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ABSTRACT (ENGLISH) 
 
Obesity has become a major public health issue as it has reached pandemic proportions over the last 

decades. This increasing prevalence of obesity and overweight in industrialized countries is to a large 

part explained by the abundance of tempting foods promoting overeating and subsequent weight gain. 

Resisting food temptations has thus become a necessity in order to maintain a healthy body weight. 

The thesis at hand provides a better understanding of behavioral and brain responses involved in 

sensory food perception, reward and control.   

 

The first study (study A) assessed how food liking influences subsequent choice between two food 

alternatives, and how, in turn, these factors modulate brain responses to the viewing of high- and low-

energy foods (published manuscript: “ Does my brain want what my eyes like? – How food liking 

influences choice and impacts spatio-temporal brain dynamics to food viewing” (Bielser & Crézé et al., 

2015)). In this study, we found that strongly like foods were chosen more often and faster than less 

liked foods. Further, the level of liking and subsequent choice influenced brain responses in areas 

involved in reward attribution as well as decision-making processes, likely influencing prospective food 

intake.  

 

The second study (study B) investigated the neural representation of meal images varying in portion 

size in the context of prospective food intake and expected satiety (published manuscript: “Brain 

dynamics of meal selection in humans” (Toepel, Bielser et al., 2015)). In this study, our results showed 

that brain regions involved in visual processing and reward attribution trace physical portion size 

increases during early stages of perception, likely reflective of the quantification of the amount of food 

available for subsequent intake. During a later stage of information processing, brain regions involved 

in attention and adaptive behaviors responded to “ideal” portion sizes, likely reflecting control over 

food intake to select portions to achieve adequate satiety.  

 

The third study (study C) assessed how encountering traffic light labeling (as used on food packages) 

preceding food images influenced behavioral and brain responses to high- and low-energy foods 

(“Biasing behavioral decisions and brain responses to food with traffic light labeling” (Bielser et al., in 

preparation)). In this study, we found that traffic light labeling and energetic content of viewed foods 

modulated neural activity in a network of regions known to be involved in reward valuation, inhibitory 

control, attention and object categorization. These findings support traffic light labeling as a potentially 

effective means to guide food choices and ameliorate body weight long-term management. 

 

Together, the studies comprised in this thesis showed that modulations of neural activity in response to 

food perception occur already at early stages of visual processing and can be influenced by the level of 

appreciation, the amount of food presented as well as food-extrinsic information. These findings 

contribute to a better understanding of factors shaping food-related behavior and, in extension, food 

intake. 
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RESUME (FRENCH) 
 
L’obésité est devenue un problème majeur de santé publique qui a atteint des proportions 

pandémiques au cours des dernières décennies. L’augmentation de la prévalence du surpoids et de 

l’obésité dans les pays industrialisés s’explique en grande partie par l’abondance de nourriture dont le 

degré d’attirance incite à une consommation en excès et engendre une prise de poids. Cette thèse avait 

pour but une meilleure compréhension des réponses comportementales et cérébrales impliquées dans 

la perception sensorielle de nourriture, la récompense et le contrôle. 

 

La première étude (étude A) a investigué la façon dont l’appréciation de la nourriture influence un choix 

subséquent entre deux alternatives alimentaires, et comment, par extension, ces facteurs modulent les 

réponses cérébrales à la vue de nourriture à haute et basse teneur énergétique (manuscrit publié : “ 

Does my brain want what my eyes like? – How food liking influences choice and impacts spatio-

temporal brain dynamics to food viewing” (Bielser & Crézé et al., 2015)). Dans cette étude, nous avons 

montré que la nourriture hautement appréciée est choisie plus souvent que les aliments moins bien 

notés. De plus, le niveau d’appréciation et le choix subséquent influencent les réponses cérébrales 

d’aires impliquées dans l’attribution de récompense ainsi que dans les processus de prise de décision et 

par la même, un impact probable sur la prise alimentaire prospective.  

 

La deuxième étude (étude B) a investigué les représentations cérébrales d’images de repas dont la taille 

des portions varient, dans le contexte d’une prise alimentaire prospective et de la satiété en résultant 

(manuscrit publié : “Brain dynamics of meal selection in humans“ (Toepel, Bielser et al., 2015)). Dans 

cette étude, nos résultats ont montré que des régions cérébrales impliquées dans les processus visuels, 

ainsi que dans l’attribution de récompense tracent les augmentations physiques de portion durant les 

premières étapes de perception, représentant probablement une quantification de la nourriture 

disponible pour une prise alimentaire subséquente. Durant une étape plus tardive du décodage 

d’information, des régions cérébrales impliquées dans l’attention et dans les comportements adaptatifs 

présentent une forte réactivité pour les portions jugées de taille « idéale », reflétant sans doute un 

contrôle sur la prise alimentaire afin de sélectionner une portion permettant d’atteindre une satiété 

adéquate. 

 

La troisième étude (étude C) a investigué comment la rencontre fortuite de feux de circulation, comme 

ceux utilisés actuellement sur les labels d’étiquetage alimentaire, influence les réponses 

comportementales et cérébrales à la vue de nourriture à haute et basse teneur énergétique (“Biasing 

behavioral decisions and brain responses to food with traffic light labeling” (Bielser et al., en 

préparation)). Dans cette étude, nous avons montré que ces labels modulent les réponses cérébrales 

dans un réseau d’aires impliquées dans l’attribution de récompense, le contrôle inhibiteur, l’attention 

et la catégorisation d’objets. Ces résultats démontrent l’efficacité des labels reproduisant les feux de 

circulation comme moyen de guidage des choix alimentaires et d’amélioration de la gestion du poids à 

long terme.  

 

Ensemble, les études comprises dans cette thèse ont démontré que les modulations de l’activité 

cérébrale en réponse à la perception de nourriture ont lieu à des étapes très précoces du décodage 

d’information visuelle et qu’elles peuvent être influencées par le niveau d’appréciation, la quantité de 

nourriture disponible ainsi que par des informations contextuelles.  
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CHAPTER 1  GENERAL INTRODUCTION 
 

1.1 Food intake behavior and body weight management 

The human body is evolutionary designed to store fat in periods of food availability to ensure 

survival in moments of famine (Heitmann et al., 2012).  However, over the past decades, the dietary 

environment of Western countries has drastically changed. The development of industrial agriculture, 

leading to massive production, has created a world of overabundant food availability in many countries. 

As a consequence, readily available energy-dense foods have spread in stores and markets, tempting 

consumers by low prices and practical aspects (Westerterp and Speakman, 2008). Further, sugar-

sweetened beverage (i.e. soda) consumption has severely increased, adding numerous liquid calories to 

one’s diet (Tappy et al., 2010). In parallel to the food industry, new technologies have also changed our 

daily work and habits. The amount of energy expenditure required to survive and function has 

decreased, as physical effort is no longer a necessity to forage food (Popkin and Gordon-Larsen, 2004). 

In combination, excessive food intake driven by maladaptive food options and choices as well as the 

increasingly sedentary lifestyle promote caloric intake beyond energy needs, creating an obesogenic 

environment (Prentice and Jebb, 2004). Obesity has reached pandemic proportions over the last thirty 

years, affecting 400 million people worldwide, in addition to one billion suffering from overweight 

(Finucane et al., 2011; Flegal et al., 2012). In Europe, 50% of the population is today overweight and 

20% is obese (WHO, 2016) (See Figure 1). Obesity is defined as excessive body fat mass and can be 

measured by means of body mass index (BMI, overweight ≥ 25; obese ≥ 30 kg/m2) (WHO, 2000). The 

accumulation of body fat is detrimental for health and associated with morbid pathologies, such as 

cardiovascular diseases, type II diabetes mellitus, stroke, cancer and respiratory diseases (Formiguera 

and Cantón, 2004). Obesity has thus become one of the leading causes of death in Western societies 

and, by extension, a major public health issue by its impact on health care management and costs. 

Appropriate food choices and intake are thus of crucial importance to maintain a healthy body weight. 

Yet, the complex mechanisms involved in food drives and intake regulations are still not fully 

understood, therefore preventing the development of efficient strategies for long-term management of 

weight.  

 

 

 

 

 

 Figure 1: Prevalence of obesity worldwide, ages 18+, 2014, both sexes (WHO). 
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Food intake behavior is mainly regulated by two key players, the gut and the brain, via the so-

called gut-brain axis (Berthoud, 2011; Hussain and Bloom, 2013; Mercer, 2016). This regulation already 

occurs during pre-ingestive stages of food perception. Gastrointestinal physiological signals such as 

digestive hormones, as well as gastric distension and emptying are conveyed to the central nervous 

system, where they are integrated and valued, regulating the short-term control of food intake 

according to the current energy needs (Horner et al., 2011; Jimura et al., 2010; Suzuki et al., 2012). 

However, as food is a biologically salient stimulus, survival instincts drive feeding behavior towards the 

consumption of foods with higher amounts of calories and fat as they are better palatable and 

attributed greater rewarding properties (de Araujo, 2004; Heitmann et al., 2012). Rewarding stimuli 

induce hedonic responses from the dopaminergic mesolimbic reward system (Haber and Knutson, 

2010; McCutcheon, 2015). This reward network includes the ventral tegmental area, the nucleus 

accumbens, the amygdala, the striatum, and the hippocampus, whose activities are overall controlled 

by the prefrontal cortex (Kelley and Berridge, 2002; Tomasi and Volkow, 2013; Volkow et al., 2011, 

2013). Furthermore, the ventral prefrontal cortex, the insula, the cingulate gyrus, and the thalamus play 

a key role in attributing salience to a stimulus as a function of the current homeostatic needs and the 

rewarding properties of a stimulus and modulate the motivation and attention towards this stimulus 

(Downar et al., 2001; Menon and Uddin, 2010; Seeley et al., 2007). The hedonic control of food intake is 

thus associated with drives towards food that are mostly independent of body energetic needs (Lutter 

and Nestler, 2009; Meye and Adan, 2014; Saper et al., 2002), leading to maladaptive food choices and 

consumption, and subsequent weight gain. In turn, the increase in adipose tissue leads to imbalances 

along the gut-brain axis, further deregulating control over food intake and favoring hedonic processes 

in food choices (Alonso-Alonso et al., 2015; Blundell et al., 2000). In the recent literature, the debate on 

an addiction-like model to palatable energy-dense food consumption is still ongoing (Davis and Carter, 

2009). Shared neural substrates for food and drug reward processes have been identified by Pelchat 

(2002) and further research showed that food, as addictive drugs, is capable of increasing dopamine 

levels in the reward network, facilitates Pavlovian incentive learning and favors a tolerance to reward 

properties by the top-down regulation of dopamine receptors in the striatum (Grigson, 2002; Hajnal et 

al., 2008). 

Food intake behavior is influenced by factors inherent to the body (e.g. gender, motivation to 

eat, body weight), by sensory, as well as by contextual information (e.g. smell and taste of the food, 

labeling, portion size). For further details, please refer to section 1.3. An integrative view on food 

perception and intake behavior thus requires the consideration of many different aspects. The thesis at 

hand aims at adding complementary pieces to this mosaic.  
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1.2 Neural signatures of human food perception 

Several sensory features are intrinsic to food, i.e. visual, olfactory and gustatory. These sensory 

aspects often interact and shape food perception, including brain responses to food. In this section, we 

shortly discuss the brain mechanisms underlying taste perception and food viewing.  

 

1.2.1 Brain responses to food tasting 

Taste is the result of an interaction between gustatory and olfactory food properties. Gustatory 

components are detected by taste buds localized on the tongue, the soft palate, the larynx, the pharynx 

and the upper esophagus. Taste buds possess various receptors allowing for the discrimination of five 

basic taste qualities: sweet, salty, bitter, sour and umami. Current research is also debating the possible 

existence of additional taste bud receptors dedicated to fat detection (Laugerette et al., 2007; Mattes, 

2005). Taste signals are then conveyed via the nucleus of the solitary tract and the thalamus to the 

primary gustatory cortex, located in the postcentral gyrus and the insula. In parallel, food odorants, i.e. 

volatile chemicals, are transported by the air from the mouth to the nasal cavity, where they reach the 

olfactory mucosa. There, the combined activity of receptor neurons arising from the olfactory nerve 

discriminates the various odorant molecules. The olfactory nerve then relays the information via the 

cribriform plate to the olfactory bulb in the forebrain. Taste quality seems to be one of the first features 

processed in the central gustatory system. Previous electrical neuroimaging studies have reported that 

modulations of brain activity in response to taste occurred as early as 130-150ms for salty, sweet and 

electric taste in the left insula, the middle temporal gyrus, the ventromedial orbitofrontal gyrus and the 

anterior cingulate cortex (Ohla et al., 2010, 2012).  The multisensory gustatory and olfactory 

information are further processed in the frontal operculum, the anterior insula and the orbitofrontal 

cortex, allowing for a “taste” representation (Crouzet et al., 2015; Okamoto and Dan, 2013). For a 

complete review, please refer to Rolls (2015). Contextual information can further modulate the 

pleasantness and the intensity of the perceived taste. For more information on the influence of context 

information on taste perception, please refer to section 1.3.2.  

 

1.2.2 Brain responses to food viewing 

Food is a highly salient biological stimulus inherently rewarding and hedonic (LaBar et al., 2001), 

and its foraging is necessary for survival. Food perception does not only rely on gustatory and olfactory 

features, but is greatly influenced by visual properties upon pre-ingestive viewing. In daily life, most 

food choices are based on visual presentation, i.e. when selecting food packages in a supermarket or by 

looking at cafeteria displays. 
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The sight of food, as opposed to non-food objects, was shown in many previous functional 

neuroimaging studies over the last decade to modulate neural activity in distributed brain areas. For 

example, regions of the dopaminergic mesolimbic reward network including the orbitofrontal cortex, 

lateral prefrontal cortex, amygdala, left caudate nucleus, striatum, ventral tegmental area as well as the 

anterior cingulate cortex showed differential responses to food as compared to non-food object 

viewing (Blechert et al., 2016; Killgore et al., 2003; Schur et al., 2009). In particular, these regions known 

to be involved in reward attribution and valuation, revealed greater neural activity to food than to non-

food viewing. Moreover, changes in activity over temporo-parietal and occipital brain regions have 

been reported by several studies (Killgore et al., 2003; LaBar et al., 2001; Rothemund et al., 2007; Santel 

et al., 2006; Uher et al., 2004), suggesting a greater attentional and motivational salience of food than 

non-food objects, even during pre-ingestive viewing. In line, increased neural activity in response to 

food viewing was also found in regions involved in homeostatic integration, such as the hypothalamus, 

and the insula (Schur et al., 2009). A recent meta-analysis on the most commonly reported neural 

correlates of food perception (van der Laan et al., 2011) summarized that the viewing of food (vs. non-

food) most consistently yields alterations in the activity of the lateral occipital cortex, the lateral 

orbitofrontal cortex and the middle insula. The authors proposed that visual food perception as 

investigated in human neuroimaging studies thus involves object recognition processes (occipital 

cortex), processes related to the valuation of the expected pleasantness of prospective food ingestion 

(orbitofrontal cortex) and processes related to the memory retrieval of the expected taste (insular 

cortex). The sight of food thus leads to modulated activity in sensory and somatosensory brain regions, 

but also reward and association cortices.  

 

In addition to the categorization of food from non-food objects, the brain also readily traces the 

energetic content of foods during pre-ingestive viewing. Previous functional neuroimaging studies 

reported neural correlates of the distinction between high- and low-energy foods based on their visual 

features. A study by Killgore and colleagues (2003) was the first to investigate how energy density 

modulates neural activity in response to food viewing. They reported that low-energy (vs. high-energy) 

foods elicited an increased activity in the superior temporal gyrus, the medial orbitofrontal cortex, the 

postcentral gyrus and the parahippocampal gyrus, regions involved in object categorization, 

somatosensory representation and taste perception. In contrast, high-energy (vs. low-energy) foods 

elicited higher activation in the medial and lateral prefrontal cortex, the thalamus and the 

hypothalamus. These regions are involved in homeostatic integration (i.e. hypothalamus), as well as in 

reward valuation and reward value signal encoding (i.e. medial prefrontal cortex). Moreover, especially 

the lateral prefrontal cortex has been associated with inhibitory processes, decision-making and food 
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intake termination (Cornier et al., 2010; Hare et al., 2009; Hutcherson et al., 2012; Plassmann et al., 

2010) indicating that food perception in humans is not only driven by the reward and hedonic values 

attributed to perceived foods, but also subject to, possibly top-down, control processes. Several studies 

over the recent years have accordingly shown that in particular the viewing of high-energy, as opposed 

to low-energy, foods consistently leads to increased activity in reward-related brain regions, but also to 

modulations of neural activity in areas associated with cognitive control (Gautier et al., 2001; van der 

Laan et al., 2011; Stoeckel et al., 2008; Toepel et al., 2009). In line, the meta-analysis of van der Laan 

and colleagues (2011) previously mentioned reported that the most concurrent brain region modulated 

as a function of energy density across functional neuroimaging studies was a region stretching from the 

hypothalamus to the ventral striatum, always showing increased activity to the viewing of high-, as 

opposed to low-energy foods. Energetic content, as one major food-intrinsic determinant of palatability 

and contribution to the energetic homeostasis of the human body, thus consistently modulates activity 

in a brain region involved in food intake regulation as a function of homeostatic needs and reward 

valuation. In the section 1.3, we will detail a number of other food- but also body-intrinsic, as well as 

extrinsic factors that have been found to influence food perception.  

 

While the previously mentioned functional neuroimaging studies well described the neural 

networks underlying sensory processing of food, reward valuation and control processes, still few 

studies investigated the timing of food perception. A study by Toepel and colleagues (2009) was the 

first to provide insights on the timing of food’s energetic content discrimination. In the study, normal-

weight participants were presented with images of high- and low-energy food while undergoing 

electroencephalographic (EEG) recordings. Head-surface visual-evoked potentials (VEPs) were found to 

be modulated as a function of the energetic content of the viewed food at two distinct temporal stages 

of the discrimination, i.e. ~165ms and ~300ms post-image onset. Estimation of neural sources 

underlying the first head-surface modulation (~165ms) showed an increased activity in response to 

high-energy (vs. low-) in the superior temporal cortex and the postcentral gyrus. Over the second time 

period (~300ms), the viewing of high-, as opposed to low-energy foods, modulated the activity in the 

occipito-temporal cortex, the inferior parietal cortex, the dorsal frontal cortex, and the ventromedial 

prefrontal cortex. Energetic content of food was thus found to modulate brain areas involved in object 

categorization, decision-making and reward valuation already at early stages of information processing. 

A recent VEP study reported similar modulations of responses to high- vs. low-energy food viewing 

(Meule et al., 2013). In this study, normal-weight women viewed color images of food and had to 

imagine either immediate or long-term consequences of the ingestion of the food item on screen. 

While early head-surface visual responses around ~150ms after image onset (no neural sources were 
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estimated in this study) were only sensitive to the type of food viewed, later responses were 

additionally influenced by the imagined consequences of food intake. That is, the study of Meule and 

colleagues (2013) shows that reward valuation processes are succeeded by regulation and control 

processes during pre-ingestive food viewing.  

 

Taken together, previous studies on food perception in humans show that the sight of food 

leads to modulations of activity in brain areas involved in homeostatic and somatosensory integration 

reward valuation, goal-directed behavior, decision-making and inhibitory control. Accumulating 

evidence also gave rise to the assumption that the consumption of pleasurable food increases the 

sensitivity to visual food cues and in turn elicits greater activity in the reward network in response to 

food viewing, leading to an overriding of homeostatic needs and excessive energy intake on the long 

run (Volkow et al., 2012). 
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1.3 Food perception and eating behavior 

Several factors have been shown to influence food perception. These factors can be roughly 

divided into such that are intrinsic to the body and food-extrinsic context information, e.g. the 

environment in which food is perceived.  

1.3.1 Body-intrinsic factors influencing food perception 

Body weight: Although cause and consequence are strongly debated, body weight is one of the 

most well known factors influencing food perception and intake. To account for weight-induced 

alterations in eating behavior, a dual model has been developed by Alonso-Alonso and Pascual-Leone 

(2007). In this model, a switch from “reflective” to “reflexive” food intake as a function of body weight 

increase is proposed. While healthy body weight maintenance is characterized by reflective food intake 

and regulated by cognitive, physiological as well as societal factors, the corruption of reflective eating 

by weight gain leads to a reflexive food intake mode. This reflexive eating behavior is characterized by 

uncontrolled drives towards food intake, overriding homeostatic needs in energy, in extension leading 

to overweight and obesity. As mentioned in section 1.1, mounting evidence on addiction-like behavior 

towards foods containing high amounts of fat and sugar has been reported in animal as well as human 

literature (Grigson, 2002; Hajnal et al., 2008). Another recent model explaining excessive food intake 

(Davis, 2013) proposed, in line with the model of Alonso-Alonso and Pascual-Leone, that normal-weight 

individuals starting to show signs of unconscious passive overeating might develop binge-like craving 

attitudes over time. In turn, these cravings result in active addiction-like food intake leading to weight 

gain and possibly obesity. Modulations by body weight are also reflected in neural responses to food 

viewing. For example, obese individuals were found to show higher activation in temporal and parietal 

lobes in response to viewed food, especially to high-fat food cues, reflecting a greater responsiveness 

and attention to food cues (Doolan et al., 2014, 2015; Hume et al., 2015). Further, obese individuals 

tend to show lower activation of the dorsal prefrontal cortex when viewing food as compared to lean 

individuals, i.e. in a brain region involved in food intake termination and inhibitory control (Cornier et 

al., 2010; Hutcherson et al., 2012). These findings suggest possible impairments in the capacity to exert 

self-control over food intake (Harris et al., 2013; Hume et al., 2015; Stoeckel et al., 2008; Tuulari et al., 

2015). High body weight has also been associated with greater activity in the medial prefrontal cortex, 

the insula, the amygdala, the anterior cingulate cortex as well as the ventral striatum (Rothemund et 

al., 2007; Stoeckel et al., 2008). These regions are known to be part of a network involved in reward 

valuation and salience attribution (Hare et al., 2009; Menon and Uddin, 2010; Seeley et al., 2007). That 

is, previous studies have found consistent evidence that obesity influences the visual perception of food 

in distributed brain areas and in particular alters responses in reward- and control-related brain 

regions.  
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Food intake motivation: A second body-intrinsic factor influencing food perception and intake is 

motivation towards food intake varying as a function of hunger and satiety. Hunger is a physiological 

state signaling energy depletion of the body. This information is conveyed to the brain via digestive 

hormones secreted by the gut along the gut-brain axis. Once integrated, this information will lead to 

increased drives towards food intake. Several neuroimaging studies have confirmed the modulation of 

brain responses to visual food cues by hunger, in both homeostatic and hedonic regions. A positron 

emission tomography (PET) study of Del Parigi and colleagues (2006) reported that hunger, as 

compared to satiety, increases the activity in the hypothalamus, the thalamus, the insula and the 

orbitofrontal cortex in resting state. Another PET study assessing the neural responses to visual food 

cues found an increase in activity in the postcentral gyrus, the superior temporal gyrus, the insula and 

the orbitofrontal cortex in fasted as compared to fed participants (Wang et al., 2004a). Further, a study 

by Goldstone and colleagues (2009) showed that hunger selectively increases neural activity in 

response to high-energy, as opposed to low-energy, foods in the ventral striatum, the amygdala, the 

insula and the orbitofrontal cortex. Altogether, previous findings revealed that hunger alters brain 

responses to food viewing, in areas involved in homeostatic integration, goal-directed attention, reward 

valuation and salience attribution, likely favoring the intake of high-energy foods. In contrast, satiety 

was found to be associated with an increase in activity of the dorsal prefrontal cortex (Gautier et al., 

2001; Del Parigi et al., 2006), i.e. a brain region involved in food termination, inhibition and decision-

making. When investigating the spatio-temporal dynamics to food viewing as a function of food intake 

motivation, a study by Nijs and colleagues (2010) using electroencephalography showed that hunger 

modulates visual response to food around 300ms after food image encounter in lean participants, 

interpreted as an enhancement in the allocation of attention to food pictures prior as opposed to post 

food intake. This modulation was however not observed in overweight and obese individuals.  

 

Gender: Previous studies have shown substantial differences in behavioral and brain responses 

to food in women vs. men.  In women, the menstrual cycle is known to greatly influence circadian 

rhythm (Baker and Driver, 2007), as well as cognitive, sensory, emotional and eating behaviors (Dye and 

Blundell, 1997; Farage et al., 2008). In a review, Dye and Blundell (1997) reported changes in hunger, 

cravings for certain foods and alteration in meal size selection across menstrual cycle. A functional 

neuroimaging study of Horstmann and colleagues (2011) showed that women, as opposed to men, 

prefer salient immediate rewards independent of negative long-term consequences during a behavioral 

task. The authors attributed these gender effects to structural differences. In women, they found that 

the grey matter volume in the dorsal striatum and dorsolateral prefrontal cortex (DLPFC), i.e. two 

regions involved in goal-directed behavior and inhibitory control, was associated with measures of 
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obesity (i.e. BMI and leptin), whereas these associations were not present in men. In line, a study by 

Cornier and colleagues (2010) showed that in women, the activity in the DLPFC and in the parietal 

cortex was higher in response to visual food cues than in men. In women, the activity of the DLPFC was 

further found to be negatively correlated with subsequent energy intake. When assessing the 

differences in spatio-temporal brain dynamics to food viewing in men vs. women, a study by Toepel and 

colleagues (2012) revealed that gender influenced viewing responses as early as 170ms after food cue 

onset, related to modulations of neural activity in prefrontal and temporo-parietal brain regions.  

Therein, neural activity in the ventral prefrontal cortex when viewing food (as compared to kitchen 

utensil images) negatively correlated with body weight in women, but not in men. Thus, gender shapes 

brain responses to food viewing in early stages of visual processing related to object categorization and 

reward valuation. 

 

Several other body-intrinsic factors (although often induced by external factors), such as mood, 

stress level and sleep deprivation are known to influence food perception and intake.  

Mood: Several studies reported a strong association between negative affect and abnormal 

eating patterns. For example, the study of Yeomans and Coughlan (2009) assessed the influence of 

positive and negative mood on snacking, and found that women with high restraint and disinhibition 

scores on the three-factor eating questionnaire (TFEQ) consumed more snacks when presented with a 

negative movie, as compared to neutral or positive movies. The authors thus proposed that emotional 

valence (negative vs. positive), rather than arousal imposed by the movies was responsible for greater 

food intake. In a study of Goldschmidt and colleagues (2014), individuals suffering from depression self-

reported greater emotional eating tendencies and had a higher body weight than individuals with no 

depression symptoms. The authors proposed that emotional eating could thus be a coping strategy for 

depressed mood, in turn leading to weight gain. In a review, Macht (2008) supported this hypothesis by 

reporting that individuals showing high depression scores tended to like and eat energy-dense foods to 

compensate for their negative emotions. So far, studies on mood-modulated brain mechanisms to food 

in humans quite sparse. However, as the dopamine level in the reward neural circuitry affects and is 

affected by both mood and eating behaviors, negative mood (synonym of a decreased dopamine level) 

could lead to a more compulsive consumption of rewarding palatable foods as means to re-equilibrate 

the dopaminergic balance in the brain (Singh, 2014). For complete review on the relation between 

mood and food intake behavior, please refer to (Cardi et al., 2015).  

Stress: Stress levels have also been reported as important modulators of food intake. The 

impact of stress on eating behavior seems to greatly vary between individuals. A review of Torres and 

Nowson (2007) reported that stress may lead to both increased or decreased food intake, depending 
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on its severity and duration. Chronic stress leads to the intake of more energy-dense foods, whereas 

the effects of acute stress seem to be more susceptible to inter-individual variations. In line, a study of 

Haynes and colleagues (2003) assessing the effect of acute stress in women with different degrees of 

restraint and disinhibition revealed that participants with low restriction and high disinhibition tend to 

reduce their food intake in stressful as opposed to relaxed situations. In contrast, participants with high 

restraint and/or low disinhibition ate more when stressed. In the brain, stress is known to trigger the 

release of cortisol via the stimulation of the hypothalamic-pituitary-adrenal axis (HPA) (Tsigos and 

Chrousos, 2002). Excessive levels of cortisol in turn modulate gastric hormone secretion, as well as the 

reward value attributed to foods, and stimulate hunger (Epel et al., 2001). This excess in cortisol also 

plays a key role in the development of visceral obesity via the increase in glucocorticoid receptor 

density in the intra-abdominal adipose tissue, favoring fat accumulation and modifying the overall lipid 

metabolism (Adam and Epel, 2007; Lundholm et al., 1985). Stress might thus well be factor contributing 

to the dysregulation of eating behavior and weight fluctuations across life span.  

Sleep: Sleeping patterns were also shown to greatly influence food intake behavior. Sleep 

restriction has been linked to maladaptive food intake and weight gain. Sleep deprivation is believed to 

alter glucose metabolism, increase food intake and decrease energy expenditure (Brondel et al., 2010; 

Knutson et al., 2007). Lack of sleep dysregulates the secretion of growth hormones and cortisol, 

creating a “stress-like” situation for the body and the brain (Knutson et al., 2007). A study of Brondel 

and colleagues (2010) assessing the influence of partial sleep deprivation on food intake behavior 

showed that after a 4h-long night (as compared to 8h), participants increased their food intake by more 

than 20%, without changing the liking attributed to the food or the desire to eat. This strong increase in 

food intake by sleep deprivation can lead, on the long run, to dramatic weight gain and eventually 

obesity.  

 

1.3.2 Food-extrinsic factors influencing food perception 

Extrinsic environmental and contextual information accompanying food choice and intake play 

an important role in pre-ingestive perception. In this section, some of the most relevant factors shaping 

the context of food intake are described. For a review on food-extrinsic factors influencing food 

perception, please refer to (Okamoto and Dan, 2013). 

 

Colors: colors substantially influence food taste and odor perception. From an early age, 

western individuals learn that the color red is an implicit “stop” or warning signal, whereas the color 

green is an implicit “go” signal. Red and green increase arousal and modulate the perception of the 

environment (Mehta and Zhu, 2009; Shi, 2013). Color incentive meanings in a food context in our daily 



Marie-Laure Notter                      Département des Neurosciences Cliniques et Département de Radiologie                     Août 2016 

 
  

  11 
 

life are likewise acquired (Spence et al., 2010). For example, in food marketing, green is often linked to 

a notion of “healthiness” of a product and is used for the packaging of “organic” or low-energy foods 

(Schuldt, 2013; Shi, 2013). The influence of color on taste perception and on the amount of food 

consumed has been extensively investigated over the last decades. In a study where naive participants 

were asked to perform orthogonal tasks (i.e. taste evaluation and questionnaire filling) while offered to 

snack freely on soft drinks and pretzels presented in red, white or blue cutlery, it was found that 

consumption decreased when snacks and drinks were presented in plates or cups that were red as 

compared to blue or white (Genschow et al., 2012). Colors yet not only have an influence on actual 

food intake, but also strongly modulate perceived odor and taste. For example, in a study of Harrar and 

colleagues (2011), salty popcorn eaten out of red bowl was rated by participants as sweeter than when 

eaten out of a white bowl. Further, the color of a beverage was found to be used as a strong indicator 

of post-absorptive refreshment feeling by participants (Zellner and Durlach, 2003). Further, the 

intensity of a color seems to modulate the perceived odor intensity of a beverage in an incremental 

manner (Zellner and Whitten, 1999). These modulations of food perception point to a decisive role of 

colors as an indicator of edibility and of their association with particular flavors (Clydesdale, 1993; 

Velasco et al., 2015). 

 

Labels: Over the last years, an increasing number of food label formats have been implemented 

in several countries in order to guide consumers towards healthier food choices. These formats 

comprise front-pack labels, Guideline Daily Amount (GDA), verbal labels, organic labels and traffic light 

labels (Borgmeier and Westenhoefer, 2009). Their efficacy in terms of shaping food preferences and 

purchase is still debated, but previous research has reported an impact of traffic light, brand and 

organic labels format on food perception and choice (Baltas, 2001; Grabenhorst et al., 2013; Linder et 

al., 2010; Temple and Fraser, 2014). Traffic light labeling has overall been shown to be the most 

effective label format, helping individuals to identify better and faster healthy vs. unhealthy food items 

(Borgmeier and Westenhoefer, 2009; Enax et al., 2015; Siegrist et al., 2015). The effectiveness of traffic 

light labeling likely relies on influences exerted by colors on physiological, behavioral and cognitive 

processes (Meier et al., 2015), as discussed in the previous paragraph. A functional neuroimaging study 

by Enax and colleagues (2015) was the first to investigate the influence of traffic light labels on food 

valuation and neural responses to food viewing. Results showed that the presentation of traffic light 

labeling, as compared to GDA labels, increased participants’ willingness to pay for healthy foods and 

was reflected by an increased activity in the medial prefrontal cortex (medPFC), i.e. a reward-valuation 

area. When participants were presented with visual cues of unhealthy foods, traffic light labels, as 

compared to GDA, lead to an increased activity in the lateral prefrontal cortex (latPFC), i.e. a region 
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involved in self-control and decision-making. Therein, when viewing red (vs. green) traffic lights, the 

activity of the latPFC showed an increased functional coupling with the activity of the medPFC, 

suggesting reward-signal value encoding with the exertion of inhibitory control. In contrast, green (vs. 

red) labels lead to an increased functional coupling between the activity of the posterior cingulate gyrus 

and the medPFC, likely reflecting an increase in reward expectation. This study provided first evidence 

of the influence of traffic light labeling on neural processes involved in food valuation and cognitive 

control. The impact of traffic light labeling on behavioral and spatio-temporal brain dynamics to food 

viewing has further been investigated in the study C of the thesis at hand (chapter 5). 

Another type of labeling, brand-naming, has also been shown to strongly influence appreciation 

as well as brain responses to food cues. In a study of McClure and colleagues (2004), Coca-Cola and 

Pepsi were presented to participants with and without brand labels. In the absence of labels, both 

drinks were equally appreciated, whereas in the presence of labels the Coca-Cola was significantly more 

liked. Further, the presentation of brand labels was shown to modulate brain responses in the 

hippocampus and in the dorsolateral prefrontal cortex, interpreted as a retrieval of information linked 

to a particular brand and its assimilation on affective experience of flavor.  

Lately, also labels referring to manufacturing mode were shown to modulate behavioral and 

brain responses to the viewing of food items. A study by Linder and colleagues (2010) reported than 

when typical daily consumed foods were presented with the label “organic”, participants were willing 

to pay more for them, as compared to food presented with conventional manufacturing labels. This 

increased preference for organic foods was also reflected by an increased activation in the ventral 

striatum, a region involved in reward processing. That is, organic labels seem to be associated with a 

greater reward attribution, likely due to the positive anticipation of healthy foods conveyed by this 

label.  

 

Packaging: Another extrinsic factor influencing food perception and choice behavior is the 

packaging aesthetics. The notion of aesthetics strongly diverges across cultures and each country shows 

preferences for different features of packaging. For example, in western countries particularly 

sensitized to ecology and environmental preservation such as Finland, individuals show a greater 

preference for packaging containing recyclable elements (Rokka and Uusitalo, 2008). However, it seems 

that consumers across the world tend to purchase a product based on the overall visual aesthetics of 

the packaging rather than on the products details and nutrient information (Silayoi and Speece, 2007). 

A neuroimaging study of Van der Laan and colleagues (2012) assessed brain modulations in response to 

preferred packages. When participants chose their favorite packaging between to alternatives, they 

showed stronger activation in the inferior parietal and in the middle temporal gyri. These activations 
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likely reflected the valuation of the two alternatives as a function of the anticipated reward. Further, 

the study showed that the level of activity in the superior frontal gyrus and the middle occipital gyrus to 

package viewing was predictive of the subsequent choice. The aesthetics in packaging design thus plays 

a non-negligible role in food choice behavior.   

 

Portion size: Portion size is another key determinant of eating behavior and body weight 

management. Over the last decades, the standard amount per serving has been multiplied by five 

(Brehm and D’Alessio, 2000). It has been demonstrated that larger portion sizes increase the energy 

intake by favoring the override of homeostatic needs (Rolls et al., 2002). In a study of Rolls and 

colleagues (2006), participants were given varying portion sizes of food and beverages over two 

consecutive days. The amount per serving varied from 100% to 200% of the baseline amounts. Results 

showed that even though participants did not eat the full amount proposed, their energy intake 

increased by up to 26% when presented with larger portion sizes, leading to overeating beyond 

physiological needs. Further, this increase in energy intake seems be independent of gender, body 

weight or eating traits (Rolls et al., 2002). The study B of the thesis at hand further investigated the 

spatio-temporal brain dynamics to meal images varying in portion size in the context of prospective 

food intake and expected satiety (chapter 4). 

 

Product price: Finally, the price of a food product has a major impact on choice and purchase 

behavior. In western countries, the increasing rate of obesity is strongly associated with low and 

moderate household income (Popkin and Gordon-Larsen, 2004). Food is often purchased from 

convenience stores, offering mostly cheap ready-meals and energy-dense foods and favoring the 

development of obesity (Cummins, 2014). In general, marketing strategies favor the purchase of food 

product by lowering their price (French, 2003). A study lead by Hannan and colleagues (2002) showed 

that lowering the price of low-fat foods by 20% while increasing the price of high-fat foods by 10% in a 

high-school cafeteria lead to an increased purchase of low-energy foods by students. In some countries, 

the governmental implementation of a tax on high-sugar food and beverages is currently discussed, as a 

means to discourage the purchase of such unhealthy foods (Encarnação et al., 2016). Price was also 

found to play a role in food taste and quality perception (Veale and Quester, 2009). This study assessed 

the relative influence of price and country of origin as extrinsic factors on wine quality and taste 

evaluation, as compared to wine’s intrinsic factors, i.e. acidity. Results showed that, when aiming at 

identifying a “good” wine, participants let the price information override the intrinsic taste 72% of the 

time during quality assignment phase. Price is thus an important determinant in choice and purchase 

behavior. 
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1.4 Aim of the thesis 

 

The thesis at hand aimed at investigating how behavioral and spatio-temporal brain responses 

to food perception and choice are shaped by food-intrinsic and extrinsic factors. Three studies are 

reported in the following experimental approaches.  

The first study investigated how food liking influences subsequent choice between two food 

alternatives, and how, in turn, these factors modulate brain responses to the viewing of high- and low-

energy foods. This experiment is further referred to as Study A and led to the publication of “Does my 

brain want what my eyes like? – How food liking influences choice and impacts spatio-temporal brain 

dynamics of food viewing” in Brain and Cognition (Bielser & Crézé et al., 2015). Please refer to chapter 3 

for a summary, and to annex 1 for the published article.  

The second study assessed spatio-temporal brain responses to meal images varying in portion 

size in light of prospective food intake and expected satiety. This study is further referred to as Study B 

and led to the publication of “Brain dynamics of meal selection in humans” in NeuroImage (Toepel, 

Bielser et al., 2015). Please refer to chapter 4 for a summary, and to annex 2 for the published article.  

The third study examined how the incidental encounter of traffic light labeling of different 

colors (i.e. green, red, off) as used on food packages impacted behavioral and brain responses to foods 

varying in energetic content. This study is further referred to as Study C and is entitled “Biasing 

behavioral decisions and brain responses to food with traffic light labeling”. Study C composes the 

chapter 5 of this thesis.  

All three studies made use of electroencephalography (EEG) to assess neural modulations to 

food viewing. High-density EEG is a neuroimaging technique allowing for investigating spatio-temporal 

brain dynamics. This method offers the advantage of being non-invasive and provides very high 

temporal (millisecond) and good spatial resolution of the assessed neural processes at both head-

surface and neural source level (Michel and Murray, 2012; Murray et al., 2008). For further details on 

the EEG methodology, please refer to chapter 2.  
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CHAPTER 2  METHODOLOGY 
 

2.1  From Electroencephalography (EEG) to Event-related potentials (ERPs) 

In the thesis at hand, continuous electroencephalography (EEG) was used as a means to 

investigate spatio-temporal brain dynamics to food’s visual perception. The electrodes at the scalp-

surface record the summation of the momentary post-synaptic activity of the neurons of the brain 

(Michel and Murray, 2012). Neural responses to particular stimuli (in our case, food and object images) 

can be isolated from the global ongoing brain activity. As these responses have rather small amplitudes 

as compared to basal neural activity and surrounding electrical noise, each stimulus has to be repeated 

many times to differentiate stimulus-specific neural activity from the ongoing brain activity. The neural 

response is time-locked to the visual stimulation, allowing the averaging of the peri-stimulus epoch 

across many repetitions for each stimulus category. This peri-stimulus averaging provides a replicable 

waveform with a high signal-to-noise ratio for each stimulus category, so-called event-related potential 

(ERP) (Luck, 2005). These averaged ERPs waveforms are characterized by their discrete timing as well as 

the polarity of their voltage, positive (P) or negative (N). In the case of salient visual stimuli, such as 

food, resulting ERPs typically comprise positive early latency P1 (~80-130ms), negative N170 (~150-

200ms) and positive P300 (~250-280ms) late latency peaks (Haider et al., 1964; Mangun, 1995; Sutton 

et al., 1967). Figure 2 displays the computation of ERPs, resulting from the averaging of peri-stimulus 

epochs at each electrode, for each experimental condition. ERPs can thus provide information on 

“how” and “when” experimental conditions differ (Murray et al., 2008, 2009). However, analyses of 

“local” ERP components (i.e. electrode by electrode modulations) to assess differences between 

experimental conditions are debated: as each measure obtained at an individual electrode is calculated 

against a chosen reference to obtain an event-related potential, the arbitrary choice of the reference 

location inherently influences the resulting EEG waveforms in terms of amplitude and scalp-position. 

This reference-dependence of local ERP component analysis has been shown to influence the 

interpretation of EEG data in the literature (Michel and Murray, 2012). To thwart this reference-

dependence, a “global” analysis approach for ERP data has been developed. This analysis approach 

provides information on changes in global measures of the electric field, such as the global response 

strength and topography, and is independent of the chosen reference electrode(s). Further, this 

approach allows for the estimation of neural source activity underlying the head-surface electrical 

modulations (Brunet et al., 2011; Michel and Murray, 2012; Michel et al., 2004; Murray et al., 2008). 

Global response strength, global topography dissimilarity as well as neural source estimation analyses 

are further detailed in sections 2.2 – 2.4. Figure 3 displays local and global analyses on continuous EEG 

recordings. In all three studies of the thesis at hand, we mainly concentrated on the global electric 
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strength  (i.e. global field power) in terms of amplitude and peaks as a means of data reduction. Global 

field power peaks reflect periods of topographic stability and maximal synchronously active neural 

sources. We further conducted neural source estimations over the time windows of global field power 

peaks (see sections 2.2 and 2.4). Further methodological and analysis details are reported in the 

methodology section of each of the three studies comprised in this thesis (see chapters 3, 4, and 5).   

 

 
 
 
 
 
 

2.2  Global Field Power 

A quantitative measure of the electric field strength at the head-surface is the Global Field 

Power (GFP) (Lehmann and Skrandies, 1980). As previously mentioned, GFP analyses provide the 

advantage of a reference-free measure reflecting synchronized activity of underlying neural sources by 

quantifying the average power of the electrical signal across the electrode montage expressed in 

microvolts (μV). GFP provides no information about the spatial distribution of the ERPs across the scalp 

and, by extension, no information about the spatial configuration of the underlying brain generators. 

Mathematically, GFP equals to the standard deviation of all electrodes at a given moment of time 

(Brunet et al., 2011; Lehmann and Skrandies, 1980; Murray et al., 2008). Periods of GFP peaks reflect 

periods of topographic stability and correspond to moments during which the largest amount of 

underlying neural sources are synchronously active. Modulations of GFP across different experimental 

Figure 2: From electroencephalography to event-related potentials: display of continuous EEG (y axis) over 
time (x axis). Visual stimuli trigger time-locked neural responses, allowing the averaging of the peri-stimulus 
time period (red box) and over trials for each condition and electrode, resulting in event-related potentials. 
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conditions can be assessed time point by time point on a given data set. However, in the three studies 

of the thesis at hand, as a means for data reduction and to define time windows of interest for further 

analyses, GFP was averaged over time periods of GFP peaks (i.e. periods of maximal synchronously 

active neural sources). This provided us with the mean GFP amplitude for each participant to each 

experimental condition separately, and served for further analyses described in the respective 

methodological section of each study (see chapters 3, 4, and 5).  

 

2.3  Global topographic dissimilarity 

Topographic measures provide qualitative spatial information on the electric field topographic 

configuration at the head-surface. Global topographic dissimilarity is, as GFP, a reference-independent 

measure. This measure identifies time periods of changes in the neural generator configuration (Brunet 

et al., 2011; Michel and Murray, 2012; Murray et al., 2008). In turn, topographic analyses also 

determine when the neural generator configuration differs between varying experimental conditions 

(Murray et al., 2008). Further, this measure is independent from the electric field strength (i.e. GFP). 

Only a short description of global topographic dissimilarity is given here, as we focused on analyses of 

GFP peak time windows in this thesis (For details, see Michel and Murray, 2012)). 

 

2.4  Estimation of active neural sources underlying head-surface modulations 

High-density electrode montages in EEG recordings allow for the estimation of active neural 

sources underlying electric signal modulations recorded at the head-surface. Neural source estimations 

for the thesis at hand are realized by means of a mathematical model called “inverse solution model”, 

based on the electric potentials measured at the scalp surface (Brunet et al., 2011; Spinelli et al., 2000). 

These neural source estimations provide information on the location and level of activity of the brain 

generators, with a high temporal resolution (millisecond range) and a relatively good spatial precision 

(Michel and Murray, 2012). However, as a given electric potential recorded at the scalp can arise from 

various configurations of intracranial sources at a specific time point, neural source estimations cannot 

provide unique solutions. For the three studies reported, we used a distributed linear inverse solution 

applying a local autoregressive average (LAURA) algorithm (Brunet et al., 2011; Grave de Peralta 

Menendez et al., 2001, 2004; Michel and Murray, 2012; Michel et al., 2004). LAURA provides a 3D head 

model of the brain containing 3005 nodes selected from a 6x6x6mm grid and equally arranged within 

the gray matter of the Montreal Neurological Institute’s (MNI) average brain. The version of the LAURA 

inverse solution applied here was created with the Spherical Model with Anatomical constraints (SMAC) 

(Spinelli et al., 2000). The output of the source estimation algorithm provides current density values (in 
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μA/mm3) for each node of the solution point matrix. In the thesis at hand, inverse solutions were 

conducted for each participant’s responses to experimental conditions over time periods of interest as 

previously defined based on the head-surface response modulations (i.e. global field power peaks). 

Further analyses conducted on source estimations are described in the respective methodological 

section of each study (see chapters 3, 4, and 5).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Illustration of the global analysis approach of electroencephalographic data. Electroencephalographic traces 
can be analyzed at both head-surface (i.e. event-related potentials (ERP), Global Field Power (GFP); Global Topographic 
Dissimilarity) and intracranial level (i.e. source estimation). (Adapted from Murray et al., 2012). 
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CHAPTER 3 STUDY A – Does my brain want what my eyes like? - How food 
liking and choice influence spatio-temporal brain dynamics of 
food viewing 

 
 

 

Authors: Marie-Laure Bielser*, Camille Crézé*, Micah M. Murray, Ulrike Toepel - (2015)  

(* equal contribution)  

Accepted in Brain and Cognition, 2015 Nov 11. Article in Press. To be found in Annex 1. 

Contribution: The candidate analyzed the data and prepared the manuscript for submission. 

 
 
This study investigated whether food valuation influences subsequent decision-making and 

how, in turn, both modulate behavioral responses as well as spatio-temporal brain dynamics to food 

viewing. Twenty-two normal-weight participants partook in the study and were presented with pairs of 

food photographs while undergoing electroencephalographic (EEG) recordings. Image pairs always 

comprised two foods from the same product category (e.g. deserts, fruits, meat, milk products). 

Participants were asked to rate their appreciation of each individual food image by button press during 

a “valuation phase” (1-5 Likert scale). Following each image pair, they were asked to decide which of 

the two alternative foods per pair they preferred (“choice period”). Analyses of the valuation responses 

showed that strongly liked foods were rated faster as compared to mildly liked and disliked foods, 

irrespective of the subsequent choice. Strongly liked foods were also chosen most often and this choice 

was made faster than for less appreciated foods. Analyses on brain responses to food viewing were 

conducted by means of visual evoked potentials (VEPs). Both food liking and subsequent choice were 

found to modulate VEPs as early as 135-180ms after food image onset. Analyses on neural source 

activity over this time period of interest revealed an interaction between liking and the subsequent 

choice in the insula, the dorsal frontal and the superior parietal region. The level of liking attributed by 

participants was found to modulate neural responses to food viewing when foods were subsequently 

chosen, but not when dismissed for an alternative. When subsequently chosen, responses to disliked 

food were overall higher than those to mildly and strongly liked foods. Our findings indicate that spatio-

temporal brain dynamics to the viewing of foods are influenced by valuation of the food (attributed 

liking), but also by the subsequent preference decisions. These processes of valuation and choice occur 

in brain areas known to be involved in salience attribution as well as in decision-making processes, 

likely influencing prospective food intake. 
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CHAPTER 4  STUDY B – Brain dynamics of meal size selection in humans 
 
 
 

Authors: Ulrike Toepel, Marie-Laure Bielser, Ciaran Forde, Nathalie Martin, Alexandre Voirin, Johannes 

le Coutre, Micah M. Murray, Julie Hudry – (2015) 

Published in NeuroImage, 2015 Jun 30; 113, pp.133-142. To be found in Annex 2.  

Contribution: The candidate contributed to the data acquisition, data analyses and manuscript 

preparation. 

 
 
 
 
This study investigated the spatio-temporal brain dynamics to the viewing of meal images 

varying in portion size. Twenty-one normal-weight women partook in the study and were asked to 

perform a task of ideal portion selection for prospective lunch intake and expected satiety while 

undergoing electroencephalographic recordings. Neural responses to meal portion sizes judged as “too 

small”, “ideal”, and “too big” were assessed by means of visual evoked potentials (VEPs). Head-surface 

modulations of the global electric field strength (i.e. global field power) showed an incremental 

increase with the portion ratings from “too small” to “too big” as early as 105-145ms post-image onset.  

Neural source estimations conducted over this time window of interest showed that the judgment on 

portion size also resulted in modulated activity in brain regions like the insula, the middle frontal and 

middle temporal gyrus. In contrast, over a later time window of interest from 230-270ms, head-surface 

global field power was maximal for the “ideal” as compared to “non-ideal” portion sizes. Neural source 

estimations over this later time period revealed greater activity to “ideal” relative to “non-ideal” 

portion sizes in the inferior parietal lobule, the superior temporal gyrus, and the mid-posterior 

cingulate gyrus. Our results provide first evidence that brain regions involved in visual processing, 

salience and reward attribution trace “physical” portion size increases during early stages of 

perception, likely reflecting a quantitative evaluation of the amount of food available for prospective 

ingestion. During a later information processing stage, brain regions involved in attention and adaptive 

behaviors show greater responsiveness to portions judged as “ideal”, likely reflecting control over food 

intake, thus leading to the selection of an ideal portion to reach adequate satiety. 
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CHAPTER 5 STUDY C – Biasing behavioral decisions and brain responses to 
food with traffic light labeling 

 
 
Authors: Marie-Laure Bielser1, 2, Jean-François Knebel3, Micah M. Murray1-4, Ulrike Toepel1, 2 

The Laboratory for Investigative Neurophysiology (LINE), 1 Department of Clinical Neurosciences and  2 Radiology Department, 

Vaudois University Hospital Center and University of Lausanne, Lausanne, Switzerland, 3 Electroencephalography Brain 

Mapping Core, Center for Biomedical Imaging of Lausanne and Geneva, Switzerland, 4 Department of Ophthalmology, 

University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland. 

Contribution: The candidate prepared and conducted data recording, did the data analyses and is 

currently preparing the manuscript for submission.  

 

5.1 Abstract 

Our study investigated the influence of traffic light labeling (as used for nutrient information on 

food packages) on behavioral and brain responses to food viewing. Multichannel 

electroencephalography (EEG) served to assess visual evoked potentials (VEPs) to the viewing of color 

images of low-fat and high-fat foods in 16 healthy, non-dieting, and normal-weight participants. Food 

image viewing was preceded by either ‘green’, ‘red’ or ‘off’ traffic light labels. Participants performed 

an online food/non-food categorization task and additionally rated the liking of food items offline. 

Analyses focused on the influence of ‘green’ and ‘red’ relative to ‘off’ traffic lights on food viewing. In 

the online behavioral categorization task, participant’s accuracy was decreased when HiFat foods were 

preceded by ‘green’ or ‘red’ as compared to ‘off’ labels. VEP analyses showed that color labels affected 

responses to food viewing over two time windows (i.e. 115-155ms (TW1) and 240-280ms (TW2) post-

image onset). Neural source estimations over both intervals showed interactions of traffic light labeling 

and food category viewed in lateral prefrontal cortex and superior temporal gyrus (TW1) and medial 

prefrontal cortex (TW2). Neural activity in the latPFC and medPFC, regions involved in cognitive control 

and reward valuation, respectively, were higher when low-energy foods were combined with a red 

label and when high-energy foods were paired with a green traffic light. In the STG, a region involved in 

memory and learned associations, the activity was higher for low-energy foods preceded by a green 

label and for high-energy foods preceded by a red label.  Our results show the potential of traffic light 

labeling as means to influence food perception at both behavioral and neural levels. These findings 

support previous evidence that traffic light labeling influences behavioral and brain responses to food 

upon incidental encounter. In extension, traffic light labeling could thus be an effective tool for benefit 

of body weight management. 
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5.2 Introduction 

Obesity has reached pandemic proportions over the last decades, notably due to the over-

abundance of tempting foods encouraging overeating and subsequent weight gain. Since hedonic 

properties of food tend to override homeostatic energetic needs, new means to attain healthier food 

choices and resistance to tempting foods are needed. Given that energy-dense foods are constantly and 

immediately available in Western countries, poorly-guided food purchase and intake decisions are 

identified as leading causes of the increasing prevalence of obesity (Finucane et al., 2011; Morris et al., 

2015; Ogden et al., 2015; Stevens et al., 2012). That is, resisting food temptations has become a 

necessity in order to maintain healthy body weight. Research on human food perception has already 

identified alterations in the perception of food by overweight and heightened body mass index and as a 

function of whether high- or low-energy foods are perceived (Rothemund et al., 2007; Stoeckel et al., 

2008; Toepel et al., 2012; Uher et al., 2004). Little is known on how to influence food perception, and in 

turn choices, for the benefit of a sustainable body weight management. Food is usually not perceived in 

isolation, and its perception can be influenced by external contexts. Here, we tested traffic light labeling 

as contextual means to impact food perception. A better understanding of the modulations of brain 

responses to food viewing by food traffic light color labeling are of interest to assess the effectiveness 

of such means to guide food choices and intake.  

Contexts in which foods are encountered (such as food packaging, pricing and plating) exert a 

strong influence on food perception and subsequent intake. The packaging aesthetics, rather than its 

nutritive information, is a strong neural predictor of further purchase (Van der Laan et al., 2012). For 

example, food presented with organic labeling increases the willingness to pay for it and is reflected by 

a higher activation the reward neural network as compared to equal food presented in conventional 

form (Linder et al., 2010). In line, verbal-emotional labeling decreases neural responses to food viewing, 

specifically to high-energy foods, notably in brain areas involved in cognitive control and adaptive 

behavior, such as the posterior dorsal frontal cortex, the posterior cingulate cortex, the posterior insula 

as well as the occipital cortex (Toepel et al., 2014).   

In several countries, food labeling (i.e. front-pack labels, verbal labels, traffic light labels, 

Guideline Daily Amount (GDA)) has been implemented in order to encourage healthier choices 

(Borgmeier and Westenhoefer, 2009). However, evidence as to the efficacy of these labels on guiding 

food purchase decisions remains controversial (Baltas, 2001; Drichoutis et al., 2006; Padberg, 1992; 

Temple and Fraser, 2014). In particular, the impact of nutritional labeling on food preferences, choices, 

and attention attenuation are still strongly debated (Baltas, 2001; Borgmeier and Westenhoefer, 2009). 

Within the existing labeling formats, traffic light labeling was found to be the most effective one. 

Behavioral as well as eye-tracking studies showed that, in comparison to other formats (i.e. GDAs; 
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nutrition table; “healthy choice” tick), traffic lights labels help to identify better and faster healthy food 

items (Borgmeier and Westenhoefer, 2009; Siegrist et al., 2015). The success of traffic light labeling is 

likely due to the fact that colors induce physiological, behavioral and cognitive changes, notably 

through learned associations (Elliot and Maier, 2007, 2014; Mehta and Zhu, 2009; Meier et al., 2015). 

Typically, red is often used as a stop or warning signal, whereas green is perceived as a go signal (Elliot 

et al., 2009). That is, colors increase arousal, in turn modulating perception of the environment in 

general (Mehta and Zhu, 2009; Shi, 2013), but also food in particular (Spence et al., 2010 for review). A 

study of Genschow and colleagues (2012) showed that the red coloring of serving plates/cups reduces 

amounts of snacks/soft drink consumption. Further, it was demonstrated that perceived taste and 

sweetness were modulated by color information provided with the food. For example, salty popcorn 

was rated as sweeter when eaten out of a red as compared to white bowl (Harrar et al., 2011). In line, 

chocolates were judged more “chocolaty” when presented in a brown as opposed to green color 

coating (Shankar et al., 2009). However, to date, still little is known on whether and how the incidental 

encounter of color labeling influences behavioral and brain responses when foods differing in energy 

density are viewed.  

We investigated the impact of encountering traffic light labeling preceding food images on 

behavioral and brain responses to food viewing and whether these traffic labels differentially influence 

the viewing of high- vs. low-energy foods. Multichannel electroencephalographic (EEG) recordings were 

conducted while normal-weight participants viewed images of foods varying in energetic content 

preceded by off (i.e. baseline), green and red traffic lights. Features of the global properties of head-

surface electric field (i.e. Global Field Power) and neural source activity to food viewing were analyzed 

to assess the influence of green and red traffic light labels relative to off labels. Moreover, regression 

analyses tested associations of neural responses modulations by color label with the like ratings of high- 

and low-energy foods. 
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5.3 Materials and methods 

5.3.1 Participants 

Sixteen remunerated volunteers (nine males) aged 19-40 years (mean ± SEM = 25.5 ± 1.3) 

partook in our study. Their BMIs were within normal range (mean ± SEM = 21.3 ± 0.6 kg/m2). All 

participants were right-handed according to the Edinburgh Handedness Inventory (Oldfield, 1971), with 

normal or corrected-to-normal vision and with no neurological pathologies or psychiatric illnesses. 

Exclusion criteria were color blindness, history of eating disorders, crurrent diet or dietary restraints 

(i.e. vegetarianism), food intolerance (e.g. lactose, gluten), recreational drug taking, pregnancy or 

breastfeeding. Female participants were tested between day 3 and 15 of their menstrual cycle and 6 

out of 7 used contraceptive medication. All volunteers signed written, informed consent to the 

procedures, which were previously approved by the Cantonal Human Research Ethics Commission of 

Vaud (CER-VD).  

5.3.2 Experimental protocol: EEG recording set-up, stimuli and task  

Participants arrived to the lab at 10am or at 3pm to control for circadian regulation of hunger. 

They were instructed and self-reported to have eaten a usual portion of breakfast or lunch ~2h30 

before the experiment. Upon arrival, participants filled out psychometric questionnaires, i.e. the Three-

Factor Eating Questionnaire (TFEQ) (Karlsson et al., 2000) and the Beck Depression Inventory (BDI) 

(Beck and Beck, 1972). Before and after the experiment, they rated their level of hunger as well as their 

will to eat on visual analogue scales (VAS). A Biosemi ActiveTwo system (Biosemi, Amsterdam, 

Netherlands) electrode cap was placed on the volunteers’ head for electroencephalographic (EEG) 

recordings. EEG data were acquired at a sampling frequency of 512Hz from 128-channels referenced to 

a ground circuitry (CMS-DRL). Participants completed a ~1 hour EEG recording session comprising the 

viewing of 240 color photographs of food images and 120 nonfood items (i.e. kitchen utensils), in a dark 

lit, sound-proof booth in a sitting position facing a computer screen.  Each of the 360 images appeared 

once preceded by each traffic light color (i.e. off (O), green (G), red (R)) in a pseudo-randomized order. 

The food images were subdivided into two categories: 120 pictures of high-energy foods (henceforth: 

HiFat) and 120 pictures of low-energy foods (henceforth: LoFat). The division into HiFat/LoFat was 

based on the Swiss nutritional database (Swiss Federal Office of Health and Swiss Federal Institute of 

Technology in Zürich). LoFat items had a fat content comprised between 0 and 5g/100g (mean ± s.e.m. 

= 0.89g ± 0.13) and HiFat items a fat content between 12 and 81.10g/100g (mean ± s.e.m. = 27.12 ± 

1.39). The mean energy density for LoFat pictures was 142.98 kCal/100g (s.e.m. ± 12.36) and 384.77 

kCal/100g (s.e.m. ± 13.05) for the HiFat images. All images measured 300x300 pixels and were taken 

from an identical top-view angle with an identical background (Toepel et al., 2009). Images were 
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controlled for low-level visual features, and the luminance and spatial frequency were adapted 

between LoFat and HiFat images (Knebel et al., 2008). Moreover, a pre-test in 24 subjects made sure 

that valence and arousal of LoFat and HiFat images did not differ between food categories. During the 

EEG recording sessions, traffic light labels as well as food and non-food pictures appeared for 500ms on 

the computer screen, separated by a random inter-stimulus interval (ISI) of 250-500ms. The inter-trial 

interval (ITI) varied randomly between 250 and 750ms. Each recording session was composed of 9 

consecutive blocks, containing 120 pseudo-randomized pictures each. Any particular traffic light – 

image combination appeared only once per block. To avoid eye movement artifacts, a fixation cross 

was displayed on the screen whenever no traffic light label or photograph was presented. During EEG 

recordings, participants were asked to categorize photographs “online” into food and non-food items 

via button press as fast as possible and received no explicit instruction regarding the preceding traffic 

lights labels or the varying energetic content of the food images. Data analyses focused on the 

behavioral and neural changes in response to LoFat and HiFat foods as a function of the preceding 

traffic light color (i.e. the impact of the incidental encounter of color labels on food perception). 

Exemplary stimuli and the experimental trial set-up are displayed in Figure 4.  

 
Figure 4 : Experimental design.  a. Traffic light labels (red, off, green); b. Examples of HiFat and LoFat food, as well as non-food 
images (i.e. kitchen utensils, solely serving the behavioral task); c. Trial structure. Participants were asked to categorize images 
into food and non-food items by button press. Each image was presented once preceded by each traffic light label color. 

 

After EEG recordings, the electrode cap was removed from participants’ head. Volunteers were 

once more presented randomly with all food images and asked to rate how much they liked each on a 

1-5 Likert scale (offline food like rating). Each food image appeared for 500ms on the computer screen 

with a random ISI of 250 to 1000ms. The control of stimulus display and the recording of behavioral 

responses were done by E-prime software (Psychology Software Tools Inc., Pittsburgh, USA). 
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5.3.3 Behavioral data analyses 

Responses in the online categorization task were analyzed with respect to response accuracy 

(ACC) and reaction times (RT). For each participant, the relative differences (in %) in responses to LoFat 

and HiFat foods preceded by a color label (green; red) as compared to “off” traffic light (as baseline) 

were computed (henceforth: G-O_LoFat; G-O_HiFat; R-O_LoFat; R-O_HiFat). The resulting data provides 

differences between responses to color-food combinations with respect to a baseline (off-food 

combination) and accounts for inter-individual baseline response differences. Response modulations by 

color label and food category were assessed by means of two-way ANOVAs with the factors of label 

color (G-O and R-O) and food category (LoFat and HiFat). Post-hoc paired t-tests (two-tailed) were 

applied when appropriate. Further, one-sample t-tests (two-tailed) were conducted to detect whether 

particular color-food combination revealed response patterns that significantly differed from the 

response to off-food (i.e. baseline) combination.  

For the analyses of offline food like ratings, weighted mean scores were computed for each 

food category (LoFat, HiFat) in each participant. A paired t-test (two-tailed) was conducted to assess 

differences in liking between the two food categories. For all statistical tests, only results with p-values 

≤0.05 are reported. 

 

5.3.4 EEG pre-processing steps 

Visual evoked potentials (VEPs) to the viewing of LoFat and HiFat foods were epoched over the 

peri-stimulus period from -100ms to 500ms of food image onset. During epoching, band-pass filtering 

(0.1-40Hz), a 50Hz Notch filter, and a semi-automatic artifact rejection criterion of 80μV were applied. 

EEG epochs were then first averaged for each participant, and each food category preceded by each 

color label (O_LoFat; O_HiFat; G_LoFat; G_HiFat; R_LoFat; R_HiFat) separately. Electrodes with artifacts 

were interpolated (Perrin et al., 1987).  Group-average VEPs were then computed for each food viewing 

condition; pre-stimulus baseline-correction was applied over the period from -100 to 0ms before image 

onset. These group-average VEPs were then recalculated against the average reference. All pre-

processing steps were done with the CARTOOL software (http://www.fbmlab.com/cartool-software/), 

the STEN toolbox (http://www.unil.ch/line/home/menuinst/about-the-line/software--analysis-

tools.html), and customized MATLAB and Python scripts. 

 

5.3.5 VEP analyses and associations between neural responses to food viewing with food liking and 

psychometric assessments 

Head-surface VEP analyses to the viewing of food focused in particular on global strength of the 

electric field, i.e. Global Field Power (GFP) (Lehmann and Skrandies, 1980). GFP equals the standard 

http://www.unil.ch/fenl/home/menuinst/about-the-line/software--analysis-tools.html
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deviation of the electric field amplitude at a given moment of time (Brunet et al., 2011; Murray et al., 

2008). That is, GFP provides quantitative information on the momentary electrical potentials across the 

head surface, corresponding to the synchronized activity of the neural sources and reflecting the 

strongest VEP topography (Brunet et al., 2011). GFP peaks are time periods of strongest 

synchronization in neural generators but least modulations in the topography of responses (Michel and 

Murray, 2012). First, single and group-average GFP waveforms were computed over peri-stimulus 

epoch for each viewing condition (i.e. O_LoFat; O_HiFat; G_LoFat; G_HiFat; R_LoFat; R_HiFat). Then, 

GFP peak time windows for further analyses were defined in group-average data and cross-checked in 

individual data. Within each time window of interest (±20ms of absolute peak value in group average 

data), instantaneous GFP values in each individual were averaged for each of the 6 conditions. Then, 

the relative differences between responses to food images preceded by a color label (red; green) as 

opposed to off traffic light were computed in terms of %difference. The resulting data reflect changes in 

response to each color-food combination from baseline (i.e. off-food combination) resulting in 4 

conditions (i.e. G-O_LoFat; G-O_HiFat; R-O_LoFat; R-O_HiFat), also accounting for inter-individual 

baseline differences (i.e. off-food combinations). Two-way ANOVAs with the factors of label color (G-O; 

R-O) and food category (LoFat; HiFat) were conducted over each GFP peak window to assess significant 

modulations of head-surface responses by these factors. Post-hoc paired t-tests (two-tailed) were 

applied when appropriate. Further, one-sample t-tests (two-tailed) were conducted to detect whether 

a particular color-food combination revealed activity patterns that significantly differed from the 

response to off-food (i.e. baseline) combination. For all statistical tests, only results with p-values ≤0.05 

are reported. 

 

In a second step, analyses consisted of estimations of intracranial sources underlying the head-

surface GFP peak responses and modulations. As input, data were averaged over the time windows of 

interest (GFP peak TW), resulting in a single data point per electrode for each participant and each 

condition to increase the signal-to-noise ratio. Intracranial source estimations were computed using the 

local autoregressive average (LAURA) distributed linear inverse solution (Grave de Peralta Menendez et 

al., 2001, 2004; Michel et al., 2004). LAURA uses a 3D head model, containing 3005 nodes equally 

arranged within the gray matter of the Montreal Neurological Institute’s (MNI) average brain.  The 

particular inverse solution was generated with the Spherical Model with Anatomical constraints (SMAC) 

(Spinelli et al., 2000). The output of the source estimation by LAURA is given in terms of current density 

(in µA/mm3) for each of the 3005 nodes of the model. In order to assess whether color labels 

influenced neural responses to food viewing, we again calculated the relative difference (in %) between 

color-food combinations as opposed to off-food combinations (as baseline). This was computed as the 
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difference of activity in one node between color-food combinations (i.e. G_LoFat; G_HiFat; R_LoFat; 

R_HiFat) relative to the average activity across all sources nodes in the off light condition (i.e. O_LoFat; 

O_HiFat). To assess modulations in neural source activity by label color and food category within each 

time window, whole-brain statistical analyses were conducted by means of two-way ANOVAs with the 

factors of label color (G-O; R-O) and food category (LoFat; HiFat). Only clusters revealing a significant 

interaction (p-values ≤0.05) in >10 nodes were retained for consecutive region of interest (ROI) 

analyses. For ROI analyses, the averaged neural activity (in µA/mm3) of the source node with the lowest 

p-value (plus its immediate 6 neighbors) entered post-hoc and correlation analyses. Further, one-

sample t-tests (two-tailed) within each ROI served to detect whether the response to a particular color-

food combination significantly differed from the responses to off-food combination (i.e. baseline). In 

each of these ROIs, post-hoc paired t-tests (two-tailed) were conducted to assess whether the activity 

to the viewing of food significantly differed as a function of food category or preceding traffic light. 

Additional Spearman correlation analyses served to detect associations between changes in neural 

activity to color-food combinations relative to off-food combinations, and the food liking scores. For all 

post-hoc analyses, only results with p-values ≤0.05 are reported.  
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5.4 Results 

5.4.1  Behavioral data and psychometric assessments 

In the online behavioral food/non-food categorization task during EEG recording, participants 

overall response accuracy was 95.14% (± s.e.m. = 1.42). The average response accuracy was 90.14% (± 

s.e.m. = 1.73) for Non-Food, 97.60% (± s.e.m. = 1.81) for LoFat, and 97.67% (± s.e.m. = 1.46) for HiFat. 

The overall mean response time was 514.46ms (± s.e.m. = 15.11). The average response time was 

546.74ms (± s.e.m. = 14.78) for Non-Food, 496.80ms (± s.e.m. = 15.26) for LoFat, and 499.85ms (± 

s.e.m. = 15.20) for HiFat.  

 

 In Figure 5a, the relative difference in accuracy is plotted when LoFat and HiFat foods were 

coupled with color traffic labels (i.e. green or red) relative to the respective off-food combination. 

Descriptively, the viewing of color-food combinations led to a decrease in accuracy relative to off-food 

combinations. ANOVAs on accuracy and reaction times revealed no main effect or interaction of traffic 

label color or food category. One-sample t-tests, on the other hand, revealed a significant decrease in 

accuracy only when participants had to categorize HiFat foods preceded by either green (t15=-3.13, 

p=0.01; r2=0.39) or red (t15=-2.13, p=0.05; r2=0.23) labels, as compared to off-food combinations.  

 

Weighted scores of food liking as assessed offline after the EEG recording were found to be 

significantly higher for HiFat (mean ± s.e.m. = 3.47 ± 0.10) than for LoFat (mean ± s.e.m. = 3.17 ± 0.07) 

foods (t15=-2.45; p=0.03; r2=0.30) (Figure 5b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Behavioral results of the online food/non-food categorization task. Relative difference in % (±s.e.m.) in accuracy 
for each color-food relative to off-food combination (as baseline). #p≤0.05 (one-sample t-tests) ; b. Behavioral results of 
the offline food like rating task ; Mean liking ratings (±s.e.m.) weighed by the scale for HiFat and LoFat foods on a 1-5 
Likert scale.*p≤0.05 (paired t-tests). 
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5.4.2 Head surface global electric field strength 

In the GFP waveform over time, two GFP peaks were identified, motivating the choice of time 

intervals from 115-155ms and 240-280ms following food image onset for further analyses (Figure 6a). 

ANOVAs on the GFP over both time windows revealed no main effect or interaction of traffic label color 

and viewed food category. Also, one-sample t-tests over both time windows showed no significant 

difference within conditions when food images were preceded by a color relative to off label.   

 

5.4.3 Modulations of neural source activity to food viewing  

Neural source estimations were computed over both time windows of interest (i.e. 115-155ms 

and 240-280ms). Figures 6b and 6c visualize brain regions that showed a significant interaction of traffic 

label color and food category in the whole-brain analyses. Coordinates of the source node showing the 

lowest p-value by region are given by means of the Talairach system (Talairach and Tournoux, 1988) 

and visualized on the MNI template brain.  

 

Over the time interval from 115-155ms, whole-brain analyses showed an interaction of traffic 

label color and food category in the left lateral prefrontal cortex (latPFC; Max: -47; 32; 19) and in the 

right superior temporal gyrus (STG; Max: 60; -21; 14). ROI analyses showed that in the latPFC, the 

perception of color-food combinations relative to off-food combinations resulted in higher neural 

activity when viewing LoFat foods preceded by a red label (t15=2.43; p=0.03; r2=0.28) and when viewing 

HiFat foods preceded by a green label (t15=2.58; p=0.02; r2=0.31). In the STG, solely the activity to HiFat 

foods preceded by a red label was significantly higher than for the off-food combinations (t15=2.37; 

p=0.03; r2=0.27). Post-hoc analyses in each region showed that in the latPFC, neural activity was 

significantly higher when viewing HiFat foods preceded by a green as opposed to a red traffic label 

(t15=2.46; p=0.03; r2=0.29). In contrast, post-hoc analyses in the STG showed higher activity when HiFat 

foods were viewed preceded by a red as opposed to a green label (t15=-2.14; p=0.05; r2=0.24) (Figure 

6d).  

 

Over the 240-280ms time interval, whole-brain analyses showed an interaction of label color 

and food category in the right medial PFC (medPFC; Max: 26; 24; 53). In this ROI, only the viewing of 

LoFat preceded by a red label revealed a greater activity than the off-food combination (t15=2.18; 

p=0.05; r2=0.24). Post-hoc analyses in this region showed that the activity was significantly higher when 

viewing LoFat foods preceded by a red as compared to a green label  (t15=-2.63; p=0.02; r2=0.32) (Figure 

6e). 
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5.4.4 Associations of neural source activity with individual food likes  

Figure 6f displays the associations of neural source activity with food like ratings. Over the time 

interval 115-155ms, only for responses of the lateral prefrontal cortex, correlation analyses revealed a 

negative association between the food viewing activity when viewing HiFat foods preceded by a red 

label and the respective offline food like scores (rs14=-0.55; p=0.03). That is, the more an individual 

indicates to like HiFat foods, the less prefrontal brain responses to HiFat food are modulated by a red 

traffic light label. 
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Figure 6 : a. Results of the head-surface VEP analyses: Global Field Power (GFP) waveforms to the viewing of each 

food category (LoFat and HiFat) preceded by each traffic light (green, off, red). Time windows of interest were two GFP peaks 
(i.e. TW1=115-155ms and TW2=240-280ms post-image onset) ; b. and c. Source estimations : Whole-brain modulations by 
color label and food category over TW1 (115-155ms) and TW2 (240-280ms) respectively ; d. and e. relative differences (in %) 
(±s.e.m.) in neural activity within each region of interest in response to each color-food combination relative to off-food 
combination over TW1 and TW2 respectively. #p≤0.05 (one-sample t-tests), *p≤0.05 (paired t-tests) ; f. Association between 
the relative difference in neural activity in the lateral prefrontal cortex to the viewing of red-HiFat combination relative to off-
HiFat combination, and the offline food like rating of HiFat foods. 
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5.5 Discussion 

Our study shows that traffic light labeling modulates behavioral accuracy during a 

categorization task, as well as spatio-temporal brain dynamics to the viewing of food images varying in 

energetic content.  

During the online food/non-food categorization task, color-food combinations led to a general 

decrease in accuracy of participants relative to off-food combinations, in particular when viewing high-

energy foods.  Most studies so far assessed the influence of the color red on task performance only. For 

example, in line with our results, a study testing the influence of the colors red, green and black on 

intellectual performance found that the color red was perceived as negative contextual information. 

Performance of participants was also shown to decrease when the color red was present during the 

achievement of anagram completion (Elliot et al., 2007). In this study, the color green did not influence 

the performance of participants. In a review, Elliot and Maier (2014) reported that the color red in 

particular affects tasks of intermediate difficulty for participants, such as categorization tasks, but has 

less effects on cognitively more challenging tasks. Another study (Genschow et al., 2012) assessing the 

influence of colors on soft drink and food consumption showed that the color red effectively reduced 

the amounts consumed. In this study, naive participants were asked to evaluate the taste of soft drinks 

while drinking out of cups labeled with either red or blue stickers. In addition, participants were asked 

to fill questionnaires while being invited to snack freely on pretzels presented on red, blue or white 

plates. In both cases, participants’ snack consumption decreased when the cutlery was red. Therefore, 

the impact of color traffic lights on the behavioral responses of our participants could reflect a change 

in the allocated attention to foods, in turn impacting psychological and motor responses. 

In terms of spatio-temporal brain dynamics to food viewing, we determined two periods of 

peaks in global field power, i.e. 115-155ms and 240-280ms post-image onset. The timing of these 

modulations is in line with previous literature on brain responses to the viewing of food varying in 

energetic content as well as the impact of verbal labeling on the viewing of such foods. Previous studies 

showed that images of high-energy foods are discriminated from object images as early as ~100ms in 

temporal and parietal cortices and that a subsequent categorization between high- and low-energy 

food images occurs at ~165ms and ~300ms post-image onset in ventral and dorsal prefrontal cortices 

(Toepel et al., 2009, 2010). Further, the study from Toepel and colleagues (2014) on the influence of 

verbal-emotional labeling on behavioral and brain responses to the viewing of food showed a selective 

impact of positive verbal (vs. neutral and negative) labels on spatio-temporal brain dynamics to the 

viewing of high-energy (vs. low-energy) foods. Labels with a positive emotional valence specifically 

modulated neural activity to high-energy foods in occipital, posterior, frontal, insular and cingulate 

brain areas over 260-300ms post-image onset.  
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Statistical analyses on neural source activity over the earlier time window (i.e. 115-155ms) 

revealed an interaction of traffic light labels and viewed food category in the lateral prefrontal cortex 

(latPFC) and the superior temporal gyrus (STG). In the latPFC, the relative difference of the activity 

when color-food combinations were viewed relative to off-food combinations was greater for high-

energy foods preceded by a green compared to a red label. Only responses to low-energy foods 

preceded by a red and high-energy foods preceded by a green label differed from their respective off-

food combinations. The neural activity in the STG presented an inverse pattern of modulation by traffic 

light label and the viewed food category. Only responses to high-energy foods preceded by a red label 

differed from those to off-food combinations and were higher than high-energy foods preceded by a 

green label. Neural source estimations over the later time window of interest (240-280ms) showed an 

interaction of traffic light labels and viewed food category in the medial prefrontal cortex (medPFC). 

Only neural responses to low-energy foods preceded by a red label differed from off-food combinations 

and were additionally higher than responses to low-energy foods preceded by a green label. Taken 

together, these results show that modulations in neural activity to the viewing of food as a function of 

both traffic light labels and the type of food viewed comprised a network of regions known to be 

involved in salience valuation, inhibitory control, attention, and object categorization.  

The latPFC was previously described in the literature as being related to cognitive and food 

intake control, as well as decision-making. For example, a study from Cornier and colleagues (2010) 

showed that women show greater dorsolateral prefrontal activity than men in response to salient food 

cues and that this increased activity was in turn related to  higher inhibitory cognitive control exerted 

towards these visual food cues. Further, a study in which participants were asked to actively down-

regulate their food cravings showed a modulation of the activity of the latPFC, likely indicating top-

down control of reward valuation (Hutcherson et al., 2012). In line, in a study of Harris and colleagues 

(2013) in which participants were presented with appetizing food images and were asked to choose 

healthy food options for subsequent intake, the modulation of latPFC activity was associated with the 

voluntary exertion of dietary self-control, therefore confirming the presence of top-down attentional 

filtering and value modulation at a timing similar to our findings (i.e. 150-200ms post-image onset). The 

medPFC, another region modulated by traffic light labels and food category in our study, is known to be 

involved in reward-valuation processes and goal-value signal encoding. In a neuroimaging study from 

Hare and colleagues (2009), self-reported dieters were asked to make decision about which food to 

subsequently eat. They found that activity in the medPFC reflected goal-directed value signal encoding. 

Further, as the activity of the latPFC was associated with the activity in the medPFC, the authors 

postulated that the various factors influencing a choice between different options are integrated in the 

medPFC and that the latPFC exerts self-control to modulate the value signal according to higher 
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cognitive factors and needs. In line, a study of Plassmann and colleagues (2010) showed that when 

participants had to bid for the right to eat liked or disliked food, the computation of goal values for 

both appetitive and aversive options at the time of decision modulated the activity in the medPFC as 

well as in the latPFC. Finally, the medPFC as well as the temporal cortex were found to be involved 

when judgments on whether a portion size is ideal (vs. too big or too small) for prospective lunch are 

required (Toepel et al., 2015). Our results showed that response modulations in the prefrontal region 

by traffic light labels and viewed food category showed consistent patterns. Neural activity in latPFC 

and medPFC were higher when low-energy foods were combined with a red traffic light and when high-

energy foods were combined with a green label. In line with previous findings, our results might thus 

reflect the computation of values as a function of the food-color combination viewed. A green label, i.e. 

an implicit “go” signal, in combination with high-energy foods likely represents a very salient pairing, 

therefore increasing the activity of brain regions involved in salience attribution. Further, the arousal 

and implicit “stop” signaling of the red color might be linked with an automatic initiation of cognitive 

control involving the prefrontal cortex, in particular modulating brain responses to low-energy foods.  

The superior temporal gyrus, a third region modulated in our study, is known to be related to 

object categorization and its activity is influenced by attentional as well as affective relevance of visual 

stimuli (Vuilleumier et al., 2001). With respect to food perception, a study of Toepel and colleagues 

(2009) showed that the activity of the STG was higher when viewing high-energy as compared to low-

energy foods around 160-230ms post-image onset. Moreover, the activity of the STG was found to be 

particularly modulated by images of ideal plating size for subsequent lunch  (as compared to too big or 

too small portions) ~230-270ms after image onset (Toepel et al., 2015). The STG region is also known 

for its important role in memory processes. A study in patients with lesions of the temporal lobe 

highlighted its involvement in semantic memory (Mummery et al., 2000). This finding was supported by 

the study of Davey and colleagues (2015) showing the crucial role of the temporal lobe in semantic 

retrieval and learned-associations by means of transcranial magnetic stimulation (TMS). In this study, 

participants were asked to identify matching words and pictures to assess their performance in object 

identification and in retrieval of thematic associations while undergoing TMS on their temporal lobe. 

The inhibition of this brain area resulted in the disruption of participants’ performance. Our results 

showed higher activity in the STG when combinations of low-energy foods preceded by a green and 

high-energy foods preceded by a red traffic light were viewed. These findings could reflect learned 

associations between, on the one hand, the implicit “go” signaling function of the color green, 

frequently linked to healthiness in food marketing and low-energy content of foods often promoted as 

healthy. On the other hand, the implicit “stop” or warning signal function of the color red is often 

associated with unhealthiness and high-energy foods (Schuldt, 2013; Shi, 2013). That is, participants 
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might have learned associations between specific color meanings in a food context in their daily life, 

influencing their perception of food when incidentally encountered with color labels. 

 

With respect to the associations between the changes in neural activity over the 115-155ms 

interval and the food like rating scores, an inverse association was found between the activity in the 

latPFC when participants viewed HiFat foods preceded by a red relative to an off label and the like 

rating of the respective foods. That is, participants showing less modulation in responses to HiFat by a 

red label liked HiFat foods more. This finding indicates that the more high-energy foods are 

appreciated, the less the neural responses in a brain region exerting self-control to these foods are 

influenced by “stop” signals. The study of Hare and colleagues (2009) has shown that the ability of the 

latPFC to exert influence on the medPFC during decision-making also reflects individual’s success in diet 

attempts. Therefore, the participants of our study showing the lowest modulation of the latPFC by a 

stop signal when perceiving strongly liked high-energy foods might thus be less sensitive to food intake 

guidance by means of traffic light labeling. However, whether participants who appreciate energy-

dense foods more and show less modulation in the activity of the latPFC when encountering a stop 

signal finally exert lower self-control during actual food choice and intake remains to be tested. 

 

5.6 Conclusion 

Taken together, our results provide new insights on the influence of food-extrinsic factors 

(labels) on the behavioral and spatio-temporal brain dynamics to food viewing. Our findings suggest 

that traffic light labeling might be an efficient means to guide food choices upon incidental encounter, 

in extension being a potential means to interfere with everyday food choices in invidiuals for the 

benefit of health and body weight.  
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CHAPTER 6  GENERAL DISCUSSION AND CONCLUSION 
 

The thesis at hand provides insights on behavioral and brain responses to food perception as a 

function of food appreciation, preferences and food-extrinsic information, assessed by means of 

behavioral and electroencephalographic (EEG) data. 

 

The first study (study A) investigated how food appreciation (i.e. liking) influences subsequent 

choice between two food alternatives, and how, in turn, these factors modulate spatio-temporal brain 

dynamics to the viewing of food varying in energetic content. Foods rated as strongly liked by 

participants were found to be more often chosen than dismissed and to be rated faster than less 

appreciated foods. Strong appreciation thus seems to facilitate food choices over an alternative. 

Previous literature reported similar findings. A study by Kahnt and colleagues (2014) showed that 

participants were faster at responding to strongly (vs. low) valued visual stimuli during an outcome 

prediction task involving appetitive and aversive outcomes. In our study, both food liking and 

subsequent choice were found to modulate neural source activity as early as 135-180ms post-image 

onset, in brain areas comprising the insula, the dorsal frontal cortex and the superior parietal cortex. 

Therein, the level of appreciation modulated neural responses to food viewing when foods were 

subsequently chosen but not when dismissed for an alternative. An overall higher neural activity was 

found in response to disliked but nevertheless chosen foods. The timing of these neural modulations 

corresponds to previously described spatio-temporal brain dynamics to food viewing, in relation with 

the discrimination of food’s energetic content (Toepel et al., 2009). Our study thus provided evidence 

that food liking and choice further modulate neural activity to food perception in brain areas associated 

with reward valuation and cognitive control (Menon and Uddin, 2010; Mitchell, 2011).  

 

The second study (study B) assessed the spatio-temporal brain dynamics of meal size selection 

while participants were asked to judge whether the viewed portion size was “too small”, “ideal” or “too 

big” for prospective food intake and expected satiety. Our participants rated portion sizes judged as 

“ideal” faster than “non-ideal ones” and did not systematically rate the largest portion available as 

“ideal”. These findings are in line with previous literature showing that the portion chosen for ideal 

expected satiety is rarely the biggest one available and that incremental increases in food quantity are 

not key drivers in portion size decisions (Brunstrom et al., 2010). When investigating the influence of 

portion size on neural responses to meal images, we found head-surface modulations at 105-145ms 

post-image onset, with an incremental increase of the head-surface global electric strength with 

portion size judgment from “too small” to “too big”, and at 230-270ms post-image onset, with a 
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maximal global field power for “ideal” portion sizes.  Over the earlier time window (105-145ms after 

image onset), portion size judgment also resulted in modulated activity in the insula, the middle frontal 

gyrus and the middle temporal gyrus. Over the later period of meal image viewing (230-270ms after 

image onset), greater activity to “ideal” as opposed to “non-ideal” portion sizes was found in the 

inferior parietal lobule, the superior temporal gyrus and the mid-posterior cingulate gyrus. The timing 

of these modulations is in line with previously reported spatio-temporal brain dynamics to food viewing 

(Toepel et al., 2009). Our study provided first evidence that brain areas involved in visual processing 

and reward attribution trace “physical” portion size increases during early stages of visual perception 

(Killgore et al., 2003; Menon and Uddin, 2010; Plassmann et al., 2010), likely reflecting an evaluation of 

the quantity of food available for subsequent intake, and that during a later stage of information 

processing, brain areas involved in attention and adaptive behaviors showed greater responsiveness to 

portions judged as “ideal” as compared to “non-ideal” (Corbetta and Shulman, 2002; Hagemann et al., 

2003; Leech et al., 2011), likely reflecting control over food intake, to allow the selection of an ideal 

portion for adequate expected satiety.  

 

The third study (study C) investigated how traffic light labels, as used on food packages for 

nutrient content information, modulate behavioral responses and spatio-temporal brain dynamics to 

the viewing of food varying in energetic content. When participants were asked to perform a food/non-

food categorization task while undergoing EEG recording, their accuracy decreased when viewing high-

energy foods preceded by a green or a red label, as compared to an off label. The presence of color 

traffic lights thus seems to have changed the allocated attention to foods, in turn impacting 

psychological and motor responses ((Elliot and Maier, 2014; Elliot et al., 2007; Genschow et al., 2012). 

Traffic light labels as well as energy density of the viewed food were found to modulate neural 

responses to food over two time windows, from 115-155ms and 240-280ms post-image onset. The 

timing of these modulations is in line with previous literature on spatio-temporal brain dynamics to 

food viewing and to verbal-emotional labeling (Toepel et al., 2009, 2014). Traffic light labels and type of 

food viewed modulated neural activity in the lateral prefrontal cortex (latPFC) and in the superior 

temporal gyrus (STG) over the earlier time interval (115-155ms) and in the medial prefrontal cortex 

(medPFC) over the later time period (240-270ms). Neural activity in the latPFC and medPFC, regions 

involved in cognitive control and reward valuation respectively, were higher when low-energy foods 

were combined with a red label and when high-energy foods were paired with a green traffic light. 

These results likely reflect the computation of values as a function of perceived food-color combination, 

as the implicit go signal of green color combined with high-energy food represent a highly salient 

pairing, and as the implicit stop signal of red likely triggered an automatic initiation of cognitive control 
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from the prefrontal cortex (Cornier et al., 2010; Hare et al., 2009; Harris et al., 2013; Hutcherson et al., 

2012). In the STG, a region known to be related to memory and learned associations in addition to 

object categorization (Davey et al., 2015; Vuilleumier et al., 2001), higher activity was found when 

viewing low-fat foods paired with a green light and high-fat foods paired with a red light.  These 

modulations are thus likely to reflect learned associations between specific color meanings in the 

context of food perception. Our results complement behavioral results observed in previous studies 

assessing the influence of traffic light labeling on food perception and choice behavior. A study from 

Borgmeier and Westenhoefer (2009)  reported that when presented with various format labels (i.e. 

healthy choice tick, traffic light label, and GDA), participants were better and faster at identifying 

healthy food items when those were accompanied by traffic lights, as opposed to other label formats. 

Our study thus highlighted the potentials of traffic light labeling as means to influence food perception 

via the modulation of reward valuation and cognitive control processes both at the behavioral and 

neural level upon incidental encounter. 

 

Altogether, the thesis at hand provided new insights on how preferences, and food’s intrinsic 

(i.e. energy density), as well as extrinsic (i.e. portion size, labeling) factors modulate spatio-temporal 

brain dynamics to food perception and associated food intake behavior. Food appreciation and 

subsequent choice, adequate portion size selection for prospective intake and traffic light labels were 

found to generally modulate brain responses in areas involved in reward valuation and cognitive 

control.  A neurobiological integrative model on how body-intrinsic, food-intrinsic and food-extrinsic 

factors modulate brain responses to food perception is proposed in Figure 7. Primary senses underlying 

food perception, such as the taste, smell and sight have been shown to be influenced by body-intrinsic 

factors, such as body weight, motivation to eat and gender, food-intrinsic (energy density, taste quality, 

palatability and portion size), but also food-extrinsic factors such as colors and labels. The model aims 

at a more integrative view on how brain responses are modulated as a function of some of these key 

determinants described in previous studies and those comprised in the thesis at hand.  

For example, body weight has been reported to lead to alterations in neural activity to food 

viewing in temporal and parietal lobes, and in dorsal and medial prefrontal cortex, i.e. regions involved 

in reward valuation and inhibitory control (Cornier et al., 2010; Hume et al., 2015; Stoeckel et al., 2008). 

Hunger, and thus motivation towards food intake, has been shown to influence brain responses to food 

viewing in the superior temporal gyrus, the insula and the orbitofrontal cortex, i.e. areas involved in 

homeostatic integration, goal-directed attention and reward valuation (Del Parigi et al., 2006; Wang et 

al., 2004a). Moreover, individual’s gender influences how food is perceived, shaping spatio-temporal 

brain in lateral and medial prefrontal cortex, regions linked to reward valuation and inhibitory control 
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(Horstmann et al., 2011; Toepel et al., 2012). Body-intrinsic factors thus seem to shape reward 

valuation and inhibitory control processes in particular during food perception.  

Food-extrinsic factors such as colors and labels were found to modulate neural activity in 

temporal lobe as well as in medial and lateral prefrontal cortex (Enax et al., 2015; Study C of the thesis 

at hand), i.e. regions involved in reward valuation and cognitive control. Finally, food-intrinsic factors 

such as portion size and energy density influence neural responses to food viewing in the parietal and 

temporal lobes, as well as in the insula and the prefrontal cortex, regions involved in visual processing, 

reward attribution and adaptive behavior (Study B and C of this thesis).  The model in Figure 7 aims to 

summarize neural modulations by these factors in studies A, B, and C comprised in the thesis at hand 

and roughly represents areas modulated by body-intrinsic, food-intrinsic and food-extrinsic factors, as 

well as brain areas involved in food sensory perception. Neural modulations due to body-intrinsic 

factors are represented in shades of green. For food-intrinsic factors, neural modulations are 

represented in shades of pink and for body-extrinsic factors, modulations are represented in shades of 

blue.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7: A neurobiological model on how body-intrinsic, food-intrinsic and food-extrinsic modulate neuro-sensory 
responses to food perception. Color blubs summarizing brain areas modulated by these factors: shades of green for 
body-intrinsic, shades of pink for food-intrinsic and shades of blue for food-extrinsic factors. Brain areas: Lateral 
prefrontal cortex (latPFC); medial prefrontal cortex (medPFC); orbitofrontal cortex (OFC); olfactory bulb (OB); insula 
(INS); temporal lobe (TEMP); parietal lobe (PAR); occipital lobe (OCC).  
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As detailed in the model, studies comprised in the current thesis as well as previous ones 

showed that contextual (i.e. food-extrinsic) information as well as factors intrinsic to body and food 

concurrently modulate neural responses to food perception in brain areas involved in reward valuation 

and cognitive control. By extension, they are likely to exert influences on food intake behavior, and by 

extension, on body weight management. Our results complement previous findings on reward and 

inhibitory control processes.  

 

A functional neuroimaging study by Seeley and colleagues (2007) showed that two dissociable 

networks were critical for the guidance of behavior, namely the salience network and the executive 

control network. Functions of the salience network (Menon and Uddin 2010) consist in integrating 

various aspects of reward processing, such as reward valuation, motivation and attention, allowing for 

the segregation of the most salient stimulus and supporting goal-adapted behavior. Menon and Uddin 

(2010) reported several brain regions to be involved in this salience network, including the thalamus, 

the cingulate cortex, the amygdala, the substantia nigra, the ventral tegmental area and the insula. The 

latter was further described as the “integration” center of the salience network, receiving 

enteroceptive inputs and mediating physiological and psychological states in accordance. The cingulate 

gyrus and the thalamus allow for adaptive behavior and appropriate allocation of attentional resources. 

In contrast, the executive control network exerts influence on the attention directed towards salient 

stimuli, choice options and takes into account physiological, semantic and contextual information 

(Seeley et al., 2007). This control network includes the lateral prefrontal cortex, the pre-SMA and the 

lateral and parietal cortex (Curtis and D’Esposito, 2003; Lau et al., 2006).  

In the context of food perception, a meta-analysis of functional neuroimaging by Brooks and 

colleagues (2013) showed that the imbalance between food reward valuation and food intake control 

mechanisms is strongly associated to maladaptive choices and subsequent weight gain. Increased 

activity to food viewing was found in obese, as compared to lean individuals, in regions involved in 

salience attribution, motor response and explicit memory, i.e. medial prefrontal cortex, pre-central 

gyrus, parahippocampal gyrus, superior and inferior frontal gyrus and anterior cingulate. In addition, a 

consistent decrease in neural activity in response to food cues was reported in the lateral prefrontal 

cortex and insula in obese participants, a region involved in inhibitory control. The authors thus 

proposed that an increased body weight is associated with an increased salience attribution and a 

decreased cognitive control in anticipation of food, i.e. an imbalance between reward and control 

processes. These findings are in line with the neural modulations in reward and control-related brain 

areas by food-intrinsic and food-extrinsic factors in response to food perception as observed in studies 

A, B and C reported in the thesis at hand.  
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Accumulating evidence also points towards an addiction-like model to palatable high-energy 

food intake behavior (Davis and Carter, 2009). Drug addiction and food addiction-like behaviors were 

reported to share the same clinical aspects and neural substrates (Pelchat, 2002). Food’s micronutrient 

such as sugar and fat were found to elevate mood by the release of neuropeptides, thus reinforcing 

selective preference for high-energy foods through the activation of the dopaminergic system (Ifland et 

al., 2009; Kelley et al., 2005; Wang et al., 2004b). For example, patients suffering from binge eating 

disorder were found to show higher activity in the medial prefrontal cortex, the amygdala and the 

ventral striatum in response to food cues as compared to healthy controls (Schienle et al., 2009; 

Weygandt et al., 2012). That is, patients suffering from compulsive overeating show greater 

motivational sensitivity and attribute higher reward values during food perception. Recent models in 

drug addiction also conclude that drug consumption results in increased motivation towards drug 

intake and decreased executive control, via modulations of the dopaminergic system, in turn impairing 

the ability to resist cravings (Koob, 2013; Longo et al., 2016; Volkow and Morales, 2015). Since drug 

addiction and food-like addiction were shown to share common neural substrates, it is likely that 

similar phenomena take place during repetitive maladaptive food intake on the long run.  

 

The current thesis, providing insights into behavioral and brain responses to food as a function 

of appreciation, preferences and extrinsic factors in normal weight participants can certainly only be 

viewed as proofs of concepts. In order to further elaborate on imbalances in reward and control 

processes, further studies are needed. For example, investigations in overweight individuals or persons 

undergoing non-mechanical (i.e. diet) and mechanical weight loss (i.e. bariatric surgery) procedures are 

necessary to for further detail these processes. Moreover, food perception and intake is not explained 

by cerebral functions alone but also by its interaction with peripheral signals, i.e. digestive hormones, 

via the gut-brain axis. Digestive hormones are known for their ability to cross the blood-brain barrier 

and for their influence on the activity in brain regions involved in homeostatic as well as hedonic 

processes in response to food perception (Gibson et al., 2010; Schloegl et al., 2011). Digestive 

hormones convey satiety and hunger signals to the hypothalamus, a region involved in homeostatic 

integration (Asarian and Bächler, 2014). In addition, many digestive hormones have been shown to 

modulate responses in brain areas involved in reward processes and salience attribution. For example, 

the administration of peptide YY (PYY) during satiety was found to increase neural activity in the 

orbitofrontal cortex (Batterham et al., 2007). Animal studies also showed that leptin and ghrelin 

receptors in the mesolimbic dopaminergic reward system can modulate food appreciation and drives 

(Leinninger et al., 2009; Sáinz et al., 2015).  
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 First insights on the links between spatio-temporal brain responses and gut hormone secretion 

release were also part of my thesis, although not described in the manuscript at hand. An 

interdisciplinary study was carried out as a collaboration between the Laboratory for Investigative 

Neurophysiology (LINE), the group of Professor Luc Tappy from the Institute of Physiology of the 

University of Lausanne and PD. Dr. Vittorio Giusti from the Endocrinology, Diabetology and Metabolism 

Service of the Vaudois University Hospital Center (SEDM-CHUV). This study assessed the impact of body 

weight (19-36kg/m2) on gastrointestinal hormone secretion, and how, in turn, these factors were 

associated with brain responses to the viewing of foods varying in energetic content as a function of the 

motivation to eat (Bielser et al., manuscript in preparation). For this purpose, 16 women underwent a 

day-long experimental protocol comprising EEG recordings conducted pre- and post-prandially while 

participants were presented with images of high- and low-energy foods. Additionally, blood samples 

were collected at regular time intervals to allow for the measurement of digestive hormone plasma 

levels. EEG data analyses were conducted as in study C of this thesis. In this study, we found that 

relative differences in neural responses to food viewing were modulated by the energetic content of 

foods (HiFat vs. LoFat) as early as 110-150ms and 230-270ms post-image onset. Over the earlier time 

interval of visual processing, greater changes after food intake in the secretion of digestive hormones 

promoting satiety (i.e. pancreatic peptide YY (PYY) and cholecystokinin (CCK)) were related to greater 

neural modulations in brain areas implicated in object categorization as a function of their attentional 

relevance (i.e. MTG and STG) (Martin et al., 1996; Vuilleumier et al., 2001). Over the later time interval, 

smaller changes in the secretion of a pancreatic hormone promoting the termination of food intake (i.e. 

glucagon) are related to greater neural modulations in a brain area known to be involved in reward 

valuation and goal-value signal encoding (i.e. MFG) (Hare et al., 2009). Further, a higher BMI was 

associated with greater change in PYY secretion level relative to food intake. Altogether, these findings 

show that body weight influences peripheral signals conveying information about the internal state of 

the body to the brain, and that in turn, these latter are associated with modulations of brain responses 

to the viewing of food in areas involved in visual processing, attention allocation and reward valuation. 

This study extended knowledge on body-intrinsic factors (i.e. body weight and peripheral hormone 

secretion) and food-extrinsic factors (i.e. energetic content) influence on spatio-temporal brain 

dynamics to food viewing and will help to complement the neurobiological model of brain responses to 

food perception.  

 

Only few studies have so far investigated how variations in body-weight, i.e. by weight loss, 

impact brain responsiveness to food viewing and hormonal secretion. The model will thus also need to 

incorporate changes in body-intrinsic factors as shaping food perception and intake. Therein, further 
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work is needed, also focusing on the effects of non-mechanical (i.e. alimentary diet) and mechanical 

(i.e. bariatric surgery) weight loss on food responsiveness. Both non-mechanical and mechanical-

surgical weight loss are not effective alike in humans and factors determining success are still largely 

under-explored. For example, hypocaloric diets are known to be efficient on the short-term, but most 

dieters fail to stabilize their weight loss and consecutively regain weight, sometimes reaching a higher 

body-weight than prior to the diet (Brownell, 1994; Hennecke and Freund, 2014; Mann et al., 2007; 

Meckling et al., 2004).  

A functional neuroimaging study by Murdaugh and colleagues (2012) was the first to assess 

short- and long-term non-mechanical weight loss outcomes and their neural correlates. In this study, 

obese and overweight (BMI range: 28-44kg/m2) participants were enrolled in a 12-weeks weight loss 

program, and their brain responses to food were assessed before and after the diet. During fMRI, 

participants were presented with images of high- and low-energy foods, and control images of cars. 

They were asked to complete a memory task after the scan to ensure they attended to the images. 

Obese and overweight participants came again to the lab 9 months later for body-weight measures. 

Before the weight-loss intervention, the obese/overweight group showed higher activity when viewing 

high-energy food as opposed to control images in the insula, the amygdala, the cingulate cortex, the 

postcentral gyrus, the inferior temporal and frontal gyrus, and the middle occipital cortex. 

Obese/overweight individuals thus showed greater reactivity to high-food images in brain areas 

involved in reward attribution than normal-weight participants before undergoing a diet. After the 12 

weeks diet, obese/overweight individuals had lost on average 3,5% of their original body weight, and 

showed a decreased activity in response to high-energy foods in the medial prefrontal cortex, the 

inferior parietal lobule, the posterior cingulate cortex and the angular gyrus, as compared to before the 

diet. In the obese/overweight group, weight loss had stabilized in 17% of the participants 9 months 

after the diet. Additional weight loss was found in 18% of them, whereas 46% regained weight. When 

investigating relationships between neural activity after the diet and weight maintenance in 

obese/overweight participants, the authors found a positive correlation between the 9 months weight 

changes and the activity in the ventral tegmental area, the putamen, the insula, the hippocampus (i.e. 

regions involved in reward valuation) as well as in the superior occipital gyrus, and the fusiform gyrus 

(i.e. areas of visual processing) and in the inferior parietal lobule (i.e. region involved in attention 

modulation). In addition, when assessing the relationship between changes in neural activity from pre- 

to post-diet and body weight maintenance, they found that the activity in the insula and the inferior 

frontal gyrus was negatively correlated with body weight maintenance capacities. Altogether, this study 

provides first insights on how non-mechanical body-weight loss affects neural responses to food 

viewing, and how, in turn, these neural changes can predict successful weight maintenance. Weight loss 
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modulates neural activity in brain regions involved in reward processing, vision and attention, and the 

change in activity of the insula and the inferior frontal gyrus resulting from a diet seems to be good 

predictor body-weight maintenance.  

 

In both non-mechanical and mechanical weight loss interventions, individuals show variable 

susceptibility for long-run success or failure in the maintenance of weight-loss. A project in our group is 

currently investigating “Gut-brain interactions during visual food perception following gastric bypass 

intervention” (Bielser et al., manuscript in preparation) to gain further insights on how mechanical-

weight loss impacts brain responses to food viewing and digestive hormone secretion. However, weight 

loss success of failure and determinants of weight loss maintenance and weight regain remain largely 

unknown. Genetic markers have been identified by genome-wide association studies as predictors of 

bariatric surgery weight loss outcome, such as the obesity genes MC4R and FTO (Mirshahi et al., 2011; 

Sarzynski et al., 2011). Some clinical predictors, such as social context, eating patterns, physical activity, 

and psychological traits have also been shown to influence the outcome of non-mechanical weight loss 

intervention (Elfhag and Rossner, 2005 for review). First insights on neural predictors of long-term 

successful and unsuccessful non-mechanical weight loss attempts have been provided by previous 

studies. As the outcome of weight loss interventions seems to be multifactorial and to include 

physiological, metabolic, genetic, and neural determinants, further interdisciplinary studies integrating 

these various key factors are needed to develop a predictive model of successful approach. Given the 

relatively low success rate of hypocaloric diets and bariatric surgery, the development of a more 

individualized health care, integrating individual risk factors and susceptibilities for the benefit of body 

weight management would allow to predict which intervention is the most suitable for individual’s 

benefit to better tackle overweight and obesity.  

Such (preferentially longitudinal) studies would further benefit from task settings including 

more direct measures of reward and control processes, given that maladaptive food intake is likely to 

be caused by an imbalance between reward attribution and cognitive control processes. The study 

designs of the current thesis involved categorization, valuation and choice tasks and showed 

differences as a function of food reward viewed (i.e. high- vs. low-energy foods). In terms of measuring 

control processes, these are yet only indirect means. For this reason, future studies would benefit from 

more ecologically valid tasks to assess imbalance in reward and cognitive control in individuals. For 

example, Go-NoGo tasks have been shown effective to train inhibitory control in response to salient 

cues in the context of drug addiction. A study by Houben and colleagues (2011) demonstrated that the 

training of inhibitory responses to alcohol-related cues decreased alcohol intake in heavy drinkers. In 

their task, Go and NoGo responses were attributed to beer- or water-related pictures. Participants were 
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asked to refrain from responding when NoGo conditions were presented, and to respond as fast as 

possible when Go signals were shown. The authors report that participants undergoing the NoGo-beer 

condition showed decreased alcohol consumption in weekly alcohol intake post-training as compared 

to prior training. When translating this inhibitory Go-NoGo task to food intake behavior, Houben and 

Jansen (2011) showed that temptation towards high-energy foods can also be modulated by this 

training. Participants, chocolate cravers this time, were divided in three groups. The first group always 

had a NoGo responses associated to chocolate stimuli, the second always a Go responses to chocolate 

stimuli, and the third group had Go and NoGo half of the time. The authors measured chocolate 

consumption after the training, pretexting a taste test, and found that participants who were trained to 

inhibit responses to chocolate consumed less chocolate than the other groups. That is, training 

inhibitory control by repeated response inhibition to one particular stimulus seems to be an effective 

strategy to decrease drives towards the latter. Integrating a Go-NoGo task to future electrical 

neuroimaging studies would thus allow for the examination of explicit signs of inhibitory control at the 

behavioral level, and implicit modulations in the reward network and cognitive control processes in the 

brain by the training. Individual capacities to inhibit their responses could provide a first marker to 

target people at risk for failure in diet attempts. Therein, it might well be that in some individuals food 

responses are more prone to be influenced by food-extrinsic cues (e.g. color labels). That is, 

comprehensive investigations are needed to assess individuals’ responsivity to food inhibitory means 

and their training. 

 

The thesis at hand provided insights on how appreciation, preferences and food-extrinsic 

information modulate behavioral and brain responses to the viewing of food. These studies reported in 

detail (studies A, B, C) involved normal-weight participants and show that food-intrinsic and food-

extrinsic factors shape behavioral and brain responses to food. In addition, a study sketched as 

additional thesis work showed how body-intrinsic factors (weight and digestive hormone secretion) 

alter food responsiveness along the gut-brain axis. Future research needs to further address means to 

interfere with food perception, and in extension, food intake, for the benefit of body weight and long-

term health.  
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