, the HG002 Q100 small variant benchmark was
created using v0.011 of DeFrABB (https://github.com/usnistgov/giab-
defrabb), the T2T-HG002-Q100v1.0 diploid assembly (https://github.
com/marbl/hg002), and GRCh38 reference (https://ftp-trace.ncbi.nlm.
nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_
HG002_DraftBenchmark_defrabbV0.011-20230725/).

DeFrABB (Development Framework for Assembly-Based Bench-
marks) is a snakemake-based pipeline created to facilitate the iterative
development of benchmarks sets for evaluating variant callsets using
high-quality diploid assemblies (https://github.com/usnistgov/
defrabb). DeFrABB first generates assembly-based variant calls using
dipcall v0.3 (https://github.com/lh3/dipcall)44. Dipcall was run with
default parameters with the following Z-drop parameter,
-z200000,10000,200, which yielded more contiguous assembly-
assembly alignments compared to the default value. After reformat-
ting and annotation, the variant set reported by dipcall (VCF) was used
as the draft benchmark variants. Note thatwe call these “draft” variants
since this benchmark has not been officially evaluated and released by
GIAB yet; however, GIAB and the Telomere to Telomere Consortium
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have polished and curated the assembly and variant calls sufficiently
for it to be used for this analysis.

The benchmark regions (analogous to the “confident regions” in
theGIAB v4.2.1 small variant benchmarks) are defined as regions with a
1:1 alignment between each assembled haplotype and the reference
(except chromosomes X and Y). These regions excluded gaps in the
assembly and their flanking sequences, as well as any large repeats
(satellites, tandem repeats >10 kb, and segdups) that have a break in
the assembly to reference alignment on either haplotype. Additionally
structural variants including repeat regions where SVs overlapping
large tandem repeats are also excluded from the benchmark regions.
Widened SV coordinates were identified using the SVanalyzer v0.36
widen module (https://github.com/nhansen/SVanalyzer).

For the query callset, we used a VCF generated using either PacBio
Revio HiFi reads (CHM13 hap.py analysis, Fig. 4) or Illumina HiSeq X
PCR-Free reads (exploratory analysis, Fig. 5), both called with
DeepVariant.

We ran the benchmark using hap.py as follows:
hap.py –engine vcfeval –stratifications <path/to/strats> –f <path/

to/confident_regions.bed > -o <path/to/output > <path/to/bench.vcf >
<path/to/query.vcf>

Togenerate thebenchmarkingplots,weused the stratified counts
for true positive (TP), false positive (FP), and false negative (FN) from
the *_extended.csv output file to calculate precision and recall as
follows:

Precision =QUERY.TP / (QUERY.TP +QUERY.FP)
Recall = TRUTH.TP / (TRUTH.TP + TRUTH.FN)
The error bars were approximated using the binconf function

from the Hmisc package in R using alpha = 0.05 and the wilson
method, where “successes” were defined as QUERY.TP or TRUTH.TP
and total observations was QUERY.TP +QUERY.FP or TRUTH.TP +
TRUTH.FN for precision or recall, respectively.

A list of all files used for inputs to hap.py can be found in Sup-
plementary Table 1

Stratification coverage plots
To generate intra-chromosomal coverage plots as depicted in Sup-
plementary Fig. 1, we divided each chromosome into 1Mbp windows,
and then computed the number of bases within each window that fell
within a given stratification BED file. Gaps were not considered in the
case of non-T2T references.

The code to generate this can be found in the reference-agnostic
snakemake pipeline (see below) at /workflow/scripts/python/bed-
tools/postprocess

/get_coverage_table.py
Note that we only showed several plots in this manuscript to

highlight key findings; however, the snakemake pipeline (mentioned
above) generates these plots for every single stratification bed file as
part of its quality control output. These can be found for stratifications
version 3.5 here: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/genome-stratifications/v3.5/validation/window_
coverages/

Exploring variant distributions in tandem repeats
The Q100 HG002 VCF (described above) was converted into a BED-
like format where the chromosome coordinates were defined using
the POS column and the length of the REF field. The length of the
variant (length(ALT) - length(REF)) was also stored. The length was
used to subset the variants into SNVs, INDELs (1-2 bp long or 3-49 bp
long), and SVs (>49 bp). This BED-like file was then intersected (left
outer join) with the v3.1 Tandem Repeats/Homopolymers stratifica-
tion BED file from dipcall. We ignored multiallelic variants as well as
variants that were partially outside a repeat region to simplify
analysis.

Exploring read coverage of each variant
We considered variants called with DeepVariant for the
HG002 sample available at https://storage.googleapis.com/brain-
genomics-public/research/sequencing/grch38/vcf/hiseqx/wgs_pcr_
free/40x/HG002.hiseqx.pcr-free.40x.deepvariant-v1.0.grch38.vcf.gz
for this exploratory analysis. For the extraction of the coverage, the
mosdepth package v0.3.2 was used with the flag of setting the bin
size to 1 based on the 40x PCR-free HiSeq X BAM file at https://
storage.googleapis.com/brain-genomics-public/research/
sequencing/grch38/bam/hiseqx/wgs_pcr_free/40x/HG002.hiseqx.
pcr-free.40x.dedup.grch38.bam45.

Exploring distribution of genomic distance between con-
secutive variants
The genomic positions of variants for the sample GIAB HG002 were
extracted from the HG002 DeepVariant VCF (described above). The
distance between two consecutive variants were calculated. Using the
matplotlib package v3.4.3 of Python v3.9, the histogram figure was
depicted. We should also note that a portion of the genome is
unknown (existing as Ns in the reference file), so no variant can be
found in these regions. To make sure this fact does not influence our
analysis, we discarded those variants neighboring unknown sequences
in the reference genome which accounts for 328 variants out of
5,596,945 variants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All versions of the genomestratifications up to v3.5 (the latest as of this
writing) are available on an FTP site hosted by NCBI here at https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-
stratifications/.

Code availability
The initial work for this study (which originally took place at a hacka-
thon) is freely available https://github.com/
collaborativebioinformatics/NIST-GREX. The preliminary version of
the code to generate stratifications is available at https://github.com/
genome-in-a-bottle/genome-stratifications. The full pipeline in snake-
make is available at https://github.com/usnistgov/giab-stratifications.
A copy of the GitHub repository and HTML output of the snakemake
pipeline are archived at Zenodo at https://zenodo.org/records/
11176260.
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