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Abstract. The contribution exposes and illustrates a general, flexible
formalism, together with an associated iterative procedure, aimed at de-
termining soft memberships of marked nodes in a weighted network.
Gathering together spatial entities which are both spatially close and
similar regarding their features is an issue relevant in image segmenta-
tion, spatial clustering, and data analysis in general. Unoriented weighted
networks are specified by an “exchange matrix”, determining the proba-
bility to select a pair of neighbors. We present a family of membership-
dependent free energies, whose local minimization specifies soft cluster-
ings. The free energy additively combines a mutual information, as well
as various energy terms, concave or convex in the memberships: within-
group inertia, generalized cuts (extending weighted Ncut and modular-
ity), and membership discontinuities (generalizing Dirichlet forms). The
framework is closely related to discrete Markov models, random walks,
label propagation and spatial autocorrelation (Moran’s I), and can ex-
press the Mumford-Shah approach. Four small datasets illustrate the
theory.
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Ceré, R. and Bavaud, F. Soft image segmentation: on the clustering of irregular, weighted,

multivariate marked networks. In: Ragia, L., Laurini, R. and Rocha, J.G. (Eds.) Geographical

Information Systems Theory, Applications and Management (revised Selected Papers of

GISTAM 2017), CCIS, volume 936, pp. 85–109. Springer (2019)

doi: 10.1007/978-3-030-06010-7 6

Regional data analysis, as performed on geographic information systems,
deals with a notion of “where” (the spatial disposition of regions), a notion of
“what” (the regional features), and a notion of “how much” (the relative im-
portance of regions, as given by their surface or the population size). The data
define a marked, weighted network, generally irregular (think e.g. of administra-
tive units): weighted vertices represent the regions, weighted edges measure the
proximity between regions, on which uni- or multivariate features (the marks)
are defined.

Much the same can be said of an image made of pixels, that is a collection
of elements embedded in a bidimensional layout. The regularity of the setup
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(regular grid, uniform weights, binary regular adjacencies) is exploited in most
segmentation algorithms, but the latter may become unadapted, precisely, under
irregular situations, such as pixels of various sizes or importance, aggregated
pixels, irregular boundaries or connectivities, multi-layered or partially missing
data.

The fields of spatial analysis, in particular spatial clustering, on one hand,
and image segmentation on the other hand, seem currently to be investigated by
distinct, non-overlapping scientific communities. Yet, both communities arguably
share the same what-versus-where-trading challenge, aimed at obtaining clusters
both homogeneous and connected.

This contribution proposes a family of iterative algorithms for unsuper-
vised or semi-supervised image segmentation. It attempts to merge a regular-
ized approach to (non-marked) network clustering with the soft K-means of
unconnected, feature-marked observations. The underlying weighted formalism,
dubbed “ZED formalism” in short (section 2.1), appears to be relevant for spatial
analysis, network clustering, and data analysis in general.

In a nutshell, the network clustering objective is expressed by a generalized
cut functional, encompassing the Ncut minimisation (Shi and Malik [36]; Grady
and Schwartz [21]) and modularity maximization (Newman [30]) as particulary
cases (section 2.4). This objective is enriched with a features dissimilarity term,
central in the K-means approach, and further regularized by an entropy term. The
three terms are additively combined into a freely parametrized free energy, whose
minimization provides a principled approach, semi-supervised or unsupervised,
to the iterative computation of locally optimal solutions, and the emergence
of soft clusters (section 3). The soft nature of clusters induces a membership
uncertainty, betraying the inter-cluster boundary (section 5.2). Alternatively,
pixels can be finally assigned to the group maximizing their membership, thus
defining usual hard clusterings.

Replacing the former generalized cut by a discontinuity functional constitutes
another meaningful option (section 2.3), and both approaches, although opposite
regarding their convexity properties (5.1), are investigated and illustrated on four
small datasets (section (4)).

The quest for good clusterings makes sense for homogeneous enough images,
as attested by the standardized value of Moran’s I, the canonical measure of
spatial autocorrelation, as defined and illustrated in the present multivariate,
weighted setting (section 2.2).

Also, the formal connection with the celebrated Mumford-Shah approach in
image segmentation is made explicit (section 5.3), culminating in the identifica-
tion of a non-additive objective involving both the network structure and the
pixel features (equation (19)).

A discussion (section 6) lists some further research lines, and adresses the con-
nection with some alternative approaches to the clustering of marked networks.
The appendix details two constructions (diffusive and Metropolis-Hastings) of
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the so-called exchange matrix (Berger and Snell [9]), as well as the test of spatial
autocorrelation in a weighted, multivariate setting.

The present contribution is an extended version of a paper (Raphaël Ceré
[34]) first published in the GISTAM 2017 proceedings. Supplementary material
includes the definition and study of generalized cut functionals1, membership
uncertainties, Metropolis-Hastings exchange matrices, and new illustrations. It
also presents a presumably original soft Mumford-Shah-like approach (section
5.3), proposing an adaptation of the original Mumford-Shah image segmentation
framework to the “ZED formalism” under investigation (section 2.1).

2 Definitions and formalism

The formalism we consider extends the spatial autocorrrelation formalism used
in Quantitative Geography and Spatial Econometrics to the case of weighted,
irregular regions, as well as to multivariate features. It turns out to be exten-
sive enough to provide a flexible framework for unsupervised or semi-supervised
generalized image segmentation, where the “generalized images” under consider-
ation can be made of irregular pixels, irregularly inter-connected, and endowed
with multivariate numerical features.

2.1 The ZED framework

In short, the spatial structure of the network (the “where”) is specified by a
square affinity or exchange matrix E, interpretable as a joint probability of se-
lecting pairs of pixels; the multi-labelled pixel marks (the “what”) are specified
by a square dissimilarity matrix D. A soft network clustering is specified by a
rectangular membership matrix Z, assigning the pixels into groups.

Unsupervised clustering consists in determining a reasonably good Z, taking
into account both E (strongly connected pixels should belong to the same group)
and D (strongly dissimilar pixels should belong to distinct groups).

In the general, irregular setup, the relative weights fi > 0 of the n elementary
vertices, regions or pixels are unequal, but fixed. Their feature dissimilarities Dij

are also given, while the specification of E, reflecting the symmetrical network
affinity between vertices, enjoys some flexibility (section 7.1), yet reflecting in
any case the neighborhood structure of the network, and normalized to ei• = fi
(see below). By contrast, the memberships Z are entirely free, and define a soft
clustering of the marked network – whose good enough instances constitute the
quest of the present paper.

Space as a weighted network: the exchange matrix E

Specifically, consider n regions (generalized pixels) with relative weights fi > 0,
normalized to f• =

∑n
i=1 fi = 1, together with an n×n symmetric non-negative

1 besides the generalized discontinuity functionals, already addressed in the proceed-
ings, but unfortunately referred there to as “cut functionals”
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exchange matrix E = (eij), and weight-compatible in the sense ei• =
∑n
j=1 eij =

fi. Here and in the sequel, “•” denotes the sum over all values of the replaced
index.

The exchange matrix E interprets as a joint probability p(i, j) = eij to select
the pair of regions i and j (edges), and defines a weighted unoriented network.
Its margins interpret as the probability p(i) = fi to select region i (vertices).

Weight-compatible exchange matrices E define a continuous neighborhood
relation between regions. They can be constructed from f and the adjacency
matrix A, or from another spatial proximity of distance matrix (see the ap-
pendix). The row-standardized matrix of spatial weights W = (wij) of spatial
autoregressive models obtains as wij = eij/fi and constitutes the transition
matrix of a reversible Markov chain with stationary distribution f .

Multivariate features: the dissimilarity matrix D

Regional features or marks can consist of univariate grey levels, multivariate
color or spectral intensities, or (in a geographical context) any regional variable
such as the proportions of specific land uses, population density, proportion of
retired people, etc. Multivariate characteristics xi are suitably combined into
n× n squared Euclidean dissimilarities Dij = ‖xi − xj‖2.

Soft clustering: the membership matrix Z

A soft regional clustering or image segmentation into m groups is described by
a non-negative n × m membership matrix Z = (zig) with zig = p(g|i) ≥ 0
denotes the probability that region (pixel) i belongs to group g, and obeys zi• =∑m
g=1 zig = 1.

The relative weights of the corresponding groups obtain as ρg =
∑
i fizig =

p(g) ≥ 0, with
∑
g ρg = 1. The regional distribution of group g is fgi = p(i|g) =

p(g|i)p(i)/p(g) = fizig/ρg, and obeys fg• = 1.

2.2 Spatial autocorrelation: Moran’s I

Obtaining a clustering Z both satisfactory regarding the network E and the
features D supposes a kind of compatibility between E and D, and this precisely
constitutes the issue of spatial autocorrelation, as measured by the weighted,
multivariate generalization (2) of Moran’s I.

Average multivariate dissimilarities between regions are expressed by iner-
tias, generalizing the univariate variances. The inertia between randomly selected
regions, and the local inertia between neighbors, are respectively defined as

∆ =
1

2

n∑
i,j=1

fifjDij ∆loc =
1

2

n∑
i,j=1

eijDij (1)

Comparing the global versus local inertias provides a multivariate generalization
of Moran’s I, namely,

I ≡ I(E,D) =
∆ − ∆loc

∆
(2)
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whose values range in [−1, 1]. A large positive I is expected for an image made of
large patchs characterized with constant features, or at least varying smoothly
on average (spatial continuity = positive autocorrelation). A large negative I
characterizes an image whose pixel features are contrasted, opposite to their
neighbors - such as a chess board with “rook” adjacency. Yet, the value of I
in itself is little informative (large values of I are expected whenever diagonal
terms E are important), in contrast to its standardized value z, which can fur-
thermore be directly tested by the normal procedure, or by the weight-corrected
permutation procedure (section 7.2).

2.3 Image segmentation by generalized discontinuity minimization

The region-group dependency can be measured by the mutual information

K[Z] =

n∑
i=1

m∑
g=1

p(i, g) ln
p(i, g)

p(i)p(g)
=
∑
ig

fizig ln
zig
ρg

(3)

A good clustering should consist of homogeneous groups made of regions not too
dissimilar regarding their features, that is insuring a low value of the within-group
inertia (e.g. Bavaud [4])

∆W [Z] =

m∑
g=1

ρg∆g where ∆g =
1

2

∑
ij

fgi f
g
jDij (4)

A good clustering should also avoid to separate a pair of spatially strongly con-
nected pixels, that is to insure a low value of the generalized discontinuity

Gκ[Z] =

m∑
g=1

ε[zg]

ρκg
where ε[zg] =

1

2

∑
ij

eij(zig − zjg)2 and κ ∈ [0, 1] . (5)

The term ε[zg] is called Dirichlet form in potential theory, and attains its min-
imum value zero iff all pixels lying in a connected component of the network
possess the same membership in g.

We consider a regularized clustering problem, aiming at determining, among
the set Z of all memberships matrices, a n×m, non-negative and row-normalized
matrix Z minimizing the free energy functional

F [Z] = β∆W [Z] +
α

2
Gκ[Z] +K[Z] (6)

where α, β ≥ 0. The terms ∆W , respectively Gκ, behaves as a features dissimilar-
ity energy, respectively a spatial energy, favoring hard partitions obeying zig = 0
or zig = 1. By contrast, the regularizing entropy term K favors the emergence
of soft clusterings. Setting α = 0 yields the soft K-means algorithm based on
spherical Gaussian mixtures, where the inverse temperature β fixes the dissim-
ilarity bandwidth. Canceling the first-order derivative of the free energy with
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respect to zig under the constraints zi• = 1 yields the minimization condition

zig =
ρg exp(−Hig)∑
h ρh exp(−Hih)

(7)

where

ρg[Z] =

n∑
i=1

fizig Hig[Z] = βDg
i + αρ−κg (Lzg)i −

ακ

2
ρ−κ−1g ε[zg] . (8)

Here Dg
i =

∑
j f

g
i Dij −∆g is the squared Euclidean dissimilarity from i to the

centroid of group g, and (Lzg)i = zig−
∑
j wijzjg = zig−(Wzg)i is the Laplacian

of membership zg at pixel i, comparing its value to the average value of its
neighbors, and adjusting the former to the latter. For κ > 0, this adjustment
mechanism is downscaled for large groups (factor ρ−κg ); in addition, spatially
discontinuous small groups are encouraged to grow by the last term in (8),
independent of i.

2.4 Image segmentation by generalized cut minimization

Another functional whose minimization favors spatially connected clusters is the
generalized cut

Cκ[Z] =

m∑
g=1

ρ2g − e(g, g)

ρκg
where e(g, g) =

n∑
i,j=1

eijzigzjg and κ ∈ [0, 1] .

(9)
The choice κ = 1 amounts to the N-cut objective (Shi and Malik [36]), while the
choice κ = 0 is equivalent to the modularity criterium (Newman [30]). Again,
minimizing the corresponding free energy

F [Z] = β∆W [Z] +
γ

2
Cκ[Z] +K[Z] β, γ ≥ 0 (10)

yields the necessary first-order condition (7), where

Hig[Z] = βDg
i + γρ−κg [ρg − (Wzg)i]−

γκ

2
ρ−κ−1g [ρ2g − e(g, g)] . (11)

For κ = 0 (modularity clustering), the term ρg − (Wzg)i compares the average
membership of the neighbors of i to the overall average membership (rather than
to the membership of i itself, as in (8). The term (Wzg)i precisely implements
the label propagation mechanism acting in some network clustering algorithms
(e.g. Zhu and Ghahramani [41], Raghavan et al. [33]).

For κ > 0, this adjustment mechanism is downscaled for large groups (factor
ρ−κg ); in addition, loosely intra-connected small groups are encouraged to grow
by the last term in (11), independent of i, which prevents the creation of clusters
made out of a single pixel – a known defect of the unnormalized cut criterium
(e.g. von Luxburg [28]).
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3 Iterative procedure: unsupervised and semi-supervised

Equation (7) can be solved iteratively from some initial membership Z0 ∈ Z,
updating at each step ρg and the exponent Hig in versions (8) or (11), until
convergence to Z∞, which constitutes a local minimum of F [Z]. Matrix Z∞

constitutes the searched for soft spatial partition or image segmentation of the
unsupervised procedure. It can be further hardened by assigning each pixel i to
group g = arg maxh z

∞
ih , breaking possible ties at random.

A semi-supervised implementation of the procedure, imposing the member-
ship of a few pixels (and possibly breaking down the monotonic decrease of F [Z]:
see figures 3 to 8) goes as follow: first, the set Ω of the n regions is partitioned
into two disjoint, non-empty sets, namely the user-defined tagged regions T , and
the free regions F , with Ω = T ∪ F and T ∩ F = ∅. The tagged set T itself
consists of m non-empty disjoint subregions T = ∪mτ=1Tτ initially tagged with
m distinct strokes applied on a small number of pixels: they form the seeds of
the g = 1, . . . ,m figures to be extracted, while the remaining regions will be
assigned to the background numbered g = 0.

Memberships Z = (zig) consist of n× (m+ 1) non-negative matrices obeying∑m
g=0 zig = 1. Their initial value Z0 is set as

z0ig


= 1 if i ∈ F and g = 0

= 1 if i ∈ Tτ and g = τ

= 0 otherwise .

(12)

Iteration (7) is then performed. At the end of each loop, the tagged regions are
reset to their initial values z0iτ = 1 for all i ∈ Tτ . After convergence, one expects
the hardened clusters obtained by assigning i to group g = arg maxmh=0 z

∞
ih to

consist of m connected figures g = 1, . . .m each containing the tagged set Tg, as
well as a remaining background supported on F .

The iterative image segmentation algorithm summarized below (Table 1)
requires

1) a vector of n weights fi > 0 associated to each pixel or region

2) a vector of n grey levels or multivariate characteristics xi

3) a n× n binary, symmetric, off-diagonal adjacency matrix A

4) a set of disjoint non-empty tagged sets of pixels {Tτ}mτ=1 .



8

Begin
Fix β > 0 (the parameter conjugate to the within-clusters inertia) and κ ∈ [0, 1]
Compute the weight vector f (fi = 1/n for regular grids)
Compute the binary adjacency matrix A

diffusive exchange matrix : For a given t > 0, compute E(f,A, t) by (20)
Metropolis-Hastings exchange matrix: Compute E by (21)

Compute the matrix of spatial weights as wij = eij/fi
Compute the features dissimilarity matrix Dij = ‖xi − xj‖2
Initialize the n× (m+ 1) membership matrix Z0 as:
z0ig = 1 if i ∈ F and g = 0

z0ig = 1 if i ∈ Tτ and g = τ

z0ig = 0 otherwise.

Loop : Z(r+1) for the r-th iteration, stop after convergence
Group weight : ρg =

∑
i fizig

Emission probabilities fgi =
fizig
ρg

Dissimilarity to the centroid : Dgi =
∑
j f

g
j Dij −∆g

generalized discontinuity segmentation : Fix the parameter α > 0 and compute Hig by (8)
generalized cut segmentation : Fix the parameter γ > 0 and compute Hig by (11)

Compute z
(r+1)
ig by (7)

for the semi-supervised case : Re-initialize z
(r+1)
ig = δgτ for i ∈ Tτ

for the unsupervised case : Do nothing

Attribute i ∈ F to the group g = argmaxmh=0 z
(∞)
ih

End

Table 1. Variants of the semi-supervised and the unsupervised iterative segmentation
algorithm.

4 Illustrations

4.1 Swiss federal votes

The irregular network consists on the n = 309 communes of canton of Vaud,
endowed with their diffusive exchange matrix (20) with t = 1, where A is
the “queen” adjacency matrix and the non-uniform weights f are the propor-
tion of inhabitants. Features consist, for each commune i, of the proportion
of “yes” for three Swiss federal initiatives submitted to the citizens on Febru-
ary the 12th 2017, namely (figure 1) xi for the Corporate Tax Reform Act III
(refused by 40.9% of voting citizens), yi for the Federal Decree on the Sim-
plified Naturalisation of Third-Generation Immigrants (accepted at 60.4%) and
zi for the Federal Decree on Establishing a Fund for National Roads and Ur-
ban Traffic (accepted at 61.9%). Dissimilarities are simply defined as Dij =
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, further rescaled in the range [0, 1].

Figures 3 to 8 depict the semi-supervised hard assignment obtained from the
initial strokes T1 = {20} (Bière; group 1), and T2 = {3} (Chessel; group 2),
after 100 iterations, together with the change of the free energy F [Z] during the
iteration. Generalized cuts and discontinuity variants are both tested for various
values of the parameters κ, β, γ and α. In particular, the conditional entropy
H(G|O), measuring the softness of the partition (section 5.2), decreases in β,
decreases in γ, but increases in α, as expected.
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(a) (b)

(c) (d)

Fig. 1. Swiss federal votes, canton of Vaud: proportion of “yes” (a) xi for the first
votation, (b) yi for the second votation, and (c) zi for the third votation. (d) lists the
commune numbers used by the cantonal administration.

(a) (b)

Fig. 2. Swiss federal votes, spatial autocorrelation: (a) Moran’s I (top) and standard-
ized z normal test value (bottom), as a function of the free parameter t ∈ [1, 20] of
the diffusive exchange matrix specification (20). (b) Moran’s I after a plain permuta-
tion of the political features (x, y, z) between communes, and Moran’s Î after applying
the weight-corrected permutation (22). Note the latter to almost coincide with the
expected value E0(I) under the null hypothesis, as it must.
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(a)

(b)

(c)

Fig. 3. Swiss federal votes, continued: cut minimization with κ = 0.0, β = 300, (a)
γ = 0.1 and (b) γ = 2.0. (c) decrease of the conditional entropy in γ.

(a)

(b)

(c)

Fig. 4. Swiss federal votes, continued: cut minimization with κ = 1.0, β = 300, (a)
γ = 0.1 and (b) γ = 1.0. (c) decrease of the conditional entropy in γ.
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(a)

(b)

(c)

Fig. 5. Swiss federal votes, continued: cut minimization with κ = 0.0, γ = 1.0, (a)
β = 200.0 and (b) β = 300.0. (c) decrease of the conditional entropy in β.

(a)

(b)

(c)

Fig. 6. Swiss federal votes, continued: discontinuity minimization with κ = 0.0,
β = 300, (a) α = 0.1 and (b) α = 2.0. (c) increase of the conditional entropy in α.
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(a)

(b)

(c)

Fig. 7. Swiss federal votes, continued: discontinuity minimization with κ = 0.0,
α = 1.0, (a) β = 200 and (b) β = 300. (c) decrease of the conditional entropy in β.

(a)

(b)

(c)

Fig. 8. Swiss federal votes, continued: discontinuity minimization with κ = 1.0,
α = 0.5, (a) β = 200 and (b) β = 300. (c) decrease of the conditional entropy in β.
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4.2 The Portrait

Figure 9 refers to a regular trivariate image (levels of red green blue) of size
n = 100×115 with uniform weight vector fi = 1/n. Again, the binary adjacency
matrix A has been built under the “queen” scheme (8 neighbors for inside pixels),
on which the Metropolis-Hastings exchange matrix (21) have been adopted. Dij

is the sum of the squared differences between color intensities, rescaled to [0, 1].
The corresponding Moran’s I (2) is 0.52 for an expectation of E0(I) = 0.008 and
variance Var0(I) = 2.201 × 10−05 (section 7.2). Normal test value z = 108.48
denotes a massively significant spatial autocorrelation, as it must.

(a) (b)

(c)

Fig. 9. The Portrait: (a-b) original image with initial strokes and unsupervised hard
assignment obtained for background group 0 colored in grey, group 1 in purple, group
2 in green and group 3 in blue, after 100 iterations; (c) decrease of the free energy F [Z]
during the iteration for a discontinuity minimization with κ = 0.0, α = 0.1 and
β = 950.0.

4.3 The Geometer

Figure 10 refers to the levels of grey of a regular image of size n = 50× 50. The
node weights f and univariate dissimilarities D are constructed as above but the
diffusive exchange matrix (20) has been adopted. The corresponding Moran’s I
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is 0.848, with an expectation of E0(I) = 0.0174, variance Var0(I) = 0.0001 and
test value z = 81.88.

(a) (b)

(c)

Fig. 10. The Geometer: (a-b) original image with initial strokes and unsupervised
hard assignment obtained for background group 0 colored in grey, group 1 in purple,
group 2 in green and in blue, after 100 iterations; (c) decrease of the free energy F [Z]
during the iteration for a generalized cut minimization with κ = 0.0, γ = 4.0 and
β = 350.0.

4.4 Lausanne

One considers the rectangular network made of n = 50×60 hectometers (census
blocks) in the region of Lausanne, Switzerland, with regular queen binary adja-
cency matrix A. The features count, for each hectometer, the number of built
units possessing a given characteristic, among p = 63 criteria in 2014 (source:
Swiss Federal Statistical Office). The corresponding squared Euclidean dissimi-
larities are rescaled to [0, 1].

Figure 11 refers to a uniform weight fi = 1/n, and figure 12 to a non-uniform
weight f proportional to the number of inhabitants in each hectometer. Note the
diffusive scheme (21) to generate two distinct exchange matrices: A is the same,
but f differs. One finds I = 0.404, E0(I) = 0.258, Var0(I) = 3.019 × 10−5

and z = 26.550 for the uniform case; by contrast, I = 0.877, E0(I) = 0.211,
Var0(I) = 0.0002 and z = 52.943 for the non-uniform case.
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(a) (b)

(c) (d)

Fig. 11. Lausanne, uniform case: (a-b) topographic map with initial strokes of the
area under study and unsupervised hard assignment obtained for background group
0 colored in grey, group 1 in purple, group 2 in green and group 3 in blue, after 100
iterations; (c) hard assignment projected (d) decrease of the free energy F [Z] during the
iteration for a generalized cut minimization with κ = 0.0, γ = 1.0 and β = 250.0.

(a) (c)

Fig. 12. Lausanne, non-uniform case: (a) unsupervised hard assignment projected ob-
tained for background group 0 colored in grey, group 1 in purple, group 2 in green and
group 3 in blue, after 100 iterations; (c) decrease of the free energy F [Z] during the
iteration for a generalized cut minimization with κ = 0.0, γ = 1.0 and β = 650.0.

5 Further formal considerations

5.1 Convexity, concavity, and local minima

The set Z of all memberships is convex, and the within-group inertia ∆W [Z]
is concave in Z (e.g. Bavaud [4]). As a result, the minimum arg minZ∈Z ∆W [Z]
is attained on the extreme points of Z, that is on hard memberships, whose
determination is notoriously difficult. By contrast, the mutual information K[Z]
is convex, and attains its minimum zero on “independent” soft memberships of
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the form zig = ρg. Mixing the two functionals as in the Gaussian mixture model
β∆W [Z]+K[Z] generates, for β large enough, a functional possessing many local
minima, attained after convergence of the iterative procedure of table 1 (in the
unsupervised case, and in absence of spatial terms).

The generalized discontinuity functional Gκ[Z] (5) can be shown to be convex
in Z, for any κ ∈ [0, 1] (proofs are postponed in a forthcoming, more technical
note). For a connected network (i.e. whose E exchange matrix is irreducible) the
minimizers are again the independent soft memberships zig = ρg.

By contrast, the cut functional Cκ[Z] (9) can be shown to be concave for
any κ ∈ [0, 1], at least for the positive semi-definite (p.s.d.) exchange matrices
E, that is whose eigenvalues are non-negative; such networks are referred to as
diffusive.

Diffusive exchange matrices (20) define a diffusive network, precisely, by con-
trast to Metropolis-Hastings exchange matrices (21) which are not p.s.d. in gen-
eral. Diffusive networks necessarily possess diagonal components (loops), unlike
normalized adjacency matrices, or bipartite graphs. Also, exchange matrices of
the “radial basis” form eij = aiaj exp(−λd2ij), where dij is a spatial Euclidean
distance and ai ≥ 0 a calibrating factor ensuring ei• = fi, are diffusive (see e.g.
Bavaud [6]).

For a diffusive network, the membership minimizing Cκ[Z] constitutes a hard
partition, difficult to compute, for which various heuristics (such as spectral clus-
tering or label propagation) have been devised. The present regularized approach
constitutes another, in line with model-based clustering or simulated annealing
(e.g. Rose et al. [35]).

5.2 Clustering softness

The regularizing effect of convex functionals, namely the mutual information
K[Z] and the generalized discontinuity Gκ[Z], are responsible for the softness of
the optimal membership Z. Denoting by G, resp. O, the variables “group”, resp.
“pixel”, the pointwise conditional entropy H(G|i) = −

∑
g zig ln zig measures the

membership uncertainty of pixel i. The quantity H(G|i) is large for pixels located
at the group frontiers, and thus provides a possibly original boundary detection
mechanism (figure 13). Its average H(G|O) =

∑
i fiH(G|i) = H(G,O) −H(O)

constitues a measure of overall softness of the clustering, related to the mutual
information as

K[Z] = H(G) +H(O)−H(G,O) = H(G)−H(G|O) (13)

In soft K-means, increasing β increases the influence of the (concave) energy
∆W relatively to the (convex) entropy, and hence decreases the softness H(G|O)
of the clustering. By the same reasoning, and in view of the remarks of section
5.1, one expects the softness H(G|O) to decrease in γ (cut minimization), but
to increase in α (discontinuity minimization), as observed in figures 3 to 8.



17

(a) (b)

Fig. 13. Conditional pointwise entropy H(G|i) for the conditions of figure 3 with κ =
0.0, β = 300 , (a) γ = 0.1 and (b) γ = 2.0. A large value of H(G|i) denotes a large
uncertainty in the membership of region i, lying at some boundary between groups.

5.3 A soft Mumford-Shah-like approach

The influential Mumford-Shah approach (Mumford and Shah [29]) aims at gov-
erning the image segmentation or “morphogenesis” (e.g. Petitot [32]) of an image
whose support Ω ⊂ R2 and “image intensity” x(s) at s ∈ Ω are given.

The approach consists in dividing Ω into m disconnected classes Ωg separated
by an inter-classes boundary B ⊂ Ω (that is Ω \ B = ∪mg=1Ωg) of size B = |B|,
as well as by approximating x(s) within each class by a smooth function u(s).
The Mumford-Shah functional, to be minimized over u and B, expresses in its
original continuous setup as

M(u,B) = ν

∫
Ω

(x(s)− u(s))2 ds+
δ

2

m∑
g=1

∫
Ωg

‖∇u(s)‖2 ds+ λB (14)

and its rigorous mathematical treatment is fairly demanding (see e.g. Vitti [38]).

In the so-called cartoon limit δ → ∞, minimization of (14) requires u(s)
to be a constant ug within each hard class Ωg, with solution ug = x̄g =∫
Ωg
x(s) ds/|Ωg|: color levels are constant within each cell, which are separated

by lines of same thickness, and smooth enough to ensure a low value of B. This
definition appears to closely characterize the style of drawing used in Franco-
Belgian comics known as ligne claire (figure 14), epitomized by the series “The
Adventures of Tintin” by Hergé (Gaumer and Moliterni [19]).

In absence of clustering, that is with a single group (m = 1, B = ∅ and
B = 0), the discrete approximation of (14) reads

M(u) = ν
∑
i

fi(xi − ui)2 +
δ

2

∑
ij

eij(ui − uj)2 (15)

with unique minimizer u = µ[(1 + µ)I −W ]−1x, where µ = ν/δ > 0.

Soft partitions Z can be introduced by requiring the signal approximation to
be of the form ui =

∑
g zigyg, that is u = Zy for some freely adjustable vector
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Fig. 14. An example of the ligne claire style of drawing: comic mural (2000), Rue des
Alexiens 49, Brussels: Le jeune Albert by Yves Chaland.

y with m components. They define a soft, discrete Mumford-Shah functional of
the form

M(Zy,B) = ν V[y, Z] + λ B[Z]

where

V[y, Z] =
∑
i

fi(xi − (Zy)i)
2 +

1

2µ

∑
ij

eij((Zy)i − (Zy)j)
2

= (Zy − x)′Π(Zy − x) +
1

µ
(Zy)′(Π − E)Zy (16)

and Π = diag(f) is the diagonal matrix containing the pixel weights. Minimizing
(16) over y is an exercise in matrix calculus, and yields the solution

y0 = Γ−1ξ Γ = Z ′TZ T =
1

µ
[(1 + µ)Π −E] ξ = Z ′Πx (17)

Plugging y0 into (16) yields

V[Z] = min
y
V[y, Z] = V[y0, Z] = x′(Π −ΠZΓ−1Z ′Π)x =

=
1

2
trace(ΠZ (Z ′TZ)−1Z ′ΠD) (18)

where D = (Dij) denotes the matrix of squared Euclidean dissimilarities between
pixel intensities Dij = (xi − xj)2, and identity Γ1 = ρ has been used in the last
expression.

In summary, the original continuous Mumford-Shah functional (14) appears
to be expressible into the present discrete, weighted setting, involving soft parti-
tions Z of marked networks. Optimal clusterings minimize the functional

M[Z] = ν V[Z] + λ B[Z] ν, λ > 0 (19)



19

where V[Z], given by (18), both depends on the network structure E (through T
in (17)) and on the node dissimilarities D, but in a non-additive way, in contrast
to proposals (6) and (10). Also, V[Z] is homogeneous of degree zero (recall that a
functional A[Z] is homogeneous of degree k if, formally, A[cZ] = ckA[Z]), while
Gκ[Z] and Cκ[Z] are homogeneous of degree 2 − κ, and K[Z] and ∆W [Z] are
homogeneous of degree 1.

The inter-cluster boundary length B[Z] remains to be specified, possibly such
as the discontinuity Gκ[Z], or as the generalized cut Cκ[Z], or some other func-
tional. In addition, an entropic regularizing term K[Z] can be added to (19),
hence yielding an alternative, original iterative scheme to be compared to the
procedure of section 3.

Expression (18) turns out to hold for multivariate features as well. The is-
sue of the convex versus concave nature of V[Z], as well as further formal and
empirical investigations on soft segmentation based on (19) are postponed for a
further work.

In summary, the “ZED formalism” sketched in section 2.1 can express the
Mumford-Shah approach within the present framework, whose locally optimal
clusters are however bound to differ from the relaxed generalized discontinuity
and generalized cut approaches of sections (2.3) and (2.4).

6 Discussion

The formalism presented here expresses and illustrates a few alternatives defining
clustering in two close but little interacting domains, namely image segmentation
and regional partitioning. Locally optimal soft clusters Z are both adapted to a
given irregular unoriented network E on one hand, and to a given set of node
dissimilarities D, reflecting the multivariate node features X (marks), on the
other hand.

Its basic ingredients have been developed for decades in large, robust scien-
tific communities. In view of the sheer size of the image segmentation domain
(including reviews and surveys thereof; see in particular Couprie et al. [13] and
Fouss et al. [17]), specific claims of originality seem foolish.

Yet, beside the choice of functionals and parameters, let us underline the
flexibility of the approach: the determination of a weight-compatible exchange
matrix E reflecting the spatial proximity is a vast issue in itself, covering in large
part the theory of discrete reversible Markov chains. Considering probabilities on
paths (Bavaud and Guex [8]); Françoisse et al. [18]) instead of probabilities on
nodes or pairs of nodes, permits to extend the formalism to random walks based
modularities (Devooght et al. [15]) or multi-target based clustering (e.g. Sinop
and Grady [37]; Guex [24]). This line of research pursues the “electric interpre-
tation” of reversible Markov chains (Doyle and Snell [16]), involving Dirichlet
differential equations and computation of the electric potentials, already stan-
dard in image segmentation (Grady [20]). The possibility, in probabilistic formu-
lations of random walks, to set independently the edge capacities and the edge
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resistances (Bavaud and Guex [8]; Guex [24]; Fouss et al. [17]), seems especially
relevant for the clustering of marked networks: it is tempting to identify the
capacity contribution as a spatial term enabling transitions between neighbors,
and the resistance contribution as a barrier preventing transitions between too
dissimilar pixels.

The choice of the dissimilarity D is fairly versatile too: the class of squared
Euclidean dissimilarities is broader than often presumed, encompassing Lp dis-
similarities for 1 ≤ p ≤ 2 (in particular the city-block metric), and all positive
semi-definite kernel approaches in machine learning, such as radial basis affinities
(e.g. Critchley and Fichet [14]; Bavaud [6]). D can also express categorical or
distributional marks, through chi-square or Hellinger dissimilarities. Covariances
between node features (a main theme in Spatial Econometrics; see e.g. Bivand
et al. [11]; LeSage [27]; Arbia [3]; Anselin [2]; Griffith [23]) can be taken into
account by the use of Mahalanobis dissimilarities. Also, recall that any squared
Euclidean dissimilarity D generates, through exact multidimensional scaling, a
set of multivariate coordinates X, unique up to a rotation.

Besides its regularizing virtues, the presence of the entropy term in the free
energies (6) or (10) can be be formally justified in the maximum a priori approach
of Bayesian statistics (Besag [10] or Greig et al. [22]), the maximum entropy
approach of Information Theory, or in statistical mechanical models of magnetic
materials, where the connection with the Ising or Potts model (in particular
regarding the two first “energy” terms of equation (14)) has been often noticed.

Other compatible developments, well-known in spatial analysis or machine
learning, such as those involving Moran scatterplots and local indicators of spatial
autocorrelation (Anselin [1]), as well as spectral approaches for Ncut or modu-
larity clustering (Shi and Malik [36]; White and Smyth [39]; Ng et al. [31]; von
Luxburg [28]) have been left aside. Recall that spectral approaches aim at at-
tacking network clustering by means of a matrix eigen-decomposition problem,
sacrificing the non-negative nature of Z, but producing instead “network factor
scores” X̃ on which standard clustering algorithms, such as the K-means, can
be performed. The latter can be further mixed with node features to form a gen-
eralized set of “where-and-what” features (X̃,X), on which standard clustering
methods can be applied, again; see e.g. Lebichot and Saerens [26] and references
therein for a recent presentation. In contrast to our approach, which directly
confronts Z to the network E (and its marks X or their dissimilarities D), the
latter strategy is closely related to the search for embedding coordinates X̃ for
a network, and the definition of associated squared Euclidean spatial dissimi-
larities D̃ (e.g. Yen et al. [40]; Bavaud [5]; Kivimäki et al. [25]), for which the
question of the positive definite nature of E (section 5.1) plays a prominent role,
again.
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7 APPENDIX

7.1 Computing the exchange matrix E(A, f)

Defining an exchange matrix E both weight-compatible (that is obeying E1 =
f , where the regional weights f are given) and reflecting the spatial structure
contained in the binary adjacency matrix A = (aij) is a crucial, necessary step
in the “ZED formalism” under consideration. Two constructions, not trivial, nor
that difficult either, have been investigated in this paper, namely the diffusive
specification and the Metropolis-Hastings specification.

The diffusive exchange matrix

Consider a time-continuous Markov chain W on the n pixels, whose infinitesimal
generator or rate matrix is proportional to the adjacency matrix A, and conve-
niently normalized so that f constitutes the stationary distribution of W . The
resulting exchange matrix E = ΠW turns out to be symmetric and p.s.d., and
given by

E ≡ E(A, f, t) = Π1/2 exp(−tΨ) Π1/2 (20)

where Π = diag(f), and

Ψ = Π−1/2
LA

trace(LA)
Π−1/2 (LA)ij = δij ai• − aij

LA is the Laplacian of matrix A, and matrix exponentiation (20) can be carried
out by the spectral decomposition of Ψ . Specification (20) describes a diffusive
process at time t > 0, with limits limt→0E(A, f, t) = Π (“frozen network”,
consisting of n isolated nodes: spatial autarchy), and limt→∞E(A, f, t) = ff ′
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(“complete network”, with independent selection of the node pairs: complete
mobility). Identity trace(E(t)) = 1− t+ 0(t2) shows t to measure, for t� 1, the
proportion of distinct regional pairs in the joint distribution E.

The Metropolis-Hastings exchange matrix

The natural random walk with Markov transition matrix aij/ai• correctly de-
scribes the spatial structure of the network, but its stationary distribution is
gi = ai•/a•• instead of fi. Applying the Metropolis-Hastings algorithm defines a
recalibrated random walk with stationary distribution f , ending up in a weight-
compatible exchange matrix of the form:

E = Π − LB where B = (bij), bij = min(κi, κj) ·
aij
a••

and κi =
fi
gi

(21)

and (LB)ij = δij bi• − bij is the Laplacian of B. Expression (21) does not
require spectral decomposition, and its computation is much faster than (20)
for increasing n (figure 15). However, E in (21) is not p.s.d in general, thus
threatening the concavity of Cκ[Z] (section 5.1).

Fig. 15. Deterministic profiling : CPU time for computing the exchange matrices
E(f,A, t) (20) and EM.−H.(f,A) (21), as a function of the number of pixels n in a
regular setting and performed with Python 2.7.12 on a CPU Intel Core i7 two Core
with a frequency 3.1GHz (Mac OS X 10.10.5).

7.2 Testing spatial autocorrelation

Under the null hypothesis H0 of stationarity and absence of spatial autocorre-
lation, univariate features are independent, and follow a distribution with com-
mon mean and variance inversely proportional to the size of the region, namely
E(Xik) = µk and Cov(Xik, Xjk) = δijσ

2
k/fi (Bavaud [7]). Under normal approx-

imation, the expected value of the multivariate Moran’s I (2) reads

E0(I) =
tr(W )− 1

n− 1
where wij =

eij
fi
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and its the variance reads

Var0(I) =
2

n2 − 1

[
trace(W 2)− 1− (trace(W )− 1)2

n− 1

]
Spatial autocorrelation is thus significant at level α if z = |I−E0(I)|/

√
Var0(I) ≥

u1−α2 , where u1−α2 is the αth quantile of the standard normal distribution.

Alternatively, a permutation test can be performed (e.g. Cliff [12]), by gener-
ating a series of values Î of the transformed Moran index, where Î obtains as (2)
with ∆loc replaced by ∆̂loc = 1

2

∑n
i,j=1 eijD̂ij . The plain specification, which con-

sists in replacing the profile xik of region i by the profile x̂ik = xπ(i)k of another

region π(i) (where π denotes a permutation), that is in defining D̂ij = Dπ(i),π(j),
is somehow flawed in the weighted case, in view of the heteroscedasticity of the
distribution of Xik. Instead, the quantities

√
fi(xik − x̄k) (with x̄k =

∑
i fixik)

for i = 1, . . . , n are expected to follow the same distribution under H0, thus
insuring the validity of the weight-corrected specification, with (see figure 2)

x̂ik = x̄k +

√
fπ(i)

fi
(xπ(i)k − x̄k) and D̂ij = ‖x̂i − x̂j‖2 . (22)
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