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Environment-dependent epistasis increases phenotypic
diversity in gene regulatory networks
Florian Baier1†, Florence Gauye1, Ruben Perez-Carrasco2, Joshua L. Payne3*, Yolanda Schaerli1*

Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis con-
founds our understanding of howmutations affect the expression patterns of gene regulatory networks, a chal-
lenge exacerbated by the dependence of epistasis on the environment. We used the toolkit of synthetic biology
to systematically assay the effects of pairwise and triplet combinations of mutant genotypes on the expression
pattern of a gene regulatory network expressed in Escherichia coli that interprets an inducer gradient across a
spatial domain. We uncovered a preponderance of epistasis that can switch in magnitude and sign across the
inducer gradient to produce a greater diversity of expression pattern phenotypes than would be possible in the
absence of such environment-dependent epistasis. We discuss our findings in the context of the evolution of
hybrid incompatibilities and evolutionary novelties.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
The regulation of gene expression is essential for the spatiotemporal
control of diverse biological functions. Gene regulation is mainly
mediated by trans-regulatory proteins and protein complexes
such as transcription factors and RNA polymerase, which target
specific DNA sequences in cis-regulatory regions such as promoters
and enhancers to modulate gene expression levels (1). Transcription
factors often regulate their own expression levels, as well as the ex-
pression levels of other transcription factors, giving rise to gene reg-
ulatory networks (2). Gene regulatory networks drive fundamental
physiological and developmental processes, such as the interpreta-
tion of morphogen gradients for spatial patterning during embryo-
genesis (3).

Given their central role in essential biological functions, it is
crucial that gene regulatory networks are robust to genetic pertur-
bation. Mutations in cis-regulatory regions that induce quantitative
(e.g., DNA mutations that alter the affinity of a transcription factor
binding site) or qualitative (e.g., DNA mutations that create or
destroy a transcription factor binding site) changes to a gene regu-
latory network often do not change the network’s spatiotemporal
expression pattern phenotype (4, 5). This robustness causes gene
regulatory networks to be highly evolvable, because it facilitates
the neutral accumulation of mutations (6–9). This creates genetic
diversity and promotes “system drift” (10), in which a population
undergoes a series of quantitative and qualitative changes to a
gene regulatory network that are phenotypically neutral (5, 11).
Subsequent mutations to, or recombination events among, such
diverse network configurations can then generate phenotypic vari-
ation (7, 12, 13).

Mutations to gene regulatory networks are commonly implicat-
ed in evolutionary adaptations and innovations (13–15). There has
been an intense research effort to understand the molecular details
of these mutations and the mechanistic basis of how they alter gene
expression pattern phenotypes (from here on referred to as pattern
phenotypes) (16). A common observation is that the combination of
two (or more) mutations can result in phenotypic effects that would
not be expected based on an additive assumption of each single
mutant’s phenotypic contribution (17–20). Such context depen-
dence of mutational effects is called epistasis and is referred to as
negative (positive) when the combined effects of mutations are
less than (more than) expected based on their individual effects.
Moreover, epistasis can itself be dependent on environmental con-
ditions, such as the concentration of an expression inducer or an
enzymatic cofactor (17, 19, 21–25). For example, in the lambda
phage promoter, a canonical gene regulatory system, Lagator and
colleagues (17) found that 67% (14%) of 141 double mutants exhib-
ited negative (positive) epistasis when the transcription factor that
competes for binding with RNA polymerase was not expressed and
that 58% of the double mutants switched from negative to positive
epistasis (or vice versa) when the transcription factor was expressed.
Epistatic interactions and their dependence on the environment are
not only limited to pairs of mutations but can also occur among
three or more mutations (18, 26), a phenomenon known as
higher-order epistasis (27).

Epistasis in gene regulatory networks has many causes including
specific interactions across intermolecular interfaces, such as
protein-protein (28, 29) and transcription factor–DNA interactions
(30). These interactions result in the typical nonlinearities inherent
to competitive and cooperative binding of several transcription
factors to the same target (31, 32). In addition, the presence of feed-
back and feedforward loops in the network introduce additional ep-
istatic effects that depend on the topology of the gene regulatory
network (16, 33).

Despite substantial progress in the characterization of epistasis
in macromolecules (34–37) and gene regulatory networks (17, 38,
39), it remains poorly understood how environment-dependent
epistasis influences the spatiotemporal pattern phenotypes of gene
regulatory networks. This is an important knowledge gap, because
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epistasis can constrain or facilitate evolvability (9, 16), and the in-
terpretation of chemical gradients (i.e., the environment) by gene
regulatory networks is fundamental to developmental patterning
(40, 41), as well as other essential biological processes like chemo-
taxis (42). One of the reasons this knowledge gap persists is the dif-
ficulty of studying gene regulatory networks in situ, due to their
embedding in large and complex cellular networks.

Synthetic biology offers a path forward (43, 44). By extracting a
gene regulatory network from its native cellular environment, it
becomes feasible to systematically study the effects of mutations, in-
dividually and in combination, on the pattern phenotype of a gene
regulatory network. We recently built and studied a synthetic three-
node gene regulatory network, expressed in Escherichia coli, that
produces a stripe pattern phenotype (low-high-low) along an
inducer gradient—analogous to a morphogen gradient interpreted
during embryogenesis (45). The network topology was based on the
incoherent feedforward loop 2 motif (2), which drives numerous
biological functions, such as blastoderm patterning in Drosophila
(46). We previously used this synthetic gene regulatory network
to study howmutation brings forth phenotypic variation in the net-
work’s pattern phenotype (39).

Here, we systematically combined mutations in the cis-regulato-
ry regions of each of the network’s three nodes, covering promoters
and transcription factor binding sites, into pairwise and triplet com-
binations. We analyzed how the epistasis of pairwise and triplet
combinations varies along the inducer gradient. In doing so, we
provide the first study of how environment-dependent epistasis in-
fluences the pattern phenotype of a gene regulatory network. Our
results reveal a context-dependent picture of epistasis in which ge-
notype combinations exhibit diverse epistatic effects, including pos-
itive and negative epistasis, that can change drastically along the
inducer gradient. In turn, this inducer-dependence of epistasis
leads to more diverse pattern phenotypes in our network than
would be expected if the mutations did not interact epistatically
or depend on the environment. In the context of evolution, such
increased diversity could facilitate adaptive evolution but may also
underlie hybrid incompatibility and speciation.

RESULTS
A synthetic gene regulatory network provides an
experimental system
We studied a synthetic gene regulatory network with three nodes,
which we refer to as sensor, regulator, and output (Fig. 1A) (39, 45).
Given the correct promoter activity and repression between nodes,
the network produces a stripe pattern phenotype (low-high-low
gene expression of the output node) along an inducer gradient,
using the following mechanism (Fig. 1B): The sensor is activated
by the inducer and represses the regulator and the output. The reg-
ulator also represses the output, but its activity decreases with in-
creasing inducer concentration, due to repression by the sensor.
Consequently, the output is the least repressed at intermediate
inducer levels, resulting in high expression and the formation of a
stripe along the inducer gradient. Our definition of a stripe pattern
phenotype requires the output expression to be the highest at inter-
mediate inducer levels but leaves room for variation in terms of the
stripe shape, intensity, and overall expression (39).

We encoded the three nodes of the synthetic gene regulatory
network on separate plasmids (one per node), which we expressed

in E. coli. The arabinose-responsive promoter pBAD receives the
inducer signal (arabinose) (Fig. 1C). The inhibitions are imple-
mented by the transcriptional repressors TetR (tetracycline repres-
sor) and LacI (lactose repressor) binding to their operator sites
(TetO and LacO), which we placed downstream of the regulator
and output promoters, respectively. The observable network
output is expression of the superfolder green fluorescent protein
(GFP) from the output node (47).

We previously introduced random nucleotide changes in the cis-
regulatory regions spanning the promoter and operator sequences
separately in each of the network nodes (39). From this study, we
selected 31 genotypes: the starting network (“wild-type,” WT) and
10 mutant genotypes for each of the three network nodes (fig. S1).
These genotypes were chosen from a pool of 77 genotypes. We re-
quired that the genotype robustly displayed a stripe phenotype in
our experimental setup and that each mutant genotype contained
one to three nucleotide changes in its cis-regulatory regions in
only one of the nodes, either sensor, regulator, or output (fig. S2).
Of the genotypes meeting these requirements, we randomly chose
10 mutant genotypes for each node. The changes in promoter and
repression levels (fig. S3) resulted in quantitative variations in
overall fluorescence level and shape of the stipe pattern (Fig. 1D
and fig. S1). However, as the stripe phenotype is maintained, we
consider the mutations as qualitatively neutral. We refer to the 30
mutant genotypes as sensor-1, regulator-1, output-1, sensor-2, etc.
The variation in GFP expression along the gradient reflects the
mechanistic role of the mutated node in the network. For
example, sensor genotypes showed high variation at higher
inducer concentrations, caused by a weaker promoter and/or
lower sensitivity towards the inducer, which resulted in a lower re-
pression of the output node at high inducer concentrations. In con-
trast, output genotypes showed variation along the gradient, which
is caused by changes in their promoter and operator strengths.

To study epistasis between genotypes, we systematically com-
bined all 3 × 10 mutant genotypes to generate all possible 300 (3
× 10 × 10) pairwise and 1000 (10 × 10 × 10) triplet combinations
by transforming the plasmid combinations into E. coli cells
(Fig. 1E). We cultured cells in 384-well plates and measured GFP
expression of all 300 pairwise and 1000 triplet genotypes in tripli-
cate at low (0%), medium (0.0002%), and high (0.2%) inducer con-
centrations using a fluorescence spectrophotometer (Fig. 1B).
Fluorescence values correlated well between the three replicate mea-
surements of pairwise and triplet genotypes (R2 of 0.88 for all pair-
wise and 0.95 for all triplet combinations measurements; fig. S4A).
The coefficient of variation was similar between single, pairwise,
and triplet genotypes (fig. S4B). In addition to the measurements
at three inducer concentrations, we also assayed all single mutant
genotypes [i.e., the 30 genotypes selected from (39)] and 40 pairwise
and triplet genotypes at 16 inducer concentrations (fig. S5). These
measurements over 16 inducer concentrations confirmed that the
measurements at three inducer concentrations capture the pattern
phenotypes well (fig. S4C).

Most genotype combinations exhibit epistasis
We used a multiplicative model to determine whether pairwise or
triple combinations exhibited epistasis. In this model, the null hy-
pothesis is that the fold-change in gene expression of the pairwise or
triplet combinations is identical to the product of the fold-change
observed in single mutant expression levels. This way, epistasis is
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defined as the deviation of the observations from this product. The
multiplicative model is commonly used to detect epistasis in gene
regulatory systems (17–19, 38), as well as in other systems (Fig. 2A)
(48, 49). The multiplicative model is also referred as log-additive,
since it becomes additive when the concentrations are transformed
to logarithmic scale.

Concretely, we first calculated the observed fold-change in fluo-
rescence relative to the WT (gobsi with i ¼ 1; . . .; 30) for each of the
30 single mutant genotypes at each inducer concentration (fig.
S6A). Under the multiplicative (log-additive) model, for a pairwise

combination of mutations (i, j), we expect a fold change in fluores-
cence with respect to the mutant [gexpected

ði;jÞ ] that follows

Gexpected
ði;jÞ ; log10½g

expected
ði;jÞ � ¼ log10ðg

obs
i Þ þ log10ðg

obs
j Þ ð1Þ

(fig. S6B).

Fig. 1. Experimental system. (A) Topology of the studied gene regulatory network. (B) Schematic of gene expression patterns of sensor, regulator, and output nodes
along an inducer gradient. The pattern phenotype of the WT network is a stripe of gene expression of the output node (green) along an inducer gradient. (C) Molecular
implementation of the synthetic gene regulatory network in E. coli. The network is induced with arabinose through a pBAD promoter. Repressive regulatory interactions
are implemented with LacI and TetR repressor proteins binding to their respective operators lacO and tetO, which lowers transcription from the promoter upstream. The
detected network output is fluorescence of GFP. The cis-regulatory regions containing mutations are indicated with red brackets. a.u., arbitrary units. (D) GFP expression
patterns of the 30 genotypes carrying mutations in the sensor (left), regulator (middle), or output (right) node. GFP expression of the WT network is shown in gray. Each
genotypewas measured in triplicate at 16 inducer concentrations, and the mean and standard deviation (SD) from three biological replicates are shown. (E) Schematic of
how we generated all 300 pairwise and 1000 triplet combinations.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Baier et al., Sci. Adv. 9, eadf1773 (2023) 24 May 2023 3 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on June 01, 2023



Similarly, for triplet combinations, under the multiplicative
model, we expect the fold change in fluorescence

Gexpected
ði;j;kÞ ; log10½g

expected
ði;j;kÞ �

¼ log10ðg
obs
i Þ þ log10ðg

obs
j Þ þ log10ðg

obs
k Þ ð2Þ

(fig. S6C).
Next, we compared these expected values predicted from the

single mutant genotypes with the actual observed GFP expression
for pairwise or triplet combinations to calculate the magnitude of
epistasis as

ɛ ¼ Gobserved � Gexpected ð3Þ

where Gobserved is the logarithm of the observed fluorescence fold
change of the mutant with respect to the WT [log10g

observed
ði;jÞ and

log10g
observed
ði;j;kÞ for pairwise and triplet combinations, respectively].

Note that this definition of triplet epistasis measures the difference
between the expression of the observed triplet expression and the
expected expression from the multiplicative model using single
mutants. One can also isolate the third-order epistatic effects
present in the triplets that cannot be predicted from pairwise epis-
tasis (26, 50). Detailed derivations and relationships of the different
epistasis contributions can be found in Material and Methods (Eqs.
8 to 10).

The magnitude and sign of the parameter ɛ measure the strength
and sign of epistasis (Fig. 2A). In particular, we defined epistasis
values as significant if ɛ deviates from 0 with a false discovery rate
(FDR) adjusted P value of <0.05 (Fig. 2B) (26, 48). From all mea-
surements of pairwise combinations at all inducer concentrations,
we found that 53% (476 of 900) resulted in significant epistasis

Fig. 2. Definition and prevalence of epistasis. (A) Illustration of the multiplicative (log-additive) model for pairwise mutational combinations in a gene expression
system. In this example, the gene expression of each single mutant genotype is higher than the WT (ab). If the observed gene expression of the pairwise genotype
combination is significantly higher than what would be expected based on the single mutant genotypes, then we define it as positive epistasis. If the observed
gene expression is lower, then we define it as negative epistasis. (B) Epistasis values and corresponding q values, with significant values (FDR < 0.05) in color and non-
significant values (FDR > 0.05) in gray. Data from measurements at low (0%), medium (0.0002%), and high (0.2%) inducer concentrations are combined. (C) Observed
versus expected GFP expression values of all 300 pairwise (left) and 1000 triplet (right) genotypes. Points above the identity line have positive epistasis, whereas points
below display negative epistasis. Data points represent the mean value of three biological replicates. Error bars for observed values (vertical) represent the SD of three
biological replicates. Error bars for expected values (horizontal) represent the calculated propagated errors from the errors of the single mutant genotype measurements
(see Materials and Methods). (D) Different types of epistasis for all significant (2202 of 3900) pairwise (476 of 900) and triplet (1726 of 3000) combinations at the three
inducer concentrations. Left: Cases with all single mutant genotypes having a lower expression than the WT. Middle: Cases with all single mutant genotypes having a
higher expression than theWT. Right: Cases of single mutant genotypes with mixed lower and higher expression than theWT. Percentages are based only on significantly
epistatic genotype combinations and combined for pairwise and triplet combinations. Sign, sign epistasis; magtd., magnitude epistasis; RSE: reciprocal sign epistasis.
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(FDR adjusted P value of <0.05) (Fig. 2C). Similarly, 57% (1726 of
3000) of triplet combinations resulted in significant epistasis (FDR
adjusted P value of <0.05) (Fig. 2C). Of the significant epistatic pair-
wise combinations, 82% were negative and only 18% were positive,
whereas for the triplet combination, 88% were negative and only
12% were positive (Fig. 2C). Thus, most mutant genotype combina-
tions resulted in lower GFP expression than expected.

Epistatic interactions can be classified depending on the pheno-
typic effects of each single mutant genotype and their combinations.
For example, in magnitude epistasis, the expression level associated
to a genotype, but not its sign, changes with the genetic background
more or less than would be expected under additivity. In contrast, if
a genotype has the opposite effect when in combination with
another genotype, i.e., it changes the sign of its relative effect, it is
called sign epistasis. Reciprocal sign epistasis (RSE) is a special case
of sign epistasis, in which each single genotype has the opposite
effect when combined with other genotypes (33). Notably, most
of the 2202 cases of significant epistasis for pairwise and triplet ge-
notypes (n = 1230) could be attributed to negative RSE (Fig. 2E). In
our case, singlemutant genotypes had a higher gene expression than
theWT network, but in combination, they had a lower gene expres-
sion than any of the single mutant genotypes and the WT, resulting
in negative RSE. These observations are in line with prior work in
other systems, which uncovered epistasis among components that
interact functionally (17, 38, 51, 52) and physically (29, 30). In
sum, most interactions are epistatic in our system, with a prepon-
derance of negative epistasis and negative RSE.

For the triplet combinations, we also calculated the exclusive
third-order epistasis (Eqs. 8 to 10; fig. S7). In contrast to the total
epistasis of triplet combinations (Fig. 2), this is the epistasis remain-
ing when taking into account the epistasis already present in the
pairwise interactions. We found that there is no trend in the contri-
bution of exclusive third-order effects to the total epistasis of triplet
combinations as there is no correlation between triplet epistasis and
third-order effects (fig. S7A). Consequently, the trends observed in
the total epistasis in triplet combinations can bemostly attributed to
the epistasis of pairwise combinations (fig. S7B), in line with previ-
ous work showing that higher-order epistasis decreases with in-
creasing order (53–55). Moreover, the exclusive third-order
epistasis is negatively correlated with the contribution from pair-
wise combinations (fig. S7C). In other words, the exclusive third-
order epistasis tends to decrease the magnitude of the total epistasis,
suggesting that epistatic effects cannot be added in a boundless
manner and are controlled by the architecture of the gene regulatory
network.

Epistasis depends on the genetic background
Next, we compared the effects of the mutated nodes across the com-
plete set of genetic backgrounds. For this, we plotted the values of ɛ
of all pairwise and triplet combinations for each of the 30 mutant
genotypes separately and calculated the mean and variability of
epistasis (Fig. 3). Notably, we found that every genotype displayed
both negative and positive epistasis, depending on the genetic back-
ground. Most genotypes have a negative mean value of ɛ, the excep-
tions being combinations of regulator-10, output-2, and output-10,
whose mean ɛ was slightly positive (Fig. 3, A and B). In sum, these
results show that epistasis is highly idiosyncratic in our system (56)
because the same mutation tends to have different effects in differ-
ent genetic backgrounds.

To quantify the variability of epistasis, we calculated the coeffi-
cient of variation (CoV: SD normalized by the mean) of epistasis for
each genotype (Fig. 3C). The variability of epistasis decreased from
sensor to regulator to output node, particularly at low and medium
inducer concentrations, suggesting that the variability of ɛ was de-
pendent on which network component was mutated (fig. S8). This
may be explained by the components’ positions in the regulatory
hierarchy, which is known to influence epistasis (51).

Epistasis is inducer-dependent
Next, we asked whether inducer concentrations influence the sign
and variability of epistasis values. For this, we plotted the mean of
epistasis values at low (0%), medium (0.0002%), and high (0.2%)
inducer concentrations separately (Fig. 3D).We found that the epis-
tasis values increased, i.e., became more positive, with the inducer
concentration for all three network nodes (figs. S9 and S10).

To test whether epistasis is indeed different at different inducer
concentrations, we plotted the epistasis for each genotype of all pair-
wise and triplet combinations at low concentration against epistasis
at medium and high concentrations, as well as the epistasis at
medium concentration against epistasis at high concentration and
performed a t test with FDR adjusted P values. Specifically, we tested
whether the epistasis is independent of the inducer concentration
(null hypothesis), defining epistasis as inducer-dependent if the
epistasis at any concentration is significantly different from the epis-
tasis at any of the two other concentrations (FDR q value is <0.1)
(fig. S11). At this significance cutoff, 37% of pairwise (111 of 300)
and 45% of triplet (447 of 1000) combinations exhibited significant
inducer-dependent epistasis.

To further explore the inducer-dependence of epistasis in our
dataset, we explored how ɛ changed from low, medium, to high
inducer concentrations for each genotype combination. To do so,
we classified the changes in epistasis along the inducer concentra-
tion into four categories, depending on which inducer concentra-
tion the epistasis value was highest or lowest (Fig. 4): (A) with
epistasis being highest at medium inducer concentrations; (B)
with epistasis increasing with increasing inducer concentrations;
(C) with epistasis decreasing with increasing inducer concentra-
tions; (D) with epistasis being lowest at medium inducer concentra-
tions. We quantified the distribution of pairwise and triplet
combinations into these four categories. We found that of all 300
pairwise combinations 33% fell into category (A), 31% into category
(B), 18% each into categories (C) and (D). For the 1000 triplet com-
binations, this distribution changed to 21% falling into category
(A), 59% into category (B), 5% into category (C), and 15% in cate-
gory (D). Thus, our results show that epistasis changes drastically
with inducer concentration.

Next, we asked whether epistasis also switched sign between
inducer concentrations. For this, we subclassified the four categories
into three different scenarios: remaining negative, remaining posi-
tive, or switching sign at different inducer concentrations (Fig. 4,
right part). Overall, we found that 31% of the pairwise combinations
switched sign along the inducer concentrations, and 13% remained
always positive and 56% always negative. For the triplet combina-
tions, we found that 21% switched sign and 10% remained always
positive and 69% always negative. In sum, these results demonstrate
that epistasis is environment-dependent in our system, changing in
magnitude and sign along the inducer gradient.
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Inducer-dependent epistasis increases phenotypic
diversity
We have shown that epistasis depends on the inducer concentration
in our system. Since the function of the network is to interpret an
inducer gradient into a gene expression pattern, we next analyzed
how this inducerdependence of epistasis affected the network’s
pattern phenotype. To this end, we characterized the pattern phe-
notype of all single, pairwise, and triplet genotypes. For this, we cal-
culated the difference in gene expression between low and medium
arabinose concentrations and between high and medium arabinose
concentrations (Fig. 5A) (39). This approach allows for a simple vi-
sualization on a Cartesian plot and classification of pattern pheno-
types into four categories for each one of the four quadrants:

increase (Q1), anti-stripe (Q2), decrease (Q3), and stripe (Q4). Pro-
jections near the origin correspond to a constant expression
phenotype.

We first plotted the pattern phenotypes of the WT and all 30
single mutant genotypes (Fig. 5B, left). As expected, they all fell
into the stripe category (Q4). We further examined the pattern phe-
notypes of all 300 pairwise (Fig. 5B, middle) and 1000 triplet
(Fig. 5B, right) genotypes. On the basis of the multiplicative
model, most of the pairwise (n = 289 of 300) and triplet (n = 920
of 1000) genotypes were also expected to display a stripe pattern
phenotype, with few exceptions (11 pairwise and 80 triplet) that
were expected to adopt an increase pattern phenotype. These
cases were the result of combinations of single mutant genotypes

Fig. 3. Sign and variability of epistasis varies with genetic background and inducer concentration. (A) Epistasis values for pairwise combinations of the 30 different
mutant genotypes. Each genotype has 20 pairwise combinations with epistasis values at low (0%), medium (0.0002%), and high (0.2%) inducer concentrations giving rise
to 60 values per genotype. Mean values represent the average epistasis of all 60 values and their variability is shown as the SD. (B) Epistasis values for triplet combinations.
Each genotype has 100 triplet combinations with epistasis values at low (0%), medium (0.0002%), and high (0.2%) inducer concentrations giving rise to 300 values per
genotype. Mean values represent the average epistasis of all 300 values, and their variability is shown as the SD. (C) Coefficients of variation (CoV) of epistasis defined as
the SD of epistasis normalized by the mean for all 10 genotypes per node for pairwise (left) and triplet (right) combinations at low “L” (0%), medium “M” (0.0002%), and
high “H” (0.2%) inducer concentrations. Horizontal bars represent the mean of the variability, and the error bars show the SD. Statistical analysis is shown in fig. S8. (D)
Mean values of epistasis for all 10 genotypes per node for pairwise (left) and triplet (right) combinations at low “L” (0%), medium “M” (0.0002%), and high “H” (0.2%)
inducer concentrations. Horizontal bars represent the mean and the error bars show the variability as the SD. Statistical analysis is shown in fig. S9.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Baier et al., Sci. Adv. 9, eadf1773 (2023) 24 May 2023 6 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on June 01, 2023



Fig. 4. Epistasis changes with inducer concentrations. Epistasis along the inducer concentration gradient for pairwise combinations (left) and triplet combinations
(middle). Genotype combinations with epistasis (A) highest at medium inducer concentration, (B) increasing with increasing inducer concentrations, (C) decreasing with
increasing inducer concentrations, and (D) lowest at medium inducer concentration. A quantification of the different scenarios of epistasis values changing or maintain-
ing sign across inducer concentrations is shown on the right.
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with high GFP expression at high inducer concentrations (e.g.,
sensor-3, sensor-7, sensor-10, regulator-5, and regulator-6) or low
GFP expression at low inducer concentrations (e.g., regulator-1 and
output-10) (fig. S1). However, the observed phenotypes were more
frequently nonstripe patterns than expected. Specifically, for pair-
wise and triplet combinations, we observed 22 (11 expected
versus 33 observed) and 237 (80 expected versus 317 observed)
more increase pattern phenotypes, respectively (Fig. 4B). In addi-
tion, observed pairwise and triplet combinations also each
showed one decrease phenotype.

In addition to the changes of distribution into the pattern phe-
notype categories, we also observed that the pattern phenotypes
within one category were more diverse than expected from the mul-
tiplicative model. For example, several genotypes with epistasis
highest at medium inducer concentration had a stronger stripe
pattern phenotype than the WT, i.e., a bigger difference between
lowest and highest GFP expression levels (fig. S11). To quantify
and compare this spread of pattern phenotypes, we calculated the
Euclidean distance between the pattern of the WT and the pattern
of each genotype (schematic Fig. 5C). We found that, for most

genotypes, the observed mean distance to the WT was significantly
higher than expected, both for pairwise (0.24 versus 0.18, paired t
test P value of <0.001) and triplet combinations (0.36 versus 0.23,
paired t test P value of <0.001) (Fig. 5D). All four epistasis categories
in Fig. 4 contribute to this increased phenotypic diversity (fig. S12).
Thus, we conclude that environment-dependent epistasis causes a
greater diversity of pattern phenotypes than would be expected if
the mutations did not interact epistatically or depend on the
environment.

DISCUSSION
Mutations in cis-regulatory regions can alter the spatiotemporal
gene expression patterns of gene regulatory networks. Such alter-
ations are often deleterious, resulting in developmental abnormali-
ties, disease, or death (57, 58). However, they are occasionally
advantageous, as evidenced by their common implication in evolu-
tionary adaptations and innovations (13, 14). Here, we used the
toolkit of synthetic biology to systematically interrogate how com-
binations of mutations in the cis-regulatory regions of a three-gene

Fig. 5. Pattern phenotypes. (A) Projection of pattern phenotypes to two-dimensional coordinates using ratios of GFP expression betweenmedium-low (x axis) and high-
medium (y axis) inducer concentrations. (B) Pattern phenotypes of 30 single mutant genotypes (left) and expected (gray) and observed (colored) pairwise (middle) and
triplet (right) genotypes. (C) Schematic of distance for pattern phenotypes relative to the WT in the two-dimensional space depicted with arrows and calculated as
Euclidean distance. (D) Measure of distance of pattern phenotypes relative to the WT. Statistical significance (P values) was calculated using a two-tailed paired t test
(Wilcoxon test).
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regulatory network interact to influence the network’s spatial
pattern phenotype. We uncovered pervasive epistasis, particularly
negative epistasis and negative RSE. Moreover, epistasis depended
on the environment, because it varied across the inducer gradient.
Last, we showed that this inducer-dependent epistasis resulted in a
greater diversity of pattern phenotypes than would be expected if
the mutations did not interact epistatically and their phenotypic
effects did not depend on the environment.

Prior work has shown that epistasis can either constrain or facil-
itate the evolution of phenotypic diversity. For example, in individ-
ual macromolecules such as DNA, RNA, and proteins, RSE has been
shown to constrain the evolution of phenotypic diversity by
forming maladaptive valleys in fitness landscapes, which can trap
evolving populations on suboptimal adaptive peaks and preclude
the generation of further adaptive phenotypic variation (9, 59).
However, when such macromolecules interact, epistasis among mu-
tations in the interacting components can alleviate the constraints
of the individual components, facilitating the evolution of pheno-
typic diversity (17, 30). Lagator and colleagues (38) provide a rep-
resentative example. They studied the phenotypic effects of
mutations in the canonical Lambda bacteriophage switch, a regula-
tory network consisting of RNA polymerase, a transcriptional re-
pressor, and a cis-regulatory element to which both proteins bind.
Their study showed that the phenotypic variation induced by com-
binations of mutations in the three interacting components was
greater than that induced by mutations in the individual compo-
nents. Moreover, the amount of phenotypic variation brought
forth by combinations of mutations in the interacting components
was different in the presence and absence of the transcriptional re-
pressor, thus revealing environment-dependent epistasis in this
system (17). Our study complements and extends this work by
studying environment-dependent epistasis in a larger regulatory
network in which the mutations can interact functionally, but not
physically (since mutations are only in cis-regulatory regions), to
influence phenotypic diversity in a spatial pattern phenotype.
While we can explain some of these diverse expression patterns in-
tuitively (fig. S13), further work is required to develop amechanistic
understanding, particularly of how network topology modulates the
influence of epistasis on expression pattern phenotypes. It is our
hope that the data reported here will be used to this end, for
example, by parameterizing biophysical models of gene regulatory
networks.

Our experiments also shed light on the robustness of gene ex-
pression pattern phenotypes to recombination, and how recombi-
nation generates novel phenotypes in gene regulatory networks.
Prior work with computational models of gene regulatory networks
compared the pattern phenotypes of recombinant offspring derived
from parental networks that have the same phenotype to the pattern
phenotypes of mutated offspring derived from these same parents
(12). Recombination was far less likely to cause a change in pattern
phenotype than mutation. For example, more than 90% of recom-
binant offspring that differed from their parent by one regulatory
interaction preserved the parental phenotype, as compared to
only ~75% of mutated offspring that differed from their parent by
one regulatory interaction. These differences in the robustness of
pattern phenotypes to recombination and mutation only increased
as the difference in the number regulatory interactions between
parent and offspring increased. Our study provides experimental
support for these findings, at least qualitatively. Specifically, in

our previous work (39), we found that 64.3% of mutations to our
regulatory network in one node and 93.8% of mutations in two to
three nodes resulted in a nonstripe phenotype, whereas here we
found that only 11.7 and 31.8% of pairwise and triplet genotype
combinations resulted in a nonstripe phenotype, respectively (fig.
S14). Further, we found that when recombination does generate a
novel phenotype, this can be partly explained by environment-de-
pendent epistasis.Without such epistasis, recombination is far more
likely to preserve the parental pattern phenotype, as evidenced by
comparisons with our null model. Our study thus supports the the-
oretical prediction of a low cost to recombination in creating novel
phenotypes in gene regulatory networks (60) and highlights envi-
ronment-dependent epistasis as one cause of phenotypic novelty
in recombinant offspring.

The robustness of a gene regulatory network’s pattern phenotype
to mutation and recombination facilitates so-called system drift
(10), in which an evolving population accumulates diversity in the
regulatory and coding regions of the networks’ constituent compo-
nents without causing a change in phenotype. System drift can fa-
cilitate the evolution of phenotypic novelties, because the resulting
genetic diversity may serve as the basis for subsequent mutations or
recombination to bring forth novel phenotypes, or it may be re-
vealed as phenotypic variation upon environmental change (9).
Modeling work has long suggested that gene regulatory networks
are susceptible to system drift, because many different mutationally
connected networks have the same expression phenotype (7, 8, 11,
61), and recent empirical work has demonstrated a role for system
drift in the evolution of biofilm formation in the fungus Candida
albicans (62). Our work bridges these theoretical and empirical
studies, using synthetic gene regulatory networks to experimentally
interrogate the phenotypic effects of mutation and recombination,
confirming the susceptibility of regulatory networks to system drift
and the constructive role of the resulting genetic diversity in the
evolution of novel phenotypes. A key finding of our study is that
such novelties are at least partly explained by epistatic interactions
among network components, which can change in magnitude and
sign along an environmental gradient, thus altering gene expression
levels across the spatial domain.

Our finding that environment-dependent epistasis can cause
novel pattern phenotypes in recombinant offspring is germane to
a growing body of literature on hybrid incompatibilities in gene reg-
ulatory networks (63–71). These modeling studies highlight several
factors that influence the evolution of such hybrid incompatibilities,
including population structure (64), population genetic conditions
(69, 70), mutational target size (67, 68), network topology (66), and
whether selection is directional or stabilizing (64). Under stabilizing
selection, where system drift can occur, these models suggest that
hybrid incompatibilities are most likely to arise when many
network variants that have the same pattern phenotype are muta-
tionally connected with one another, forming so-called genotype
networks (72) or neutral networks (73), and when at least somemu-
tations in network components interact epistatically. Genotype net-
works facilitate system drift, because an evolving population can
spread across the network while preserving pattern phenotype
(72), whereas epistasis can create maladaptive “holes” in these net-
works, into which recombinant offspring may fall (74). Our work
here and in previous studies (39, 45, 75) provides experimental
support that gene regulatory networks form genotype networks
and demonstrates that epistasis is not only prevalent among
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mutations in network components but also depends on the envi-
ronment. Thus, our results are in line with prior modeling work
(65, 66, 68, 70, 71), which highlights the role of system drift in
causing hybrid incompatibilities in recombinant regulatory net-
works. Whereas we observe that most recombinant offspring pre-
serve the parental stripe phenotype, we emphasize that the genetic
diversity in our parental population is limited. Recombination
among a more diverse pool of parental networks may reveal a
larger fraction of nonstripe phenotypes. We emphasize further
that the synthetic gene regulatory network studied here, expressed
in E. coli cells using plasmids, is a highly stylized representation of
the complex regulatory networks of multicellular organisms. While
it is exactly this reduced complexity that allowed us to study epistasis
with minimal confounding factors, we suggest caution in extrapo-
lating our findings to more complex regulatory networks, in which
the phenotypic and fitness effects of mutations may be buffered by
downstream network components (76).

In sum, we used the toolkit of synthetic biology to perform a sys-
tematic analysis of the combined effects of mutations that are indi-
vidually phenotypically neutral on the pattern phenotype of a gene
regulatory network, uncovering pervasive epistasis that changed in
magnitude and sign along an inducer gradient, thus giving rise to
novel spatial gene expression patterns that in natural gene regulato-
ry networks may cause hybrid incompatibilities or embody evolu-
tionary innovations. Such environment-dependent epistasis
therefore strongly influences the evolution of gene regulatory net-
works, with implications for our understanding of speciation and
evolutionary novelty.

MATERIALS AND METHODS
Materials
Chemicals and media components, unless stated otherwise, were
purchased from Sigma-Aldrich.

Media
For cloning and precultures, we used Luria-Bertani (LB) medium
(10 g of bacto- tryptone, 5 g of yeast extract, and 10 g of NaCl per
1 liter) supplemented with the appropriate antibiotics [ampicillin
(100 μg/ml) for pET plasmids (output), kanamycin (30 μg/ml) for
pCOLA plasmids (sensor), or spectinomycin (50 μg/ml) for pCDF
plasmids (regulator)]. For all plate reader assays of the synthetic net-
works, “stripe medium” (SM) was prepared as follows: LB ingredi-
ents were dissolved in ultrapure water (Roth), sterile filtered (22-μm
filter pores company), and supplemented with sterile 0.4% (w/v)
glucose, ampicillin (100 μg/ml), kanamycin (30 μg/ml), spectino-
mycin (50 μg/ml), and 5 μM isopropyl-β-D-thiogalactopyrano-
side (IPTG).

The synthetic regulatory network and selected mutants
Our model system, a synthetic stripe-forming regulatory network
based on the incoherent feedforward loop type 2 architecture, was
constructed and characterized previously (45). Each of the three
nodes is encoded on a separate plasmid, and the WT sequences
are available at the National Center for Biotechnology Information
GenBank (www.ncbi.nlm.nih.gov/genbank/). The GenBank acces-
sion codes are KM229377 (sensor, pCOLA backbone, kanamycin
resistance marker), KM229382 (regulator, pCDF backbone, specti-
nomycin resistance marker), and KM229387 (output, pET

backbone, ampicillin resistance marker). For a functional network
to generate an inducer-dependent gene expression pattern, all three
plasmids need to be transformed into E. coli MKO1 cells (77).
Mutated networks were selected from a previous study, in which
we introduced mutations in the promoter and operator region of
each node (39). Each single mutant genotype contains only muta-
tions in one of the three plasmids, whereas the other two plasmids
did not contain mutations. Figure S2 shows the nucleotide changes
in promoter and operator regions of the 30 selected mutant
genotypes.

Generating pairwise and triplet genotype combinations
Plasmids of selected mutants were extracted and purified using the
QIAprep Spin Miniprep Kit (Qiagen) according to the manufactur-
er’s protocol. Each mutant selected from our previous study (39)
contains one mutated and two WT plasmids. To extract only the
mutated plasmids, we first removed the WT plasmids with restric-
tion digest, retransformed the single plasmids into E. coli NEB5α
cells, plated and cultured the cells with the appropriate antibiotics,
and extracted the single plasmids. Xho I was used to isolate pCOLA
plasmids (sensor), Aat II and Xma I were used to isolate regulator
pCDF plasmids (regulator), and Xba I was used to isolate pET plas-
mids (output).

We transformed the selected 10 sensor, 10 regulator, and 10
output mutants in all possible pairwise and triplet combinations
into chemical competent MK01 E. coli cells. To generate pairwise
combinations, we transformed the two mutant plasmids into com-
petent cells that already contained the third WT plasmid. For the
triplet combinations, we transformed the sensor and regulator
mutant plasmids (10 × 10 = 100) into competent cells that
already carried 1 of the 10 output mutant plasmids. Combinatorial
libraries were cultured overnight in 96-deep-well plates using selec-
tive LB medium and stored in 96-well plates at −80°C as glycerol
stocks. Each 96-well plate contained 50 mutant genotype combina-
tions and three wells with theWT variant and awell containing only
media for data normalization purposes as described below.

Fluorescence measurement at 16 inducer concentrations
We measured the pattern phenotype over a gradient of 16 inducer
concentrations for the WT, 30 single and 40 selected pairwise and
triplet genotypes. We performed the measurements as follows:
Starting from a glycerol stock, we inoculated three 5-ml cultures
[LB medium containing 0.4% (w/v) glucose and antibiotics] for
each genotype, which served as our biological replicates and were
from this point on treated independently. They were cultured over-
night at 37°C and 200 rpm shaking. The following morning, we in-
oculated a fresh culture of 5 ml with 200 μl of the overnight culture
followed by incubation for 3 hours at 37°C and 200 rpm shaking.
From these precultures, we used 5 μl to inoculate 384-well plates
(Sigma-Aldrich, Nunc, flat-bottom) containing 55 μl of SM media
per well with inducer concentrations of 0.2, 0.1, 0.05, 0.025, 0.0125,
0.00625, 0.00313, 0.0016, 0.0008, 0.0004, 0.0002, 0.0001, 0.00005,
0.000025, and 0.000012% (w/v) arabinose. Immediately after inoc-
ulation, 384-well plates were covered with clear lids to reduce evap-
oration and loaded into plate readers (Biotek Synergy H1) and
measured as described below.
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Fluorescence measurement of libraries
Measurement of the complete pairwise and triplet mutant libraries
were performed as follows: Starting from a glycerol stock plate, we
inoculated three 96-well plates, which served as our biological rep-
licates and were from this point on treated independently. Each 96-
well plate contained one well with media only and three wells with
the WT network, which were used for data normalization as de-
scribed below. Each well contained 120 μl of stripe LB medium con-
taining 0.4% (w/v) glucose and antibiotics, and plates were cultured
overnight at 37°C and 700 rpm (THERMOstar, BMG Labtech).
From each overnight culture, 5 μl was used to inoculate a 120-μl se-
lective LB medium preculture, which was incubated for 3 hours at
37°C and 700 rpm (THERMOstar, BMG Labtech). From the precul-
ture plate, we used 5 μl to inoculate each of four different wells of a
384-well plate (Sigma-Aldrich, Nunc, flat-bottom) each containing
55 μl of SM containing:

1) 0% arabinose (“low”)
2) 0.0002% arabinose (“medium”)
3) 0.2% arabinose (“high”)
4) 0.2% arabinose + 700 μM IPTG (“metabolic load” control)
Position A1 of a 96-well plate was used to inoculate position A1

(low), A2 (medium), B1 (high), and B2 (metabolic load) of a 384-
well plate. The pipetting steps to inoculate 384-well plates were
carried out using a semi-automatic pipetting robot (Rainin Smart
96, Mettler Toledo). Immediately after inoculation, 384-well
plates were covered with clear lids to reduce evaporation and
loaded into plate readers (Biotek Synergy H1) and measured as de-
scribed below.

Plate reader assay and data normalization
Microplates (96-well and 384-well) were incubated in plate readers
(Biotek Synergy H1) with clear lids to reduce evaporation and
shaken continuously in double orbital mode at a 2-mm radius
and monitored for cell growth (optical density at 600 nm) and
green fluorescence (excitation: 485 nm, emission: 520 nm) every
10 min at 37°C. Approximately after 3 hours, GFP expression
peaked and E. coli cells started to reach stationary phase. As de-
scribed previously (45), the time point when the fluorescence of
the WT network at the medium arabinose concentration
(0.0002%) peaked was chosen for further analysis of all fluorescence
measurements. Fluorescence measurements were corrected for
media background fluorescence and variation in cell number by di-
viding fluorescence with absorbance values. To adjust for plate-to-
plate variation, we first normalized the three replicate plates based
on the average of the three WT replicates on each plate. We then
calculated the mean and SD from the replicates and normalized
again using the WT values from each plate to adjust for variation
between all plates. The final data represent the average of three rep-
licates, independent cultures started from the same glycerol stock,
and errors correspond to the SD between replicates.

Replicate measurements were excluded if values of cell growth
differed by >0.2 from the absorbance of the WT controls on the
same plate for any of the four conditions or suffered frommetabolic
load [as described previously (39)]. Measurements were repeated if
more than two replicates failed. Twenty-one of the 1300 genotypes
miss one replicate measurement due to growth differences. Note
that we did not observe any metabolic load for any of the genotypes
and combinations.

Correlations of R2 between replicates and between measure-
ments of three and 16 inducer concentrations were calculated
with Prism (version 9.4.0, GraphPad Software LLC) using linear
regression.

Calculating and defining significant epistasis
On the basis of a multiplicative model of epistasis, we calculated
epistasis for all pairwise and triplet combinations at three inducer
concentrations [low (0%), medium (0.0002%), and high (0.2%)]
(17–19, 38). First, on the basis of the normalized fluorescence
values, we calculated the relative fold change in fluorescence
(gobsi ) for each of the 30 single mutant genotypes at each inducer
concentration with respect to WT,

gobsi ¼
fluorescence mutant i
fluorescence WT

ð4Þ

shown in fig. S6A. Under the multiplicative model, the expected rel-
ative changes of fluorescence are multiplicative. This allowed us to
calculate the expected relative change in fluorescence of pairwise
[Gexpected
ði;jÞ ¼ log10g

obs
i þ log10g

obs
j ] and triplet combinations

[Gexpected
ði;j;kÞ ¼ log10g

obs
i þ log10g

obs
j þ log10g

obs
k ], shown in fig. S6 (B

and C). We next calculated the relative change in fluorescence for
all measured 300 pairwise and 1000 triplet combinations at each
inducer concentration

Gobserved
ði;jÞ ¼ log10g

obs
ði;jÞ

¼ log10
fluorescence pairwise mutant ði; jÞ

fluorescence WT
ð5Þ

similarly defined for the triplet combination, shown in fig. S6 (B and
C). The definitions of G were used to calculate the epistasis for all
pairwise or triplet genotype combinations

ɛði;jÞ ¼ Gobs
ði;jÞ � Gexp

ði;jÞ ¼ log10g
obs
ði;jÞ � log10g

exp
ði;jÞ ð6Þ

ɛði;j;kÞ ¼ Gobs
ði;j;kÞ � Gexp

ði;j;kÞ ¼ log10g
obs
ði;j;kÞ � log10g

exp
ði;j;kÞ ð7Þ

Note that for triplet mutants, the value of ɛ(i,j,k) measures the de-
viation between the expected fold change in fluorescence of the
multiplicative model using single mutants and the measured fluo-
rescence in triplets. Alternatively, one can also attempt to identify
the epistatic effects intrinsic to triplets, not present in pairwise com-
binations, i.e., exclusive third-order epistasis. Under the multiplica-
tive model, and including pairwise measurements, we can calculate
the expected triplet fluorescence as the sum of the contributions of
each pair minus the contributions of the single mutants (that oth-
erwise would be counted twice)

~Gexp
ði;j;kÞ ¼ log10~g

exp
ði;j;kÞ

¼ log10g
obs
ðj;kÞ þ log10g

obs
ði;kÞ þ log10g

obs
ði;jÞ � log10g

obs
ðiÞ

� log10g
obs
ðjÞ � log10g

obs
ðkÞ ð8Þ

This allows to define the exclusive third-order epistasis as

~ɛði;jÞ ¼ Gobs
ði;j;kÞ �

~Gexp
ði;j;kÞ ¼ log10g

obs
ði;j;kÞ � log10~g

exp
ði;j;kÞ ð9Þ
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Combining Eqs. 6 to 9, we can write an expression for the total
epistasis ɛ(i,j,k) of triple combinations in terms of the pairwise epis-
tasis ɛ(i,j) and the exclusive third-order epistasis ~ɛði;j;kÞ (26, 50)

ɛði;j;kÞ ¼ ~ɛði;j;kÞ þ ½ɛði;j;Þ þ ɛðj;kÞ þ ɛðk;iÞ� ð10Þ

To define significant epistasis, we first calculated the uncertainty
for each Gexpected by propagating the log-transformed SD (σ) from
the single mutant measurements

σexpected ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2mut1 þ σ2mut2

q

ð11Þ

and

σexpected ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2mut1 þ σ2mut2 þ σ2mut3

q

ð12Þ

for pairwise and triplet combinations, respectively, with x as the
mean value of Gexpected. Using the mean of triplicate measurements
and their SD or propagated errors, we then defined significant ɛ
through series of t tests (R function “tsum.test” with n.y and n.x =
3, alternative = “two.sided,” var.equal = TRUE). The resulting P
values were then corrected for multiple testing using the “qvalue”
package in R with its base parameters (78). We defined epistasis
values as significant if ɛ deviates from 0 with a FDR adjusted P
value of <0.05 (Fig. 2B) (26, 48, 79).

To define significant epistasis between low and medium inducer
levels for each mutant genotype combination, we first propagated
the error of observed and expected values as follows

σepistasis ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2obs þ σ2exp

q
ð13Þ

with x as the epistasis value and σ the SD of Gobserved and Gexpected,
for each inducer concentration separately. Significant differences of
epistasis between low, medium, and high inducer levels were calcu-
lated with a series of t tests (Welch’s test) and corrected for multiply
testing with the Benjamini-Krieger-Yekutieli method in Prism
(version 9.4.0, GraphPad Software LLC). We defined significance
values below a FDR q value of <0.1.

Classifying types of epistasis
We classified epistatic interactions depending on the phenotypic
effects of each single mutant genotype and their combinations
into magnitude, sign, and RSE (80). Their definition is schemati-
cally illustrated in Fig. 2D. Briefly, magnitude epistasis is defined
when the combined phenotypic effect of a genotype combination
deviates from the expected effect but does not change the sign of
the phenotypic effect of each single mutant. For instance, if two
single mutant genotypes have a higher gene expression than the
WT and their combination results in an even higher than expected
gene expression, it is defined as positive magnitude epistasis. If their
combined effect is lower than expected but remains higher than any
of the two single mutant genotypes, this is defined as negative mag-
nitude epistasis. A combination is classified as sign epistasis when
the combined effect is lower than one of the two mutants and thus
changes the sign. For example, if two single mutant genotypes have
a higher gene expression than theWT and their combination results
in a value which is lower than one but still higher than the other
single mutant genotype. A special case of sign epistasis, RSE,
occurs when the combined phenotypic effect has the opposite
effect compared to any of the single mutant genotype’s effect. For

example, RSE occurs when two single mutant genotypes have a
higher gene expression than the WT, but their combined effect is
lower than any single mutant genotype or even lower than the WT.

Pattern phenotype analysis
We visualized the pattern phenotypes on a Cartesian plot (39). To
this end, we calculated the difference in gene expression between
low and medium arabinose concentrations for

Mx ¼ Gmedium � Glow ð14Þ

and between high and medium arabinose concentrations

My ¼ Ghigh � Gmedium ð15Þ

for all single mutant genotypes and observed and expected pairwise
and triplet genotype combinations. The values of Mx and My for
each genotype were then plotted as Cartesian coordinates and clas-
sified into stripe (Q4), decrease (Q3), anti-stripe (Q2), and increase
(Q1) pattern phenotypes, corresponding to the four quadrants. Pro-
jections near the origin correspond to a constant expression pheno-
type, i.e., a flat pattern phenotype.

To quantify and compare the spread of pattern phenotypes
between observed and expected mutant genotypes, we calculated
the Euclidean distance ‖Mexp − Mobs‖ between the pattern of the
WT and the pattern of each genotype as follows

kMexp � Mobsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðMexp
x � Mobs

x Þ
2
þ ðMexp

y � Mobs
y Þ

2
q

ð16Þ

Significant differences between observed and expected Euclide-
an distance values were calculated using a two-tailed paired t test
assuming no Gaussian distribution (Wilcoxon matched-pairs
signed-rank test) in Prism (version 9.4.0, GraphPad Software LLC).

Supplementary Materials
This PDF file includes:
Figs. S1 to S14
Legend for source data

Other Supplementary Material for this
manuscript includes the following:
Source data

View/request a protocol for this paper from Bio-protocol.
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