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It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations.

This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular,

a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on

population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping

generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for

understanding variation in substitution rates within and between lineages.
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One of the central results of the Neutral Theory of evolution

(Kimura and Ohta 1971; Kimura 1983) states that the rate k of

allele substitution (rate of evolution) at neutral loci is unaffected

by fluctuations in population size and is simply equal to the muta-

tion rate. The explanation behind this result goes as follows. The

number of mutants that enter a haploid population of size N is

equal to Nμ; the number of individuals born in the last generation

times the mutation rate μ at the locus considered. Conversely, the

probability that any new mutant allele reaches ultimate fixation

(i.e., replaces the other alleles at this locus) corresponds to its ini-

tial frequency 1/N in the population. Because the substitution rate

k is the product of the number of mutants (Nμ) and the fixation

probability (1/N), k becomes independent of N: k = μ. This result

provides a justification for the assumption of a molecular clock

(Zuckerkandl and Pauling 1962; Margoliash 1963), which allows

dating evolutionary events such as host jumps, age of infectious

disease outbreaks, and speciation events (e.g., Ingman et al. 2000;

Korber et al. 2000; Nübel et al. 2010).

It is well known that for alleles under natural selection the

substitution rate is not independent of effective population size,

which is itself affected by past population sizes (Kimura 1983;

Otto and Whitlock 1997; Orr 2000; Bromham and Penny 2003;

Waples 2010). However, effective population size is generally

difficult to estimate accurately for natural populations. As such,

a frequent assumption in population genetics and phylogenet-

ics is that the genetic markers under study are strictly neutral,

which, in practice, corresponds to using genetic markers deemed

largely neutral, such as synonymous mutations in sequence data.

Under such conditions, the result that the substitution rate is

independent of population size fluctuations can be applied and

is often invoked in molecular population biology. However, the

range of biological assumptions under which the substitution rate
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is independent of population size fluctuations may not have been

fully explored.

Our attention has been drawn to a possible dependency of

substitution rate on demography by empirical work on the plague

(Yersinia pestis). Morelli et al. (2010) observed an excess of ap-

parently neutral mutations reaching fixation following population

size expansion during new plague epidemics. Additional empiri-

cal work on 118 complete genomes points to repeated episodes of

acceleration of the molecular clock at apparently strictly neutral

genes during episodes of population expansion of the plague and

qualitatively similar patterns could be generated with stochastic

simulations of serial outbreaks of plague lineages with overlap-

ping generations (Cui Y. et al. unpubl. ms.). These results suggest

that even for strictly neutral genes, the substitution rate may de-

pend on population size fluctuations.

Indeed, one may expect that the combination of overlap-

ping generations and fluctuations in population size may affect

the product of the number of new alleles entering the population

through mutation and the probability of each such new mutation

reaching eventual fixation. Assuming that all mutations happen

at reproduction (replication), the number of new mutants entering

the system varies under overlapping generations and fluctuating

demography. Thus, in a growing population, there will be a rel-

atively large number of new offspring, but this number will not

necessarily correspond to the inverse of population size if some

adults are surviving. Conversely, in a declining population there

will be little or no space left for newborn individuals carrying new

mutations to enter the population if adults have a high survival

probability. Here again, the number of new offspring is unlikely

to correspond to the inverse of population size.

In this article, we present an analytical model for the sub-

stitution rate under the joint effect of overlapping generations

and population size fluctuations. Although the two effects are

hardly ever considered together in the same population genetics

model, they represent both most reasonable assumptions. Popula-

tion fluctuations and overlapping generations represent the norm

rather than the exception throughout natural populations and their

dynamic interactions are eagerly studied in evolutionary demogra-

phy (Tuljapurkar 1989). The analytical model we develop allows

us to show that the substitution rate at neutral genes does depend

on demography in populations with overlapping generations and

population size fluctuations. Moreover, the quantitative deviation

can be strong depending on the demography considered.

The Model
Let us consider a haploid panmictic population of finite size with a

discrete number of age classes (a = 1, 2, 3, . . .) and consisting of

individuals reproducing at discrete time points (t = 0, 1, 2, . . .).

This population can be characterized at each time point by its

demographic state i , which could, for instance, be the size of the

population at that time, the distribution of the number of individ-

uals in each age class, or the current environmental conditions.

We assume that the demography of this population follows a

time homogeneous Markov chain and denotes by pij the transition

probability from demographic state i in a parental generation at

time t to demographic state j in the descendant generation at time

t + 1. We further assume that the Markov chain is aperiodic and

irreducible so that it eventually enters a stationary distribution,

with the probability of occurrence of state i at stationarity being

denoted bypi (Karlin and Taylor 1975; Grimmett and Stirzaker

2001).

Our aim is to evaluate the substitution rate (Kimura and

Ohta 1971) in the population once it has reached the stationary

demographic regime. We assume that mutant individuals are only

produced upon reproduction (replication), with probability μ, and

enter the population as age class one individuals (a = 1). We also

assume an infinite site model of mutation (Kimura and Crow

1964) so that each mutant is of a novel type and may eventually

reach fixation in the population.

We define the quantity

k ≡
∑

i

νipi, (1)

where νi is the expected number of age class one mutant individu-

als produced over one unit of time when the population is in state

i and that will ultimately reach fixation in the population so that

k is the expectation of this number over all demographic states.

We have

νi =
∑

j

pijnijμπ j , (2)

where nij is the expected number of individuals of age class one

in demographic state j in a descendant generation that have been

produced by individuals in demographic state i in the parental

generation and πj is the probability of ultimate fixation in the

population of a single copy of an allele in a population in demo-

graphic state j . When the process is run over a very long time,

k gives the expected number of mutants reaching fixation in the

population per unit time and thus qualifies as the substitution

rate.The substitution rate can also be expressed as

k = μ
∑

j

pjnjπ j , (3)

where

nj =
∑

i

p∗
jinij, (4)

which is the expected number of individuals in age class one when

the population is in state j , and where p∗
ji ≡ pijpi/pj is the back-

ward transition probability that a population taken in demographic
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state j descends from a parental population in demographic state i.

The expression for nj emphasizes that the number of mutants en-

tering the population in a given demographic state depends on both

the states of the parental and the descendant generations, and thus

possibly on the sizes of the parental and descendant generations.

We see from equation (3) that for k to become independent of

population size, the values of population sizes appearing in nj

must cancel those appearing in πj. To understand when this may

be the case, we now consider several explicit examples.

FLUCTUATING DEMOGRAPHY WITHOUT

OVERLAPPING GENERATIONS

Let us first consider the case in which there are no overlapping

generations but fluctuations in population size are allowed. Fur-

ther, consider that the demographic states determine population

sizes so that in state j the total population size is Nj. Because

all individuals in the parental generation die, we have nij = Nj,

whereby nj = Nj. Further, it is well established that in this case, the

fixation probability of a single mutant is simply the inverse of the

number of individuals in the population: πj = 1/Nj (Charlesworth

1980; Kimura 1983).

Substituting these expressions into equation (3), we obtain

k = μ, which states that the mutation rate (μ) equals the sub-

stitution rate (k) for neutral allele. In other words, we recover

the classical result that population size fluctuations do not af-

fect substitution rates at neutral loci in a population with discrete

nonoverlapping generations.

OVERLAPPING GENERATIONS WITHOUT

FLUCTUATING DEMOGRAPHY

We now consider the case of a population with overlapping gen-

erations but constant size N. For simplicity, we assume that every

individual in a given demographic state has the same survival

probability to the next time step than any other individual (i.e., no

senescence). We further assume that the demographic state deter-

mines the survival probability of individuals from one generation

to the next so that nij = N (1 − si ), where si is the survival prob-

ability of an individual in state i. With this, the expected number

of individuals in age class one when the population is in state j is

n j = N
∑

i p∗
ji(1 − si ) and thus depends on the transition proba-

bilities of the demographic process. But as every individual in a

given generation (newborn or surviving one) has exactly the same

fitness, the fixation probability of a single mutant is πj = 1/N in

any state.

Substituting these expressions into equation (3), we have

k = μ
∑

i

pi (1 − si ), (5)

which is the mean number of mutant age class one individuals

produced in the population per individual. Hence, introducing

overlapping generations reduces the substitution rate as fewer age

class one individuals are produced per generation and therefore

mutants. If the survival probability is constant (si = s), the sub-

stitution rate further simplifies to k = μ(1 − s). This is again a

classical population genetics result (Charlesworth 1980).

FLUCTUATING DEMOGRAPHY AND OVERLAPPING

GENERATIONS

We will now consider two different demographic models in which

population sizes fluctuate over time and there are overlapping

generations. To obtain explicit analytical expressions, we assume

as above that individuals do not senesce and all have equal survival

probabilities within a given demographic state, which is assumed

to determine population size. However, this survival probability

may depend on the population size of successive demographic

states, for example, during a decline of population size. Under

these assumptions, the expected number of individuals of age

class state j descending from state i can be written as

nij = Nj − Nisij, (6)

where sij is interpreted as the survival probability of a random in-

dividual living in a population in demographic state i in a parental

generation and that will be in demographic state j in the descen-

dant generation. Because nij ≥ 0, the population sizes must satisfy

the constraint N j − Ni sij ≥ 0 for a given sij value. The expres-

sion for nij says that the number of age class one individuals in

demographic state j is the total number of individuals in that state

minus the expected number of adults in state i that survived the

transition. The fixation probability of a single mutant in state j in

this model is still π j = 1/N j as every individual has exactly the

same fitness.

Two-state demography
We now consider the case in which the population fluctuates

between two sizes N1 and N2. The transition probabilities of the

demography are written as pii = αi and pij = 1 − αi for j �= i ,

where i, j ∈ {1, 2}. The stationary probability that the population

takes size N1 is then given by p1 = (1 − α2)/(2−α1 − α2) and

with complementary probability it takes size N2 (Grimmett and

Stirzaker 2001).

Substituting the stationary probabilities, the transition proba-

bilities, and equation (6) into equation (4), we find after algebraic

simplification that

ni = (1 − αi sii) Ni − (1 − αi )N j sji (7)

for j �= i and i, j ∈ {1, 2}. This equation illustrates that the num-

ber of age class one individuals in a given demographic state may

depend on both the sizes of the population in the parental and de-

scendant generation. Hence, population size is unlikely to cancel
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out from the product niπi in equation (3), and we find that the

substitution rate can be expressed under the present assumptions

as

k = μ

[
1 − 1

2 − α2 − α1

(
α1(1 − α2)s11 + (1 − α1)α2s22

+ (1 − α1)(1 − α2)

(
N1s12

N2
+ N2s21

N1

))]
.

(8)

The population sizes, N1 and N2, cannot be factored out

from this equation and the substitution rate thus depends on all

the features of the demographic process.

To be able to compare the effect on k of varying population

size relative to the case in which demography is constant, we

introduce the standardized substitution rate ks , which is the sub-

stitution rate k divided by its equivalent under constant population

size (N1 = N2). An example of the substitution rate with constant

population size in the presence of overlapping generations was

provided above (see eq. 5).

Using equation (8), we find that the standardized substitution

rate can be written as

ks = 1

+ (N2 − N1)(1 − α1)(1 − α2)(N1s12 − N2s21)

N1 N2 (2 − α2 − α1 − α1(1 − α2)s11 − (1 − α1) {α2s22 + (1 − α2)(s12 − s21)}) .

(9)

If we consider that N2 > N1, holding everything else con-

stant, then we can see that the substitution rate is increased relative

to what would be expected in the absence of population size fluc-

tuations if N1s12 − N2s21 > 0 and reduced otherwise. That is,

population size fluctuations affect positively the substitution rate

when the survival probability during a transition from the small

to the large population size (s12) tends to be large, and the sur-

vival probability during a transition from the large to the small

population size (s21) tends to be small.

Why does an increase in the survival probability during a

transition from the small to the large population (s12) tend to

increase ks? From equation (7), we can see that when a transition

from small to large population size occurs (from state 1 to 2),

the reduction in k due to overlapping generations in a situation of

constant demography is equal to s12. By contrast, under fluctuating

demography and overlapping generations, this reduction is given

by s12 N1/.N2, which is lower than s12 by our assumption that N2 >

N1. Population expansion will thus reduce the decrease of k due

to the presence of overlapping generations (because s12N1/N2 is

lower than s12), in other words, population expansion will increase

ks. Conversely, a reduction in population size will exacerbate the

reduction of k due to overlapping generations (because s21N2/N1

is lower than s21).

In the case in which we enforce α1 = α2 = α, so that the

probabilities of occurrence of the demographic states are the same,

we further obtain

ks = 1 + (1 − α)(N2 − N1)(N1s12 − N2s21)

N1 N2 (2 − s12 − s21 − α(s11 + s22 − s12 − s21))
,

(10)

and if we consider the extreme (arguably biologically unrealistic)

values for survival rates, where all individuals survive when the

population is growing or remains stable but all individuals born

at previous time steps die during a bottleneck (s21 = 0 and s12 =
s11 = s22 = 1), we obtain

ks = 2 − N1

N2
. (11)

If N2 is much larger than N1, the ratio in ks will eventually

vanish, and then ks = 2, which represents an upper bound for

the standardized substitution rate for a demography with only

two population sizes. In the following, we will expand the model

to an arbitrary number of population sizes to explore whether

we can generate stronger quantitative effects on the standardized

substitution rate.

More demographic states
We now consider a situation with c demographic states, with tran-

sition probabilities pii = α, pii+1 = 1 − α, and Pc1 = 1 − α for

i ∈ {1, 2, . . . , c}. That is, the population either remains in state i

with probability α or moves to state i + 1 with complementary

probability and when it has reached the last state returns to state 1.

The stationary distribution of this model is pi = 1/c. Substi-

tuting these stationary probabilities, transition probabilities, and

equation (6) into equation (4), we find that

ni = (1 − αsii) Ni − (1 − α)Ni−1si−1i , (12)

which illustrates again that the number of age class one individuals

in a given demographic state may depend on both the sizes of

the population in the parental and descendant generation. The

substitution rate (eq. 3) can be expressed as

k = μ

c

[ c−1∑
i=1

(
1 − αsii − (1 − α)

Ni sii+1

Ni+1

)

+
(

1 − αscc − (1 − α)
Ncsc1

N1

)]
.

(13)

We now consider the case in which Ni+1 ≥ Ni for all i so that

the population follows a dynamic with increasing population size

followed by a drastic bottleneck once it has reached state c. Then,

we can further assume that sii = 1 and sii+1 = 1, except sc1 = 0,

so that as above all individuals survive when the population is

growing or remains stable but all individuals born at previous

time steps die during a bottleneck. In this case, the standardized
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substitution rate becomes

ks = c −
c∑

i=1

Ni

Ni+1
, (14)

which can be made approximately as large as the number of demo-

graphic states c (population sizes) if the difference in successive

population sizes is extremely large during the expansion phase,

which may be unrealistic for natural populations. This example il-

lustrates that certain demographic regimes may result in a marked

increase in the substitution rate compared to the one expected for

a population with overlapping generations but no demographic

fluctuations. Population size fluctuations coupled with overlap-

ping generation could in principle also decrease the substitution

rate. However, under biological realistic situations, when survival

is higher when the population is growing and lower during pop-

ulation contractions, the effect will generally translate into an

acceleration of the standardized substitution rate relative to that

observed under constant demography.

Explicit demographic model
To gain some intuition about the extent to which the substitution

rate is affected by varying population size in a natural system,

we evaluate the standardized substitution rate (ks) by assuming

a standard serial demographic process consisting of population

expansions with density-dependent competition followed by a

bottleneck once the population has reached carrying capacity. To

that aim, we further assume that the parameter α tends to zero

in equation (13), so that the process moves in cycles of growth

and bottleneck in a quasi-deterministic way, and that the model

describing the growth phase is given by

Ni+1 = s Ni + r Ni

1 + ηNi
(15)

for 1 ≤ i ≤ c − 1. Hence, during the phase of growth, a propor-

tion s of adult individuals survive to the next generation, and

produce new offspring according to the Beverton–Holt model of

density-dependent competition (discrete time analogue of the lo-

gistic model; Begon et al. 1996; Brannstrom and Sumpter 2005)

with parameters r, which describes the fecundity of an individual

in the absence of competition, and η, which captures the effect of

density-dependent competition. If there were no bottlenecks, then

the population would eventually settle in the carrying capacity

K = (s + r − 1)/[η(1 − s)].

To evaluate the standardized substitution rate under the

growth law described above (eq. 15) and in the presence of bot-

tlenecks, we assume that, given values for the parameters s, r,

and η, we let the population grow from its initial size N1 until it

has reached the first size in the interval [K − 1, K ] and then let

the bottleneck occur. The number of time steps it takes to reach

this interval defines the number c of demographic classes in the

model. In Figure 1, we graph the standardized substitution rate

and associated demography as a function of s for given values of

r and η. Figure 1 shows that ks increases with s and that the effect

of demography for instance increases its value by 50% under the

demography depicted in C.

Discussion
In this article, we have shown that the substitution rate at neu-

tral genes may strongly depend on population size fluctuations.

This effect does not require unusual assumptions, as it is suffi-

cient jointly to consider overlapping generations with fluctuating

demography. Overlapping generations is the norm rather the ex-

ception in natural populations. Fluctuating population sizes seem

equally common in nature, even if the amplitude of population

size fluctuations is expected to be generally greater in prokaryotes

than in higher eukaryotes.

Our model suggests that the dependence on demography

of the substitution rate at neutral markers should be strongest in

populations characterized by strong fluctuations in population size

and a reasonably long life span (i.e., probability of survival from

one time step to the next). Deviations from a strict molecular clock

are not uncommon in empirical datasets (Drummond et al. 2006).

Moreover, empirically observed mutation rates over short periods

of time are often larger than substitution rates estimated over

longer evolutionary timescales (Lambert et al. 2002; Howell et al.

2003). There has been considerable discussion in the literature

on the causes that may underlie this difference, which has been

sometimes ascribed to purging of slightly deleterious mutations

being a slow process (Ho et al. 2005; Rocha et al. 2006; Soares

et al. 2009). Our results suggest that in some cases, population

size fluctuations should also be taken into account.

The dependence of the substitution rate on demography in

our model is a distinct effect from the one previously described

for loci under selection (Kimura and Ohta 1974; Pollak 1982;

Otto and Whitlock 1997; Rousset 2004). Under the assumptions

of population size fluctuations and overlapping generations, the

substitution rate is affected by population size irrespectively of

the selection regime. Indeed, the effect described in this article

is driven by the relative balance between the number of new

mutants entering the system and the fixation probability of neutral

alleles at any time step (μnj and πj, respectively in eq. 3). The

number of mutants that enter the population is a function of census

and not effective population size for both neutral and selected

alleles. The eventual fixation probability of neutral alleles is also

a function of census population sizes and not effective population

size (Appendix 1 of Leturque and Rousset 2002).

As such, the number of new mutants per time step (μnj)

will remain unaffected by the regime of natural selection acting

on the locus under scrutiny (unless mutation and demography are
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Figure 1. Substitution rate and demographies under growth law eq. (13) for r = 1.2, η = 0.001, and various values of survival s. (A–C)

Population demography for s = 0.1, s = 0.5, and s = 0.9, respectively. Time steps (t) are represented in the x-axis and population census

size on the y-axis. (D) The standardized substitution rate as a function of increasing values of s, with s = 0.1, s = 0.5, and s = 0.9

corresponding to the demographies represented in A–C highlighted on the curve.

themselves affected by selection). However, the fixation probabil-

ity (πj) of a mutant in a given demographic state will be affected by

natural selection. Under the deterministic demography described

in the “Explicit demographic model” section, πj may be replaced

by the approximation πj > 2S Ne/Nj, where S is the selection coef-

ficient and Ne the effective population size (Ewens 1967; Kimura

1970; Otto and Whitlock 1997). This shows that the substitution

rate at selected loci is not a direct function of effective population

size, and will depend explicitly on the number of new mutants

entering the system in each demographic state.

We evaluated the substitution rate under very simplistic de-

mographic scenarios, and more realistic cases would have to be

analyzed in the future with further theoretical work or with ex-

perimental evolution setups. However, our results already allow

us to make some general predictions on how population size fluc-

tuations and overlapping generations are likely to affect variation

in substitution rates within and between lineages.

Within lineage variation in the substitution rate due to de-

mography may be difficult to assess. Most animal and some plant

species (in temperate regions at least) tend to follow seasonal pop-

ulation size fluctuations. Fairly regular cycles are also expected

in many obligate pathogens, which alternate population bottle-

necks during host-to-host transmission with exponential popula-

tion growth after infection of the host. A good example would

be influenza, which is characterized by a fairly constant host-to-

host transmission time interval of 2–3 days (Fraser et al. 2009),

and cannot survive outside the human host. Under such regular

cycles, substitution rate is simply expected to accelerate. It should

in principle be possible to run a comparative analysis of substitu-

tion rates among various organisms to test for an effect of demo-

graphic fluctuations. The difficulty stems from the large number of

possible confounding variables. As such, the best strategy would

be to compare sister taxa with highly contrasted demographies.

Variation of substitution rates between lineages undergoing

different demographic trajectories should be easier to detect. A

good example may be the plague (Y. pestis), which is an endemic

bacterial disease in rodents and can also survive in the soil for

some time. Local outbreaks and epidemics can flare up, some

of which led to the historical pandemics and more recently to

the global pandemic at the end of the 19th century. In line with

the predictions of our model, there seems to be an excess of

new mutations reaching fixation in lineages having generated

new epidemics (Morelli et al. 2010). Unpublished simulations

(Cui et al. unpubl. ms.) show that lineages having generated a

larger number of outbreaks in the past accumulate an excess of

neutral single nucleotide polymorphisms (SNPs). This pattern

seems highly robust and could be replicated over a very wide

range of parameter values considered.

HIV lineages infecting communities with different risk-

taking behaviors may provide another interesting empirical test

case. From our results, we would predict higher substitution rates

in lineages of HIV circulating in groups at higher risk of infection

than in lineages found primarily in less risk-prone communities.

Such an effect would be driven by the variation in time intervals
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between host-to-host transmissions, which will lead to lineages

circulating in high-risk communities experiencing more frequent

population expansions and bottlenecks corresponding to recurrent

infections of new hosts along the transmission chain.

In this article, we have shown analytically that substitution

rates at neutral loci are affected by population size under fluc-

tuating population sizes and overlapping generations, which are

both expected to be the norm rather than the exception in natural

populations. We hope that our model will motivate future theoret-

ical and empirical work to assess the importance of this effect in

natural populations.
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