Research note

Common skin infection due to Panton–Valentine leucocidin-producing Staphylococcus aureus strains in asylum seekers from Eritrea: a genome-based investigation of a suspected outbreak

1 Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
2 Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
3 Vulnerable Population Centre, Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
4 Service of Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
5 Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland

ARTICLE INFO

Article history:
Received 17 March 2016
Received in revised form 9 May 2016
Accepted 28 May 2016
Available online 6 June 2016

Editor: G. Lina

Keywords:
Genome sequence
Migrants
Panton–Valentine leucocidin
Skin infection
ST132
Staphylococcus aureus

ABSTRACT

Since late 2014, multiple cases of abscesses and boils due to methicillin-susceptible Staphylococcus aureus (MSSA) expressing the Panton–Valentine leucocidin (PVL) were observed in Eritrean asylum seekers in Lausanne, Switzerland. Strains isolated from infected Eritrean and non-Eritrean patients were compared by whole genome sequencing to determine whether these numerous cases result from an outbreak. The genome of S. aureus PVL-producing strains were sequenced and compared. Clinical and epidemiological characteristics of patients infected by PVL-producing strains were investigated. This work reports 15 cases of infections due to PVL-producing strains affecting mostly asylum seekers (n = 10), people working with refugees and/or exposed to Africans (n = 3). Most infections were due to closely related strains of CC152 (n = 8) and CC15 (n = 3), two distantly related (>34 000 core single nucleotide polymorphisms) clonal complexes. An epidemiological link between the 15 cases could be ruled out by whole genome sequencing (33 to 172 core single nucleotide polymorphisms between the different strains of a given complex). Altogether, these results reflect the probable high incidence of CC15 and CC152 PVL-producing strains in eastern Africa. Clinicians facing unusual skin infections in African refugees (or in any person returning from this region of high endemicity) should consider S. aureus PVL-producer before suspecting rare infections such as leishmaniasis or rickettsiosis. Clinicians should also remember that PVL are frequently expressed by MSSA in some regions of the world and that antibiotics that are efficient on toxin expression, such as clindamycin, represent the best therapeutic option.

Introduction

In recent years, an increasing number of African migrants have been arriving in Switzerland, mainly transiting through Italy [1]. Nearly half of these migrants arriving in Italy come from Syria or Eritrea [1]. Eritreans travel first through Sudan then to Libya [2], where they are often kept, sometimes for months, in detention centres, where they face promiscuity and deficient sanitary conditions [3]. Then, according to the opportunities encountered, they may board a boat to Italy, and arrive in Switzerland.

In the Lausanne area, asylum seekers (including Eritreans) live in refugee centres. Despite satisfactory sanitary conditions, scabies was commonly observed in this migrant population. In addition, we often observed abscesses and boils largely due to infection by Panton–Valentine leucocidin (PVL) -producing Staphylococcus aureus strains. The PVL is a pore-forming toxin encoded on a prophage that leads to neutrophil lysis [4]. Regardless of methicillin resistance, PVL-producing strains are strongly associated with skin
and soft-tissue infections, such as a boil or abscess [5]. PVL-encoding genes can be found in highly diverse \textit{S. aureus} isolates [6], and the prevalence of PVL-positive methicillin-susceptible \textit{S. aureus} (MSSA) varies widely worldwide [7]. Eighty-three per cent of PVL-encoding \textit{S. aureus} strains in European hospitalized subjects are methicillin-resistant \textit{S. aureus} (MRSA) [8]. In Switzerland, the prevalence of PVL-producing MSSA in nasal swabs from children was only 1.6\% (9/572) in 2006 [9]. Given the significant pathogenicity of PVL-producing strains and the number of observed cases, we therefore investigated whether a potential outbreak of PVL-producing \textit{S. aureus} skin infections occurred in the migrant population arriving in Lausanne.

Results

A total of 14 MSSA infections and one MRSA infection with positive PVL PCR was observed from January 2014 to August 2015 (see Supplementary materials). The clinical presentation of all 15 patients is reported in Table 1. Fourteen of the 15 patients exhibited a skin infection.

Seven strains belonged to ST152, three to ST15 and one to each of the following sequence types (ST): ST1633, ST121, ST5, ST10 and ST21 (Table 1). ST1633 is a single locus variant (ST21) (see Supplementary material, Table S1). Core SNPs were used to reconstruct the phylogeny of the two CC (see Supplementary material, Fig. S1).

A phylogenetic reconstruction based on publicly available complete genome alignments including 35 strains from 28 different ST showed that CC152 is only distantly related to other ST (Fig. 1a). The eight CC152 strains exhibited more than 34,000 SNPs with the reference genomes and 34,686 to 34,724 SNPs with CC15 strains (see Supplementary material, Tables S1 and S2). All three CC15 strains contain a 65-kb prophage encoding both the staphylococcal enterotoxin type A (sea) and the PVL (Fig. 1b, see Supplementary material, Fig. S3). CC152 genomes contain between two and three prophages that do not carry any additional known virulence factors (Figs S3, S4, S5).

Discussion

This work investigated PVL-producing \textit{S. aureus} skin infections identified in Lausanne’s University Hospital between January 2014 and August 2015. An outbreak was suspected because ten of the fifteen cases involved Eritreans or Ethiopian refugees.

Table 1

Demographic characteristics, clinical presentation, treatment and evolution of the 15 patients included in this work

<table>
<thead>
<tr>
<th>Case number</th>
<th>Age</th>
<th>Gender</th>
<th>Country</th>
<th>SCCmec</th>
<th>Strain CC/ST</th>
<th>Co-pathogen</th>
<th>Scabies infection</th>
<th>Clinical presentation</th>
<th>Treatment</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>152/152</td>
<td>No</td>
<td>Boils</td>
<td>Drainage</td>
<td></td>
<td>Favourable</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>152/152</td>
<td>Streptococcus pyogenes</td>
<td>Pustule, abscesses</td>
<td>Drainage, Amoxicillin + clavulanic acid</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>152/152</td>
<td>Cellulitis, abscess</td>
<td>Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Favourable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>152/152</td>
<td>Scabies</td>
<td>Adenitis</td>
<td>Drainage, Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>M</td>
<td>Portugal</td>
<td>–</td>
<td>152/152</td>
<td>No</td>
<td>Cellulitis, abscess</td>
<td>Drainage, Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>M</td>
<td>Switzerland</td>
<td>–</td>
<td>152/152</td>
<td>No</td>
<td>Pustules, abscesses</td>
<td>Drainage, Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>F</td>
<td>Switzerland</td>
<td>–</td>
<td>152/152</td>
<td>No</td>
<td>Folliculitis, abscesses, cellulitis</td>
<td>Drainage, Amoxicillin + clavulanic acid, Flucloxacillin, Clindamycin</td>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>F</td>
<td>Ethiopia</td>
<td>–</td>
<td>152/1633</td>
<td>Scabies</td>
<td>Folliculitis, abscesses</td>
<td>Drainage, Amoxicillin + clavulanic acid</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>15/15</td>
<td>Streptococcus pyogenes</td>
<td>Abscess, ulcers</td>
<td>Drainage, Amoxicillin + clavulanic acid</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>15/15</td>
<td>No</td>
<td>Fibrinous wound absorbes</td>
<td>Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>15/15</td>
<td>No</td>
<td>Abscesses</td>
<td>Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>F</td>
<td>Switzerland</td>
<td>+</td>
<td>72</td>
<td>No</td>
<td>Abscesses</td>
<td>Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>121/121</td>
<td>Scabies</td>
<td>Abscesses</td>
<td>Amoxicillin + clavulanic acid, Clindamycin</td>
<td>Favourable</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>F</td>
<td>Switzerland</td>
<td>–</td>
<td>5/5</td>
<td>No</td>
<td>Necrotic pneumonia, septic shock, parapneumonic empyema</td>
<td>Third-generation Cephalosporin, Clindamycin, drainage</td>
<td>Hospitalization</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>M</td>
<td>Eritrea</td>
<td>–</td>
<td>80/80</td>
<td>Scabies</td>
<td>Topic treatment</td>
<td></td>
<td>Favourable</td>
<td></td>
</tr>
</tbody>
</table>

* Asylum seeker recently arrived in Switzerland.

b Living in Switzerland.
Eleven of the fifteen S. aureus strains belonged to only two CC (152 and 15). The largest cluster of eight CC152 cases of skin infections affected mainly Eritrean and Ethiopian refugees (n = 5), or European subjects with a history of recent exposure to African people (n = 3). The presence of PVL strains in these three people was probably due to household transmission from their relatives originating from Africa. Promiscuity, bad sanitary conditions and injuries during travel may have favoured the dispersal of these strains within the migrant population. Five of the eleven CC152/CC15 cases presented scabies infestation, which may have favoured secondary infection by PVL-encoding S. aureus carried by migrants.

Strains that are part of a single outbreak are expected to share very few core SNPs (< 12 [10]), with an estimated mutation rate of one SNP per ~6 weeks for S. aureus [11]. The two closest strains...
investigated exhibited 33 SNPs, suggesting that we are not facing an outbreak. Those strains were probably imported from Eastern Africa.

ST15 MSSA are known worldwide, but toxins such as sea and the PVL are rare in this lineage [12]. ST152 PVL-positive was reported to be highly prevalent in western and central Africa [13]. ST15 and ST152 were reported to be common strains in Mali [14]. Import and spread of PVL-positive S. aureus was already documented for returning travellers [7]. Moreover, SCCmec acquisition was already reported for both ST15 and ST152 MRSA in European countries [15]. Hence, the increased occurrence of PVL-producing strains in Europe combined to the common presence of MRSA in European countries might lead to the emergence of new clones of PVL-producing MRSA.

This work showed the occurrence of two clusters of S. aureus infections involving closely related strains. Most cases affected Eritrean and Ethiopian refugees and few other subjects with recent exposure to Africa. These multiple skin infections probably reflect the high incidence of such strains in East African countries. Hence, when faced with an unusual dermatological infection in African refugees, and before searching for an exotic infection such as leishmaniasis, rickettsiosis or even atypical mycobacteria, clinicians must be aware that it could be an S. aureus PVL-producing strain and should ask for the correct test. Clinicians also need to remember that PVL may be produced by MSSA, especially in Africa and that treatment should be an antibiotic that reduces toxin expression (i.e. clindamycin). Finally, this study showed that whole genomic sequencing is a valuable tool to rapidly assess the risk of facing an epidemic and assess the precise relatedness between isolates.

Funding

This work was supported by the Genomics and metagenomics unit of the Institute of Microbiology of the University of Lausanne.

Transparency declaration

The authors have no specific conflicts of interest.

Appendix A. Supplementary data

Additional Supporting Information may be found in the online version of this article at http://dx.doi.org/10.1016/j.cmi.2016.05.026.

References