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Sustained HIV remission after allogeneic 
hematopoietic stem cell transplantation 
with wild-type CCR5 donor cells

HIV cure has been reported for five individuals who underwent allogeneic 
hematopoietic stem cell transplantation (allo-HSCT) with cells from 
CCR5Δ32 homozygous donors. By contrast, viral rebound has occurred 
in other people living with HIV who interrupted antiretroviral treatment 
after undergoing allo-HSCT, with cells mostly from wild-type CCR5 donors. 
Here we report the case of a male individual who has achieved durable HIV 
remission following allo-HSCT with cells from an unrelated HLA-matched 
(9 of 10 matching for HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 alleles) 
wild-type CCR5 donor to treat an extramedullary myeloid tumor. To date, 
plasma viral load has remained undetectable for 32 months after the 
interruption of antiretroviral treatment. Treatment with ruxolitinib has been 
maintained during this period to treat chronic graft-versus-host disease. 
Low levels of proviral DNA were detected sporadically after allo-HSCT, 
including defective but not intact HIV DNA. No virus could be amplified in 
cultures of CD4+ T cells obtained after antiretroviral treatment interruption, 
while CD4+ T cells remained susceptible to HIV-1 infection in vitro. Declines 
in HIV antibodies and undetectable HIV-specific T cell responses further 
corroborate the absence of viral rebound after antiretroviral treatment 
interruption. These results suggest that HIV remission could be achieved in 
the context of allo-HSCT with wild-type CCR5.

Antiretroviral treatment (ART) efficiently blocks viral replication of 
HIV but cannot eliminate infected cells, which persist in people with 
HIV despite decades of treatment. These persistently infected cells 
establish viral reservoirs that initiate rapid viral rebound if ART is inter-
rupted. A few exceptions have been reported for individuals who are 
able to durably control HIV-1 infection after discontinuation of ART, 
achieving a state of virological remission1,2. This outcome appears 
to be favored by early ART initiation3,4, although the mechanisms 
remain unknown. Notably, five individuals have seemingly achieved 
an HIV cure after undergoing allogeneic hematopoietic stem cell trans-
plantation (allo-HSCT), for the treatment of different blood cancers, 
with cells from CCR5Δ32/Δ32 donors5–9. These donors’ cells lack CCR5 

expression on the cell surface, thus providing natural protection against 
CCR5-tropic HIV-1 variants10.

Different studies have shown that allo-HSCT in people with 
HIV consistently provokes a dramatic decrease in the frequency of 
HIV-infected cells11–14. The reduction in the size of the HIV reservoir 
is unrelated to the presence (or absence) of the CCR5Δ32 mutation in 
donor cells15. Instead, it seems to result from a combination of cytotoxic 
effects of the conditioning regimens, donor allogeneic immunity dur-
ing graft-versus-host reactions and the gradual dilution of the pool of 
infected cells during immune cell replacement12,16. However, even such 
pressure may not be sufficient to eliminate all infected cells. Cells car-
rying HIV DNA have been found after allo-HSCT in the blood of some 
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(21 cycles of 5-azacytidine, 32.5 mg m−2 per day, days 1–5). Severe lym-
phopenia was initially detected after allo-HSCT. A rapid expansion of 
NK cells and CD8+ T cells was then observed, followed by CD4+ T cells 
and B cells (Fig. 1 and Supplementary Fig. 2a). Immune reconstitution 
was incomplete with relatively low CD4+ T cell counts and an inverse 
CD4/CD8 ratio, consistent with what others and we have observed for 
other people with HIV who underwent allo-HSCT19,21 (Fig. 1).

The individual developed hepatic acute GvHD 120 days after HSCT 
and was treated with corticosteroids and tacrolimus. Following immu-
nosuppressive drug tapering in March 2019 (8 months after HSCT, 
M8), he presented with a hepatic GvHD relapse, which was treated 
with corticosteroids and cyclosporin. In July 2019 (M12), he further 
developed a mild chronic skin GvHD, and in August 2019, a third-line 
treatment with ruxolitinib 10 mg twice daily was initiated (Fig. 1 and 
Supplementary Fig. 1b). Immunosuppressive drugs were then tapered 
and stopped in early January 2021 (M30). Unfortunately, he had signs 
of a second hepatic GvHD relapse in late January 2021 and resumed a 
combined anti-GvHD treatment course including corticosteroid and 
ruxolitinib, with both prescriptions continued until October 2022 
(M51). In November 2022 (M52), an atypical neurological chronic GvHD 
with neuropathy and small-fiber damage was diagnosed and ruxoli-
tinib 10 mg twice daily was again prescribed together with low-dose 
prednisone (10 mg per day).

During the multiple episodes of GvHD, to reduce the risk of poten-
tial drug interactions, ART was further simplified to dolutegravir and 
lamivudine dual therapy in December 2019 (M17) and to single dolute-
gravir, one 50 mg tablet daily, in August 2020 (M25). Finally, on 17 
November 2021 (M40), all antiretrovirals were stopped following a 
consensual decision between the participant and his physician to 
evaluate the possibility of HIV remission. At the time of this report, 
32 months after interruption of ART (M72), plasma HIV viremia has 
remained undetectable despite frequent testing (at least monthly since 
ART interruption) (Fig. 1).

Decline of virologic markers after allo-HSCT
We further examined virological markers to better characterize the 
evolution of HIV-1 infection following allo-HSCT and ART interruption in 
this individual. HIV RNA could be detected with the ultrasensitive viral 
load assay in three plasma samples obtained before (1.33 RNA copies 
per ml at M3), at the time of (4.18 RNA copies per ml) and immediately 
after (2.22 RNA copies per ml at M1) allo-HSCT. A positive ultrasensi-
tive viral load value (4 copies per ml) was also detected at M19 after 
allo-HSCT, but was undetectable (<1 copy per ml) in all the other sam-
ples analyzed, including eight samples analyzed after ART interruption 
(Fig. 2a). Cell-associated HIV DNA could be detected in bone marrow 
cells, peripheral blood mononuclear cells (PBMCs) and purified blood 
CD4+ T cells before allo-HSCT (1,096, 202 and 457 copies per million 
cells, respectively) (Fig. 3b). These frequencies rapidly decreased after 
allo-HSCT. Viral DNA was still detectable (316 copies) in a bone mar-
row sample obtained at M1 after allo-HSCT, but was undetectable in 
subsequent samples (Fig. 2b,c). HIV DNA was sporadically detected in 
PBMCs with an ultrasensitive assay22 (maximum of 5 copies per million 
cells at M47) and purified CD4+ T cells (maximum of 40 copies at M19, 
coinciding with positive ultrasensitive viral load) but was consecutively 
undetectable by quantitative PCR in the last 6 samples obtained after 
ART interruption. HIV DNA was not detected in small biopsies from the 
small intestine; ascending, transverse, descending and sigmoid colon; 
cecum; and rectum obtained at M54 (14 months after ART interruption) 
(<20 copies of HIV DNA per 106 cells; 1.4 million cells tested).

We also investigated the presence of replication-competent 
virus. The intact proviral DNA assay (IPDA)23 detected potentially 
intact proviruses in two samples that had been obtained during 
ART-suppressed viremia 17 and 32 months before allo-HSCT in the 
context of his participation in the Swiss HIV cohort study (Fig. 2c). By 
contrast, potentially intact proviruses were never detected following 

people with HIV who did not achieve full donor chimerism12,17 or in 
tissue sanctuaries analyzed in necropsy studies18. Moreover, during 
the weeks following allo-HSCT, a window of vulnerability occurs when 
highly activated CD4+ T cells from both donor and recipient coexist19, 
thereby increasing the risk of reservoir reseeding if infection of donor 
cells is not prevented by pharmacological or genetic and host barriers. 
Accordingly, and in contrast to the five individuals who have achieved 
HIV cure, viral rebound has been reported so far in all cases of people 
with HIV who interrupted ART after receiving allo-HSCT from wild-type 
CCR5 donors11–15, and even in some individuals who received a transplant 
from CCR5Δ32/Δ32 donors20. These observations strongly supported 
the hypothesis that engraftment with CD4+ T cells that remain resistant 
to preexisting HIV-1 variants might be necessary to avoid HIV-1 relapse 
from the few infected cells that may persist after allo-HSCT.

Challenging this assumption, we describe here the case of a male 
individual living with HIV-1 for over 30 years who, 72 months after 
undergoing allo-HSCT with cells from a wild-type CCR5 donor and 
32 months after ART interruption, has not shown evidence of HIV-1 
rebound or replicating virus despite carrying CD4+ T cells that remain 
fully susceptible to HIV-1 infection.

Results
Case study
We conducted a longitudinal virological and immunological characteri-
zation of a 53-year-old male (IciStem number 34, IciS-34), who is alive 
and asymptomatic. This individual was diagnosed to be HIV-1 clade B 
positive in May 1990 in Switzerland and presented with a CD4+ T cell 
count of 589 cells per microliter (32%) at the time of diagnosis (cat-
egory A1 according to US Centers for Disease Control and Prevention 
classification). He immediately started ART after diagnosis, including 
first-generation nucleoside reverse transcriptase inhibitors (Supple-
mentary Fig. 1). However, despite antiretroviral exposure, his CD4+ T cell 
count decreased to 295 cells per microliter and the first available HIV-1 
plasma viral load determination in October 1996 was 63,293 copies 
per milliliter (Fig. 1). At this time, he began protease inhibitor-based 
therapy, receiving sequentially boosted saquinavir and atazanavir, with-
out achieving full viral suppression (median (interquartile range), 1,150 
(102–7,745) HIV RNA copies per milliliter) during this period that lasted 
9 years. A Iopinavir-based therapy was initiated in October 2005, result-
ing in a continuously suppressed plasma viral load despite evidence of 
multiresistance to components of three major classes of antiretrovirals 
(Supplementary Table 1). A progressive increase in CD4+ T cell counts 
and normalization of the CD4/CD8 ratio were also observed (Fig. 1). An 
integrase-inhibitor-based ART regimen with dolutegravir and daruna-
vir/ritonavir (DRV/r) was initiated in January 2015. This individual has 
been followed in the Swiss HIV cohort study since April 1992.

In January 2018, this person was diagnosed with a myeloid sarcoma 
with lymph node and bone marrow involvement. He initially received 
two cycles of induction chemotherapy based on anthracyclines, 
fludarabine and cytarabine. To avoid drug–drug interactions, DRV/r 
was switched to tenofovir alafenamide and emtricitabine (200/25 mg) 
in March 2018 (Fig. 1 and Supplementary Fig. 1). He experienced a 
short-term malignancy relapse in June 2018 and was treated with 
a hypomethylating agent, followed by allo-HSCT in July 2018. The 
donor was an unrelated nine-of-ten HLA-matched (Supplementary 
Table 2) male with no CCR5Δ32 mutation. IciS-34 received one cycle of 
a sequential conditioning regimen (clofarabine, cyclophosphamide, 
fludarabine and a total body irradiation of 8 Gy) before the peripheral 
stem cell (no T cell depletion) transplant. Graft-versus-host disease 
(GvHD) prophylaxis after transplant comprised cyclophosphamide at 
days 3 and 4, tacrolimus and mycophenolate mofetil. Full donor chi-
merism in granulocytes and mononuclear cells was achieved in blood 
and bone marrow less than a month after the transplant. The myeloid 
sarcoma remains in complete remission. A maintenance treatment 
with 5-azacytidine was provided from January 2019 to September 2020  

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | December 2024 | 3544–3554 3546

Article https://doi.org/10.1038/s41591-024-03277-z

allo-HSCT. Traces of defective proviruses were detected in PBMCs 
and/or bone marrow samples after allo-HSCT by IPDA, at levels over 
40 times lower than those observed before allo-HSCT. Intracellular 
HIV RNA was also not detected in samples obtained at multiple time-
points after ART interruption (Supplementary Table 3). Finally, viral 
production could not be detected with an ultrasensitive p24 single 
molecule Simoa assay24 in the supernatants of purified CD4+ T cells 
from multiple samples that were cultured in the presence of a pool 
of activated CD4+ T cells from three different donors (Supplemen-
tary Table 3). Overall, these results indicate that the HIV-1 reservoir 
markedly contracted after allo-HSCT in this individual and that, 
although traces of viral DNA were found in some samples obtained 
up to 57 months after the transplant, no potentially intact proviruses 

or evidence of replication-competent viruses were detected after 
allo-HSCT and ART discontinuation.

Sustained absence of detection of antiretroviral molecules
The participant reported using on-demand pre-exposure prophylaxis 
during two episodes in January (M42) and November 2022 (M52), taking 
it for only 2–3 days during these times. To document the ART interrup-
tion period more accurately, antiretrovirals were measured retrospec-
tively since November 2022 in all available plasma samples after ART 
interruption and prospectively from that point onwards. Low concen-
trations of emtricitabine (2.8–78 ng ml−1) and tenofovir (1–4 ng ml−1) 
were detected in samples obtained at M42 and M53 (Supplementary 
Table 4), coinciding with the self-reported use of these molecules by 
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the participant. This is consistent with the concentrations detected 
being at or below the median plasma concentration levels at 24 h after 
single oral dose of these molecules reported in the context of the ANRS 
IPERGAY study25. Neither these nor other molecules were found in the 
other samples analyzed prospectively. These results corroborate that 
durable remission of HIV infection in this individual occurred in the 
total absence of antiretroviral molecules for extensive periods of time.

CD4+ T cells remain susceptible to HIV-1 infection
Previous cases of HIV remission following allo-HSCT were associated 
with the reconstitution of the CD4+ T cell pool with cells that were resist-
ant to R5 HIV-1 due to the CCR5Δ32 mutation5–9. We wondered whether 
the CD4+ T cells that expanded after allo-HSCT in this individual may 

possess some alternative mechanism of resistance to HIV-1 infection.  
As previously reported for other individuals19, CD4+ T cells from samples 
obtained early after allo-HSCT were characterized by high activation 
frequencies (15.5% of HLA-DR+CD38+ cells at M4), which decreased in 
later samples (2.81% of DR+CD38+ cells at M53) without reaching the 
basal levels observed in individuals without HIV (Fig. 3a). In agreement 
with the wild-type CCR5 status of the donor, CCR5 could be detected on 
the surface of the CD4+ T cells that expanded after allo-HSCT (Fig. 3b). 
These cells also expressed CXCR4, which is used by X4 HIV-1 variants. 
Accordingly, purified CD4+ T cells from IciS-34 obtained after allo-HSCT 
were highly susceptible to infection in vitro with (R5) HIV-1BaL (Fig. 3c). 
Moreover, we detected high levels of infected cells after their in vitro 
exposure to HIV-1NL4-3ΔEnv particles pseudotyped with the pantropic 
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VSV-G envelope (Fig. 3d). These results refuted the presence of intrinsic 
barriers preventing HIV-1 replication in the CD4+ T cells of this individual 
after transplant.

Waning anti-HIV antibodies
Next, we studied whether the absence of viral rebound could be related 
to immune control after ART interruption. Immunoblot analyses 
confirmed the stable presence of anti-HIV antibodies over a period of 
20 years preceding allo-HSCT. By contrast, anti-HIV antibodies began 
to decrease after the intervention, starting with those recognizing 
p17 and p31, as previously described for other PLWH who underwent 
allo-HSCT15 (Fig. 4a). Of note, anti-HIV antibodies continued to wane 
after ART discontinuation. To characterize the antibody response more 
thoroughly during this period, we measured the binding of purified IgG 
antibodies from three plasma samples after ART interruption. IgG anti-
bodies binding to HIV-1 p24, BG505 SOSIP.664 and YU2 gp140 foldon 
Env trimers, gp120 and gp41 protein subunits were detected in all three 
samples at low levels, comparable to those found in people who are on 

ART since primary HIV infection (Fig. 4b). These IgGs showed very weak 
reactivity against consensus B Env overlapping peptides, including 
those from gp120 V3 loop and gp41 immunodominant regions com-
monly detected in other people with HIV (Fig. 4c). Accordingly, puri-
fied IgGs showed no neutralizing activity against a panel of five clade 
B viruses (Fig. 4d), and very weak capacity to bind to CEM.NKR-CCR5 
target infected cells (Fig. 4e), and thus may have a limited potential 
to promote antibody-dependent cellular cytotoxicity. Overall, these 
results indicate that the absence of viral rebound after ART interrup-
tion was not related to an increased pressure by the antibody response.

Absence of detectable HIV-specific T cells
Allo-HSCT was performed with cells from a donor who was matched 
for HLA-B*27 (Supplementary Table 2), an allele that has previously 
been shown to favor HIV-1 control26. However, we could not detect, by 
intracellular cytokine staining, CD4+ or CD8+ T cells responding to 6 h 
of stimulation with pools of overlapping HIV-1 Gag, Nef or Pol peptides 
in samples obtained after allo-HSCT (M10) or after ART interruption  
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(M45 and M64) (Fig. 5a,c). No HIV-specific cells could be amplified 
either after 6 days of stimulation or recall with HIV-1 peptides (Fig. 5b,c). 
Moreover, we did not detect CD8+ T cells binding to HLA-B*27 dex-
tramers carrying the immunodominant KRWIILGLNK Gag epitope 
(Supplementary Fig. 3e). By contrast, cells responding to human cyto-
megalovirus (HCMV) pp65 peptides could be detected in the same 
samples and amplified in 6 day cultures (Fig. 5a–c). In agreement with 
the lack of detection of HIV-specific CD8+ T cells, purified CD8+ T cells 
obtained at multiple timepoints after ART interruption could not sup-
press ex vivo HIV-1 infection of autologous CD4+ T cells (Fig. 5d). These 
results argue against a role of T cells in maintaining viral control in this 
individual and confirm the overall lack of mobilization of the adaptive 
response against HIV-1 in this person despite ART discontinuation.

Notably, we observed a relative lack of T cell reactivity in this 
individual to short polyclonal stimulation when compared with 
cells from different unrelated blood donors explored in these analy-
ses. We wondered whether this observation could be related to the 
ruxolitinib-based immunosuppressive therapy27 that was administered 
for extended periods of time to treat GvHD. We therefore analyzed the 
T cell responses in samples taken before, during and after a brief period 
of ruxolitinib discontinuation that occurred during the follow-up 
(between M51 and M53; Fig. 5e). Poor polyclonal reactivity was again 
observed in the M51 sample, when compared with cells from another 
blood donor (EFS639). The frequency of responding cells sharply 
increased in the samples taken 2 weeks (M52-1) and 4 weeks (M52-2) 
after ruxolitinib was stopped. Ruxolitinib was reintroduced at this time 
owing to relapse of GvHD, and a reduction in the frequency of respond-
ing T cells was observed 2 weeks later (M53). These results support 
that ruxolitinib therapy may influence the reactivity of T cells to short 
polyclonal stimulation. Of note, despite the stronger T cell reactivity 
observed during ruxolitinib discontinuation, no HIV-specific T cells 
could be identified during this period (Fig. 5e).

High frequency of CD16+CD56– NK cells
NK cells have been proposed to play an important role in mediating 
the graft-versus-leukemia effect upon allo-HSCT, while their expan-
sion and interaction with T cells may also regulate acute and chronic 
GvHD28,29. On the other hand, their implication in controlling HIV after 
ART interruption is suggested by recent reports30–32. Of note, IciS-34 
underwent allo-HSCT with cells from a nine-of-ten HLA-matched donor. 
Among the matched alleles, there were three HLA class I alleles (A*24:02, 
B*27:05 and B*44:02) that intrinsically express the Bw4 ligand that is 
recognized by NK cells and whose presence has been associated with 
lower levels of HIV-1 viremia33. We therefore analyzed the phenotype 
and antiviral capacity of NK cells. While early after allo-HSCT, NK cells 
were characterized by a high proportion of immature CD16−CD56++ 
cells, a high proportion of experienced CD16+CD56− cells expressing 
CD57 were observed at later timepoints (Fig. 6a,b). NK cells expressed 
different killer-cell immunoglobulin-like receptors (KIRs; Fig. 6c), such 
as KIR2DL1/S1, KIR2DL23 and, notably, KIR3DL1/S1, which are reported 
NK cell receptors for Bw4 (refs. 34–36). NK cell maturation, loss of 
CD56 and expression of CD57, was more preponderant among cells 
expressing KIRs and, in particular, KIR3DL1/S1 (Fig. 6b,c), suggesting 
a predominant activation of KIR-expressing cells in this case. The loss 
of CD56 expression has been proposed to identify NK cells with adap-
tive traits that became exhausted owing to repeated inflammatory and 
activating signals37. Although CD16+CD56− NK cells are expanded dur-
ing chronic HIV infection38,39, the frequency observed here was higher 
than that in one person with HIV on ART whose cells were analyzed in 
parallel for reference (Fig. 6a and Supplementary Fig. 4b). The dynam-
ics of NK cells in this case closely recapitulate the changes occurring 
in people without HIV who underwent allo-HSCT and experienced 
HCMV reactivation during the procedure40. Indeed, IciS-34 experienced 
three episodes of HCMV reactivation between August 2018 and March 
2019 requiring valganciclovir treatment. HCMV reactivation was also 

detected between June 2019 and January 2020, but at levels that did 
not require treatment. We did not observe significant changes in the 
phenotype of NK cells during the brief period of ruxolitinib discontinu-
ation (Fig. 6b and Supplementary Fig. 4c). While CD16+CD56− NK cells 
have been reported to have poor cytotoxic and antiviral potential38,39, 
we found that NK cells from IciS-34 were able to partially inhibit HIV-1 
infection in vitro of autologous CD4+ T cells (Fig. 6d). Further analyses 
will be needed to better understand the role that NK cells may have 
played in decreasing the HIV reservoir through graft-versus-HIV res-
ervoir or direct antiviral effects.

Discussion
We describe the case of a person who underwent allo-HSCT with cells 
from a wild-type CCR5 donor and whose viral load remains undetect-
able 32 months after interruption of ART. Multiple virological and 
immunological readouts confirm the absence of viral exposure since 
ART discontinuation and support a profound and prolonged HIV-1 
remission in this individual.

At the time of allo-HSCT, this individual had been living with HIV for 
more than 30 years and had experienced several years of uncontrolled 
viremia, leading to a drop in CD4+ T cell counts, before the virus was 
successfully controlled through an optimized protease inhibitor-based 
ART regimen. IPDA confirmed the presence of replication-competent 
virus in samples obtained during the period of suppressed viremia 
under ART before allo-HSCT. Cells carrying HIV DNA were readily detect-
able in blood and bone marrow samples just before the intervention, 
and residual viremia in the plasma was detected with an ultrasensi-
tive technique at this time. A drastic drop in all these parameters was 
observed following allo-HSCT. However, previous cases of people with 
HIV who interrupted ART after wild-type CCR5 allo-HSCT resulted in viral 
rebound within weeks to months of treatment discontinuation11,41, con-
firming that the dramatic decline in the viral reservoirs associated with 
allo-HSCT is generally not sufficient to achieve HIV remission or cure.

The factors underlying the absence of viral rebound in the case pre-
sented here remain unclear. Sporadic (twice) pre-exposure prophylaxis 
use was reported by the participant and confirmed by pharmacological 
analyses, but given the long-term viral remission (now getting close 
to 3 years), we believe intermittent ART was not a major factor in the 
outcome of this case. Unknown host factors may hinder HIV reseeding 
and amplification from residual infected cells in this case. We found, 
however, that CD4+ T cells obtained after ART interruption were fully 
susceptible to HIV-1 infection. Moreover, we could not identify any 
evidence of immune-driven control of infection. In particular, we could 
not find neutralizing antibodies or CD8+ T cells able to suppress HIV 
infection. On the contrary, the lack of detectable HIV-specific T cells and 
the weak and waning antibody levels observed after ART interruption 
provide further evidence of the lack of viral reactivation events since 
allo-HSCT in this individual. Nevertheless, we cannot rule out a poten-
tial role of NK cells in mediating viral control. The combination of Bw4 
ligands and KIRs present in this person after the transplant has been 
previously shown to favor natural viral control35,36, and NK cells have 
the capacity to react to the expression of stress peptides on infected 
cells42 before viral antigen production. Although the CD16+CD56− NK 
population, highly abundant in this case, has been generally considered 
as functionally impaired38,39, recent reports suggest that this population 
may be more heterogeneous than previously thought and that at least 
some of these cells possess diverse functionality, including cytotoxic 
potential43,44. A more thorough analysis of this compartment in this 
and other cases of people with HIV who required allo-HSCT will be 
needed to better understand the potential role of NK cells in controlling 
infection in this setting, either through graft-versus-reservoir effects 
or antiviral activities.

The immunosuppressive environment provided by ruxolitinib 
might contribute to the prevention of viral reactivation in this indi-
vidual. This inhibitor of the JAK–STAT pathway was used to treat GvHD 
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and has been administered almost continuously since ART interrup-
tion. Of note, ruxolitinib has been shown to block HIV replication, 
viral reactivation and reservoir reseeding in vitro and ex vivo and may 
favor the decay of the viral reservoir45,46. We found that the presence 
of ruxolitinib was indeed associated with a relative lack of reactivity 
of T cells from this individual to short stimulation in vitro. Ruxolitinib 
was briefly discontinued during the follow-up after ART interruption, 
and this was accompanied by an increase in T cell reactivity in vitro. The 
absence of ruxolitinib did not result in viral rebound or the appearance 

of HIV-specific cells, suggesting that no HIV antigens were produced 
during this period. It is possible, however, that the discontinuation 
of ruxolitinib (4 weeks) was too short for stochastic viral reactivation 
events to occur in a context in which potential remaining infected cells 
would be extremely rare.

Finally, we can hypothesize that allogenic immunity during 
repeated graft-versus-host events in this individual led to a deeper 
elimination of infected cells than in previous cases, achieving HIV cure 
through the complete purge of cells carrying replication-competent 
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values calculated from the titration curves are shown on the right (horizontal 
lines indicate the median values). c, Heatmap showing the ELISA binding 
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viruses. In favor of an allogenic pressure on the HIV reservoir in this 
case is the progressive rarefaction after the transplant of cells carrying 
viral DNA, which were detected at trace levels in several samples in the 
months that followed the transplant. The need for graft-versus-host 
reactions to achieve HIV cure after allo-HSCT has been the subject 
of debate: while its impact on the HIV reservoir is increasingly clear 
(graft-versus-reservoir effects)15,47, the incidence of GvH in the reported 
cases of HIV cure after allo-HSCT was variable5–9. Of note, a recent 
study in a model of allo-HSCT in Simian immunodeficiency virus 
(SIV)-infected macaques has shown that allogeneic immunity can in 
some cases lead to the total clearance of the viral reservoir16. Recently, 
a mathematical model was applied to data from IciStem participants, 

including data from IciS-34 before ART interruption15. The model 
supports the hypothesis that the main driver of the strong reservoir 
reduction after allo-HSCT is graft-versus-reservoir effects rather than 
conditioning regimens. It is tempting to assume that the repeated 
graft-versus-host reactions in this case may have led to an efficient 
elimination of reservoir cells in the absence of the barrier provided 
by CCR5Δ32.

Allo-HSCT is not a therapeutic option for people with HIV who do 
not have a cancer requiring this approach. Nevertheless, allo-HSCT is 
the only medical intervention that has reproducibly led to profound 
remission and potential cure of HIV-1 infection. The case presented 
here is the first to achieve such outcome after receiving cells from a 
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wild-type CCR5 donor. It is unclear whether the status that this person 
has achieved will be permanent. We cannot exclude that he may harbor 
rare, infected cells with competent provirus or that viral rebound may 
occur if immunosuppressive drugs are discontinued for longer periods 
of time. Viral rebound can occur even after long periods of undetect-
able viremia without ART, as observed in the so-called Mississippi 
baby48. Because of the absence of an intrinsic resistance to infection, 
the risk of viral rebound may be considered higher than for the cases 
of allo-HSCT with CCR5Δ32 cells. However, the duration of undetect-
able viremia is unprecedented in this context. This case opens new 
perspectives for the development of HIV cure strategies, particularly 
concerning allogeneic immunity and immunosuppressive drugs.
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Methods
Ethics
The described individual was enrolled in 1992 in the Swiss HIV Cohort 
Study (SHCS; www.shcs.ch) and in 2018 as participant number 34 
in the IciStem (IciS-34) program (www.icistem.org) at the Hôpitaux 
Universitaires de Genève after giving signed consent. The SHCS was 
approved by the Cantonal Ethics Commission at Zürich (the Central 
Ethics Commission in Switzerland for the SHCS), and the IciStem study 
by the ethical committee at the Universitair Medisch Centrum Utrecht. 
HSCT was done in the context of the standard protocol at Hôpitaux 
Universitaires de Genève. The individual signed a consent form for the 
use of samples for research purposes according to the regulations of 
the Hôpitaux Universitaires de Genève.

The decision to stop ART was reached consensually between the 
participant and his attending physicians after a period of treatment 
simplification, which was implemented to diminish the risk of interac-
tions with immunosuppressors used to treat GvHD. Analyses from unre-
lated HIV-negative blood donors from the Etablissement Français du 
Sang (collaboration agreement with Institut Pasteur) and people with 
HIV on ART (with undetectable viremia for >24 months) from the ANRS 
EP36 XII mTOR study (approved by ethics committee Ile-de-France XI) 
are provided as reference.

Sample processing
Peripheral blood was collected in EDTA tubes. Fresh blood samples 
were centrifuged at 750g for 20 min to collect the plasma. A second 
centrifugation was made at 2,000g for 30 min to eliminate platelets. 
Plasma samples were stored at −80 °C. PBMCs were obtained by density 
gradient centrifugation following Ficoll Plaque Plus separation (GE 
Healthcare) and used fresh or cryopreserved in liquid nitrogen.

Ultrasensitive plasma viremia
Ultrasensitive HIV RNA quantifications were performed on large 
volumes of plasma using the Generic (Biocentric) or Abbott HIV 
real-time PCR assay (Abbott)12,22. In brief, 3.5–17.5 ml of plasma was 
ultra-concentrated at 170,000g at 4 °C for 30 min, after which viral RNA 
was extracted. HIV RNA was quantified with a validated in-house cali-
bration curve, set with a limit of detection of 0.56 copies per milliliter.

Cell-associated HIV DNA and RNA levels
Total DNA was isolated from frozen PBMCs or CD4+ T cells sorted 
from PBMCs (StemCell Technologies) using the DNeasy Kit (Qiagen). 
Total HIV DNA was quantified with an ultrasensitive method using the 
real-time PCR GENERIC HIV-DNA assay (Biocentric)22,49

Cell-associated RNA was extracted from PBMCs with an AllPrep 
DNA/RNA Mini Kit (Qiagen). During extraction, cell-associated HIV 
RNA was treated using DNase I (Qiagen). Cell-associated HIV RNA was 
quantified by semi-nested real-time PCR targeting the gag region with 
previously described primers and probes50 shown in Supplementary 
Table 5. Reverse transcription was performed with random hexamers 
and SuperScript IV (Invitrogen). The first PCR was performed with 
Taq ADN polymerase (Merck) for 15 cycles, then the product of the 
first PCR was used as a template in the second PCR. The semi-nested 
real-time PCR was performed with Platinum qPCR SuperMix-UDG 
w/ROX (Invitrogen) for 50 cycles. To normalize cell-associated HIV 
RNA per µg total RNA, ribosomal RNA was quantified from the same 
cDNA by real-time PCR using the Ribosomal RNA Control Reagents kit 
(Applied Biosystems).

IPDA
The presence of potentially intact DNA HIV-1 was determined in PBMCs 
using a duplex droplet digital PCR (QX200 ddPCR system, Bio-Rad) 
targeting two regions in the viral genome23: the packaging signal in 
the 5′ and the Rev response element in env in the 3′. Genomic DNA 
was extracted using the AllPrep DNA/RNA Mini Kit (Qiagen) with 

precautions to minimize DNA shearing. To normalize and calculate 
DNA shearing, a second duplex droplet digital PCR was used, targeting 
the human RPP30 gene. Primers and probes were previously described 
and are shown in Supplementary Table 6.

CD4+ T cell culture for viral amplification
CD4+ T cells were isolated from fresh PBMCs after positive selec-
tion with magnetic beads (EasySep Human CD4 Positive Selection 
Kit II, StemCell Technologies, 17852). Cells were stimulated with 
phytohemagglutinin-L (2 μg ml−1, Sigma-Aldrich, L4144) and IL-2 
(200 UI ml−1, Miltenyi Biotec, 130-097-746). After 3 days of stimu-
lation, cells from IciS-34 (1× 106–2 × 106 cells) were put in culture 
with a pre-activated pool of HIV-susceptible CD4+ T cells from 3 
HIV-negative donors (1:3 ratio of total cells) at a final concentra-
tion of 106 ml−1 in RPMI 1640 with glutamax (Gibco, 61870-044) sup-
plemented with 10% heat-inactivated fetal calf serum and IL-2 at 
200 UI ml−1. Culture supernatants were collected every 3 to 4 days 
and fresh medium was added to the cultures. Supernatants were 
stored at −80 °C before analysis.

HIV-1 p24 was analyzed by ultrasensitive digital ELISA (Simoa 
Quanterix). Cell supernatants were thawed at room temperature and 
centrifuged at 845g for 5 min; 200 μl was transferred into a SimOa 
96-well plate and inactivated with 20 μl of Triton 20%. HIV-1 Gag p24 
was determined on a Simoa HD-1 analyzer using the Simoa HIV p24 
kit (Quanterix, 102215) following the manufacturer’s instructions. 
Four-parameter logistic regression fitting was used to estimate the 
concentration of p24. Samples below the limit of quantification were 
based on the established cutoff (it was determined based on the p24 
average number of enzymes per bead (AEB) signal in the standard 0 
and calculated as 2.5 standard deviations from the mean of the p24 
AEB signal).

CD4+ T cell susceptibility to HIV-1 infection
Productive HIV-1 infection in vitro was studied in activated CD4+ T cells 
(106 cells per ml in triplicate) exposed to the HIV-1BaL strain (R5; p24  
10 ng ml−1). The cells were cultured in 96-U-well plates for 14 days. 
Every 3–4 days, the culture supernatants were removed and replaced 
with fresh culture medium. Viral replication was monitored in the 
supernatants by p24 ELISA (XpressBio). Single-round infections were 
performed with HIV-1 NL4.3ΔenvΔnef/GFP (ref. 51) pseudotyped with 
the VSV-G envelope protein by transiently cotransfecting (SuperFect; 
Qiagen) 293 T cells with the proviral vectors and the VSV-G expression 
vector pMD2.G. Activated CD4+ T cells were infected in triplicate (5 × 104 
cells per well, 200 µl) with 35 ng per 1 × 106 HIV-1 NL4.3Δnef/GFP/VSV-G. 
Active HIV-1 infection was estimated by flow cytometry (BD Fortessa, 
BD Biosciences) as the percentage of GFP-expressing CD4+ T cells 72 h 
after infection.

Flow cytometry phenotyping
T cell phenotyping. Frozen PBMCs were thawed and incubated over-
night in RPMI, 10% fetal bovine serum, 1% penicillin–streptomycin 
and IL-15 (0.1 ng ml−1, Miltenyi Biotec). Cells were stained with a Live/
Dead Fixable Aqua Dead Cell Stain Kit (Life Technologies) followed by 
surface staining (CD3–FITC (SK7, 344804, dilution 1:13, BioLegend), 
CD4–BUV496 (OKT4, 750977, 1:65, BD Biosciences), CD8–BUV496 
(RPA-T8, 612942, 1:65, BD Biosciences), CCR5–PECy7 (2D7, 557752, 
1:7, BD Biosciences), CXCR4–PE (12G5, 555974, 1:7, BD Biosciences), 
CD45RA–APC_H7 (HI100, 560674, 1:26, BD Biosciences), CCR7–PE_Daz-
zle_594 (G043H7, 353236, 1:13, BioLegend), CD27–APC_R700 (M-T271, 
565116, 1:26, BD Biosciences), HLA-DR–BV786 (G46-6, 564041, 1:26, BD 
Biosciences), CD38–BV605 (HIT2, 740401, 1:65, BD Biosciences) and 
Brilliant Stain Buffer Plus (563794, 1:3, BD Biosciences)). For intranu-
clear staining, cells were fixed and permeabilized (Cytofix/Cytoperm, 
BD Biosciences) and stained with anti-Ki67-eFluor450 (20Raj1, 48-5699-
42, 1:26, eBioscience). All samples were acquired on an LSRFortessa 
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flow cytometer (BD Biosciences). The differentiation into naive, central 
memory, transitional memory, effector memory and late effector 
T cells over time was analyzed via the expression of CCR7, CD27 and 
CD45RA (Supplementary Fig. 3a).

NK cell phenotyping. Frozen PBMCs were thawed and incubated 
overnight in RPMI, 10% fetal bovine serum, 1% penicillin–streptomycin 
and IL-15 (0.1 ng ml−1, Miltenyi Biotec). Cells were stained with a Live/
Dead Fixable Aqua Dead Cell Stain Kit (L34957, 1:2,000, Life Tech-
nologies) followed by surface staining (KIR2DL2/L3–BUV395 (clone 
CH-L, 743456, 1:40), KIR2DL1/S1–BUV496 (clone HP-MA4, 752510, 
1:40), CD25–BUV661 (clone M-A251, 741608, 1:40), CD56–BUV737 
(clone NCAM16.2, 612766, 1:20), CD14–V450 (clone M5E2, 558121, 
1:250), CD19–V450 (clone HIB19, 560353, 1:20), NKG2A–BV605 (clone 
131411, 747921, 1:80), CD69–BV650 (clone FN50, number 563835, 1:20), 
DNAM1–BV711 (clone DX11, 564796, 1:20), NKG2C–BV786 (clone 134591, 
748170, 1:25), CD57–FITC (clone NK-1, 555619, 1:5), NKp46–PECy7 
(clone 9E2, 562101, 1:20), CD3–AF700 (clone UCHT1, 557943, 1:50), 
CD16–APC Cy7 (clone 3G8, 560195, 1:20) (all from BD Biosciences); 
CD85j/LILRB1–PE (clone REA998, 130-116-615, 1:50), NKG2D–PE Vio615 
(clone REA1228, 130-124-352, 1:50), KIR3DL1/S1–PerCPVio700 (clone 
REA168, 130-124-077, 1:50), NKp30–APC (clone REA823, 130-112-431, 
1:50) (from Miltenyi)). The gating schemes applied to identify NK cells 
are shown in Supplementary Fig. 4. Boolean gating was performed 
with FlowJo (v10.9) and the following markers: KIR3DL1/S1, KIR2DL1/
S1 and KIRDL2/3. Data were acquired using an LSRFortessa X20 flow 
cytometer (BD Biosciences).

T cell stimulation
Cryopreserved PBMCs were thawed in RPMI 1640 Medium, GlutaMAX 
Supplement, complemented with 20% fetal bovine serum. Cells were 
split and partly stained with carboxyfluorescein succinimidyl ester 
(CFSE) at 1 µM (Invitrogen, C34554) for 6 days of stimulation experi-
ments. All cells were then kept overnight at 37 °C and 5% CO2.

6 h of stimulation. PBMCs were resuspended in RPMI 1640 Medium, 
GlutaMAX with 10% fetal bovine serum in the presence of anti-CD107a–
BUV396 (clone H4A3, 565113,1:200) and BD FastImmune Co-stimulatory 
Antibodies CD28/CD49d (1 µg ml−1; BD, 347690) and left unstimulated 
or stimulated with either hCMV pp65 peptide pool (2 µg ml−1), HIV Gag 
peptides (2 µg ml−1), HIV Nef peptides (2 µg ml−1) (all of them obtained 
through the NIH HIV reagents program) or soluble anti-CD3 (clone 
OKT3, 1 µg ml−1, eBioscience, 16-0037-85) and anti-CD28 (clone CD28.2, 
1 µg ml−1, eBioscience, 16-0289-85). After 30 min of incubation, brefel-
din A (10 µg ml−1; Invitrogen, 00-4506-51) and BD GolgiStop Protein 
Transport Inhibitor (containing monensin) (1 µg ml−1, BD, 554724) were 
added and cells were cultured for 5 h 30 min before flow cytometry 
staining.

6 days of stimulation. CFSE-labeled PBMCs were resuspended in 
RPMI 1640 Medium, GlutaMAX Supplement, complemented with 10% 
fetal bovine serum and left unstimulated or stimulated in the same 
conditions as described above. Following 6 days of culture, cells were 
resuspended with anti-CD107a_BUV395 (clone H4A3, BD Biosciences, 
565113, 1:200), brefeldin A and BD GolgiStop Protein Transport Inhibi-
tor (containing monensin) and were left unstimulated or restimulated 
overnight with hCMV pp65 peptide pool (2 µg ml−1), HIV Gag pep-
tides (2 µg ml−1), HIV Nef peptides (2 µg ml−1), or phorbol 12-myristate 
13-acetate (PMA) (80 ng ml−1, Sigma-Aldrich, P8139-5MG) and ionomy-
cin (500 ng ml−1, Sigma-Aldrich, I0634-5MG).

In all conditions, samples were stained using the Live/Dead Fix-
able Aqua Dead Cell Stain Kit (Invitrogen; L34957), then extracellular 
staining was performed using CD3–APCe780 (clone UCHT1, 47-0038-
42, 1:9, Biolegend), CD4–BUV737 (clone OKT4, 750977, 1:36, BD Bio-
sciences), CD8–BUV496 (clone RPA-T8, 612942, 1:36, BD Biosciences), 

CCR7–PEDazzle594 (clone G043H7, 353236, 1:7, Biolegend), CD45RA 
PECy7 (clone 5H9, 561216, 1:14, BD Biosciences) and CD27 APCR700 
(clone M-T271, 565116, 1:14, BD Biosciences) antibodies. The cells were 
fixed and permeabilized with the BD Cytofix/Cytoperm Fixation/Per-
meabilization Kit (BD Biosciences) and stained for IFNγ BV605 (clone 
B27, 560679, 1:6, BD Biosciences), and TNF PerCP Cy5.5 (clone Mab11, 
560679, 1:6, BD Biosciences) before analysis with an LSRFortessa X20 
flow cytometer (BD Biosciences).

Viral suppression assays
HIV-1 suppression was evaluated with fresh blood samples52. After 
PBMC isolation from peripheral blood, CD4+ T cells were separated 
by positive magnetic bead isolation (EasySep Human CD4 Positive 
Selection Kit II, 17852) and the remaining cell fraction was split for 
subsequent CD8+ T cell and NK cell negative selection (EasySep Human 
CD8+ Cell Enrichment Kit, 19053; EasySep Human NK Enrichment 
Kit, 19055) using a Robosep instrument (StemCell Technology). Puri-
fied cells were cultured in RPMI 1640 medium containing GlutaMAX, 
10% fetal bovine serum, penicillin (10 UI ml−1) and streptomycin 
(10 µg ml−1). After purification, CD4+ T cells were activated for 3 days 
with 2 µg ml−1 of phytohemagglutinin-L (Sigma, L4144) and 200 IU ml−1 
of IL-2 (human IL-2 IS, premium grade, Miltenyi Biotec, 130-097-745). 
In parallel, CD8+ T cells and NK cells were cultured in complete RPMI 
medium in the absence of cytokines (CD8+ T cells) or in the presence 
of IL-15 at 0.1 ng ml−1 (NK cells). Activated CD4+ T cells were infected 
with HIV-1BaL by spinoculation alone or with autologous CD8+ T cells 
(1:1 ratio) or NK cells (1:1 and 1:3 ratio). Cells were then cultured for 
14 days in interleukin-2 (100 IU ml−1)-supplemented complete RPMI. 
Supernatants were collected and fresh medium replenished every 
3–4 days. Viral replication was measured in terms of p24 production 
in the culture supernatants by means of ELISA (HIV-1 p24 ELISA kit, 
XpressBio, XB-1000). The viral inhibitory capacity of NK cells was 
calculated comparing p24 levels at day 3 after infection in the NK:CD4 
co-cultures to CD4+ T cells cultured alone. The viral inhibitory capacity 
of CD8+ T cells was calculated at day 7 after infection as the log drop 
in p24 production when CD4+ T cells were cultured in the presence of 
CD8+ T cells.

Analysis of anti-HIV antibodies
Initial screening for HIV antibodies in plasma samples was done using 
INNO-LIA HIV Score immunoblot (Fujirebio). For deeper characteri-
zation, IgG antibodies were purified from plasma samples by affin-
ity chromatography using Protein G Sepharose 4 Fast Flow (Cytvia, 
17061805) according to the manufacturer’s instructions. Purified 
plasma antibodies were dialyzed against PBS using Slide-A-Lyzer Cas-
settes (10 K molecular weight cutoff, Thermo Fisher Scientific). Final 
IgG concentrations were measured using a NanoDro One instrument 
(Thermo Fisher Scientific). Previously purified plasma IgG antibodies 
from early treated (eART), late treated (lART), elite controller (Pt3), 
and post-treatment controller (PTC005002) donors53–55 were used as 
controls in the following experiments.

Titration of antibody levels by ELISAs. High-binding 96-well ELISA 
plates (Costar, Corning) were coated overnight with purified Env pro-
teins (His-tagged clade B YU2 trimeric gp140 and monomeric gp120 
(ref. 56), BG505 SOSIP.664 (ref. 57), gp41 (group O HIV-1 and 2, 227-
20101, RayBiotech) and HxB2 p24 (produced from the expression 
plasmid number ARP-13137, NIH AIDS reagent program; 125 ng per well 
in PBS). After washing with 0.05% Tween 20-PBS (PBST), plates were 
blocked for 2 h with 2% bovine serum albumin and 1 mM EDTA–PBST 
(blocking solution), washed and incubated with 1:3 serially diluted puri-
fied IgG antibodies in PBS (maximum concentration of 50 µg ml−1). After 
washing, plates were revealed by the addition of goat-HRP-conjugated 
anti-human IgG (1:2,000, 109-035-098, Jackson ImmunoResearch) 
and HRP chromogenic substrate (ABTS solution; Euromedex)58,59. 
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Overlapping linear HIV-1 Env peptides (n = 211, consensus Subtype B 
Env peptide set, 9480, BEI Resources) were coated on high-binding 
96-well ELISA plates (Costar, Corning) at 10 μg ml−1 in PBS overnight. 
After washing with 0.1% Tween 20–PBS, plates were blocked for 2 h with 
1% Tween 20, 5% sucrose and 3% milk–PBS (blocking solution); washed 
with 0.1% Tween 20–PBS; and incubated with purified IgG antibodies 
at 10 μg ml−1 in 1% BSA and 0.1% Tween 20–PBS. Plates were revealed 
by the addition of secondary antibody and substrate as described. 
Experiments were performed using a HydroSpeed microplate washer 
and Sunrise microplate absorbance reader (Tecan), with absorbance 
measured at 450 nm (A450 nm). All antibodies were tested in duplicate in 
at least two independent experiments.

HIV-1 neutralization assay. Pseudoviruses (BaL.26 (11446), 6535.3 
(11017), YU2.DG (12133), SC422661.8 (11058) and PVO.4 (11022); Env 
plasmids obtained from the NIH AIDS reagent program) were prepared 
by co-transfection of HEK-293T cells (CRL-3216, ATCC) with pSG3Δenv 
vector (11051, NIH AIDS Reagent Program) using FUGENE-6 transfection 
reagent (Promega)60,61. Neutralization experiments were performed 
by incubating in triplicate IgG antibodies at a final concentration of 
250 μg ml−1 with pseudoviruses for 1 h at 37 °C. The virus–IgG mixtures 
were then used to infect 10,000 TZM-bl cells (8129, NIH AIDS Reagent 
Program) in the presence of 10 μg ml−1 of diethylaminoethyl (DEAE)–
dextran. Infection levels were determined after 48 h by measuring the 
luciferase activity of cell lysates.

Antibody binding to infected cells. The capacity of purified 
antibodies to bind to HIV-1-infected cells was evaluated using 
laboratory-adapted (AD8 (11346) and YU2 (1350)) and transmitted/
founder (CH058 (11856), REJO (11746) and THRO (11745)) viruses pro-
duced from infectious molecular clones (NIH HIV Reagent Program). 
CEM.NKR-CCR5 cells (4376, NIH HIV Reagent Program) were infected 
with inocula of selected viruses and adjusted to achieve 10–40% of Gag+ 
cells at 48 h after infection. Infected cells were incubated with purified 
IgG antibodies (50 µg ml−1 final concentration) in staining buffer (0.5% 
BSA, 2 mM EDTA–PBS) for 30 min at 37 °C, washed and incubated with 
AF647-conjugated anti-human IgG antibodies (1:400; A-21445, Life 
Technologies) for 30 min at 4 °C. Cells were then fixed with 4% para-
formaldehyde and stained for intracellular Gag using FITC-conjugated 
anti-HIV-1 core FITC KC57 (1:500, 6604665, Beckman Coulter)62. Data 
were acquired using an Attune Nxt instrument (Life Technologies) and 
analyzed using FlowJo software (v10.7.1; FlowJo LLC).

Screening of antiretrovirals
The screening of antiretrovirals in plasma samples was performed using 
three distinct multiplex liquid chromatography coupled to tandem 
mass spectrometry (LC–MS/MS) methods. Bictegravir, cabotegravir, 
cobicistat, darunavir, dolutegravir, doravirine, elvitegravir, raltegravir, 
rilpivirine and ritonavir (pool A) were analyzed using a Vanquish system 
hyphenated to a TSQ Quantiva triple quadrupole MS. The chroma-
tographic column was a Waters Xselect HSS T3 3.5 µm, 2.1 × 75 mm, 
kept at 35 °C in the LC oven. The mobile phase was made of water and 
acetonitrile (ACN) with 0.1% formic acid in each. The gradient pro-
gram ranged from 10% to 95% ACN plus formic acid in 3.6 min, and the 
total method duration (including equilibration for the next injection) 
was 5.5 min. The flow rate and injection volume were 0.5 ml min−1 and 
5 µl, respectively. For the analysis of atazanavir, efavirenz, etravirine, 
lopinavir, maraviroc, nevirapine and saquinavir (pool B), the gradient 
program ranged from 2% to 95% ACN plus formic acid in 2.81 min and 
the total method duration (including equilibration for the next injec-
tion) was 4.5 min. The analysis of abacavir, emtricitabine, lamivudine, 
tenofovir and zidovudine (pool C) was performed using a Vanquish 
system hyphenated to a TSQ Altis triple quadrupole MS. The chroma-
tographic column was a Waters Xselect HSS T3 3.5 µm, 2.1 × 75 mm, 
kept at room temperature. The gradient program ranged from 0 to 70% 

ACN in 3 min, and the total method duration (including equilibration 
for the next injection) was 5 min. The flow rate and injection volume 
were 0.4 ml min−1 and 3 µl, respectively.

For the sample preparation, 150 µl of the precipitation solution 
containing the isotopically labeled internal standards was added 
to an aliquot of 50 µl of plasma for protein precipitation. For pools  
A and B, the mixture was then centrifugated for 10 min at 14,000g (5 °C) 
and the supernatant was directly injected. For pool C, the mixture was 
centrifugated for 10 min at 12,700g (5 °C) and the supernatant was 
diluted 1:1 with fresh Milli-Q water before injection.

Statistics and reproducibility
Graphs were generated using Prism version 10 (GraphPad Software). 
Flow cytometry data were analyzed using FlowJo cytometry analysis 
software v10.7 or v10.9 (Tree Star).

As this study was focused on one specific male individual, several 
limitations need to be noted: influence of sex or gender could not be 
considered; no statistical method was used to predetermine sample 
size; the experiments were not randomized; the investigators were not 
blinded to allocation during experiments and outcome assessment.

Samples at different timepoints (biological replicates) were meas-
ured in all experiments except HIV DNA determinations in gut biop-
sies. Technical triplicates were measured for viral suppression assays, 
neutralization assays and CD4+ T cell susceptibility to HIV-1 infection, 
and duplicates for antibody titers. All replication attempts produced 
consistent results. No data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are presented in the 
main figures and Supplementary Information of this Article. Sup-
porting data will be available within 6 weeks upon request to the cor-
responding authors, except when there are constraints related to the 
protection of the participant’s privacy.
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