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Abstract

Cardiometabolic risk (CMR) factors are associated with accelerated brain aging and

increased risk for sex-dimorphic illnesses such as Alzheimer's disease (AD). Yet, it is

unknown how CMRs interact with sex and apolipoprotein E-ϵ4 (APOE4), a known

genetic risk factor for AD, to influence brain age across different life stages. Using

age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK

Biobank participants, we investigated whether associations between white matter

Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat

percentage (BF%), and APOE4 status varied (i) between males and females,

(ii) according to age at menopause in females, and (iii) across different age groups in

males and females. We report sex differences in associations between BAG and all

three CMRs, with stronger positive associations among males compared to females.

Independent of APOE4 status, higher BAG (older brain age relative to chronological

age) was associated with greater BMI, WHR, and BF% in males, whereas in females,

higher BAG was associated with greater WHR, but not BMI and BF%. These
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divergent associations were most prominent within the oldest group of females (66–

81 years), where greater BF% was linked to lower BAG. Earlier menopause transition

was associated with higher BAG, but no interactions were found with CMRs. In con-

clusion, the findings point to sex- and age-specific associations between CMRs and

brain age. Incorporating sex as a factor of interest in studies addressing CMR may

promote sex-specific precision medicine, consequently improving health care for both

males and females.
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1 | INTRODUCTION

Cardiometabolic risk (CMR) factors such as obesity are associated

with adverse health outcomes including accelerated brain aging (Beck,

de Lange, Pedersen, et al., 2021) and increased risk for Alzheimer's

disease (AD; Livingston et al., 2020; Qiu & Fratiglioni, 2015). The

impact of both CMRs and genetic risk for AD, such as apolipoprotein

E-ϵ4 (APOE4), are known to differ between males and females

(Alqarni et al., 2021; Bretsky et al., 1999; Geerlings et al., 2010;

Gerdts & Regitz-Zagrosek, 2019; Neu et al., 2017; Schorr et al., 2018).

Yet, it is unknown whether these risk factors interact in sex-specific

ways to influence brain health across different age periods or endo-

crine life stages. While males experience greater incidence and preva-

lence of cardiometabolic disease in early midlife, the greatest risk of

cardiometabolic disease in females is observed up to 10 years later,

coinciding with the menopausal transition (Dubnov et al., 2003;

Maas & Appelman, 2010). Postmenopause, female APOE4 carriers are

also at greater AD risk than their male counterparts (Bretsky

et al., 1999; Neu et al., 2017), but it is unknown whether a reduction

in neuroprotective ovarian hormones, combined with an elevated car-

diometabolic and genetic risk profile, may accelerate brain aging and

subsequent AD risk in females compared to males. Investigating how

CMRs interact with APOE genotype to influence the brain at different

life stages, whether age- or menopause-related, may thus clarify sex-

specific risk profiles for accelerated brain aging and illuminate critical

periods for preventive interventions.

Poor cardiometabolic health is associated with changes in brain

microvasculature, which may be reflected in magnetic resonance

imaging (MRI)-derived indices of white matter (WM) microstructure

(Alfaro et al., 2018). CMRs such as adiposity, hypertension, smoking,

and diabetes have been associated with lower fractional anisotropy

(Birdsill et al., 2017; Mueller et al., 2011; Stanek et al., 2011), lower

myelin and iron content (Trofimova et al., 2021), and greater WM

hyperintensity (WMH) burden (Alqarni et al., 2021; Griffanti

et al., 2018; Habes et al., 2018; Lampe et al., 2019; Raffield

et al., 2016; Sachdev et al., 2009) in healthy older adults. Although

females usually have higher volumes of WMH than males (de Leeuw

et al., 2001; DeCarli et al., 2005; Fatemi et al., 2018; Sachdev

et al., 2009; van den Heuvel et al., 2004), extensive literature indicates

that males with CMRs (adiposity, hypertension, diabetes, and athero-

sclerosis) are more likely to develop WMH compared to females with

similar levels of risk (Alqarni et al., 2021; Assareh et al., 2014;

Filomena et al., 2015; Geerlings et al., 2010; Jongen et al., 2007).

Hence, cardiometabolic health may influence WM microstructure dif-

ferently in males and females, and risk profiles may also vary with age.

Despite the consensus that high blood pressure and cholesterol levels

are associated with accelerated brain aging and elevated dementia risk

(Qiu et al., 2005; Solomon et al., 2009; van Vliet, 2012), the role of

body fat is inconclusive (Fitzpatrick et al., 2009; Stewart et al., 2005).

While mixed findings may be a result of selection or survivor bias

(Heffernan et al., 2016; Jacobsen et al., 2021; Munafò et al., 2018;

Salthouse, 2014), or variation in body fat indices used across studies

(e.g., body mass index [BMI] versus waist-to-hip ratio [WHR] or body

fat percentage [BF%]; Huxley et al., 2010; Lavie et al., 2012;

Tchernof & Després, 2013; Tomiyama et al., 2016), they could also

reflect a variable role of body composition throughout the lifespan.

For example, one study found that BMI had a positive association

with dementia risk when measured >20 years before dementia diag-

nosis, and a negative association when measured <10 years before

dementia diagnosis (Kivimäki et al., 2018). Low BMI at later life stages

may indicate frailty, sarcopenia (muscle loss), or preclinical dementia

(Buchman et al., 2005; Hassan et al., 2019; Johnson et al., 2006;

Subramaniapillai et al., 2021). Hence, while high BMI in mid-adulthood

may largely reflect obesity, higher BMI in senescence may reflect

overall physical fitness or lack of degenerative diseases. Furthermore,

body fat may act as a source of estrogen in postmenopausal females

(Simpson, 2003), potentially protecting against WM decline (Klosinski

et al., 2015). However, only a few studies have tried to disentangle

the role of body fat composition in endocrine versus chronological

aging (Sowers et al., 2007; Trikudanathan et al., 2013). Since risk pro-

files for adverse brain health may vary by sex across certain life

stages, it is relevant to investigate specific age windows at which

CMRs may have sex- and genotype-specific effects on the brain.

One strategy for detecting atypical brain aging, particularly if it

does not involve visible pathognomonic hallmarks of degenerative

brain disease, is to use machine learning to predict an individual's age

based on neuroimaging-derived measures (Cole & Franke, 2017; Cole,

Marioni, et al., 2019; Kaufmann et al., 2019). Brain Age Gap (BAG)
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provides a measure of deviation from expected age trajectories, and

has been used to identify differences in patients with neurological and

psychiatric disorders relative to healthy controls (Cole, Raffel,

et al., 2019; Franke & Gaser, 2019; Han et al., 2020; Kaufmann

et al., 2019; Rokicki et al., 2020; Tønnesen et al., 2020), as well as

predicting future dementia risk (Wang et al., 2019) and prognosis

(Biondo et al., 2020; Franke & Gaser, 2012; Gaser et al., 2013; Löwe

et al., 2016). While individual variation in BAG reflects a combination

of genetic and environmental factors (Elliott et al., 2019; Kaufmann

et al., 2019; Vidal-Piñeiro et al., 2021), clinical studies indicate that an

older “brain age” relative to what is expected for an individual's chro-

nological age (i.e., positive BAG) may in part reflect accelerated neural

aging processes (Cole, Raffel, et al., 2019; Han et al., 2020; Kaufmann

et al., 2019; Kolenic et al., 2018; Rokicki et al., 2020; Tønnesen

et al., 2020; van Gestel et al., 2019). Positive BAG values have also

been associated with negative outcomes in population-based studies,

including cardiovascular risk, cognitive impairments, and dementia risk

(Biondo et al., 2021; de Lange, Anatürk, et al., 2020; Egorova

et al., 2019; Franke & Gaser, 2012; Gaser et al., 2013; Kolbeinsson

et al., 2020; Löwe et al., 2016; Wang et al., 2019). Previous studies

have shown accurate age prediction based on diffusion-weighted

imaging measures (Beck, de Lange, Maximov, et al., 2021; Cole, 2020;

Richard et al., 2018; Voldsbekk et al., 2021), as well as associations

between WM BAG and CMRs (Beck, de Lange, Alnaes, et al., 2021;

Beck, de Lange, Pedersen, et al., 2021). However, these previous stud-

ies did not assess sex-specific effects, or whether CMRs interact with

APOE genotype to influence WM BAG during certain life phases.

In this study, we examined the associations between WM BAG

and key CMRs, including BMI, WHR, and BF% (Bowman et al., 2017;

Bradbury et al., 2017; Ul-Haq et al., 2014), and APOE4 status in males

(N = 10,605) and females (N = 10,703). We further assessed whether

these risk factors had salient effects in middle age (44–55 years) and

different stages of older adulthood (56–65 years and 66–82 years)

(Grady et al., 2006; Subramaniapillai, Rajagopal, et al., 2019; Sub-

ramaniapillai, Rajah, et al., 2019). Participants' brain ages were com-

puted using a prediction model based on WM measures derived from

three diffusion imaging modes: diffusion tensor imaging (DTI) (Basser

et al., 1994), diffusional kurtosis imaging (DKI) (Jensen et al., 2005),

and WM tract integrity (WMTI) (Fieremans et al., 2011). While DTI is

commonly used to estimate WM indices that are highly sensitive to

age (Beck, de Lange, Maximov, et al., 2021; Krogsrud et al., 2016;

Storsve et al., 2016; Westlye et al., 2010), biophysical diffusion

models such as WMTI (Fieremans et al., 2011), which is derived from

DKI (Jensen et al., 2005), may more accurately capture WM tissue

structure complexity (Jelescu & Budde, 2017; Jensen et al., 2005),

thus providing greater biological specificity (Novikov et al., 2018).

Given previous work indicating structural and functional sex differ-

ences in the human brain (Armstrong et al., 2019; Kaczkurkin

et al., 2019; Ritchie et al., 2018; Scheinost et al., 2015), the diffusion

metrics were used as input features to three separate prediction

models: (1) mixed sex, (2) female only, and (3) male only, in order to

improve the accuracy of the sex-specific analyses (Biskup et al., 2019;

Cirillo et al., 2020; Kaufmann et al., 2019). We used linear regression

models to assess whether associations between BAG and BMI, WHR,

BF%, and APOE genotype varied (i) between males and females,

(ii) according to age at menopause in females, and (iii) across different

age groups in males and females.

2 | METHODS AND MATERIALS

2.1 | Sample characteristics

The initial sample was drawn from the UK Biobank cohort (www.

ukbiobank.ac.uk), and included 39,232 participants with diffusion-

weighted imaging and demographic data. We excluded 3379 partici-

pants with diagnosed brain disorders based on ICD10 (chapter V and VI,

field F; mental and behavioral disorders, including F00–F03 for AD and

dementia, and F06.7 “Mild cognitive disorder,” and field G; diseases of

the nervous system, including inflammatory and neurodegenerative

diseases (except G55-59; “Nerve, nerve root and plexus disorders”).
Diagnostic details are provided in the UK Biobank online resources

(http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270), and in

the ICD10 diagnostic manual (https://www.who.int/classifications/icd/

icdonlineversions). In addition, 113 participants were excluded based

on MRI outliers (see Section 2.2), leaving a total of 35,740 participants

with diffusion-weighted imaging data that were included in the brain

age models. Only participants with complete data on demographic fac-

tors, APOE genotype, BMI, WHR, and BF% from the MRI assessment

time point were included in the subsequent analyses, yielding a final

sample of 21,308 (male = 10,605, female = 10,703). Sample demo-

graphics are provided in Table 1. Sex of participants refers to binary

data on biological sex acquired from the NHS registry at recruitment,

but in some cases updated by the participant (see https://biobank.

ndph.ox.ac.uk/showcase/field.cgi?id=31).

2.2 | MRI data acquisition and processing

A detailed overview of the UK Biobank data acquisition and protocols

is available in (Alfaro-Almagro et al., 2018; Miller et al., 2016). Briefly,

we processed diffusion-weighted imaging data using an optimized dif-

fusion pipeline as described in detail in Maximov et al., 2019. We

included metrics derived from DTI (Basser et al., 1994), DKI (Jensen

et al., 2005), and WMTI (Fieremans et al., 2011) as input features in

the age prediction models, as described in Voldsbekk et al., 2021. The

metrics for each model are listed in Supporting Information

(SI) Section 1. The metrics were extracted based on subject-specific

skeletonized images (Smith et al., 2006), and Johns Hopkins University

(JHU) atlases for WM tracts (with 0 thresholding; Mori et al., 2005)

were used to provide global mean values and regional measures for

12 tracts used in previous aging and development studies (Krogsrud

et al., 2016; Storsve et al., 2016; Voldsbekk et al., 2021; Westlye

et al., 2010); anterior thalamic radiation, corticospinal tract, cingulate

gyrus, cingulum hippocampus, forceps major, forceps minor, inferior

fronto-occipital fasciculus, inferior longitudinal fasciculus, superior
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longitudinal fasciculus, uncinate fasciculus, superior longitudinal fas-

ciculus temporal, and corpus callosum. The included diffusion MRI

data passed tract-based spatial statistics (TBSS) post-processing qual-

ity control using the YTTRIUM algorithm (Maximov et al., 2021), and

were residualized with respect to scanning site using linear models. To

remove further outliers, participants with SD ± 4 on the global mean

FA measure were excluded, yielding a final sample of 35,740 partici-

pants with MRI data (male = 16,909, female = 18,831). To optimize

prediction accuracy, the full MRI sample was included in the brain age

models (Section 2.3), while the subsequent analyses (Sections 2.5 and

2.6) included only participants with complete data on CMRs and APOE

genotype (N = 21,308; Table 1).

2.3 | Brain age prediction

We ran three age prediction models: (1) mixed sex, (2) female only,

and (3) male only, to obtain sex-specific BAG values (Biskup

et al., 2019; Kaufmann et al., 2019) as well as general BAG estimates

based on the mixed sample. The prediction models were run using the

XGBoost regression algorithm (eXtreme Gradient Boosting; https://

github.com/dmlc/xgboost). XGboost includes advanced regularization

to reduce over-fitting, and has shown superior performance in

machine learning competitions (Chen & Guestrin, 2016). Parameters

were tuned in a nested cross-validation using five inner folds for grid

search, and 10 outer folds for model validation. Feature importance

rankings for each model were extracted using gain scores, which are

calculated based on each feature's contribution to each tree in the

model and thus indicate the relative contribution of each feature to

the prediction. BAG values were calculated by subtracting chronologi-

cal age from predicted brain age. The age and BAG distributions for

each of the age prediction models are shown in SI Figure 1. To ensure

that associations with the variables of interest were not driven by

age-dependence in the BAG estimations (Li et al., 2018; Liang

et al., 2019), chronological age was regressed out of the BAG values

before they were used in subsequent analyses (de Lange &

TABLE 1 Sample demographics

Variable Male Female p-value Test

N 10,605 10,703

Age Mean ± SD 64.58 ± 7.65 63.12 ± 7.33 <.001 KW

Range (years) 44.57–81.30 45.48–81.89

Ethnic background % White 97.33 97.39 <.001 X2

% Black 0.47 0.62

% Mixed 0.35 0.46

% Asian 1.31 0.63

% Chinese 0.20 0.30

% Other 0.34 0.61

Education % University/college degree 50.00 47.81 <.001 X2

% A levels or equivalent 12.08 15.00

% O levels/GCSE or equivalent 17.06 20.41

% NVQ or equivalent 11.32 6.67

% Professional qualification 3.92 5.56

% None of the above 5.62 4.56

Assessment location (N) Newcastle 1916 1999 .04 X2

Cheadle 7280 7178

Reading 1409 1526

APOE4 status % carrier 25.48 26.65 .05 X2

% noncarrier 74.52 73.35

BMI Mean ± SD 26.72 ± 3.60 25.65 ± 4.18 <.001 KW

Range 16.38–39.95 14.55–39.99

WHR Mean ± SD 0.93 ± 0.06 0.81 ± 0.07 <.001 KW

Range 0.53–1.26 0.60–1.16

BF% Mean ± SD 25.12 ± 5.47 35.57 ± 6.44 <.001 KW

Range 5.20–42.50 7.40–57.5

Note: Mean ± standard deviation (SD) and ranges for age, body mass index (BMI), waist-to-hip ratio (WHR), and body fat percentage (BF%), and % in each

group for ethnic background, education, assessment location, and APOE4 status.

Abbreviations: GCSE, general certificate of secondary education; KW, Kruskal–Wallis; NVQ, national vocational qualification; X2, chi-squared test.
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Cole, 2020; Le et al., 2018). As a cross-check, we performed a supple-

mentary analysis for the mixed-sex model where we used 10% of the

data as a held-out validation sample (N = 3574) for model optimiza-

tion (grid search), and derived the best-fit parameters to run a sepa-

rate age prediction model in the rest of the sample (N = 32,166) with

10-fold cross-validation.

2.4 | APOE genotyping

Participants' APOE genotype was extracted using the UK Biobank ver-

sion 3 imputed data, which has been rigorously assessed for quality

control by the UK Biobank genetics team (Bycroft et al., 2018). The two

APOE single-nucleotide polymorphisms—rs7412 and rs429358 (Lyall

et al., 2016) were used to estimate APOE genotype. APOE ϵ4 status was

labeled carrier for ϵ3/ϵ4 and ϵ4/ϵ4 combinations, and noncarrier for ϵ2/

ϵ2, ϵ2/ϵ3, and ϵ3/ϵ3 combinations (Lyall et al., 2019). We removed par-

ticipants with the homozygous ϵ2/ϵ4 allele combination due to its

ambiguity with ϵ1/ϵ3 (Lyall et al., 2016; Wisdom et al., 2011). For more

information on the genotyping process, refer to (Bycroft et al., 2018).

2.5 | CMR factors: BMI, WHR, and BF%

CMRs included BMI (kg/m2), WHR (waist circumference/hip circumfer-

ence), and BF% based on body composition by impedance measurement.

All assessment procedures are described in detail in the UK Biobank pro-

tocol (Elliott & Peakman, 2008). As compared to BMI, which is a general

measure of body adiposity, BF% distinguishes fat from muscles, while

WHR is a more specific measure of abdominal obesity. Participants with

BMI >40 were excluded (N = 196), since these values indicate morbid

obesity and risk for serious health complications and comorbidities

(Jarolimova et al., 2013; Schelbert, 2009). The correlations between BMI,

WHR, and BF% are shown in Figure 1, indicating shared variance

corresponding to previous studies (Chen et al., 2010; Myint et al., 2014;

Ranasinghe et al., 2013; Ul-Haq et al., 2014;Wiltink et al., 2013).

2.6 | Categorizing groups based on (i) age at
menopause and (ii) chronological age

To investigate whether associations of BAG with CMRs and APOE

genotype varied according to age at menopause, we analyzed data

from a subset of menopausal females who had complete information

on age at menopause (N = 9693). Based on previous studies binning

age at menopause in approximately 5-year group bins (Gordon

et al., 1978; Wasti et al., 1993), we applied similar age at menopause

(i.e., Menopause Age Group) categories to our sample using the fol-

lowing bins: 40–45 years, 46–50 years, 51–55 years, and 56–62 years

(Table 2). Since the average age of menopause is typically around

51.5 years and perimenopause lasts on average 4 years (Brinton

et al., 2015; Harlow et al., 2012), we excluded females with age at

menopause <40 years (N = 205) and >62 years (N = 4) from our

female-specific analyses to ensure that results were not driven by

extreme values. We also excluded participants who had undergone a

hysterectomy and/or oophorectomy (N = 714) before natural meno-

pause, as these females often experience premature menopause asso-

ciated with their surgery and may be at elevated risk of dementia

(Rocca et al., 2007; total N of participants included = 8770). As a

cross-check, we repeated the interaction analyses including all partici-

pants. Distributions for BMI, WHR, and BF% within each Menopause

Age Group are shown in SI Figure 2.

To investigate whether effects of CMRs and APOE risk varied

across different age groups, we categorized participants' ages

(i.e., Age Group) using the following bins: 45–55 years, 56–65 years,

and 66–82 years (Table 2). The bins were selected to take the full

cohort age range into account, and to enable comparisons of effects

in middle-age and different stages of older adulthood in line with

F IGURE 1 The matrices (top
row) show the correlations
(Pearson's coefficients) between
BMI, WHR, and BF% for all
participants, as well as females
and males separately. The scatter
plots (bottom row) show the
correlations for all participants
with males plotted in red and
females in blue
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previous studies examining participants throughout the adult lifespan

(Grady et al., 2006; Subramaniapillai, Rajagopal, et al., 2019; Sub-

ramaniapillai, Rajah, et al., 2019). Distributions for BMI, WHR, and BF

% within each Age Group are shown in SI Figure 2.

To test if results were consistent between Menopause Age Group

and Age Group bins and the continuous measures of these variables,

we conducted supplementary analyses using the continuous variables

of Age at Menopause and Age.

2.7 | Statistical analyses

The statistical analyses were conducted using Python 3.7.6 and R ver-

sion 3.5. All variables were standardized (subtracting the mean and

dividing by the SD) before being entered into the analyses. p-values

were corrected for multiple comparisons using false discovery rate

(FDR) correction (Benjamini & Hochberg, 1995). We report the F-test

significance of each main effect and each interaction, as F is useful for

interpreting models containing categorical variables with more than

two levels. The F-statistics were generated in R by adding the Anova

wrapper function to the linear model (lm) of interest.

We first determined whether there were sex differences in the

effects of CMRs and APOE genotype on WM BAG, with the depen-

dent variable representing BAG values based on the mixed-sex age

prediction model (BAGms). In order to adjust for age-dependence in

CMRs and APOE4 status, age was included as a covariate. The follow-

ing lm was used for these analyses, with x representing each CMR

(BMI, WHR, and BF%) or APOE4 status, respectively:

BAGms � x�SexþAge: ð1Þ

To test if interactions between sex and CMRs varied according to

APOE4 status, the following lm was used with CMR representing each

risk factor (BMI, WHR, and BF%):

BAGms �CMR�Sex�APOEþAge: ð2Þ

We then used the BAG values from the female-specific model to

determine whether CMR and APOE effects on BAG varied according

to age at menopause in females (Menopause Age Group). The follow-

ing lm was used for these analyses, with BAGss representing BAG esti-

mates based on the sex-specific model, and x representing each CMR

or APOE4 status, respectively:

BAGss � x�Menopause Age GroupþAge: ð3Þ

To test if interactions between Menopause Age Group and CMR

varied according to APOE genotype, the following lm was used with

CMR representing each risk factor:

BAGss �CMR�Menopause Age Group�APOEþAge: ð4Þ

To determine whether effects in females and males varied across

age bins, we ran analyses within each sex assessing the interactions of

CMRs, APOE genotype, and Age Group on BAG. Sex-specific BAG

values were used as dependent variables in the following lm, with

x representing each CMR or APOE4 status, respectively:

BAGss � x�Age Group: ð5Þ

To test if interactions between Age Group and CMRs varied

according to APOE genotype, the following lm was used with CMR

representing each risk factor:

BAGss �CMR�Age Group�APOE: ð6Þ

As a follow-up, we ran the following lmwithin each of the AgeGroups

(for each sex) adjusting for effects of agewithin eachAgeGroup bin:

BAGss �CMR�APOEþAge: ð7Þ

3 | RESULTS

3.1 | Brain age prediction

The accuracy of the age prediction models are shown in Table 3. SI

Tables 1 and 2 depict the top 10 WM features for the mixed-sex and

sex-specific age predictions, with the majority of the features over-

lapping between the three models. The model accuracy and prediction

values were highly consistent when using a held-out validation sample

for model optimization, as shown in SI Table 3.

3.2 | Sex differences in effects of CMRs and APOE
genotype on WM BAG

To assess sex differences in the associations between BAG and BMI,

WHR, BF%, and APOE4 status, we tested for sex-interactions as

TABLE 2 Number of participants in each Menopause Age Group
and each Age Group, separated by sex and with % of APOE4 carriers
in brackets

Female

Menopause Age Group N (APOE4)

40–45 years 986 (27.48%)

46–50 years 2842 (26.39%)

51–55 years 4059 (27.32%)

56–62 years 883 (25.93%)

Female Male

Age Group N (APOE4) N (APOE4)

45–55 years 1049 (29.26%) 1651 (26.95%)

56–65 years 4127 (27.16%) 3716 (25.61%)

66–82 years 3594 (25.90%) 5238 (24.91%)
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described in Section 2.7. The analyses revealed significant interaction

effects of Sex � BMI, Sex � WHR, and Sex � BF% on BAG, as shown in

Table 4 and Figure 2. Greater WHR was associated with higher BAG

(older brain age relative to chronological age) across sexes, but the

effect was more prominent in males compared to females. BF%

showed diverging associations, with higher values related to higher

BAG in males and higher values related to lower BAG (younger brain

age relative to chronological age) in females. Higher BMI values were

associated with higher BAG in males, while no significant effect of

BMI was seen in females. We observed no significant main effects of

APOE genotype, and no significant interactions between APOE geno-

type and Sex or CMRs (see SI Table 4 for full results). Figure 2 shows

the beta values for the BAG associations with each CMR and APOE4

status for both sexes, and for males and females separately. For

comparison, we produced the same plot using estimates based on the

sex-specific models (BAG values estimated relative to sex-specific age

trajectories), as shown in SI Figure 3. The results showed similar

patterns, with associations between higher BAG and greater BMI,

WHR, and BF% in males, and between higher BAG and greater WHR,

but not BMI and BF%, in females.

3.3 | Sex- and age-specific effects of CMRs and
APOE genotype on WM BAG

To assess whether effects of CMRs and APOE4 status varied

according to age at menopause or across specific age periods, we next

performed a series of regressions testing for interactions with Meno-

pause Age Group in females and Age Group in males and females sep-

arately, as described in Sections 2.6 and 2.7.

3.3.1 | Effects of Menopause Age Group � CMRs
and APOE genotype on WM BAG

In females, no interactions of CMR measures and APOE4 status with

Menopause Age Group were found, as shown in Table 5 (see SI

Table 5 for full results). The results were consistent when using the

continuous Age at Menopause variable, as shown in SI Table 6, and

when including participants with age at menopause <40 and

>62 years, hysterectomy and/or oophorectomy, as shown in SI

Tables 7–9. Across models, there was a main effect of Menopause

Age Group such that a lower age at menopause was associated with

higher WM BAG (see SI Table 5 and SI Figure 2). This effect was con-

sistent when using the continuous Age at Menopause variable in a

regression model including hormone replacement therapy use, educa-

tion, income, Townsend Deprivation Index, alcohol intake, physical

TABLE 3 Age prediction accuracy for
the mixed-sex and sex-specific models,
including average R2, root mean square
error (RMSE), mean absolute error (MAE),
and correlations (r) between predicted
and chronological age

Model R2 RMSE MAE r [95% CI] p

Mixed (N = 35,740) 0.51 ± 0.009 5.27 ± 0.007 4.23 ± 0.005 0.72[0.71, 0.72] <.0001

Male (N = 16,909) 0.50 ± 0.017 5.39 ± 0.115 4.34 ± 0.080 0.71[0.70, 0.72] <.0001

Female (N = 18,831) 0.49 ± 0.015 5.28 ± 0.081 4.27 ± 0.070 0.69[0.69, 0.70] <.0001

Abbreviation: CI, confidence interval.

TABLE 4 Sex differences in the associations between Brain Age
Gap and body mass index (BMI), waist-to-hip-ratio (WHR), body fat
percentage (BF%), and APOE4 status based on Formula (1) in
Section 2.7

Interaction F p pcorr

Sex � BMI 29.15 6.76 � 10�8 1.35 � 10�7

Sex � WHR 11.45 7.2 � 10�4 9.56 � 10�4

Sex � BF% 43.37 4.65 � 10�11 1.86 � 10�10

Sex � APOE 0.93 0.34 0.34

Note: Degrees of freedom = (1, 21,303).

F IGURE 2 Associations between WM Brain Age Gap (BAG) and
each cardiometabolic risk factor as well as APOE4 status for both
sexes, and for males and females separately. β (y-axis) represents the
beta value (slope) for each association, for example, a positive β value
indicates an association between greater cardiometabolic measures or
APOE4 and higher BAG (older brain age relative to chronological age).
The error bars represent standard errors on the β. BF%, body fat

percentage; BMI, body mass index; WHR, waist-to-hip ratio

TABLE 5 The interaction between Menopause Age Group and
body mass index (BMI), waist-to-hip-ratio (WHR), body fat percentage

(BF%), and APOE4 status on Brain Age Gap in females (Formula 3,
Section 2.7)

Interaction F p pcorr

BMI � Menopause Age Group 2.00 .11 .22

WHR � Menopause Age Group 1.50 .21 .28

BF% � Menopause Age Group 2.08 .10 .22

APOE � Menopause Age Group 0.73 .53 .53

Note: Degrees of freedom = (3, 8761).
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activity, and number of childbirths in addition to age, BMI, and APOE4

status as covariates (β = �0.036 ± 0.010, p = 1.40 � 10�4; see SI

Section 6 for details about the covariates).

3.3.2 | Effects of age group � CMRs and APOE
genotype on WM BAG

To assess whether effects of CMRs and APOE4 status varied across

specific age periods, we applied regressions including interaction

terms with Age Group as described in Formula (5), Section 2.7. For

both females and males, no significant effects were found for Age

Group � CMR measures/APOE4 status on BAG (Table 6 and SI

Table 10), indicating that the BAG associations with each CMR did

not vary significantly between age groups. The results were consistent

when using the continuous Age variable (SI Table 11). Figure 3 shows

the associations between BAG and each CMR within each Age Group,

and SI Figure 5 shows the associations grouped by APOE genotype.

While the BAG associations with each CMR were not significantly

different between age groups (Table 6), the follow-up regression ana-

lyses within each age group indicated that the divergence between

the associations with WHR versus BMI/BF% increased with older age

in females (Figure 3; see SI Tables 12 and 13 for full results). As a post

hoc test, we estimated the differences between the WHR versus

BMI/BF% associations for females within each age group using a

Z test for correlated samples, as described in SI Section 7. The results

confirmed that the divergence between the BAG associations with

WHR versus BMI/BF% increased with age, and was most prominent

in the oldest age group (SI Table 14).

4 | DISCUSSION

This study investigated whether associations between BAG and CMRs

and APOE genotype varied (i) between males and females,

(ii) according to age at menopause in females, and (iii) across different

age groups in males and females. In summary, the results showed sex

differences in associations between BAG and all three CMRs, with

stronger positive associations among males compared to females.

Higher BAG (older brain age relative to chronological age) was

associated with greater BMI, WHR, and BF% in males, whereas in

females, higher BAG was associated with greater WHR, but not BMI

and BF%. Earlier age at menopause was linked to higher BAG in

females, but no interactions were found between age at menopause

and CMRs. While none of the associations between BAG and each

CMR were significantly different between age groups, follow-up ana-

lyses indicated that the divergence between the WHR and BMI/BF%

associations observed in females was most prominent within the

oldest age group (66–81 years). APOE4 status showed no significant

main effects on BAG, no age- or age at menopause-specific effects,

and no significant interactions with CMRs. The findings demonstrate

sex-specific associations between body fat composition and brain age,

emphasizing the importance of analyzing males and females sepa-

rately in studies addressing CMR in aging.

The analyses including sex as an interaction term showed that all

three CMRs were associated with higher BAG in males relative to

females. These findings support a recent study, which revealed that

males may be more vulnerable than females to WM brain aging in the

presence of greater BMI (Alqarni et al., 2021) and, more broadly,

greater cardiometabolic burden (Assareh et al., 2014; Filomena

et al., 2015; Geerlings et al., 2010; Jongen et al., 2007). Our findings

may shed some light on sex differences in the timing of car-

diometabolic disease, emerging on average earlier in males than

females (Maas & Appelman, 2010). Unlike females, it is possible that

the combined effect of all three CMRs on males' higher BAG as early

as midlife may, in turn, be associated with their earlier cardiometabolic

disease risk. However, these measures of body adiposity may also be

more sensitive to males (Foret et al., 2021), while other unexplored

CMRs, such as hypertension, may be more robust in capturing

females' health risk earlier in adulthood (Gilsanz et al., 2017; Wei

et al., 2017). Furthermore, sex differences in adipose fat distribution

may differentially contribute to brain age, with males more likely hav-

ing fat distributed in the visceral adipose tissue surrounding the

abdominal organs, while females tend to have more subcutaneous adi-

pose tissue (Bredella, 2017; Chang et al., 2018). Compared to the lat-

ter, greater visceral adipose fat distribution is associated with

TABLE 6 The interaction between Age Group and BMI, WHR, BF
%, and APOE genotype on Brain Age Gap (Formula 5, Section 2.7)

Female Male

Interaction F p pcorr F p pcorr

BMI � Age Group 1.96 .14 .25 2.33 .10 .39

WHR � Age Group 1.68 .19 .25 0.72 .49 .49

BF% � Age Group 1.76 .17 .25 1.27 .28 .49

APOE � Age Group 0.31 .73 .73 0.87 .42 .49

Note: Degrees of freedom = (2, 8764) and (2, 10,599) for females and

males, respectively.
F IGURE 3 Associations between WM BAG and cardiometabolic
risk factors as well as APOE4 status within each Age Group bin

(Formula 7, Section 2.7). β (y-axis) represents the beta value (slope)
for each association. The error bars represent standard errors on the
β. BF%, body fat percentage; BMI, body mass index; WHR, waist-to-
hip ratio
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elevated risk of cardiometabolic disease. In females, differential

effects of BF% and BMI compared to WHR were observed, with

divergent associations particularly prominent in the oldest age group

(66–82 years) where lower BF% was linked to higher BAG. This could

reflect that lower BF% in older females may be an indicator of frailty

and preclinical dementia, and/or indicate a protective role of certain

sources of adipose fat in females at later ages (Buchman et al., 2005;

Johnson et al., 2006; Klosinski et al., 2015; Subramaniapillai

et al., 2021). While our results showed that earlier menopause transi-

tion was associated with greater BAG, we found no significant inter-

actions between age at menopause and CMRs. Further longitudinal

work is required to clarify the role of adipose tissue in female brain

health, and how it may relate to sex-specific factors including the

menopausal transition.

The evidence for the role of endogenous estrogen exposure in

neurodegeneration and AD is controversial, with some studies

reporting an association between shorter reproductive span and

greater dementia risk (e.g., Gilsanz et al., 2019), while others have

found that a longer reproductive span (i.e., later age of menopause)

did not confer protective effects (e.g., Geerlings et al., 2001; Mosconi

et al., 2018; Najar et al., 2020). Some studies have reported genotype-

specific effects, with a longer reproductive span conferring greater

risk in APOE4 carriers (Geerlings et al., 2001), and older brain age

linked to greater estradiol levels in APOE4 carriers and lower levels in

noncarriers (de Lange, Barth, et al., 2020). These studies point to a

possible modulatory role of estrogen exposure (Barth & de

Lange, 2020), typically having beneficial effects, but potentially

becoming neurotoxic in the context of greater AD pathology (Jack Jr

et al., 2010) or diseased cell populations (i.e., “healthy cell” hypothe-

sis; Brinton, 2005). While future studies including detailed data about

the menopausal transition (i.e., pre-, peri, postmenopause) as well as

specific measures of AD-related brain pathology (Rahman et al., 2020)

are required to test these hypotheses, our findings showed a small but

significant association between earlier menopause transition and

higher WM BAG in the current cohort, in line with studies linking a

shorter reproductive span to risk for neurodegeneration (Fox

et al., 2013; Geerlings et al., 2001; Gilsanz et al., 2019; Mishra &

Brinton, 2018; Schelbaum et al., 2021; Scheyer et al., 2018).

Unlike females, in which menses cessation is a marker of meno-

pause status, males have a more gradual endocrine aging process, with

no significant marker for age at andropause. Although low levels of

body fat in older age may be an indicator of frailty in both sexes

(Buchman et al., 2005; Johnson et al., 2006), our results show that in

this sample, greater WHR, BMI, and BF% were consistently linked to

higher BAG in males. This corresponds with previous studies reporting

negative effects of higher body fat levels on brain health in males

across midlife and older ages (Dekkers et al., 2019; Taki et al., 2008).

The male endocrine aging process typically involves gradual declines

in testosterone levels. Greater adipose tissue may increase levels of

aromatase, an enzyme that converts testosterone to estrogen, which

in males may be associated with their accelerated endocrine and con-

sequently, brain aging process (Blouin et al., 2006; Meyer et al., 2011;

Vosberg et al., 2021). Therefore, while greater adipose tissue can

potentially act as a source of estrogen in postmenopausal females, it

can be detrimental to males, in whom this may result in reduced tes-

tosterone levels (see Vosberg et al., 2021 demonstrating that the

genetic architecture of testosterone contributes to sex differences in

cardiometabolic traits in the UK Biobank). Importantly, increasing evi-

dence points to the role of sex hormones in mediating cerebrovascular

function, in which dysregulation is linked to cerebrovascular diseases,

cognitive impairment, and dementia (see reviews by Gannon

et al., 2019; Robison et al., 2019). Further research on the links

between sex hormones and cardiometabolic factors in endocrine

aging may help inform sex-specific health interventions for both males

and females.

No significant effects were found for APOE genotype. This is in

line with our previous study showing no effects of APOE4 status or

polygenic risk for AD on gray-matter based brain age in the UK Bio-

bank sample (de Lange, Barth, et al., 2020), as well as a recent UK Bio-

bank study showing that APOE4 genotype was associated with WM

hyperintensities, but not with FA or MD in WM tracts (Lyall

et al., 2020). While our age prediction was based on several diffusion

models known to be sensitive to WM aging (Beck, de Lange,

Maximov, et al., 2021; Jelescu & Budde, 2017; Jensen et al., 2005), it

is possible that specific estimates of WM hyperintensities could yield

APOE-sensitive CMR associations. Furthermore, a recent UK Biobank

study revealed region- and metric-specific effects of age and sex on

WM microstructure (Lawrence et al., 2021). Although age prediction

models combine a rich variety of WM characteristics into single esti-

mates, global BAG estimates do not provide specific information

about regional WM connections. Hence, future studies may aim to

investigate regional and diffusion metric-specific estimates of brain

aging in relation to APOE genotype and CMRs. Modality-specific BAG

estimates are also relevant for identifying differences in brain tissue

affected by a specific condition or disease (Beck, de Lange, Pedersen,

et al., 2021; Cole, 2020; de Lange, Anatürk, et al., 2020; Rokicki

et al., 2020). For example, one of our previous studies found that BMI

interacted with AD risk to influence gray-matter based BAG, such that

females with greater AD risk benefited more from a higher BMI

(Subramaniapillai et al., 2021). While the current study focused on

WM measures given their susceptibility to CMRs, future studies may

aim to include several brain modalities to directly compare sex- and

age-specific effects. More detailed measures of fat distribution

obtained with body MRI (Beck, de Lange, Alnaes, et al., 2021; Gurholt

et al., 2021; Leinhard et al., 2008; Linge et al., 2018) may also clarify

the divergent associations observed in females, and provide a more

complete understanding of adipose tissue distribution in relation to

cardiometabolic disease (Linge et al., 2018; Linge et al., 2019), AD risk

(Diehl-Wiesenecker et al., 2015), and endocrine aging processes

(El Khoudary et al., 2015). Due to sample size restrictions in relation

to our study goals of determining sex- and age-specific effects, we

could not currently probe body MRI in our subgroups, but ongoing

data collection of this measure from UK Biobank participants will ren-

der future analyses of these measures feasible.

Although the large UK Biobank cohort enabled us to investigate

whether effects were sensitive to specific age- or age at menopause
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periods, the sample sizes were limited by probing variables with differ-

ent subgroups (i.e., dividing our sample across sex, APOE genotype,

and Menopause/Age Group levels). However, our sub-group samples

(n >250) are still large compared to the majority of previous studies

investigating sex- or age-specific effects on brain structure (Szucs &

Ioannidis, 2020). The results also highlight potential causes of mixed

findings in the literature: variations in associations reported across

studies could be due to not separating analyses by sex (see Figure 2),

investigating samples with different age ranges (see Figure 3 and SI

Table 8), and/or the use of different CMRs. As participant re-testing

of the UK Biobank baseline cohort is actively underway, our future

work will aim to integrate longitudinal investigations of brain age, as

the current cross-sectional analyses prevent any conclusions about

causality. Longitudinal designs may also enable differentiation

between age-specific effects and effects that emerge as a result of a

selective attrition or survival bias (Heffernan et al., 2016; Jacobsen

et al., 2021; Munafò et al., 2018; Salthouse, 2014). While UK Biobank

provides an excellent resource of open-access population health data,

the cohort is homogeneous with regard to ethnic background and

education, and characterized by a “healthy volunteer effect” (Fry

et al., 2017), indicating that it is not representative of the general pop-

ulation (Keyes & Westreich, 2019). Although the current results may

not generalize to populations beyond those represented in this cohort,

our findings may prompt further study into sex- and age-specific

effects of CMR as well as endocrine aging. Lastly, since neural aging

processes are multi-factorial, single risk factors can only explain parts

of the individual variation. Hence, future studies may aim to go

beyond investigating risk factors in isolation and adopt approaches

that can model complex relationships between a variety of gene–

environment interactions and brain health in aging (Mulugeta

et al., 2021; Wang et al., 2020).

In conclusion, this study demonstrates notable sex differences in

associations between body fat indices and WM brain age, underlining

the importance of stratifying samples by sex in population-based and

clinical studies (Clayton, 2018; Ewelina et al., 2020; Ferretti

et al., 2018; Miller et al., 2017; Shansky & Murphy, 2021; Shansky &

Woolley, 2016). Independent of cardiometabolic profile, earlier meno-

pause transition was associated with higher BAG in females. Hence,

considering effects of both chronological and endocrine aging may

increase our understanding of sex-specific brain aging trajectories and

disease prevalence (Jacobs & Goldstein, 2018; Taylor et al., 2019).

Given the historical lack of research into sex-specific influences on

brain health and disease (Cirillo et al., 2020; de Lange, Jacobs, &

Galea, 2020; Ferretti & Santuccione Chadha, 2021; Taylor

et al., 2019), future studies incorporating sex as a variable of interest

may provide valuable contributions to precision medicine research,

consequently improving health care for both males and females.
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