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The study area of the Chobe Enclave (northern Botswana) is defined asmostly covered by Arenosols in available
maps. However, recent explorations of the area showed that soils aremore diverse than expected. This is because
of complex interactions between current alluvial deposition processes, paleo-environmental effects (ancient al-
luvial deposition, ancientwind-blown sand deposits) and ongoing hydrological effects and colluvial effects on to-
pographic gradients. An in-depth exploration of both soils and vegetation in the areawas conductedwith the aim
(i) to survey the soil diversity at the Chobe Enclave, (ii) to study soil dynamics and identify the key factors of this
diversity, and (iii) to create a soil map based on the analysis of the soil-vegetation relationship. For this purpose,
thirty-six soil profiles were extensively described according to the World Reference Base for soil resources. In
order to better classify these soils, physicochemical parameters, such as pHH2O, exchangeable cations, andparticle
size distributions, were measured for a specific set of soils (n = 16), representative of their diversity. To assess
Soil Organic Matter (SOM) dynamics, samples were studied using Rock Eval pyrolysis. Results show a high soil
diversity and heterogeneity with the presence of (i) Arenosols, as expected, but also of (ii) organic-rich soils,
such as Chernozems, Phaeozems, and Kastanozems, (iii) salty/sodic soils, such as Solonchaks and Solonetz, and
finally (iv) calcium-rich soils, such as Calcisols. Analyses of the different actors driving the soil diversity empha-
sized the importance of the surficial geology, composed of different sand deposits (red sands/white sands), car-
bonate and diatomite beds, aswell as ancient salt deposits, inwhich high proportions of exchangeable Na+were
found, associated with high pHH2O (up to 11.3). In addition, as a parameter, the topography creates a complex
hydrological system in the Chobe Enclave and therefore, induces a notable soil moisture gradient. Moreover,
this study stressed the key role of termites: not only do they modify physicochemical patterns of soils, but
they also decay and incorporate large quantities of fresh plantmaterials into soils. Finally, the analysis of Organic
Matter (OM) showed that the Soil Organic Carbon (SOC) is composed essentially by recalcitrant Organic Carbon
(OC) substances, such as charcoal, a common carbon type of tropical soils.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Soils of Botswana are hardly studied and the rare previous research
was mostly conducted at a very large scale (Remmelzwaal and Van
Waveren, 1988; De Wit and Nachtergaele, 1990; European Soil Data
Center (ESDAC), 2014). In these studies, the Chobe Enclave (northern
Botswana) is mainly described as completely covered by Arenosols.
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However, soils are expected to be much more diverse when consider-
ing the multiple actors and the complex microtopography of the
region. This diversity is suggested by the changing vegetation pattern,
where forests and woodlands on the upper positions alternate with
grasslands, in the floodplains. This variety in soil types has been
confirmed by preliminary explorations of the area by three of the au-
thors, P. Vittoz, A. Mainga, and E.P. Verrecchia, in 2016 and by Diaz
et al. (2019). It seems likely that the large number of factors partici-
pating in the soil formation in this area, i.e. hydric conditions, topog-
raphy, nature of the soil parent material (i.e. aeolian or alluvial),
impact of biological activity (termites and plants), as well as fires
(natural or caused by arson), must lead to a high soil heterogeneity
and diversity.

Moreover, understanding the soil diversity and characteristics is es-
sential, first for landmanagement and use, and second, at a larger scale,
to estimate the Soil Organic Carbon (SOC) stocks and their associated
carbon dynamics. From a conservation and land use perspective, the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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appraisal of the nature and origin of soils in the Chobe Enclave is critical
to understand the ecological parameters of the region, such as the veg-
etation, the heterogeneity and the forage nutrient status for herbivores;
in addition, information is needed to assess wildlife ecology and to de-
velop appropriate conservation strategies. The Chobe Enclave is a key
dry season range for migratory buffalo and zebra, which is likely linked
to the hydrological, soil, and vegetationpatterns and dynamics in the re-
gion (Fynn et al., 2014). From a SOC perspective, soils are the second
largest C sink after the oceans (38,400 Gt; Kutsch et al., 2009; Schmidt
et al., 2011; Stockmann et al., 2013). The quantity of Soil Organic Matter
(SOM) differs significantly from one environment to another, and al-
though the content rarely exceeds 10 g kg−1 (1%) in Arenosols
(Blanchard et al., 2005), it can reach up to 90% in organic rich soils
such as Histosols (Troeh and Thompson, 2005).

Therefore, this study aims at (i) the inventory and classification of
the diversity of soils in the Chobe Enclave, as well as at (ii) proposing
a soil map on the regional scale, which can be linked to variation in
vegetation structural and community dynamics and wildlife ecology.
Furthermore, the various soils, with their respective characteristics,
have been interrelated to the key factors listed above; these factors
that drive the soil processes allow (iii) SOC dynamics of the area to
be better assessed. In order to tackle these objectives, a reconnais-
sance field work was performed during winter and early spring
2017. A total of 36 soil profiles were described, and a complete vege-
tation survey was performed for each of them. Among them, 16 repre-
sentative soil profiles of the observed diversity were selected for
further laboratory analyses. As previous studies were more limited
in terms of data harvesting, this combined field and laboratory ap-
proach helped to better circumscribe the diversity of pedogenic pro-
cesses at work in the area.
Fig. 1. Situation of the Chobe Enclave in Botswana (upper leftmap). The soil survey area is delim
from Google Map, 2018).
2. Materials and methods

2.1. Study site

The Chobe Enclave (18° 10′ N, 24° 10′ E) is located in northern
Botswana, along the Namibian border and close to Zambia. The area is
1690 km2 (Jones, 2002; Fig. 1). The Chobe Enclave is part of a large
trans-border conservation area, called the 440,000 km2 Kwando-
Zambezi Trans-Frontier Conservation Area (KAZA-TFCA; Pricope et al.,
2015). The large region of the Chobe has been protected since 1961,
first as a game reserve and then, since 1968, as a national park. How-
ever, the study area itself, surrounded but outside of the Chobe National
Park, ismanaged by the Chobe Enclave Community Trust (CETC; Pricope
et al., 2015).

2.1.1. Climate
The Chobe Enclave is affected by fluctuations of the Intertropical

Convergence Zone (ITCZ), which brings heavy thunderstorms and rain
during the wet season, from November to March, and high tempera-
tures, i.e. between 30 and 40 °C during the day, in the dry season,
from April to October. It is one of the wettest regions of Botswana,
with an average annual rainfall of 650 mm (Jones, 2002; Burgess,
2006). For detailed information on rainfall and temperature dynamics
over the annual cycle in the region, see Fynn et al. (2014).

2.1.2. Bedrock and soil parent material
The study area is situated in the Kalahari basin, a continuous sand

body of 2.5 × 106 km2 (Jones, 1980). Sands dunes in the study area
were formed during dry events of the late Pleistocene (Haddon and
McCarthy, 2005). The parent material of a large part of soils in the
ited by the yellow line. Themain villages of the region are located bywhite dots (modified
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Chobe Enclave directly lie on Kalahari sand deposits (e.g. Wang et al.,
2007). Two types of sands were observed: (1) red sands (along the
Chobe Fault, and in some places localized within the Enclave), which
are deep aeolian sands (McCarthy et al., 2005), and (2) alluvial white
sands covering floodplains and infilling paleochannels (Sianga and
Fynn, 2017); most of these surficial particles seem to have been
reworked by alluvial processes, which have led to the deposition of
grey/white sands in the Chobe Enclave depression by the Linyanti
River (McCarthy, 2013). In addition, carbonate and diatomite beds
were also found outcropping in some places in the central part of the
Enclave. They are thought to be ancient palustrine/lacustrine deposits
formed during the Quaternary wet periods, when the region was tem-
porally submerged by water (Burrough and Thomas, 2008; Burrough
et al., 2009; Diaz et al., 2019; Mendelsohn et al., 2010).

2.1.3. Geomorphology and topography
The Chobe Enclave is clearly limited topographically by two main

fault-line scarps belonging to the Okavango Rift Zone (ORZ), which is
a western branch of the East-African Rift: (i) the Linyanti Fault (in the
northwest) and the Chobe Fault (in the southeast; McCarthy, 2013). In
addition to these faults, the area has an extremely complex geomor-
phology system composed of fossil sandbanks, islands, channels, and
swamps. It is composed of an ancient system of islands and channels,
which can be easily observed from satellite images. Indeed, the Chobe
Enclave is thought to have been part of a large delta and a lake during
the Late Pleistocene (Burrough et al., 2009). The formation of some of
the islands can probably be compared to those of the present-day Oka-
vango delta system (McCarthy et al., 2012), in which siliceous, low car-
bonate, and salt deposits occur due to evapotranspiration processes and
aeolian dust deposition behind tree curtains (Humphries andMcCarthy,
2014). In addition to this microtopography, the region shows a small
difference in elevation between extremities (~10m,with a E-Waverage
slope of 0.025%); large areas of the north-east of the Enclave are regu-
larly flooded by the Linyanti river, whereas the south-west is slightly
higher without any flooding, except for small depressions accumulating
water after heavy rains (Kinabo et al., 2007). Different geomorphologi-
cal areas have been recognized in the Chobe Enclave, based on the ob-
servation of satellite images and field work. The first one covers the
north-east and is mainly composed of grey-white sands, which proba-
bly have a fluvial origin, either brought by the Zambezi or by the
Linyanti (to a lesser extent) rivers. A second zone, dominated by dark
red and reddish sands, stretches all along the Chobe Fault, adjacent to
the Chobe Forest Reserve. Finally, the central part of the Enclave, cov-
ered by fossil islands and a channel system, is divided into two sub-
areas, a humid one in the north-east (possibly related to floods from
the Linyanti and the Zambezi), and a dry one in the south-west.

2.1.4. Vegetation
A large-scale vegetation map, covering the whole North of

Botswana, shows that the Chobe Enclave includes mopane forests
(dominated by Colophospermum mopane), acacia grasslands and
sandvelds (low cover of Acacia sp., Terminalia sericea or Philenoptera
nelsii on different grass communities), Baikiaea forests (dominated by
Baikiaea plurijua, Baphia massaiensis, Croton gratissimus) along the
southern edge, with riparian forests along the Linyanti and isolated
dryfloodplains andwetlands in the north-east (Sianga and Fynn, 2017).

2.1.5. Fauna
Termites are known to have an extensive impact on soil proprieties

of tropical areas as they modify the soil structure and its clay and SOM
contents (McCarthy et al., 1998; Jouquet et al., 2007, 2011; Menichetti
et al., 2014). In northern Botswana, three main families of termites
have themost impact on soil proprieties: the harvester termites (Family
Hodotermitidae), the snouted termites (Trinervitermes spp., Family
Termitidae) and the fungus-growing termites (Family Macrotermitinae;
Gutteridge and Reumerman, 2011). The area is also known for its
large populations of big mammals such as elephants, buffalos, and ze-
bras, which can act as geomorphological and soil agents (Butler, 1995;
Haynes, 2012; McNaughton et al., 1997).

2.2. Soil description and sampling

Due to the size of the area and the diversity/heterogeneity of the
landscape, the sampling strategywas based on an unsupervised vegeta-
tion map of the area. This map was created using six wavelengths from
Landsat™ images over three seasons (bands 2 to 7: blue, green, red,
near-infrared and two bands of short-wave infrared). Sampling sites
for soil descriptions were chosen mainly according to the vegetation
map and Google Earth images. These sites were selected in order to rep-
resent diversities of the vegetation, the substratum, and the geomor-
phology encountered in the Chobe Enclave. All profiles were situated
at a distance b 400m from the tracks, for safety and time reasons;more-
over, spots of relatively homogeneous vegetation and geomorphology
were preferentially chosen in order to get representative soil and vege-
tation surveys. Indeed, each soil description was simultaneously con-
ducted with the description of its associated plant community. Most of
the sites retained have been distributed in the central part of the
Chobe Enclave because of time and weather constraints (heavy rains
in January–February 2017; Fig. A.1).

Thirty-six soil profiles were dug at a minimum depth of 80 cm and
up to 140 cm. Samples were collected systematically at fixed depths:
0–5 cm, 10–15 cm, 25–30 cm, 45–50 cm, 75–80 cm and at the deepest
point reached during sampling or at the encounter of the parent mate-
rial. Some field measurements and analyses were performed in situ:
texture, structure, and compactness (FAO, 2006), soil colour (Munsell
soil colour chart, Munsell Color, 1994) and presence/traces of termite
activity. The proportion of roots and the soil reaction to 10% HCl were
described with indices from 1 (no root or no HCl reaction) to 4 (highest
root density and reaction to acid). Twenty-eight holes were also drilled
using an auger and core samples were tested in situ.

2.3. Physicochemical analyses

Sixty-five samples from sixteen distinct soils, representing the diver-
sity observed in the field, were retained for laboratory analyses. The soil
physicochemical proprieties included (i) particle-size distribution,
assessed using a laser grain-sizer (Mastersizer 3000, Malvern Instru-
ments), (ii) soil extraction using cobaltihexamine chloride to quantify
the exchangeable cation and the Cation Exchange Capacity (CEC; Aran
et al., 2008; Ciesielski et al., 1997; Orsini and Remy, 1976), (iii) pHH2O,
measured using a pH-meter (Orion Star A111, Thermo Scientific) after
suspension in a 1:2.5 soil: water ratio, and finally (iv), OM content,
analysed using Rock-Eval 6 pyrolysis (Technologie Vinci) of soil sam-
ples. Three parameters are measured during Rock Eval pyrolysis:
(i) the Tmax (in °C), i.e. the temperature corresponding to the optimum
hydrocarbon release during pyrolysis; (ii) the amount of pyrolyzed car-
bon in a N2 atmosphere, or PC (Behar et al., 2001); (iii) the residual car-
bon, or RC, as the carbon content measured during the oxidation phase
(Behar et al., 2001). In addition, the two indices proposed by Sebag et al.
(2016) have been used, i.e. the I- index, emphasizing the degree of
transformation of the immature organic fraction (related to SOM stabi-
lization), and the R-index highlighting the contribution of the most re-
fractory fraction or persistent SOM.

2.4. Soil micromorphology

Samples were taken for the making of thin sections used in soil mi-
cromorphology. Kubiëna boxes were utilized to sample the soil. The ob-
jective was to target some specific properties and features of soils
(termite action, presence of charcoal, origin of the net transitions be-
tween horizons or layers, aspect of unidentified organic matter). Lastly,
15 Kubiëna boxes were sent for fabrication to Dr. Massimo Sbrana,



Table 1
Physicochemical parameters of soils in the Chobe Enclave. Values aremeans of samples (n
: number of samples) for each type of soil. Resultsmarkedwith a star (*) refer to themean
of the various horizons of a single soil. CEC: cation exchange capacity [cmol+/kg]; TOC: to-
tal organic carbon [%]; Clay, silt, sand: proportion of each particle-size [%].
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Servizi per la geologia in Piombino, Italy. Thin sections were observed
with an Olympus BX5 microscope coupled to an Olympus DP 72 digital
camera. The terminology used to describe thin sections conforms to
Stoops (2003).
n pH Al3+ Fe2+ Mg2+

Arenosols 20 6.5 ± 0.6 0.02 ± 0.05 0.01 ± 0.01 0.12 ± 0.06
Calcisols* 4 9.1 ± 0.7 0.01 ± 0.01 0.06 ± 0.01 0.63 ± 0.14
Chernozems* 4 8.9 ± 0.4 0.00 ± 0 0.29 ± 0.11 2.96 ± 0.47
Arenic Kastanozems 12 8.7 ± 0.6 0.00 ± 0 0.07 ± 0.02 0.62 ± 0.27
Siltic Kastanozems 12 8.3 ± 0.4 0.00 ± 0 0.13 ± 0.06 2.91 ± 1.60
Phaeozems* 4 6.8 ± 0.4 0.00 ± 0 0.23 ± 0.17 2.12 ± 1.61
Solonchaks* 4 10.1 ± 0.5 0.00 ± 0.01 0.19 ± 0.05 0.37 ± 0.45
Solonetz* 4 9.1 ± 1.9 0.01 ± 0.01 0.09 ± 0.05 0.37 ± 0.27

n Na+ K+ Ca2+ CEC

Arenosols 20 0.00 ± 0 0.03 ±
0.03

0.64 ± 0.48 0.94 ± 0.63

Calcisols 4 0.68 ± 0.89 0.58 ±
0.17

3.44 ± 1.56 5.16 ± 1.56

Chernozems 4 0.08 ± 0.05 0.42 ±
0.24

16.58 ±
5.08

22.96 ± 9.49

Arenic
Kastanozems

12 0.00 ± 0.00 0.26 ±
0.04

4.66 ± 1.19 6.04 ± 1.76

Siltic Kastanozems 12 0.11 ± 0.11 0.35 ±
0.28

10.40 ±
4.59

14.14 ± 6.31
2.5. Soil classification and mapping

Soils were classified following the World Reference Base for soil re-
sources (IUSS Working Group WRB, 2014), based on field observations
and laboratory analyses. As termites have a leading role in the soils from
this area, a Termitic principal qualifier was used for soil presenting a
hard carbonate termite-made horizon (compactness: hard or very
hard; HCl reaction to carbonate: 3–4/4).

A soil map of the Chobe Enclave was produced using GIS tools (QGIS
software 2.18.16), at a pixel resolution of 30 m × 30 m, based on the
vegetation map of the Chobe Enclave and the positive correlation be-
tween the classification of the thirty-six soil profiles (grouped in five
main groups: Chernozems-Phaeozems, Arenosols, salty/sodic soils,
Kastanozems, and Calcisols) and their corresponding vegetation sur-
veys (eight groups: Sandveld, Baikiaea forest, Dry floodplain grassland,
Colophospemum mopane woodland, Mixed riverine forest, Combretum
hereroense woodland, Dambo grassland and Wet floodplain grassland).
Phaeozems 4 0.02 ± 0.05 0.25 ±
0.26

11.75 ±
9.69

17.61 ±
14.27

Solonchaks 4 13.93 ±
7.64

0.76 ±
0.25

1.53 ± 0.88 17.65 ± 5.39

Solonetz 4 5.02 ± 5.97 0.52 ±
0.47

1.19 ± 0.84 7.12 ± 5.51

n TOC Clay Silt Sand

Arenosols 20 0.15 ± 0.13 0.8 ± 0.3 2.6 ± 1.7 96.6 ± 1.9
Calcisols 4 0.50 ± 0.25 7.0 ± 2.8 18.0 ± 4.3 75.0 ± 5.4
Chernozems 4 3.10 ± 1.62 11.7 ± 0.7 65.8 ± 2.4 22.5 ± 2.9
Arenic Kastanozems 12 0.47 ± 0.33 5.8 ± 1.2 25.9 ± 6.8 68.3 ± 7.3
Siltic Kastanozems 12 0.61 ± 0.41 15.2 ± 4.6 50.4 ± 12.0 34.4 ± 14.4
Phaeozems 4 2.44 ± 2.75 8.6 ± 5.5 42.9 ± 20.0 48.5 ± 25.3
Solonchaks 4 0.43 ± 0.16 13.3 ± 2.4 61.5 ± 4.3 25.2 ± 4.5
Solonetz 4 0.18 ± 0.14 7.5 ± 5.1 20.2 ± 6.1 72.3 ± 11.0
2.6. Data processing

Thermal stability of the OM was assessed using the I and R indices
calculated from thepyrogram curves resulting from the Rock Eval pyrol-
ysis (Sebag et al., 2016). The relationships between soil physicochemical
parameters and soil diversity of the areawere assessed using a principal
component analysis (PCA) with eight physicochemical variables, i.e.
Total Organic Carbon (TOC), I-index, R-index, exchangeable Ca2+,
Na+, and K+, CEC, and the sand percentage. PCA, correlations, and re-
gressions between I and R indices were performed using MATLAB™
software (MATLAB R2016a, MathWorks Inc.).
3. Results

3.1. The Chobe Enclave's soil diversity

Based on the 36 soil profiles described in the field, seven different
soil groups were identified according to the WRB (IUSS Working
Group WRB, 2014): Arenosols (n = 13), Calcisols (n = 2), Chernozem
(n = 1), Kastanozems (n = 12), Phaeozems (n = 4), Solonchak (n =
1), and Solonetz (n= 3). These soils are described in an Appendix doc-
ument, data for each soil given in Appendix Table A.1, and their general
properties are summarized in Table 1. The following section only fo-
cuses on the information related to their nature, specific locations,
and/or associated vegetation patterns.
3.1.1. Arenosols
This is themain group of soils in the Chobe Enclave; they can be clas-

sified asArenic as they contain a high proportion of sand (N70%). Despite
this high sand proportion, Arenic soils are not systematically defined as
Arenosols. Arenosols are mainly observed in two contrasted situations.
Red sand areas are located on the southeastern side of the Chobe
Fault, colonized by Baikiaea plurijuga/Combretum elaeagnoides forests
and have their origin in extensive paleo wind-blown sand deposits ele-
vated above the rest of the Chobe Enclave. White sand areas are more
localized sandvelds (mainly as paleo river channels infilled by sands)
with scattered to dense Terminalia sericea and/or Philenoptera nelsii
stands or, in the north-east floodplains, covered by grasslands com-
posed of Aristida junciformis, Aristida meridionalis and Bulbostylis
hispidula.
3.1.2. Kastanozems
Kastanozems are recognizable by their dark, organic, topsoil called

Mollic horizon (dark-coloured surface horizon, with a high base satura-
tion and N0.6% of soil organic carbon; IUSS Working GroupWRB, 2014)
and by a protocalcic or a calcic horizon, characterized by a HCl reaction
≥ 2/4. A common granular structure, sometimes changing to blocky/
massive, is always clearly visible in the horizons (e.g. Fig. 2). These soil
types are observed in different locations of the Chobe Enclave, but
mostly on (i) carbonate (profile 1) and (ii) some diatomite deposits
(profiles 30 and 31), situated in a landscape of islands and channels
(Fig. 1). These areas are dominated by Combretum hereroense wood-
lands. However, Kastanozems are also found in sand-rich environments,
where they are mostly characterized by a strong termite activity within
their profile (profiles 10, 13, 14, 16, 20, and 27) and an increasing silt
proportion with depth. These soils are often related to mixed riverine
forests composed of various tree species such as Philenoptera violacea,
Berchemia discolor or Combretum mossambicense.
3.1.3. Chernozems and Chernic Phaeozems
Chernozems and Chernic Phaeozems are soils with a high content of

SOC and composed of a Chernic horizon (IUSS Working Group WRB,
2014). For most of them, they have a black topsoil horizon, which ex-
tends all along their profile (Fig. 2). The main difference between Cher-
nozems and Chernic Phaeozems is that Chernozems include a Protocalcic
or Calcic horizon while Phaeozems are devoid of carbonate. These soils
are mainly located in depressions, such as channels where seasonal in-
undation by localized runoff occurs, forming dambos (Acres et al.,



Fig. 2.Main soil types observed in the Chobe Enclave. A model soil was chosen for each soil type, described by a picture and an associated explanatory sketch. Numerous traces of termite
structures are visible in these profiles, leading to the use of a new term, “Termitic horizon”. Particle-size distributions are plotted with all measured samples for each soil type: x-axis
corresponds to particle size [in μm] on a logarithmic scale and y-axis to frequency [in %]. The red dashed lines represent median distributions.
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1985;Moore et al., 2007). Theywere alwayswet during the digging, but
the water-table was reached only once (in profile 23). These areas are
generally covered with dense and tall hydromorphic grasses, such as
Setaria sphacelata, Hyparrhenia rufa or Cimbopogon caesius, which fre-
quently burn during the dry season.

3.1.4. Solonchaks and Solonetz
Solonchaks and Solonetz are characterized by precipitation and ac-

cumulation of salts within their profile. They must contain a Salic or a
Natric horizon, respectively (IUSS Working Group WRB, 2014). These
salty and sodic soils were essentially covered by Colophospermum
mopane woodlands. Some thin, sparse cryptogamic crusts were ob-
served at the surface of Solonchaks and in several other locations of
their area. Solonchaks and Solonetz were associated with stunted
Colophospermummopanewoodland,where treeswere likely undersized
by the extremely high soil salinity and its associated effects on osmotic
potential. However, tall mopane woodlands were also observed, but re-
lated with soils in which the horizons of high salinity were situated
much deeper in the profile.

3.1.5. Calcisols
All observed Calcisols in the Chobe Enclave contain a Calcic horizon

but without any Argic horizon above it (IUSS Working Group WRB,
2014). Carbonate layers, often observed in their lowest horizons, are
interpreted as fossil palustrine limestones (Diaz et al., 2019), and there-
fore, are not of pedogenic origin. Calcisols are distinguished from
Kastanozems by their low TOC concentration. One of them was around
a termite mound, associated with palm trees (Hyphaene petersiana and
Phoenix reclinata), the other one covered by Colophospermum mopane
woodland.

3.2. The Chobe Enclave map of soils

Table 2 displays the relationships between the vegetation types and
soils as correlation coefficients. All the stands of sandvelds and Baikiaea
forests and themajority of dry floodplain grasslands are on Arenosols (r
= 1). Similarly, the mixed riverine forests and Combretum hereroense
woodlands are almost systematically associated with Kastanozems,
and dambo grasslands with Chernozems or Chernic Phaeozems. They
have been grouped in the soil map with the wet floodplain grasslands.
It should be noted that no soil profile was dug in this last vegetation
type; instead three core samples were taken with an auger in the
north-east floodplains, revealing a black clayey soil. Soils are therefore
probably Chernozems or Chernic Phaeozems, such as the ones observed
in dambos. However, further studies need to be performed in order to
check these results, particularly in the wettest areas, such as along the
Linyanti River and in the depressions of the north-east floodplains.

Finally, Colophospermummopanewoodlands are largely observed on
salty/sodic soils, i.e. 70% of their associated soils are Solonchaks,
Solonetz or salty/sodic Arenosols (displaying high pH, generally N9).
Some Solonetz are also found under Combretum hereroensewoodlands,
indicating a probable soil transition between the salty/sodic soils dom-
inated by Colophospermummopane and theKastanozems on the carbon-
ate/diatomite platforms supporting essentially Combretum hereroense
woodlands.

Based on the resolution of the supervised vegetationmap (i.e. 30m),
the proposed soil map (Fig. 3) displays a distribution of the various soil
groups observed in the Chobe Enclave. It must be considered as a first
approximation of the spatial distribution of the selected soil groups. Un-
fortunately, some soil groups, such as the localized Calcisol, cannot be
represented on such a map due to its scale.

3.3. Soil organic matter (SOM)

Rock Eval parameters cannot be interpreted if samples contain a TOC
b 0.2%. Therefore, some samples had to be excluded from this analysis.
Too small a SOM concentration can potentially lead to miscalculations
and bias in indices. Consequently, only 44 out of 65 soil samples were
analysed using this method. Arenosols were thus poorly represented,
as they have the lowest concentration inOM, and despite their large dis-
tribution in the Chobe Enclave.

The large majority of samples have a high Tmax peak, comprised
between 400 and 470 °C. There are some exceptions, particularly in Sol-
onchaks, where the Tmax is lower (Table A.1). The amounts of pyro-
lyzed carbon (PC) in the soils from the Chobe Enclave are small,
generally five to fifteen times lower than the residual carbon (RC)
proportion.

I and R indices (Fig. 4) cluster different sets of samples, and trends
are organized by soil types. As expected (Sebag et al., 2016), there is
no trend observable neither in the distribution of Arenosol samples
nor in Calcisols (but the number of samples is limited); they have
relatively homogeneous values of R-index (Table A.1). On the other
hand, trends are observed in Kastanozem and Chernozem samples.
Three of the four analysed Solonchak samples are characterized
by high values of I-index, as well as samples from Chernic Phaeozems.

3.4. Multivariate analysis

The two first principal components (PC1 and PC2) explain 43.5% and
31.2%of the total variance of the samples, respectively (Fig. 5). The circle
of correlations shows that all the variables are positioned between two
circles, meaning that they are all significant and well correlated to the
two principal components (r N 0.8). PC1 stretches between two poles,
almost perfectly opposed, one composed by exchangeable Ca2+, TOC
and the CEC, and the other by sand percentage. On the PC2 axis, R and
I indices are opposed, with Na+ close to I-index, and almost perpendic-
ularly to the PC1 axis, meaning that these variables are independent of
the previously mentioned variables.

According to this PCA, Arenosol samples are very similar to Calcisol
samples, whereas Kastanozem, Chernozem, Chernic Phaeozem and
Solonchak samples are more heterogeneous, scattering across large
ranges along PCA1 or PCA2.

4. Discussion

The region of the Chobe Enclave is characterized by a high diversity
in soils, despite being located in the continuous sand body of the
Kalahari (Wang et al., 2007). The proposed soil map (Fig. 3) clearly em-
phasizes a much higher diversity than expected, also with some dis-
crepancies in soil categories and distributions compared with previous
maps (Remmelzwaal and Van Waveren, 1988; De Wit and
Nachtergaele, 1990; European Soil Data Center (ESDAC), 2014). How-
ever, the survey was performed at a different scale of details in these
previous studies. The recent vegetation map from Sianga and Fynn
(2017) suggests this underlying diversity as well. Possible explanations
for such a soil diversity are discussed in the following sections. The pro-
posed arguments are based on two main subjects: (i) historical land-
scape dynamics, which influenced surficial geology, topography, and
hydrology, and (ii) biological factors, related to termites and plants,
and their residues after fires.

4.1. The roles of surficial geology, topography, and hydrology

The type of sands, on which soils developed, has limited influence
on their characteristics, because of the similar soil physicochemical
characteristics, which is emphasized by their closeness in the principal
component analysis plot (Fig. 5). However, the specific phase associ-
ated with exchangeable Al3+, detected in low amounts in red sand
Arenosols, is mostly expressed as coatings on quartz grains (their
chitonic related distribution; Fig. 6.1); it is this Al3+-phase that is
partly responsible for the soil low pH, as the Al3+-phase is known to
be one of the main compounds responsible for soil acidity (Thomas



Table 2
Distribution of soil types among the vegetation types in the Chobe Enclave; n : number of soil investigated (49 in total: 32 soil profiles and 17 auger cores) associatedwith each vegetation
type. The different shades of grey correspond to the strength of the correlation between the vegetation types and soils (0–0.25=dark grey, 0.25–0.75= light grey, 0.75–1=white). Only
two profiles were dug in the Baikiaea forests; however, there is much evidence of the close affinity between the latter and Arenosols (McCarthy et al., 2005; Sianga and Fynn, 2017).
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and Hargrove, 1984; Table A.1). They support different and distinct
vegetation communities: red sands Arenosols are covered by Baikiaea
forests (McCarthy et al., 2005; Sianga and Fynn, 2017), and white
sands by grasslands and Terminalia sericea/Philenoptera nelsii
sandvelds. Their respective topographic positions are a possible expla-
nation for the distribution of Al/Fe coatings of these sands. Indeed, red
sand Arenosols are located in elevated areas, along the Chobe Fault
(up to 40 m higher than the floodplain), in the horst side of the sys-
tem. They were probably deposited and/or reworked by winds (they
are extremely well sorted with very leptokurtic curves; Fig. 2), with-
out any significant contact with running water, and therefore, able
to preserve their Al/Fe coatings that give the reddish colour. Con-
versely, the white sands from channels were transported by water,
Fig. 3. Soil map of the north-eastern part of the Chobe Enclave. No soil profile was described
sampled using an auger.
which probably contributed to remove sand coatings and to clean
their surface.

Although all the soils of the area are widely impacted by the pres-
ence of sands, Arenosols are characterized by a relatively low R-index
compared to the other soils (Fig. 4), except Phaeozems and Solonchaks.
It means that their organic matter has a low thermal stability compared
to other soils. This can be explained by their lack ofmineral preservation
of OM due to their almost exclusively sand fraction composition; in-
deed, clays are known to be efficient in SOM preservation (Lehmann
and Kleber, 2015), a process referred to as their “shield effect”. This
lack of OM preservation, associated with a low TOC in Arenosols of the
Chobe Enclave, suggests an easy access to, and a rapid turnover, of OC
in sandy soils, i.e. large proportions of the carbon pools are mainly
contained in flora in these ecosystems, not in soils. In addition, these
under the permanent water areas and the north-eastern wet floodplains soils were only



Fig. 4. Plot of I- vs R-indices according to soil types. Best fit regression lines are added for Solonchak (dotted line), Kastanozems and Calcisols (continuous line), and Chernic horizons
(Chernozems and Phaeozems; dashed line).
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samples do not follow a linear trend on the I/R plot (Fig. 4). This obser-
vation corresponds to previous analyses made on other Arenosols sam-
ples worldwide, notably in Niger and northern Cameroon (Sebag et al.,
2016). Indeed, in Arenosols, the efficient mineralization of OM due to
a large and easy access to it (i.e. labile and/or resistant but accessible
pools), results in a relative decrease of the refractory pool, shifting the
R-index towards low values.
Fig. 5.Projection of soil types on theprincipal component 1 (PC1) x principal component 2 (PC2)
left corner: circle of correlation coefficients between the eight variables used in the PCA and the
the cross being at 0. The inner circle has a radius of 0.8 (i.e. r = 0.8). The grey arrows and th
processes and (ii) some specific soil settings. OM: organic matter. “Sediment reworking” refers
Soil thin sections of ancient palustrine/lacustrine deposits empha-
size a combination of phytoliths, diatoms, and amorphous silica
(Fig. 6.2). The abundance of the latter indicates an important recycling
of the amorphousdiatomitic source, as commonly observed in the semi-
arid zone (Sebag et al., 1999). Soils found on these beds are mainly Siltic
Kastanozems. Their fine particle-size distribution essentially originates
from their parent material (carbonate and diatomite), but also from
plane. Percentages in the legend axes refer to theproportion of explained variance. Lower-
first and second principal components. The circle has a radius of 1 (i.e. r= 1), the centre of
e light grey round areas display respectively (i) the different trends and their associated
to the mobilization of alluvial deposits and aeolian dust input.



Fig. 6. 1) Chitonic c/f related distribution with Fe\\Al oxyhydroxide coatings around quartz grains in a red sand Arenosol from the Chobe Enclave (Profile 8). The grain-size distribution of
quartz grains is well sorted, and the voids result from the loose packing of the soil components (simple packing voids). 2) Silicification of soil particles (the two shades of brown of the
central particle; profile 14). The high availability of amorphous silica originating from diatomite beds is an important source of silicification. 3a) Big charcoal particle (profile 8). 3b)
Multiple carbon beads (red arrows) in a sandy matrix (profile 12). 4a) Thin section of a Termitic horizon (profile 13), with the presence of multiple termite pellets (blue arrows) and
an infilled termite tunnel (inside the red dashed circle). 4b) Inside the termite tunnel was found a spore, possibly from Termitomyces sp (red arrow).
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airborne dust trapped by the vegetation and incorporated into soils, as
observed in the Okavango Delta (Humphries and McCarthy, 2014).
Weathering of the carbonate bedrock also results in high quantities of
exchangeable Ca2+ in these soils (Table 1). Their relatively high CEC
and OM content are probably due to the combined effect of clays and
Ca2+, an ion known to stabilize OM (Stockmann et al., 2013; Rowley
et al., 2018). This effect is similarly observed in all the Ca2+-rich soils
(Kastanozems and Calcisols mainly), whose OM follows the same
trend on the I/R diagram (Fig. 4), with high R values corresponding to
thermally stable OM.

The central area of the Chobe Enclave is occupied by a system of
islands and channels, resulting in a complexmicrotopography (see sec-
tion “Study site” in Materials and Methods). Carbonate and diatomite
beds forming the islands are separated by fossil alluvial channels, with
sandvelds (as discussed above), or humid depressions infilled with
fine alluvium. The most humid areas, i.e. dambos (Moore et al., 2007),
are characterized by a high water-table, or a permanent water body, a
few months during the year. The Chernozems and Phaeozems, devel-
oped in these areas, include the highest proportions of clays and SOC
of the Enclave (Table 1). SOM accumulation is probably partly due to
the presence of waterlogging, which regularly creates anoxic conditions
during heavy rainfalls or floods, added to a high clay and silt content,
probably transported and accumulated in these depressions by water
runoff from the multiple islands rich in fine particles. Moreover, savan-
nah fires frequently hit these parts of the landscape, and fire residues
can also contribute to SOM accumulation (see Charcoal and plants sec-
tion). The macrofauna likely also plays a role in SOM accumulation, as
they are attracted by these dambo grasslands during the wet season
(young, nutrient rich grass) as well as during the dry season (presence
of green forage; Fynn et al., 2014; Sianga and Fynn, 2017). While graz-
ing, they generate consequent quantities of faeces, which are known
to enrich both soil CEC and OM content (McNaughton et al., 1997;
Skarpe et al., 2004). Moreover, by rolling themselves in waterholes, ele-
phants remove large quantities of mud and enlarge the depressions
(Haynes, 2012), attracting more animals, which further fertilize the
soils with their faeces (positive feedbacks). These specific locations
allow such tropical Chernozems and Chernic Phaeozems to develop in
these unexpected settings, whereas they are mostly found under
steppes, grasslands, or pampas (IUSS Working Group WRB, 2014;
Ryan, 2014).
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The topography of the Chobe Enclave, at a larger scale, has an impact
on the soil diversity as well. Indeed, the low gradients of elevation from
the Chobe Fault to the Linyanti (~8 m for 25 km) and from the NE to the
SW (~10 m for 50 km) are sufficient to induce a drought gradient, par-
ticularly visible in the direction of the SW, where neither river nor run-
ning water reaches the areas. Kastanozems and their associated
Combretum hereroense woodlands (in brown on the map; Fig. 3) are
gradually replaced by salty/sodic soils (mainly Solonchaks, Solonetz
and salty Arenosols; in red on Fig. 3), covered by C. mopanewoodlands.
The presently dry conditions of these areas do not necessary lead to an
accumulation of Na+ (a sufficient source of Na+ is lacking). These de-
posits were probably formed during wetter conditions than today by
the same evapotranspiration mechanism as described by McCarthy
and Humphries in the islands of the Okavango Delta (McCarthy et al.,
2012; Humphries and McCarthy, 2014). Therefore, the high concentra-
tions of Na+ in these soils are probably derived from ancient salt de-
posits, the parent material of Solonetz and Solonchaks being
interpreted as sodic paleosols. However, the unexpected stability of
Na+ remains a challenge in a region where the rainfall still reaches
650 mm per year (Jones, 2002; Burgess, 2006). A possible explanation
can be a specific property of such soils, i.e. the reduction of its perme-
ability (the “osmotic explosion effect” associated to high Na+ adsorp-
tion on clays; Amezketa and Aragües, 1995; Legros, 2007), consistent
with the high compacity of these soils observed in situ. The soil chemis-
try, dominated by Na+, influences the SOM aswell. First, a salt accumu-
lation leads to a lower SOC content (Wong et al., 2010), as observed in
the Enclave despite high contents in clays and silts (Table 1, Fig. 2). Sec-
ond, Na+ has a high impact on SOM dynamics, as shown by a “sodic
trend” in the I/R plot (dotted fit-line, Fig. 4), with a relatively higher I-
index compared to the other soils, meaning a higher proportion of ther-
mally immature OM (Sebag et al., 2016). This trend is attributed to a
substantial decrease of microbial and enzymatic activities with increas-
ing salinity (Yuan et al., 2007). Also of interest, is the patchy nature of
these Solonchaks, as demonstrated by the highly patchy nature of
stunted and tall mopanewoodlands with stuntedmopane being associ-
ated with the Solonchaks. It is not clear what mechanism gave rise to
the patchy nature of these salt deposits. These Solonchaks may play a
key role in providing Na and other mineral elements to herbivores, crit-
ical for reproduction and lactation (Fynn et al., 2014).

4.2. Termites

As mentioned above, a large part of the soils in the Chobe Enclave is
developed on sands. However, relatively high proportions of silts and
clays were found in soils developed on the widespread sandy material.
Aside from possible contributions of alluvium and aeolian particles, ter-
mites are likely responsible for fine particle-size distributions, as they
are omnipresent in the area; their hard-built structures were found as-
sociated to 6 of the 36 soil profiles. Their effect on soils is illustrated on
the PCA plot (Fig. 5). In sandy areas, they are at the origin of the trans-
formation of Arenosols into Arenic Kastanozems, and possibly, Calcisols.
Indeed, termites are known to have a large impact on physicochemical
proprieties of soils, by increasing their proportion of silt and clay, mod-
ifying the soil structure, and by increasing their cation concentrations
and pH (McCarthy et al., 1998; Jouquet et al., 2007, 2011; Menichetti
et al., 2014; Muvengwi et al., 2016). It has been demonstrated by
Jouquet et al. (2007) that they are able to transport clays from deep
soil horizons to the surface and use it to cover their exosymbiotic fungus
comb. In the north-east floodplains, under the influence of termites,
proportions of silt and clay increase from b3% in Arenosols (e.g. profile
34) to N30% in a Calcisol found on a “termite island” (e.g. profile 33,
20 m away from profile 34). This fine grain-size proportion is higher
than those observed in previous studies in the Okavango delta, where
clay contents close to the termite mounds were only twice as high
than in the surrounding soils (McCarthy et al., 1998). Furthermore, the
relative proportion of K+ vs the concentration of other exchangeable
cations was higher in the Calcisol than any other soil of this study.
This can be explained by the fact that termites modify clay proprieties
in their nest by creating smectite layers from initial material such as il-
lite. They do so by removing potassium and releasing it in the outer so-
lution using either their saliva or by stimulating microflora with their
saliva in the litter (Jouquet et al., 2007).

Moreover, termites have an indirect impact on SOM. Indeed, on a
small transect, concentrations of SOC rose from almost absent
(0.01–0.07%; profile 34) to values close to 1% (0.25–0.81%; profile 33).
As discussed above, TOC in sandy soils is very low; consequently, an in-
crease in fine grain-size particles and cations leads to a proportional in-
crease of TOC (Blanchard et al., 2005; Lehmann and Kleber, 2015). In
addition, the presence of calcium carbonate, and associated exchange-
able Ca2+ measured in sandy soils influenced by termites, also contrib-
utes to SOM dynamics (Rowley et al., 2018), as demonstrated by the
clustering of these soils with Siltic Kastanozems on the I/ R plot,
displaying a “Calcium trend” (continuous fit-line, Fig. 4). Termites also
directly influence SOM, firstly, and particularly in sandy soils, as they
enhance the SOM content by bringing faeces and by using their saliva
to build and stabilize their nest (Fig. 6.4a, Jouquet et al., 2002, 2007).
Secondly, they increase litter decomposition rates (Gutteridge and
Reumerman, 2011; Menichetti et al., 2014), and are probably partially
responsible for the absence of litter at the surface of soils in the Chobe
Enclave. Indeed, 14 of the 36 profiles analysed were totally deprived
of litter, and the other ones were only patchily covered. Depending on
the local conditions and the available resources, termites can consume
up to 90% of the herbaceous biomass (Mugerwa et al., 2011). They sub-
stantially increase the incorporation of OC in soils. This input of fresh
OM in soils can be observed when residual (RC) and pyrolysed carbon
(PC) are compared (Fig. 7). All the soil samples taken in Termitic hori-
zonswere identified andmarked in black. They belong to soils from var-
ious areas of the Chobe Enclave, developed on different surficial
geological sediments. But they follow the same linear trend, with a sim-
ilar RC/PC ratio, lower from the other samples not affected by termites.
This ratio indicates a higher proportion of PC, and thus a lower propor-
tion of RC after pyrolysis. This also means that the large proportion, if
not all, of the SOC in these samples was added or transformed by
termites.

By all their actions, termites fertilize poor sandy soils by improving
their texture, their structure, and the stabilization of carbon. They create
islands of dense vegetation in poor sandy areas, because of themore fer-
tile soils and the conditions less subject to negative feedback fromwater
variations (Correnblit et al., 2016). These islands support a specific type
of vegetation, absent in the surrounding areas, such as palm trees
(Hyphaene petersiana, Phoenix reclinata). Termites have already been
recognized as the source of the mosaic landscapes observed in savan-
nahs (Jouquet et al., 2011), and the accumulation of nutrients through
termite activity forms nutrient hot-spots for improved forage nutri-
tional value for herbivores (Grant and Scholes, 2006).

4.3. Charcoal and plants

The relationships between plants and soils are complex in the Chobe
Enclave. For instance, Combretum imberbe has a probable direct impact
on soils through the oxalate‑carbonate pathway, previously observed
under Iroko trees (Milicia excelsa) in central Ivory Coast (Cailleau et al.,
2004), Pentaplaris davidsmithii and Ceiba speciosa in South America
(Cailleau et al., 2014), Brosimum alicastrum in Haïti (Rowley et al.,
2017). This phenomenon, first observed in a calcrete in Israel
(Verrecchia, 1990), is due to oxalotrophic bacteria using calciumoxalate
(Ca(COO)2) in their metabolism, leading to an alkalinisation of the soil
environment, and potentially to calcium carbonate precipitation when
a favourable pH is reached (Verrecchia et al., 2006). This was identified
in one soil (profile 9), close to Combretum imberbe, where, despite the
deep sandy substratum on which the soil is developed, and the absence
of termites, reactions to HCl reached 2/4 with a pH = 8, indicating a



Fig. 7.Residual Carbon vs PyrolizedCarbondiagramaccording to thepresence (black dots)
or absence (grey dots) of termite structures in the sampled horizons. Two fitting lines are
added to emphasize the different trends in the RC/PC ratios.
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clear alkalinisation and the presence of calcium carbonate, probably re-
lated to the oxalate‑carbonate pathway.

The majority of the soils were not covered by litter, as already
mentioned, and whenever litter was present, it was fresh plant debris
from the year. This indicates a fast decomposition or integration into
soils of the plant litter, partly by termites as discussed above, but
also by combustion due to fires during the dry season. Numerous
marks of savannah fires have been observed in the whole Chobe En-
clave, especially in dambos, where the majority of the surfaces burns
each year. Although it is a natural factor of such dry tropical areas,
their frequency is strongly enhanced in the Chobe Enclave by inhabi-
tants. Fire residues are observed in soils, as for example black carbon
(BC) and charcoal particles (Fig. 6.3a, b). It has been shown that fire
residues can compose up to 35% of the SOM in some grasslands
(USA) and even 60% in Chernozems (Canada; Preston and Schmidt,
2006). Fire-derived OM has a major impact on SOM, illustrated in gen-
eral by high Tmax peaks (Table A.1) corresponding to the pyrolysis of
pedogenic transformed and refractory OM (Sebag et al., 2016). In the
case of Chernozems and Phaeozems under dambos, the I/R ratio is
higher than in the other soils, as shown by the dashed regression
line on the I/R plot (Fig. 4); this indicates an even higher proportion
of refractory OM. This is probably the consequence of a high content
in clays combined with a high content in BC, phyllosilicates being
known to protect some refractory SOM (Lehmann and Kleber, 2015;
Sebag et al., 2016). A dense fine root system was also observed in
these soils, originating from grasses covering these areas, such as
Setaria sphacelata or Hyparrhenia rufa. These observations correspond
to the recent conclusions about SOM dynamics, which emphasizes
the role of root- as well as fire-derived carbon as sources of SOC in
some specific soils (Rasse et al., 2005; Schmidt et al., 2011; Lehmann
and Kleber, 2015).

5. Conclusion

This study of soils from the Chobe Enclave highlighted the important
diversity of them in what is considered as an apparently homogeneous
sandy area, previously mapped as mostly covered by Arenosols. The
large number of in situ observations, as well as laboratory and data pro-
cessing, emphasize the fact that this soil diversity results from the inter-
action between multiple factors. The deep sandy deposits, originating
from past drier climates, constitute the main factor of development of
white- and red-sand Arenosols, depending on their reworking or not
by water. Hydrological settings also play a major role in the develop-
ment of Chernozems and Phaeozems, by concentrating alluvium and
creating anoxic conditions, leading to the preservation of soil organic
matter to some extent. A vast island system was also found in the cen-
tral part of the Enclave, formed by carbonate and diatomite beds, lead-
ing to moderately-rich organic soils, such as Kastanozems. On some
islands, both high concentrations of Na+ and high pH (up to 11.3) indi-
cate a strong influence of salts and the development of Solonetz and Sol-
onchaks. The significant presence of termites in the area strongly shapes
the topography and leads to major transformation of the soil chemistry
and structure. Finally, black carbon undoubtedly plays an essential role
in SOM dynamics of the region as demonstrated by the high quantities
of refractory OMmeasured by Rock Eval pyrolysis, the numerous traces
of fires observed in situ, and the presence of charcoal particles in soil
thin sections. These various soil patterns play an important role in cre-
ating functional habitat heterogeneity for promoting adaptive foraging
options for herbivores (Fynn et al., 2014). Thus, this soil study has con-
tributed to a greater understanding of herbivore ecology in the region,
with associated conservation implications.

This research was a first assessment to explore, survey and map the
soil diversity of the Chobe Enclave; it provided not only a better under-
standing of the soil dynamics, but also brought new observations re-
garding the surficial geology and geomorphology of the area.
However, further research is needed to identify the origin of the multi-
ple sedimentary deposits, such as the diatomite and carbonate beds, as
well as, in the north-eastern wet floodplains, the origin of grasslands
where no soil profile could be dug.
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Appendix A
Fig. A.1. Distribution of the observed and/or sampled soils in the Chobe Enclave.
Table A.1

Data from the observed profiles (by their number) in the Chobe Enclave.
Profile
number
1

8

1

1

1

8

Soil group
(WRB)
Depth
 Al3+
 Fe2+/3+
 Mg2+
 Na+
 K+
 Ca2+
 CEC
 Clay
 Silt
 Sand
(cm)
 (cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(%)
 (%)
 (%)
Kastanozem
 15
 0.00
 0.15
 3.28
 0.12
 0.61
 13.99
 17.02
 14.16
 57.29
 28.55

30
 0.00
 0.15
 3.59
 0.08
 0.67
 13.15
 18.06
 18.17
 61.38
 20.46

50
 0.00
 0.08
 1.42
 0.07
 0.64
 9.61
 11.39
 9.46
 54.40
 36.15

80
 0.00
 0.19
 4.26
 0.23
 0.76
 11.17
 21.73
 6.93
 36.87
 56.20
Arenosol
 15
 0.18
 0.00
 0.07
 0.00
 0.07
 0.21
 0.69
 1.25
 3.43
 95.32

30
 0.13
 0.00
 0.11
 0.00
 0.08
 0.33
 1.05
 0.84
 3.19
 95.97

50
 0.03
 0.01
 0.16
 0.00
 0.06
 0.64
 1.04
 0.93
 2.55
 96.51

80
 0.01
 0.00
 0.18
 0.00
 0.08
 0.85
 0.64
 1.42
 4.77
 93.81
2
 Arenosol
 15
 0.00
 0.01
 0.26
 0.00
 0.06
 0.98
 1.37
 1.12
 7.19
 91.69

30
 0.00
 0.01
 0.17
 0.00
 0.05
 0.69
 1.09
 0.86
 2.93
 96.21

50
 0.00
 0.00
 0.10
 0.00
 0.04
 0.45
 −0.08
 0.57
 0.49
 98.94

80
 0.00
 0.00
 0.10
 0.00
 0.03
 0.35
 0.32
 0.54
 0.42
 99.04
3
 Kastanozem
 15
 0.00
 0.08
 2.56
 0.02
 0.11
 5.25
 8.74
 16.67
 57.39
 25.94

30
 0.00
 0.07
 2.03
 0.07
 0.05
 4.71
 7.32
 22.97
 42.78
 34.24

50
 0.01
 0.07
 0.58
 0.06
 0.02
 6.18
 6.86
 15.00
 44.37
 40.63

80
 0.00
 0.06
 0.49
 0.07
 0.01
 4.52
 4.70
 10.63
 21.69
 67.68
Profile number
 Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
Kastanozem
 8.7
 2.32
 0.56
 96.34
 261.33
 0.09
 0.48
 412
 0.703
 0.116

8.8
 3.32
 0.31
 122.28
 409.71
 0.07
 0.24
 415
 0.701
 0.145

8.7
 1.18
 0.23
 122.75
 355.65
 0.05
 0.18
 414
 0.673
 0.221

9.2
 3.28
 0.23
 96.86
 362.15
 0.04
 0.19
 420
 0.699
 0.159
Arenosol
 5.7
 0.03
 0.26
 87.80
 197.87
 0.03
 0.23
 416
 0.632
 0.144

6.0
 0.04
 0.16
 63.91
 216.03
 0.02
 0.14
 406
 0.596
 0.33
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able A.1 (continued)
Profile number
1

1

1

8

1

1

1

1

1

2

1

1

1

2

Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
5.9
 0.03
 0.14
 58.72
 281.20
 0.02
 0.12
 411
 0.601
 0.316

6.8
 0.04
 0.12
 77.08
 270.20
 0.02
 0.10
 412
 0.607
 0.314
2
 Arenosol
 6.9
 0.03
 0.26
 84.79
 221.46
 0.03
 0.23
 406
 0.576
 0.26

7.1
 0.03
 0.17
 59.56
 194.60
 0.02
 0.15
 339
 0.59
 0.345

7.0
 0.01
 0.01
 316.75
 1338.37
 0.01
 0.00
 326
 0.584
 0.464

6.9
 0.01
 0.05
 76.96
 289.67
 0.01
 0.05
 313
 0.565
 0.485
3
 Kastanozem
 7.8
 0.72
 1.55
 123.30
 145.12
 0.22
 1.33
 446
 0.823
 −0.08

7.9
 0.75
 1.07
 116.96
 164.43
 0.15
 0.92
 446
 0.809
 −0.038

8.6
 0.79
 0.70
 156.06
 250.51
 0.14
 0.56
 461
 0.774
 0.018

9.0
 0.74
 0.43
 168.35
 335.29
 0.10
 0.33
 466
 0.735
 0.135
Profile number
 Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 (mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
Kastanozem
 8.7
 2.32
 0.56
 96.34
 261.33
 0.09
 0.48
 412
 0.703
 0.116

8.8
 3.32
 0.31
 122.28
 409.71
 0.07
 0.24
 415
 0.701
 0.145

8.7
 1.18
 0.23
 122.75
 355.65
 0.05
 0.18
 414
 0.673
 0.221

9.2
 3.28
 0.23
 96.86
 362.15
 0.04
 0.19
 420
 0.699
 0.159
Arenosol
 5.7
 0.03
 0.26
 87.80
 197.87
 0.03
 0.23
 416
 0.632
 0.144

6.0
 0.04
 0.16
 63.91
 216.03
 0.02
 0.14
 406
 0.596
 0.33

5.9
 0.03
 0.14
 58.72
 281.20
 0.02
 0.12
 411
 0.601
 0.316

6.8
 0.04
 0.12
 77.08
 270.20
 0.02
 0.10
 412
 0.607
 0.314
2
 Arenosol
 6.9
 0.03
 0.26
 84.79
 221.46
 0.03
 0.23
 406
 0.576
 0.26

7.1
 0.03
 0.17
 59.56
 194.60
 0.02
 0.15
 339
 0.59
 0.345

7.0
 0.01
 0.01
 316.75
 1338.37
 0.01
 0.00
 326
 0.584
 0.464

6.9
 0.01
 0.05
 76.96
 289.67
 0.01
 0.05
 313
 0.565
 0.485
3
 Kastanozem
 7.8
 0.72
 1.55
 123.30
 145.12
 0.22
 1.33
 446
 0.823
 −0.08

7.9
 0.75
 1.07
 116.96
 164.43
 0.15
 0.92
 446
 0.809
 −0.038

8.6
 0.79
 0.70
 156.06
 250.51
 0.14
 0.56
 461
 0.774
 0.018

9.0
 0.74
 0.43
 168.35
 335.29
 0.10
 0.33
 466
 0.735
 0.135
Profile
number

S
(

oil group
WRB)
Depth
 Al3+
 Fe2+/3+
 Mg2+
 Na+
 K+
 Ca2+
 CEC
 Clay
 Silt
 Sand
(cm)
 (cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(%)
 (%)
 (%)
4
 Kastanozem
 15
 0.00
 0.06
 0.69
 0.00
 0.30
 4.19
 6.31
 4.80
 19.39
 75.81

30
 0.00
 0.05
 0.58
 0.00
 0.24
 4.11
 5.24
 4.28
 14.93
 80.79

50
 0.00
 0.03
 0.32
 0.00
 0.22
 3.24
 3.39
 4.32
 28.69
 66.99

80
 0.00
 0.04
 0.29
 0.01
 0.30
 2.96
 4.50
 5.12
 30.85
 64.03
8
 Arenosol
 15
 0.00
 0.02
 0.13
 0.00
 0.02
 1.05
 1.67
 0.86
 3.94
 95.20

30
 0.00
 0.01
 0.11
 0.00
 0.02
 0.61
 0.62
 0.69
 2.52
 96.79

50
 0.00
 0.01
 0.23
 0.00
 0.02
 0.49
 1.02
 0.74
 2.97
 96.29

80
 0.04
 0.01
 0.15
 0.00
 0.01
 0.30
 0.90
 0.81
 3.24
 95.95
9
 Chernozem
 15
 0.00
 0.44
 3.52
 0.10
 0.76
 22.19
 35.88
 12.67
 68.23
 19.10

30
 0.00
 0.26
 2.96
 0.10
 0.36
 18.37
 21.41
 11.62
 62.85
 25.53

50
 0.00
 0.26
 3.00
 0.11
 0.31
 15.63
 21.53
 10.99
 64.91
 24.10

80
 0.00
 0.19
 2.36
 0.00
 0.23
 10.12
 13.02
 11.56
 67.26
 21.18
1
 Kastanozem
 15
 0.00
 0.10
 0.56
 0.00
 0.28
 6.30
 8.06
 7.56
 29.60
 62.84

30
 0.00
 0.09
 0.45
 0.00
 0.23
 5.20
 7.04
 8.24
 28.03
 63.73

50
 0.00
 0.07
 0.32
 0.00
 0.26
 3.89
 4.60
 5.61
 36.95
 57.44

80
 0.00
 0.06
 0.47
 0.00
 0.29
 3.25
 3.39
 6.47
 23.08
 70.45
Profile number
 Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
4
 Kastanozem
 8.5
 0.21
 0.72
 116.13
 166.08
 0.10
 0.62
 423
 0.726
 0.020

8.8
 0.31
 0.38
 102.91
 191.04
 0.05
 0.32
 433
 0.716
 0.087

8.8
 0.19
 0.23
 162.72
 287.68
 0.05
 0.18
 429
 0.724
 0.107

9.1
 0.60
 0.13
 126.25
 345.95
 0.03
 0.10
 420
 0.667
 0.245
8
 Arenosol
 6.9
 0.06
 0.23
 121.19
 143.08
 0.03
 0.20
 419
 0.619
 0.166

6.5
 0.03
 0.11
 115.61
 146.69
 0.02
 0.10
 418
 0.628
 0.237

6.4
 0.03
 0.10
 128.07
 152.63
 0.02
 0.09
 415
 0.641
 0.169

5.5
 0.02
 0.06
 93.21
 195.14
 0.01
 0.06
 405
 0.604
 0.399
9
 Chernozem
 8.4
 1.06
 5.09
 76.31
 111.71
 0.48
 4.61
 425
 0.682
 0.039

8.8
 0.68
 3.05
 49.28
 104.02
 0.21
 2.84
 424
 0.734
 −0.051

8.9
 0.83
 3.12
 38.24
 100.92
 0.19
 2.94
 429
 0.754
 −0.060

9.4
 0.47
 1.13
 18.66
 86.88
 0.05
 1.08
 418
 0.689
 0.157
1
 Kastanozem
 8.9
 0.52
 1.00
 81.05
 162.71
 0.11
 0.89
 440
 0.773
 −0.047

8.9
 0.38
 0.65
 85.56
 206.39
 0.08
 0.56
 446
 0.770
 −0.002

9.0
 0.33
 0.45
 89.76
 250.08
 0.06
 0.38
 447
 0.752
 0.073

9.6
 0.69
 0.20
 103.71
 427.18
 0.04
 0.16
 446
 0.719
 0.178
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Profile
number
2

2

2

3

2

2

2

3

3

3

3

3

3

3

3

3

Soil group
(WRB)
Depth
 Al3+
 Fe2+/3+
 Mg2+
 Na+
 K+
 Ca2+
 CEC
 Clay
 Silt
 Sand
(cm)
 (cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(%)
 (%)
 (%)
3
 Phaeozem
 15
 0.00
 0.45
 4.17
 0.09
 0.62
 23.65
 34.75
 14.80
 58.75
 26.45

30
 0.00
 0.27
 2.63
 0.00
 0.25
 15.64
 23.95
 11.41
 59.91
 28.68

50
 0.00
 0.09
 0.76
 0.00
 0.05
 3.45
 5.00
 2.84
 18.91
 78.25

80
 0.00
 0.09
 0.92
 0.00
 0.07
 4.25
 6.75
 5.20
 34.07
 60.73
7
 Kastanozem
 15
 0.00
 0.09
 0.83
 0.00
 0.34
 6.05
 8.19
 5.49
 19.10
 75.41

30
 0.00
 0.09
 0.78
 0.00
 0.20
 5.45
 7.23
 6.64
 33.18
 60.19

50
 0.01
 0.08
 0.91
 0.00
 0.22
 5.90
 6.57
 5.83
 18.34
 75.83

80
 0.00
 0.09
 1.19
 0.00
 0.24
 5.36
 7.92
 5.10
 28.46
 66.44
9
 Arenosol
 15
 0.00
 0.02
 0.14
 0.00
 0.05
 1.65
 2.00
 0.76
 3.31
 95.93

30
 0.00
 0.02
 0.13
 0.00
 0.03
 1.27
 2.13
 0.83
 3.12
 96.05

50
 0.00
 0.02
 0.16
 0.00
 0.03
 1.54
 1.68
 0.71
 2.76
 96.53

80
 0.00
 0.02
 0.12
 0.00
 0.03
 0.95
 1.42
 0.54
 1.50
 97.96
0
 Kastanozem
 15
 0.00
 0.23
 3.29
 0.02
 0.40
 14.75
 22.69
 20.76
 53.09
 26.15

30
 0.00
 0.19
 3.08
 0.07
 0.43
 17.02
 19.60
 17.70
 60.41
 21.89

50
 0.00
 0.20
 4.41
 0.06
 0.45
 16.07
 19.14
 15.69
 52.50
 31.81

80
 0.00
 0.14
 5.87
 0.41
 0.07
 8.37
 12.41
 14.36
 62.64
 23.00
Profile number
 Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
3
 Phaeozem
 6.5
 1.14
 6.02
 71.20
 115.18
 0.55
 5.47
 419
 0.593
 0.181

6.5
 0.57
 3.18
 71.37
 115.83
 0.29
 2.89
 420
 0.633
 0.119

7.1
 0.16
 0.28
 40.30
 96.92
 0.02
 0.26
 337
 0.584
 0.385

7.2
 0.27
 0.29
 38.03
 107.57
 0.02
 0.27
 344
 0.570
 0.433
7
 Kastanozem
 7.6
 0.16
 1.04
 86.02
 151.69
 0.12
 0.92
 420
 0.654
 0.120

7.9
 0.11
 0.58
 63.40
 143.82
 0.05
 0.52
 393
 0.632
 0.228

8.4
 0.20
 0.22
 70.23
 215.94
 0.03
 0.19
 353
 0.620
 0.335

9.2
 0.23
 0.10
 137.95
 305.07
 0.02
 0.08
 366
 0.608
 0.409
9
 Arenosol
 6.1
 0.04
 0.49
 133.77
 151.04
 0.08
 0.42
 413
 0.588
 0.172

7.0
 −3.36
 0.37
 62.59
 140.55
 0.03
 0.34
 417
 0.625
 0.203

7.3
 0.03
 0.31
 55.11
 118.47
 0.02
 0.29
 424
 0.653
 0.193

7.4
 0.02
 0.02
 655.69
 1471.63
 0.02
 0.00
 396
 0.614
 0.345
0
 Kastanozem
 8.2
 1.01
 0.99
 87.61
 174.10
 0.12
 0.87
 452
 0.720
 0.083

8.2
 1.09
 0.67
 83.92
 241.02
 0.09
 0.58
 406
 0.690
 0.122

8.4
 1.85
 0.46
 100.99
 273.69
 0.07
 0.38
 405
 0.675
 0.171

8.9
 1.74
 0.17
 103.71
 335.60
 0.03
 0.14
 371
 0.635
 0.289
3+ 2+/3+ 2+ + + 2+
Profile
number

S
(

oil group
WRB)
Depth
 Al
 Fe
 Mg
 Na
 K
 Ca
 CEC
 Clay
 Silt
 Sand
(cm)
 (cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(cmol +
kg−1)
(%)
 (%)
 (%)
3
 Calcisol
 15
 0.01
 0.06
 0.73
 0.20
 0.56
 4.54
 5.17
 7.14
 14.93
 77.93

30
 0.00
 0.07
 0.72
 0.00
 0.39
 4.99
 7.14
 4.00
 21.66
 74.34

50
 0.01
 0.06
 0.65
 0.54
 0.54
 2.33
 5.00
 6.20
 13.77
 80.02

80
 0.01
 0.05
 0.42
 1.96
 0.81
 1.88
 3.32
 10.63
 21.69
 67.68
4
 Arenosol
 15
 0.02
 0.01
 0.05
 0.00
 0.01
 0.18
 0.42
 0.55
 0.61
 98.84

30
 0.00
 0.00
 0.03
 0.00
 0.00
 0.10
 −0.02
 0.46
 0.62
 98.92

50
 0.00
 0.01
 0.04
 0.00
 0.00
 0.11
 0.30
 0.50
 0.37
 99.13

80
 0.00
 0.01
 0.02
 0.00
 0.00
 0.06
 0.43
 0.65
 1.63
 97.72
5
 Solonchak
 15
 0.00
 0.13
 1.03
 4.64
 0.47
 2.55
 11.59
 12.32
 57.68
 30.00

30
 0.00
 0.17
 0.25
 11.18
 0.65
 1.96
 15.64
 13.92
 58.23
 27.85

50
 0.01
 0.20
 0.12
 17.88
 0.86
 0.88
 19.08
 10.72
 66.66
 22.62

80
 0.00
 0.25
 0.08
 22.03
 1.04
 0.72
 24.30
 16.29
 63.28
 20.43
6
 Solonetz
 15
 0.00
 0.04
 0.53
 0.00
 0.14
 1.81
 2.83
 3.59
 16.50
 79.91

30
 0.00
 0.04
 0.32
 0.02
 0.09
 0.60
 1.90
 2.55
 13.97
 83.48

50
 0.00
 0.13
 0.62
 8.21
 0.99
 1.99
 11.52
 11.49
 27.61
 60.90

80
 0.02
 0.13
 0.02
 11.83
 0.87
 0.34
 12.24
 12.35
 22.63
 65.02
Profile number
 Soil group (WRB)
 pH
 RM
 TOC
 HI
 OI
 PC
 RC
 Tmax
 R-index
 I-index
(%)
 (%)
 (mg HC/g TOC)
 mg CO2/g TOC)
 (%)
 (%)
 (°C)
 A3 + A4/100
 log [(A1 + A2)/A3]
3
 Calcisol
 8.7
 0.13
 0.58
 194.24
 264.53
 0.14
 0.44
 437
 0.720
 0.024

8.6
 0.16
 0.81
 204.83
 231.98
 0.19
 0.62
 439
 0.726
 0.005

9.1
 0.12
 0.35
 190.55
 334.75
 0.09
 0.26
 438
 0.726
 0.039

10.2
 0.12
 0.25
 184.21
 398.43
 0.07
 0.19
 434
 0.696
 0.099
4
 Arenosol
 5.7
 0.01
 0.07
 187.87
 215.56
 0.02
 0.05
 413
 0.598
 0.363

6.6
 0.01
 0.03
 329.41
 171.50
 0.01
 0.02
 400
 0.600
 0.447

6.5
 0.00
 0.03
 322.67
 212.77
 0.01
 0.02
 313
 0.602
 0.470

6.5
 0.01
 0.01
 588.96
 139.42
 0.01
 0.01
 437
 0.610
 0.475
5
 Solonchak
 9.4
 0.32
 0.57
 93.55
 147.97
 0.07
 0.50
 452
 0.729
 0.202

10.2
 0.47
 0.49
 44.22
 201.87
 0.05
 0.44
 327
 0.577
 0.364

10.2
 0.47
 0.46
 24.27
 200.37
 0.04
 0.43
 325
 0.570
 0.463

10.6
 0.92
 0.21
 44.76
 298.31
 0.03
 0.18
 329
 0.588
 0.441
6
 Solonetz
 7.0
 0.09
 0.39
 123.57
 147.36
 0.06
 0.34
 419
 0.629
 0.159

8.2
 0.05
 0.14
 141.40
 136.19
 0.02
 0.12
 405
 0.600
 0.268

9.8
 0.34
 0.11
 87.80
 248.87
 0.02
 0.09
 326
 0.590
 0.427

11.3
 0.37
 0.10
 52.06
 245.58
 0.01
 0.09
 328
 0.598
 0.457



1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
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Table A.2
Profile number associated to its soil type.
Profile number
 Soil type
Kastanozem

Phaeozem

Solonetz

Kastanozem

Calcisol

Arenosol

Arenosol

Arenosol

Arenosol
0
 Kastanozem

1
 Arenosol

2
 Arenosol

3
 Kastanozem

4
 Kastanozem

5
 Arenosol

6
 Kastanozem

7
 Arenosol

8
 Arenosol

9
 Chernozem

0
 Kastanozem

1
 Kastanozem

2
 Arenosol

3
 Phaeozem

4
 Arenosol

5
 Phaeozem

6
 Kastanozem

7
 Kastanozem

8
 Solonetz

9
 Arenosol

0
 Kastanozem

1
 Kastanozem

2
 Phaeozem

3
 Calcisol

4
 Arenosol

5
 Solonchak

6
 Solonetz
3
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