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Abstract

The identification of genetically homogeneous groups of individuals is a long standing
issue in population genetics. A recent Bayesian algorithm implemented in the software

 

STRUCTURE

 

 allows the identification of such groups. However, the ability of this algorithm to
detect the true number of clusters (

 

K

 

) in a sample of individuals when patterns of dispersal
among populations are not homogeneous has not been tested. The goal of this study is to
carry out such tests, using various dispersal scenarios from data generated with an individual-
based model. We found that in most cases the estimated ‘log probability of data’ does not
provide a correct estimation of the number of clusters, 

 

K

 

. However, using an ad hoc statistic
∆∆∆∆

 

K

 

 based on the rate of change in the log probability of data between successive 

 

K

 

 values,
we found that 

 

STRUCTURE

 

 accurately detects the uppermost hierarchical level of structure for
the scenarios we tested. As might be expected, the results are sensitive to the type of genetic
marker used (AFLP vs. microsatellite), the number of loci scored, the number of popula-
tions sampled, and the number of individuals typed in each sample.
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Introduction

 

Population genetics deals with the variations of allele
frequencies between and within populations. The most
widely used measures of population structure are Wright’s

 

F

 

 statistics (Wright 1931). To calculate these indices, one
needs first to define groups of individuals and then to use
their genotypes to compute variance in allele frequencies.
Thus, a fundamental prerequisite of any inference on the
genetic structure of populations is the definition of popu-
lations themselves. Population determination is usually
based upon geographical origin of samples or phenotypes.
However, the genetic structure of populations is not always
reflected in the geographical proximity of individuals. Popu-
lations that are not discretely distributed can nevertheless
be genetically structured, due to unidentified barriers to
gene flow. In addition, groups of individuals with different
geographical locations, behavioural patterns or phenotypes
are not necessarily genetically differentiated (for instance,
migratory bats from the same breeding roost could be

sampled thousands of kilometres apart in winter, see, e.g.
Petit 

 

et al

 

. 2001).
Among the methods not assuming predefined structure,

tree-based methods use genetic distance between indi-
viduals and tree construction algorithms such as 

 

upgma

 

 or
neighbour joining to group them in clusters (e.g. Saitou &
Nei 1987). Similarly, multivariate analyses such as multi-
dimensional scaling can help in identifying clusters of
individuals. However, these graphical methods are only
loosely connected to statistical procedures allowing the
identification of homogeneous clusters of individuals.

An alternative model-based method developed recently
by Pritchard 

 

et al

 

. (2000) and implemented in the software

 

structure

 

 aims at delineating clusters of individuals on
the basis of their genotypes at multiple loci using a Bayesian
approach. The model accounts for the presence of Hardy–
Weinberg or linkage disequilibrium by introducing popu-
lation structure and attempts to find population groupings
that (as far as possible) are not in disequilibrium (Pritchard

 

et al

 

. 2000). The estimated log probability of data Pr(

 

X

 

|

 

K

 

)
(equation 12 in Pritchard 

 

et al

 

. 2000) for each value of 

 

K

 

 is
given, allowing the estimation of the more likely number
of clusters. A quantification of how likely each individual
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is to belong to each group is also given, information that
can be then used to assign individuals to populations.
While the authors warn that Pr(

 

X

 

|

 

K

 

) is really only an indi-
cation of the number of clusters and an ad hoc guide (p. 949
in Pritchard 

 

et al

 

. 2000; p. 3 in Pritchard & Wen 2003), the
program has been widely used to this end. More generally,
it has been used for detection of genetic structure in sample
populations for medical purposes (Pritchard & Donnelly
2001; Satten 

 

et al

 

. 2001), assignment studies (Rosenberg

 

et al

 

. 2001), population admixture and hybridization ana-
lysis (Beaumont 

 

et al

 

. 2001; Goossens 

 

et al

 

. 2002; Randi &
Lucchini 2002), migration and dispersal analysis (Arnaud

 

et al

 

. 2003; Cegelski 

 

et al

 

. 2003; Berry 

 

et al

 

. 2004) and also to
detect, with or without success, cryptic genetic structure
of natural populations (Rosenberg 

 

et al

 

. 2002; Caizergues

 

et al

 

. 2003). Among the Bayesian clustering methods,

 

structure

 

 is the most widely used. While other methods
have been developed (Banks & Eichert 2000; Dawson &
Belkhir 2001; Corander 

 

et al

 

. 2003) and still other methods
for the assignment of individuals to populations exist (but
imply the a priori knowledge of source populations: Paetkau

 

et al

 

. 1995; Rannala & Mountain 1997; Cornuet 

 

et al

 

. 1999),
we will focus here exclusively on the software 

 

structure

 

.
Tests and comparative studies using empirical data sets

have been performed to assess 

 

structure

 

’s ability in assign-
ing individuals to their known cluster of origin (Pritchard
& Donnelly 2001; Rosenberg 

 

et al

 

. 2001; Manel 

 

et al

 

. 2002;
Turakulov & Easteal 2003). Most of these studies have
proven the software to be efficient in assigning individuals
to their populations of origin (albeit most are based on simu-
lations with limited number of populations and absence of
dispersal between them). However, little is known on the
crucial ability of 

 

structure

 

 to detect the real number
of clusters (

 

K

 

) which composes a data set. Pritchard 

 

et al

 

.
(2000) showed that 

 

structure

 

 easily detects two to four
highly differentiated populations but studies in molecular
ecology usually include many more populations and very
often these populations are not evenly distributed in space.
Many studies have described migration patterns departing
from Wright’s island model and including several hier-
archical levels and/or isolation by distance. For instance,
Chapuisat 

 

et al

 

. (1997), Giles 

 

et al

 

. (1998), Bouzat & Johnson
(2004) or Trouvé 

 

et al

 

. (2005) have documented situations
with a hierarchical pattern of population structure, as groups
are themselves clusters of differentiated populations. Another
pattern frequently described is a contact zone between
otherwise isolated populations. This situation implies a
relative genetic isolation between the two groups of popu-
lations and sometimes also a pattern of isolation by distance
within each group. Such a migration scheme was found for
instance by Lugon-Moulin 

 

et al

 

. (1999) who describe two
longitudinal geographical patterns of isolated shrew
populations separated by a zone through which dispersal
is strongly reduced.

Many of these studies have been conducted using
microsatellite markers to assess polymorphism. These DNA
markers are widely used because they are both co-
dominant and highly polymorphic (Jarne & Lagoda 1996).
However, their development is relatively expensive, time
consuming and can be difficult. An alternative family
of markers also commonly used in populations studies are
the amplified fragment length polymorphism (AFLPs)
(Vos 

 

et al

 

. 1995). AFLPs generate hundreds of polymorphic
bands and are easier to develop than microsatellites, but
they have the potential inconvenience of being dominant
(a DNA band is either present or absent). These two types
of markers have different properties. For instance, Gaudeul

 

et al

 

. (2004) reported very different levels of population
structuring inferred from AFLPs and microsatellite markers.
Both AFLP and microsatellites can be used for assignment
studies but their respective ability to delineate clusters of
individuals has not been compared so far.

The goal of this study is to test the ability of the algorithm
underlying the software 

 

structure

 

 to detect the number
of clusters in situations including more than two populations.
While the program is increasingly used, it is unknown
whether it can efficiently detect the real number of clusters
in hierarchical systems where migration between popula-
tions is uneven. We present an evaluation of the perform-
ances of the method under three models of population
structure: the island model, a contact zone, and a hierarchical
island model. For each model, we simulated AFLP and
microsatellite genotypic data sets that were subsequently
run in 

 

structure

 

, and then we analysed the output. We find
that 

 

∆

 

K

 

, an ad hoc quantity related to the second order rate
of change of the log probability of data with respect to the
number of clusters, is a good predictor of the real number
of clusters. 

 

structure

 

 identifies groups of individuals
corresponding to the uppermost hierarchical level, and
performs well with both dominant and codominant markers.

 

Materials and methods

 

Simulation of the three migration models

 

We used the software 

 

easypop

 

 (Balloux 2001) to generate
genotypic data from three different models of population
structure: an island model, a hierarchical island model and
a contact-zone model (Fig. 1). For all simulations and model
of population structure, mutation process followed the 

 

K

 

allele model (equal probability of mutations to any allelic
state) at a rate of 

 

µ

 

 = 10

 

−

 

3

 

. The modelled organisms are
diploid, hermaphroditic and randomly mating (excluding
selfing). Each simulation was run for 10 000 generations
to obtain populations at drift, migration and mutation
equilibrium. For each model, we generated 10 replicates
where each individual genotype was made of 100 micro-
satellite loci, each with 10 possible allelic states.
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The parameters that were varied for the simulations are
the number of populations, the number of individuals per
population, and the migration rates. These parameters are
summarized in Table 1. For the finite island model, five
populations of 100 individuals each are exchanging migrants
at a rate 0.01. The expected value of 

 

F

 

ST

 

 for these simula-
tions is 0.15.

The hierarchical island model (Slatkin & Voelm 1991)
consists in five sets of four populations, each made of 50
individuals (Fig. 1). Migration occurs at a rate 0.02 within
archipelago and 0.001 between archipelagos (Table 1).
The expected value of 

 

F

 

ST

 

 is 0.30 between archipelagos
(

 

F

 

Archipelago-Total

 

), 0.16 between islands within archipelagos
(

 

F

 

Island-Archipelago

 

), and 0.41 overall (

 

F

 

Island-Total

 

).
The contact zone model is characterized by two sets of

five populations, which are organized in a one dimension
stepping-stone scheme (Kimura & Weiss 1964). Migration
between the two sets occurs through the two central popu-
lations at a rate 10 times lower than within each set
(Table 1). The expected value of 

 

F

 

ST

 

 for this model cannot
be easily analytically resolved, but global 

 

F

 

ST

 

 estimated
over the 10 replicates (10 times 100 microsatellite loci) is
0.33 and pairwise 

 

F

 

ST

 

 range from 0.16 to 0.43. The observed
value of 

 

F

 

ST

 

 is 0.17 between the two sets (

 

F

 

Set-Total

 

), 0.25
between populations within sets (

 

F

 

Population-Set

 

), and 0.38
overall (

 

F

 

Population-Total

 

).

 

easypop

 

 generates codominant, microsatellite-like geno-
typic data. In order to simulate dominant AFLP data, the
genotypes generated by 

 

easypop

 

 were recoded as biallelic
loci, in a manner similar to Mariette 

 

et al

 

. (2002): a ran-
domly chosen half of the microsatellite alleles were coded
as ‘1’ and considered dominant while the second half was
coded as ‘2’ and considered recessive. Because with dom-
inant data, one cannot distinguish between a dominant
homozygote and a heterozygote, dominant phenotypes
(obtained from genotypes 1–1 and 1–2/2–1) were recoded
as 1–0, where 0 indicates a missing datum. Thus, AFLP data
sets bear a proportion of missing data that microsatellite
sets do not. This coding of alleles is different from what is
recommended in the user’s manual of 

 

structure

 

 (Pritchard
& Wen 2003), which suggests that dominant markers can
be dealt with by coding each phenotype (absence or pres-
ence of a band) by a single allele and a missing datum (1–
0 for dominant and 2–0 for recessive). We did not use this
method because it implies adding a missing value also for
recessive homozygotes, which seems unnecessary.

Microsatellite data sets given to 

 

structure

 

 were made
of 10 loci as this is a number commonly found in molecular
ecology studies. AFLP data sets were made of 100 loci,
which seem conservative as AFLP-based studies often
include hundreds of markers (Luikart 

 

et al

 

. 2003). A further
reason for this 1:10 ratio of microsatellite loci to AFLP bands
comes from a recent simulation-based study (Mariette

 

et al

 

. 2002) showing that at least 10 times more AFLP than
microsatellite loci are necessary to reach a similar accuracy
in the estimation of genetic diversity.

 

Sampling scheme

 

To assess the effects of sampling strategies on the method’s
accuracy, analyses were also carried out on partial data
sets. We investigated first the effect of the number of typed
loci by sampling only five microsatellites or 50 AFLP bands
(Table 2). We also looked at the effect of sampling a subset
of individuals from each population (Table 2). Last, for the
hierarchical island model, we also looked at the effect of
sampling a subset of the populations by randomly omitting
one island per archipelago (Table 2). We tested whether
partial sampling affected the detection of the true 

 

K

 

 by
comparing results between full and partial data sets.

Table 1 Parameters of the three migration models
 

 

Number of 
populations

Number of individuals/
population

Migration rate 
within set

Migration rate 
between sets

Island model 5 100 10−2 —
Contact zone 10, 2 sets of 5 pop. 100 10−2 10−3

Hierarchical island model 20, 5 sets of 4 pop. 50 2 × 10−2 10−3

Fig. 1 Schematic representation of the three migration models:
(A) Island model. (B) Hierarchical island model. (C) Contact zone.
Open arrows represent the migration rates between sets of popu-
lations and solid arrows the migration rates within sets (see also
Table 1).
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Structure runs

 

We set most of parameters to their default values as advised
in the user’s manual of 

 

structure

 

 2.0 (Pritchard & Wen
2003). Specifically, we chose the admixture model and the
option of correlated allele frequencies between populations,
as this configuration is considered best by Falush 

 

et al

 

.
(2003) in cases of subtle population structure. Similarly, we
let the degree of admixture alpha be inferred from the data.
When alpha is close to zero, most individuals are essentially
from one population or another, while alpha > 1 means
that most individuals are admixed (Falush 

 

et al

 

. 2003).
Lambda, the parameter of the distribution of allelic frequ-
encies, was set to one, as the manual advices. From a pilot
study, we found that a length of the burn-in and MCMC
(Markov chain Monte Carlo) of 10 000 each was sufficient.
Longer burn-in or MCMC did not change significantly the
results. As we found that different runs could produce
different likelihood values (even with much longer chains,
e.g. 1 000 000), for each data set 20 runs were carried out
in order to quantify the amount of variation of the likelihood
for each 

 

K

 

. The range of possible 

 

K

 

s we tested was from 1
or 2 to the true number of populations plus 3.

 

Statistics used to select 

 

K

 

The model choice criterion implemented in 

 

structure

 

 to
detect the true 

 

K

 

 is an estimate of the posterior probability
of the data for a given 

 

K

 

, Pr(

 

X

 

|

 

K

 

) (Pritchard 

 

et al

 

. 2000).
This value, called ‘Ln P(D)’ in 

 

structure

 

 output, is obtained
by first computing the log likelihood of the data at each
step of the MCMC. Then the average of these values is
computed and half their variance is subtracted to the
mean. This gives ‘Ln P(D)’, the model choice criterion to
which we refer as 

 

L

 

(

 

K

 

) afterwards. True number of popu-
lations (

 

K

 

) is often identified using the maximal value of

 

L

 

(

 

K

 

) returned by 

 

structure

 

 (Zeisset & Beebee 2001; Ciofi

 

et al

 

. 2002; Vernesi 

 

et al

 

. 2003; Hampton 

 

et al

 

. 2004). However,

we observed in our simulations that in most cases, once the
real 

 

K is reached, L(K) at larger Ks plateaus or continues
increasing slightly (a phenomenon mentioned in the
structure’s manual, Pritchard & Wen 2003) and the
variance between runs increases (Fig. 2A).

The distribution of L(K ) did not show a clear mode for
the true K, but we found that an ad hoc quantity based on
the second order rate of change of the likelihood function
with respect to K (∆K) did show a clear peak at the true
value of K. The rational for this ∆K is to make salient the
break in slope of the distribution of L(K ) at the true K. It is
best explained graphically, as is shown on Fig. 2. First, we
plotted the mean likelihood L(K ) over 20 runs for each K
(Fig. 2A). Second, we plotted the mean difference between
successive likelihood values of K, L′(K ) = L(K) − L(K − 1)
(Fig. 2B). This difference corresponds to the rate of change
of the likelihood function with respect to K, and is noted
L′(K). In a third step we plotted the (absolute value of the)
difference between successive values of L′(K), |L′′(K)| =
|L′(K + 1) − L′(K)| (Fig. 2C). This corresponds to the second
order rate of change of L(K) with respect to K. Finally, we
estimated ∆K as the mean of the absolute values of L′′(K)
averaged over 20 runs divided by the standard deviation
of L(K ), ∆K = m(|L′′(K )|)/s[L(K )], which expands to ∆K =
m(|L(K + 1) − 2 L(K ) + L(K − 1)|)/s[L(K )] (Fig. 2D). We divided
m(|L′′(K )|) by s[L(K )] because we found a clear and general
trend toward an increase of the variance of L(K) between
runs as K increased. We found the modal value of the
distribution of ∆K to be located at the real K. We used the
height of this modal value as an indicator of the strength of
the signal detected by structure.

Results

Overall simulation scenarios, we seldom found a mode of
the likelihood distribution L(K) at the real K (Fig. 3). In
most cases, the likelihood increased until the real K was
reached, and then leveled off (often still increasing after the

Table 2 Sampling scheme used for each model. In each situation, all the combinations (full and partial) between the numbers of individuals
and loci were tested. For the hierarchical island model the number of populations was also subsampled: 15 out of 20 populations (three
populations per archipelago)
 

 

Number of 
populations 

Number of 
individuals/
population  Number of loci 

full partial full partial full partial

AFLP microsat AFLP microsat

Island model 5 — 100 20 100 10 50 5
Contact zone 10 — 100 20 100 10 50 5
Hierarchical island model 20 15 50 20 100 10 50 5
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real K, Fig. 3). On the other hand, the distribution of ∆K
almost always showed a mode at the real K (Fig. 4).

For all three models, and both in full or partial con-
figurations, structure identified a number of groups corre-
sponding to the uppermost hierarchical level of genetic
partitioning between populations. structure primarily
highlights the between-sets of populations level for the
hierarchical island model and the contact zone, and the
between populations level for the island model. Importantly,
these results were obtained by using the modal value of
∆K rather than the maximum value of L(K) (Fig. 2A, D). In
Fig. 4, the magnitude of ∆K is plotted for each model and
sampling scheme, which allows the comparison of results
obtained with different parameters sets. Overall, there was
some variance among likelihood values L(K) for the differ-
ent replicates of the same parameter set, but for 29 out of 32
models, all replicates had the same modal value for ∆K.

Island model

For the full data set, as well as for the partial samplings, the
modal value of ∆K was K = 5, the true number of popu-
lations (Fig. 4A, B). The only situations in which structure
failed to detect the real K were the partial samplings of
20 individuals and five microsatellite markers as well as
20 individuals and 50 AFLPs markers (Fig. 4A, B). For the

case with microsatellites which failed to work, we did not
see any plateau nor a clear maximum in the likelihood
distribution of K for any of the 10 replicates, and the
software found a maximal likelihood value at K = 5 in 2
replicates, at K = 2 twice, at K = 3 four times and at K = 4
twice. For the case where the true K was not detected by
AFLPs, although most replicates had a distribution of L(K)
with a break in slope at K = 5 followed by a plateau, this
pattern was not strong enough to be translated in a high ∆K.

There is a stronger effect of the partial sampling of indi-
viduals and loci for microsatellites than AFLP markers
(Fig. 4A, B). For the complete data sets, microsatellites seem
to perform better than AFLPs markers (the peak is higher)
whereas for partial sampling, the results are similar for
both types of marker (Fig. 4A, B).

Hierarchical island model

For this model and under exhaustive sampling, the highest
likelihood was observed for K = 11 for AFLP (Fig. 3C) and
K = 12 for microsatellites (Fig. 3D) but the modal value of
∆K was at K = 5, which corresponds to the number of
archipelagos. Using ∆K, we observed that structure always
found the modal value to be K = 5 when all populations
were sampled (Fig. 4C, D). When we omitted one island in
each of the archipelagoes there was only one case of partial

Fig. 2 Description of the four steps for the
graphical method allowing detection of the
true number of groups K*. (A) Mean L(K) (±
SD) over 20 runs for each K value. The
model considered here is a hierarchical
island model using all 100 individuals per
population and 50 AFLP loci. (B) Rate of
change of the likelihood distribution (mean
± SD) calculated as L′(K) = L(K) – L(K – 1).
(C) Absolute values of the second order
rate of change of the likelihood distribution
(mean ± SD) calculated according to the
formula: |L′′(K)| = |L′(K + 1) – L′(K)|.
(D) ∆K calculated as ∆K = m|L′′(K)|/
s[L(K)]. The modal value of this dis-
tribution is the true K(*) or the uppermost
level of structure, here five clusters.
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sampling where ∆K was not maximum at K = 5 (Fig. 4F).
This was for the sampling of 20 individuals and 5 micro-
satellite loci and was actually due to 3 out of 10 replicates.
In these replicates, one of the 20 runs of the MCMC gave
extremely small L(K) values for K = 20 and K = 21, which
brought the mean of L(K) down. As ∆K is an absolute value
of a second order rate of change, it is sensitive to this type
of behaviour. However, in real situations, it would have
been obvious that these runs did not converge and should
be removed (Fig. 4F), in which case the mode at K = 21
disappears (data not shown).

For AFLPs, the height of the modal value increased with
the intensity of sampling and the number of loci typed, as
expected. For microsatellites, the situation was less clear
because in several cases ∆K was higher with partial sampling

(Fig. 4D). When comparing AFLPs and microsatellites data
sets for the same sampling intensity, we found the height
of the modal value to be on average higher for microsatellites
than forAFLPs, an indication that the signal was stronger
in the former. However, AFLPs performed more regularly
than microsatellites (Fig. 4C, E).

In order to detect substructuring within archipelagos,
we used the best assignment of individuals to one of the
five groups to define five subgroups. Each of this subgroup
was subsequently analysed with structure to detect
number of subgroups in each cluster. We did not apply this
method to all the subsets of data but for the three subsets
we tested, we always found the modal value of ∆K to be
K = 4, which corresponds to the number of populations
within each subset.

Fig. 3 Log probability of data L(K) as a
function of K for the three migration models
under exhaustive sampling (averaged over
the 10 replicates). Results are shown for
AFLPs (panel A, C and E) and micro-
satellites (panels B, D and F). Panels A and
B: island model (IM). Panels C and D:
hierarchical island model (HIM). Panels E
and F: contact zone (CZ).
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Contact zone

Averaged over replicates (and for exhaustive sampling),
the highest likelihood was observed for K = 13 (Fig. 3E, F).
However, the modal value of ∆K was K = 2 for all
replicates, using either full or partial data sets with 20
individuals out of 100 and 5 microsatellite loci or 50 AFLP
loci only (Fig. 4G, H). K = 2 corresponds to the uppermost
level of structuring in the model, as the 10 demes were
partitioned into two sets of five populations by a ‘contact

zone’ of restricted gene flow. Similarly to the hierarchical
island model, a division of the data set in two groups cor-
responding to the best assignment of individual to groups
made by structure and a subsequent analysis of each
subset detected five populations in each subset.

Subsampling of individuals or loci reduced the height of
the modal value of ∆K (Fig. 4G, H), and 10 AFLPs produced
a weaker signal than one microsatellite because the aver-
age magnitude of the height of the modal value of ∆K was
twice lower for the former.

Fig. 4 Magnitude of ∆K as a function of K
(mean ± SD over 10 replicates), calculated
for each model using the procedure
illustrated in Fig. 2 (A) island model (IM)
with AFLP loci; (B) IM with microsatellite
loci; (C) Hierarchical island model (HIM)
with AFLP loci; (D) HIM with micro-
satellite loci; (E) HIM with AFLP loci and
15 populations sampled out of 20; (F) HIM
with microsatellite loci and 15 populations
sampled out of 20; (G) Contact Zone (CZ)
with AFLP loci; (H) CZ with microsatellite
loci. Solid lines correspond to exhaustive
sampling, while dashed, dotted and dotted-
dashed lines represent partial sampling.
Dashed lines illustrate models with 100
individuals and 50 loci (A, G), 100 indi-
viduals and 5 loci (B, H), 50 individuals
and 50 loci (C, E) and 50 individuals and 5
loci (D, F). Dotted lines represent cases
with 20 individuals and 100 loci (A, C, E, G)
and 20 individuals and 10 loci (B, D, F, H).
Dotted-dashed lines illustrate models with
20 individuals and 50 loci (A, C, E, G) or 20
individuals and 5 loci (B, D, F, H).
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Discussion

Our goal in these simulations was to confront the algorithm
underlying the program structure with populations
organized less simply than the standard island model. We
emphasize here that our purpose was not to test the quality
of the assignment of individuals to groups, as this has been
done (for simpler population structure) by others (e.g.
Rosenberg et al. 2001; Manel et al. 2002). We showed that
while L(K), the (ad hoc) estimate for the number of groups
given by structure often does not correspond to the real
number, ∆K, another ad hoc quantity based on the second
order rate of change of the likelihood function with respect
to K, has a mode at the true K for most of the situations
investigated. When the mode of ∆K at the true K was absent,
it was either because sample size and marker number was
small, leading to an absence of signal, or visual inspection
of the values of L(K) would have identified runs of the
MCMC with outlying values for L(K). We further found
that the algorithm underlying structure detects the upper-
most level of population structure, and that subgroups
created by the best individual assignment produced by
structure permits to identify sublevels of structuring. We
restricted our simulations to cases of moderate to strong
structure at different hierarchical levels because our goal
was to test the ability of the algorithm to detect the number
of groups of individuals in situations when different layers
of population structure exist, as is often the case in real
situations. Limited simulations for the hierarchical island
model with a higher migration rate still detected the
(correct) number of archipelagos. This was the case for 10
microsatellites or 100 AFLPs bands with migration rates
equal to 0.004 between archipelagos (FArchipelago-Total = 0.17)
and 0.02 within archipelagos (FIsland-Archipelago = 0.14) and
the correct number of archipelagos was still detected with
a migration rate of 0.08 between archipelagos (FArchipelago-

Total = 0.038) and 0.02 within (FIsland-Archipelago = 0.035), but
only with the genetic information from 100 AFLPs.

As might be expected, we found that the intensity of
sampling both of individuals and markers plays a role in
the correct detection of the number of groups. Among the
types of markers commonly used for population structure
detection, it seems that microsatellites perform slightly
better than AFLPs. However, AFLPs gave more regular
results in the situations of partial sampling. We note here
that the AFLPs coding used (which differs from that advo-
cated by Pritchard & Wen 2003) seems to work quite well
despite the presence of numerous and nonrandom missing
observations (since the missing allele always comes associ-
ated with the dominant), absent from microsatellite data sets.

The quantity ∆K still allows the detection of the real
number of groups with five microsatellites or 50 AFLPs.
However, for the three models we simulated, the intensity
of the signal detected with five microsatellites or 50 AFLP

loci was usually lower than when the full set of loci was
considered. For the AFLP data sets with 50 loci, the signal
was the weakest and thus we suggest a minimum of 100
loci is necessary to insure the detection of the correct number
of groups by structure. Similarly, partial sampling of
individuals led to a lower ∆K at the true K.

In the case of the partial sampling including 15 demes
out of 20 in the hierarchical island model (three out of four
demes on each island) structure still detected a strong
signal at K = 5 except in one situation of partial sampling.
For microsatellites, the height of the modal value of ∆K did
not change in comparison with the full hierarchical island
model but for AFLPs it decreased by about 50%. While the
exhaustive sampling of all potential sources of migrants is
crucial if one wants to investigate the comprehensive
pattern of migration and structure in an area, our results
indicate that the program still works with missing sources,
given the level of structure we simulated.

Finally, it must be emphasized that while our simulations
provide some indications as to how the structure’s algo-
rithm reacts to limited sampling, a much more thorough
investigation remains to be done. Similarly, the ability of
structure to detect clusters of individuals at different
levels when dispersal among the clusters is more intense is
not clear. However, Rosenberg et al. (2002) showed empir-
ically on a very large microsatellite data set (377 loci)
encompassing 1026 individuals from the five continents
that humans cluster in five groups, loosely corresponding
to the five continents. They obtain these results despite the
notoriously weak genetic differentiation among human
populations (FST among continents around 5%, and lower
between populations within continents). Obviously, few
nonhuman species could be genotyped with such inten-
sity, but this study indicates that detection of the correct
number of clusters can still be found when differentiation
is weaker than in our main simulations, and this was
confirmed by further limited simulations with FST among
archipelagos as low as 3.8% (see above).

In conclusion, we showed that structure is not only
able to detect the structure of data sets simulated according
to an island model but performs also very well when con-
fronted with more complex hierarchical migration schemes.
In such situations, the uppermost hierarchical level of
population structure is detected. Subsequent analyses of
subsets defined by the best assignment of individuals to
groups provided by the program allow finding the hidden
within-group structure. Importantly, we showed that the
real number of groups is best detected by the modal value
of ∆K, a quantity based on the second order rate of change
with respect to K of the likelihood function. However, we
emphasize that while ∆K helps in identifying the correct
number of clusters in most situations, it should not be used
exclusively. For instance, ∆K cannot find the best K if K = 1.
We insist that this criterion is another ad hoc criterion, and
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that it should be used together with the battery of other
information provided by structure: L(K) itself, the value
of α and individual assignment patterns (see section 5 in
Pritchard & Wen 2003). Last, while structure is not profiled
to analyse data from dominant markers, our simulations show
that AFLPs can give results as accurate as microsatellites.
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