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ABSTRACT

Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on
polygenic traits in wild populations. However, the existing method based on comparisons of divergence at
neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear
interpretation of the results with typical empirical designs. In this article, we propose a multivariate
extension of this neutrality test based on empirical estimates of the among-populations (D) and within-
populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D ¼
2Fst/(1 � Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of
the proportionality coefficient. This pattern is tested using Flury’s framework for matrix comparison
[common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show
the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in
empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its
neutral expectation [2Fst/(1 � Fst)] and (ii) that the MANOVA estimates of mean square matrices
between and among populations are proportional. These two tests combined provide a more stringent
test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive
simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern
under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous,
heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and
quantitative framework for disentangling the effects of different selection regimes and of drift on the
evolution of the G matrix. We discuss practical requirements for the proper application of our test in
empirical studies and potential extensions.

THE comparison of genetic differentiation at neutral
markers and at quantitative traits is a commonly

used method to estimate the relative impacts of drift and
selection on polygenic traits in the wild. Typically, a set of
populations is sampled, from which the differentiation
among populations is estimated for a set of molecular
markers (Fst) and is compared to the same measure of
differentiation at a single or a set of quantitative traits
(Qst). Under pure neutrality, and if the traits are additive,
Qst¼ Fst for any trait (Spitze 1993). Departures from this
neutral expectation are considered evidence of selection
acting on the quantitative trait under study. Qst , Fst is
evidence of homogeneous selection for the trait among
populations, i.e., selection for the same optimal value of
the trait in all populations, while Qst . Fst is evidence of
heterogeneous selection for the trait, i.e., selection for
different optima among populations (Merila and
Crnokrak 2001).

However, proper empirical detection of selection
requires being able to detect a statistically significant
departure from the neutral expectation (Qst ¼ Fst) and
therefore depends on the confidence intervals (C.I.’s) of
both Qst and Fst estimates. When studying single traits,
confidence intervals on Qst are very large (Merila and
Crnokrak 2001; Latta 2004; O’Hara and Merila 2005;
Goudet and Buchi 2006), often spanning .50% of their
total possible range [0, 1], even in the most recent studies
with a large sampling effort (Porcher et al. 2006).
Furthermore, the methods employed to estimate the
C.I. are not always statistically efficient (O’Hara and
Merila 2005). Overall, the power of the test with single
traits Qst is very low with the sampling designs typically
possible in empirical studies (O’Hara and Merila 2005),
so that rejection of the neutral expectation is unlikely,
even when fairly strong selection is in fact occurring
(Latta 2004). Consequently, most Qst–Fst comparisons
use mean Qst values among a set of quantitative traits,
which are compared to Fst estimates from several marker
loci (Chapuis et al. 2007). In doing so, the C.I. for Qst is
reduced (and the power of the test increased) at the cost

1Corresponding author: Institut des Sciences de l’Evolution–Montpellier,
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of losing information on individual traits. However, even
with mean Qst values, the C.I.’s obtained are often still
large (see, e.g., Merila and Crnokrak 2001). Further-
more, and maybe more importantly, the method used to
compute the C.I. for the mean Qst often implicitly
assumes that the quantitative traits are mutually indepen-
dent. This has two drawbacks: (i) in general the traits
under scrutiny show some level of covariance within
populations so that the resulting C.I. estimates may be
unreliable, and (ii) the information contained in these
covariances is not used in the analysis. Recent methods
can partly correct for covariance between traits, but often
not completely, and they are rarely applied in practice,
maybe because of their statistical complexity. In addition,
even when correctly estimated, the C.I.’s for Qst remain
large (O’Hara and Merila 2005). However, Kremer et al.
(1997) proposed a measure of Qst on several traits.
Although this method does not really use the information
contained in covariances between traits, it does correct
for these covariances to provide a (still univariate)
measure of Qst (called CQst by the authors). As expected,
when used by Waldmann and Andersson (1999) in
subdivided populations of two plant species, it provided
smaller (and more reliable) C.I.’s in the measure of Qst

than previously observed on individual traits.
On the other hand, the study of multivariate pheno-

typic distributions in the wild has led to a flourishing
literature on the evolution of genetic covariances be-
tween traits, summarized into the matrix of genetic
covariances: the G matrix. Since Lande (1979) intro-
duced a multivariate framework to predict the evolution
of a set of polygenic traits under selection and drift, the
importance of genetic covariances in constraining adap-
tive evolution has been a major focus of evolutionary
biology (see a special issue of The Journal of Evo-
lutionary Biology, Blows 2007). Numerous studies have
sought to estimate the G matrix in different species or in
different populations of the same species, to test to what
extent G matrices could evolve under the influence of
various evolutionary forces and how they could con-
strain the evolutionary trajectory of natural populations
(reviewed in Steppan et al. 2002; McGuigan 2006).

However, as for the case of single-quantitative-trait
studies, disentangling the effects of selection and drift
on multivariate covariances has proved difficult empir-
ically (Steppan et al. 2002). For this purpose, alternative
predictions on the pattern of multivariate phenotypic
distributions among populations or species must be
made according to whether drift or selection is the main
driving force of the pattern. It was initially suggested
that G matrices in distinct populations undergoing only
drift should be proportional to each other, while this was
not expected under selection (Roff 2000). However,
this prediction is in fact theoretically incorrect (Phillips

et al. 2001): G matrices from individual populations can
differ largely even under the action of drift alone. It
is only the average G among many drifting populations

that is expected to be proportional to G in the ancestral
population from which they are derived, and this
ancestral population is rarely available to the experi-
menter. This result was demonstrated empirically by
Phillips et al. (2001).

In an influential study of morphological traits in
stickleback fishes, Schluter (1996) compared the within-
populations covariances (G) with the among-populations
covariances (the divergence matrix D). He showed that
the leading phenotypic axis of within-population vari-
ance (the main eigenvector of G) pointed in a similar
direction to the main axis of population divergence (the
leading eigenvector of D). As this similarity tended to
decay with the divergence time between species, he
concluded that this pattern was evidence of the action of
divergent selection between stickleback species. More
recently, McGuigan et al. (2005) extended their ap-
proach to comparisons of whole matrices (G vs. D)
instead of only leading eigenvectors. Unfortunately, as
was pointed out by the authors, similarity between G and
D can be generated by selection as well as by drift
(Lande 1979) and therefore detecting this pattern
alone does not allow disentangling the two effects. In
addition, tests of qualitative similarity between matrices
may have low power (Steppan et al. 2002), and, to our
knowledge, their statistical behavior has never been
studied precisely.

More generally the problem that observable patterns
in G can be due to both selective and neutral processes
has led to criticisms of the whole research program that
seeks to use G matrix estimates to get insights into the
constraints imposed by evolutionary forces on pheno-
typic evolution (Pigliucci 2006). Given the already
large designs required for evolutionary quantitative
genetic studies, it seems that they are more likely to
be improved through more appropriate statistical ap-
proaches than by increased empirical efforts. In this
article, we attempt to overcome these difficulties by
devising a neutrality test on the basis of alternative
expectations from neutrality vs. selection and by explic-
itly checking its statistical properties by simulations. Our
approach is to extend the classic Qst–Fst comparison to
multivariate phenotype distributions, by using the in-
formation from neutral markers in comparisons of the
G and D matrices.

Rogers and Harpending (1983) proposed a neu-
trality test that is in fact a multivariate method to
compare Qst and Fst, although it was not described in
those terms. The method accounts for nonindepen-
dence between traits and de facto provides a clear
quantitative expectation for the evolution of the G
matrix under neutrality. Similar to a previous suggestion
of Lande (1979), they suggested to compare G and D
and showed that the expected relationship between
these two matrices under neutrality was D ¼ 2Fst/(1 �
Fst)G (Equation 16 of Rogers and Harpending 1983).
In spite of its great potential interest for empirical tests
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in multivariate evolution, this suggestion has been
somewhat overlooked in the empirical literature (but
see Merila 1997). This may stem from the fact that their
results were obtained in the limiting context of traits
encoded by nonpleiotropic and diallelic loci and that
the statistical behavior of the test they proposed was not
studied in detail. Furthermore, the test compares only
the value of the proportionality constant with its ex-
pectation (2Fst/(1 � Fst)) but does not test for propor-
tionality of G and D itself. Finally, no explicit statistical
approach was proposed by the authors to implement
this multivariate test.

The aims of this article are (i) to generalize the
prediction on the relationship between G and D under
neutrality using results from coalescent theory, (ii) to
use this prediction as a basis for a new neutrality test,
and (iii) to check the statistical efficiency of our test by
simulations of realistic empirical designs. An applica-
tion of the test to empirical data is provided in an
accompanying article (Chapuis et al. 2008). Our statis-
tical test uses the general framework of sample co-
variance matrix comparisons (Flury 1988), also known
as common principal component (CPC) analysis. This
method, which has been introduced in evolutionary
biology by Phillips and Arnold (1999), allows deter-
mining the level of shared structure among an arbitrary
number of covariance matrices of arbitrary dimension.
These matrices may be equal, be proportional, or have
a number of principal components in common. To
test our neutral expectation (further detailed below)
requires testing for proportionality only between two
matrices. The simplicity of this test (one of the simplest
subcases of CPC analysis) provides a straightforward
testing approach, whose statistical efficiency is evaluated
through individual-based simulations.

METHODS

Multivariate neutrality test for additive traits: Ex-
pected pattern under neutrality: Consider a set of popula-
tions for which a set of quantitative traits undergoes only
mutation and genetic drift, but no selection. The
quantitative characters under study are assumed to be
additive, and the loci underlying these characters are
assumed to be at linkage equilibrium. The mean value
of each trait is expected to diverge randomly across
populations because of drift and mutation. Consider
that the set of subpopulations diverged from a given
common ancestral population. Using coalescent theory,
Whitlock (1999) showed that the expected genetic
variance of any additive trait both within and among
subpopulations can be expressed as a function of (i) the
total mutational variance for that trait (s2

m), (ii) the
effective size (Ne), and (iii) Wright’s index of popula-
tion differentiation (Fst) in the metapopulation. Al-
though originally expressed in terms of variances, the
argument is also valid in the more general case of

covariances between any pair of traits (z1 and z2), simply
by replacing s2

m by the mutational covariance between z1

and z2 due to pleiotropy (c12). The expected covariances
within and among populations (covw and covb, respec-
tively) can thus be expressed as

covbðz1; z2Þ ¼ 4FstNec12

covwðz1; z2Þ ¼ 2ð1� FstÞNec12 ð1Þ

(from Equations 12 and 13 of Whitlock 1999). Because
they are proportional to the same quantity Nec12, a
simple relation between the two covariances is deduced
from Equation 1: covb(z1, z2)¼ 2Fst/(1� Fst)covw(z1, z2)
for any pair (z1, z2). This relation can be expressed in
matrix form for a set of traits that are all neutral and
additive (but not necessarily independent). If E(D) and
E(G) are the expected among-populations and within-
populations covariance matrices in the metapopulation,
we expect

EðDÞ ¼ 2Fst

1� Fst
EðGÞ: ð2Þ

For a haploid or a completely inbred diploid species, the
factor 2 is dropped from the right-hand side of the
equation. Furthermore, from Equation 4 of Whitlock

(1999), it appears that for a species with a significant
level of inbreeding, the right-hand side of Equation 2
above should be divided by (1 1 Fis), where Fis, the
inbreeding coefficient within populations, is also esti-
mated from the neutral markers.

Equation 2 is similar to Equation 16 of Rogers and
Harpending (1983), which was obtained in the limiting
case of a polygenic trait encoded by nonpleiotropic
diallelic loci and developed in the context of the island
model. In fact, the derivation of Equation 2 from
coalescent theory shows that this result is valid whatever
the forces shaping the neutral divergence among
populations (e.g., isolation by distance, extinction–
colonization, migration, etc.) and the number of alleles
encoding the quantitative traits under focus. Therefore,
it should be valid for any metapopulation undergoing
neutral divergence and mutation, provided that the
determinism of the traits is additive (as for the classic
Qst ¼ Fst expectation). The main limitations inherent in
the coalescent approach used here are that linkage
disequilibrium between quantitative trait loci should be
small and that mutational variance per generation on
each trait should be independent of the current state
of the population (Whitlock 1999). Note that under
the specific scenario of population divergence without
migration, the proportionality coefficient 2Fst/(1 � Fst)
is a direct measure of the scaled time since divergence
between the populations t/2N, where N is the popula-
tion size assumed to be constant across populations
(Slatkin 1995).

Equation 2 suggests that a neutrality test can be per-
formed on the basis of estimates of G, D, and Fst. This
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test boils down to two tests in fact: testing for propor-
tionality between G and D (and as previously suggested
under more restricted cases, Lande 1979; Rogers and
Harpending 1983) and testing whether the propor-
tionality coefficient is significantly different from 2Fst/
(1 � Fst). In the following, we show how to implement
these tests on the basis of empirical estimates of G and
D, using statistical approaches for matrix comparisons.
We then study the statistical behavior of the proposed
test by simulations.

Proportionality between two matrices: For our multivari-
ate neutrality test, we start from estimates of the co-
variance matrices among and within populations and of
the neutral divergence among populations (Fst) from
neutral markers, and we wish to test whether Equation 2
holds. Therefore what is needed here is one of the
simplest special cases in CPC analysis: the test for pro-
portionality between two matrices. Fortunately, in this
case, the maximum-likelihood estimates (MLEs) of the
covariance matrices and the proportionality coefficient
between them have a simple close form (Guttman

et al. 1985), so that maximization of the log-likelihood
need not be performed numerically, contrary to the
other tests in CPC analysis. In the following, we recall
the close form of these MLEs, and then we adapt the test
to metapopulation studies in which a between- and a
within-population covariance matrix have been esti-
mated by MANOVA.

Consider two samples (of size n1 and n2) drawn from
two multivariate Gaussian distributions with covariance
matrices S1 and S2 of dimension p 3 p. From these
samples, two sample covariance matrices (S1 and S2) can
be estimated. Because the samples are drawn into Gaussian
distributions, n1S1 and n2S2 are distributed as Wishart
deviates W(n1, S1) and W(n2, S2), respectively (Flury

1988). Using the probability density function of the
Wishart, the likelihood of the set (S1, S2) given that its
estimate from the two samples is (S1, S2) can be com-
puted. Under the assumption of proportionality be-
tween the covariance matrices (S1, S2), a positive real
number r exists such that S1 ¼ r S2, and the MLEs of
r, S1 and S2, are the values ðr̂; Ŝ1; Ŝ2Þ that maximize
the likelihood of the observed covariance matrices S1

and S2 given that S1 and S2 are proportional. Denoting
n ¼ n1 1 n2 as the total sample size and r1 ¼ n1/n and
r2¼ n2/n as the relative sample sizes of the two samples,
the MLEs are given by

Ŝ1 ¼ r1S1 1 ð1=r̂Þr2S2

Ŝ2 ¼ r̂S2 ð3Þ

(Equations 1.1 and 1.2 of Flury 1988, p. 102), where r̂ is
the estimated coefficient of proportionality that is the
unique positive number verifying

Xp

j¼1

1

1 1 r̂fj
¼ pr2; ð4Þ

where the {fj}j2[1,p] are the eigenvalues of (n1=n2ÞS1:S
�1
2

(the �1 denotes matrix inverse). Furthermore, the
sample distribution of r̂ is a Gaussian with mean r and
variance s2

r ¼ r2s2, where s2 ¼ ð2=pÞð1=n1 1 1=n2Þ
(Equation 4.13 of Flury 1988, p. 119), so that a confi-
dence interval (to the level a) for r, given a sample estimate
r̂, is

r 2 r̂

1� za=2s
;

r̂

1 1 za=2s

� �
; ð5Þ

where za/2 is the quantile of level a/2 of the standard
normal N(0, 1). Note that these results assume non-
sphericity, meaning that all eigenvalues of S1 and S2 are
distinct. In the case of sphericity (some eigenvalues are
equal within both S1 and S2), slight changes have to be
made (Flury 1988, p. 106). In empirical estimates,
there is little reason to expect sphericity in S1 or S2,
unless some eigenvalues are zero (positive semidefinite
matrices), but in this case, a correction must anyhow be
made to change the matrices to positive definite.

The null hypothesis H0 that S1 and S2 are pro-
portional can be tested against the alternative that S1

and S2 are arbitrary. The log-likelihood-ratio statistic to
be used is

X 2 ¼ n1
logðDet Ŝ1Þ
logðDet S1Þ

1 n2
logðDet Ŝ2Þ
logðDet S2Þ

ð6Þ

(Equation 1.1 of Flury 1988, p. 150). Under the
hypothesis H0 of proportionality, X 2 follows a chi-square
distribution with 1

2 p(p 1 1) � 1 d.f.:

H0 ðproportionalityÞ : X 2/x2
½pðp11Þ=2�1�: ð7Þ

However, this predicted distribution is valid only asymp-
totically (i.e., if both n1 and n2 are large), but can be
fairly erroneous otherwise (Eriksen 1987). When one
or both sample sizes are small, a correction based on the
Bartlett adjustment of likelihood ratios gives more
accurate results (Eriksen 1987). The likelihood-ratio
X 2 (Equation 6) is multiplied by a correction factor B1 so
that the corrected quantity B1X 2 follows the predicted
x2-distribution in Equation 7 to order O(n�3/2). In all our
analyses, we used this corrected likelihood ratio B1X 2,
instead of X 2 above, where B1 was implemented as in
Theorem 6.1. (i) of Eriksen (1987).

Comparison of among- vs. within-population covariances:
The test presented above can be used to test for the
neutral divergence among several populations on a set
of traits (i.e., the expected pattern given in Equation 2).
The expected covariances among and within popula-
tions (D and G) can be estimated by a MANOVA with
subpopulations taken as a factor. If SSb and SSw are
the matrices of the sum of squares corresponding to
each level (among and within subpopulations) in the
MANOVA table, then MSb¼ SSb/nb and MSw¼ SSw/nw

are the mean squares matrices, with nb and nw the
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corresponding degrees of freedom. The sample distri-
bution of the sum-of-squares matrices is a Wishart (Hill

and Thompson 1978) so that the mean square matrices
follow exactly the same sample distribution as that of
sample covariance matrices S1 and S2 assumed in the
Flury proportionality test described above,

MSw/
1

nw
W ðnw;GÞ

MSb/
1

nb
W ðnb;G 1 nfDÞ; ð8Þ

where nf is the number of families sampled per sub-
population, in a balanced design. In an unbalanced design
where distinct sample sizes, nf[i], have been taken in each
subpopulation i, a corrected value of nf should be taken,

nf 9 ¼ �nf �
1

nb

n2
f � �n2

f

�nf

 !
ð9Þ

(Sokal and Rolfh 1981), where bars denote average
values across groups (i.e., here, populations). The estimates
of the within- and among-populations covariance ma-
trices, D and G, are Ĝ ¼ MSw and D̂ ¼ ðMSb �MSwÞ=nf .

From these estimates, testing for neutrality on the set
of traits considered should reduce to two tests. First, one
should test whether the proportionality coefficient r̂

between G and D departs significantly from 2Fst/(1 �
Fst), i.e., whether there is an overlap between the
confidence interval of r̂ (Equation 5) and that of 2Fst/
(1 � Fst) estimated from several molecular markers.
Second, proportionality between D and G based on
their estimates D̂ and Ĝ should be tested following the
method described in Equations 6 and 7. However,
applying this test as such is a priori inexact as D̂ does
not follow the distribution assumed in the test, i.e., that
of (1/nb)W(nb, D). Note that the problem is relevant
only for the among-population covariance matrix as
Ĝ ¼ MSw is distributed as (1/nw)W(nw, G). For corre-
spondence with the test described above (Equations 6
and 7), the test of proportionality should be performed
on the mean square matrices MSb and MSw, which do
follow the assumed distribution (Equation 8). The
proportionality test described in the previous section
is then performed by setting n1¼ nw, n2¼ nb, S1¼MSw,
S2¼MSb, S1¼G, and S2¼G 1 nfD. On the basis of this
correspondence and Equation 2, the expected relation-
ship between mean square matrices, under neutrality, is

MSb ¼ 1 1 nf
2Fst

1� Fst

� �
MSw: ð10Þ

Equation 10 summarizes the tests to be performed for
testing the neutrality of a set of traits, with among-
populations and within-populations covariances esti-
mated by MANOVA. Two successive tests have to be
performed: (i) testing whether the estimated propor-
tionality coefficient between MS matrices r̂MS departs
significantly from 1 1 nf(2Fst/(1 � Fst)) and (ii) testing

for proportionality between MSb and MSw, using the
likelihood-ratio test proposed in Equations 6 and 7. The
proportionality coefficient r̂st between D and G can be
expressed from r̂MS and nf as r̂st ¼ 1=nfðr̂MS � 1Þ. This
transformation from r̂MS to r̂st is linear so it does not
change the (Gaussian) distributional properties of the
estimator of r. Therefore, while test ii has to be
performed on MS matrices rather than on G vs. D, test
i can be performed directly on r̂st instead of r̂MS and the
neutrality assumption to be tested is

r̂st ¼
r̂MS � 1

nf
¼ 2Fst

1� Fst
ð11Þ

(from Equation 2). This assumption is tested by check-
ing for an overlap between the empirical C.I. of r̂st and
that of 2Fst/(1� Fst). The C.I. for r̂st is given by Equation
5, replacing r by its estimate r̂st and n1 and n2 by the
degrees of freedom of the MANOVA, nw and nb,
respectively. The value of 2Fst/(1� Fst) can be estimated
directly from polymorphism data at several neutral
markers, by (for diploids)

2Fst

1� Fst
¼

s2
p

s2
i 1 s2

w

; ð12Þ

where s2
i , s2

w, and s2
p are the components of variance of

marker allele frequencies, within individuals, between
individuals within populations, and between popula-
tions, respectively, and are estimated from a classical Fst

analysis. The corresponding C.I. of the ratio in Equation
12 can be obtained, e.g., by bootstrap over the marker
loci.

Note that in the case of an unbalanced design these
tests are only approximate because of the use of a cor-
rected nf9 (Equation 9). In any case, because a limited
number of populations can be studied empirically, the
test will always be approximate due to the small number
of degrees of freedom for the between-population level
(usually 5 , nb , 20). This exemplifies the importance
of using the Bartlett adjustment of the x2-test in
Equation 7. These two simple statistical tests were imple-
mented with the software R (Ihaka and Gentleman

1996), and the code is available at http://www.isem.
cnrs.fr/spip.php?article934.

Simulations: We checked the accuracy of our two tests
by simulations. We studied whether the tests behaved as
expected under the null hypothesis H0 (proportional-
ity), to estimate the importance of type I errors (Figures
1 and 2). We then studied the power of the tests
(importance of type II error) by checking whether the
tests correctly rejected nonneutrality (Figure 3). These
simulations, performed with R (Ihaka and Gentleman

1996), are detailed below.
Accuracy of the test on sample covariance matrices: We first

checked that the proportionality test was accurate on
simulated phenotype distributions of a metapopulation
that corresponded to the assumptions of the test:
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proportionality of the within- and between-population
covariance matrices (G and D, respectively), with a known
value of r. To this end, we drew samples of individual
phenotypes, from several subpopulations, into multi-
variate normal distributions that G and D matrices were
set to be proportional such that D ¼ rG. First, a p 3 p
covariance matrix G between p¼ 5 phenotypic traits was
created as a Wishart deviate (the choice of the Wishart,
here, is simply a null model of covariance matrix and
bears no importance to the test). Then a second p 3 p
covariance matrix D proportional to G was created as
D ¼ rG. For each population i, the mean phenotype of
the population was drawn as a p 3 1 vector zi from a
multivariate normal distribution with mean 0 and co-
variance matrix D. Then N ¼ 100 individual phenotype
vectors were drawn into multivariate normal distribu-
tions with mean zi and covariance matrix G. Therefore,
on average, the resulting phenotype distribution across
populations had a within-population covariance equal
to G and a between-population covariance equal to
D ¼ covðzi ; zjÞ ¼ rG. Finally to simulate empirical sam-
pling, samples of nf ¼ 20 individuals from each sub-
population were drawn randomly. From this sample
across the metapopulation, estimates of the between-
and within-population mean square matrices (MSb and
MSw) and covariance matrices ðD̂ and ĜÞ were com-
puted by MANOVA, and the corresponding degrees of
freedom were estimated. Using the proportionality test
presented above, the proportionality coefficient r̂st was
estimated (test i, Equation 4) and the proportionality
between MSb and MSw was tested (test ii, Equations 6
and 7). To check for the importance of the Bartlett
adjustment (Eriksen 1987), we estimated the P-value of
the proportionality test ii for both the likelihood ratio
(X 2, Equation 6) and the Bartlett-adjusted ratio (B1X 2).

This process was replicated 3000 times (with the same
value of r¼ 1.5, G and D) to measure the distribution of
r̂st estimates and that of the P-values of the proportion-
ality test (either the x2-test or the Bartlett-adjusted test).
First, we checked whether the mean of estimated r̂st was
equal to its simulated value r ¼ 1.5 and lay within its
predicted range, obtained by inverting Equation 5, r̂ 2
½rð1 1 za=2sÞ; rð1� za=2sÞ� at the a ¼ 5% level. Second,
we checked that the distribution of the P-values obtained
from the proportionality test (asymptotic x2 of Equation
7 or Bartlett-adjusted version) did not differ from a
uniform over [0, 1], as expected when the null hypothesis
is true.

Accuracy of the test on simulated evolution: The accuracy
of the neutrality tests was checked in a similar way as
above, but with individual-based simulations of popula-
tion divergence under mutation, drift, recombination,
and optionally selection. The simulation scheme was
meant to correspond to realistic (although large) em-
pirical schemes (e.g., Chapuis et al. 2008). We simulated
the phenotypic evolution (on five traits) of haploid
individuals in 10 isolated subpopulations of equal size

N¼ 100, during 100 generations of divergence. An initial
population was created by simulating 300 generations
of mutation starting from an isomorphic population of
size N. This ancestral population served as the initial
state of each subpopulation before divergence. Then
selection (optionally), drift, pleiotropic mutation, and
reproduction (with free recombination between loci)
were simulated in this order, in each isolated subpopu-
lation (see details in the next section). Every 20 gen-
erations, sets of nf¼ 20 individuals were sampled in each
subpopulation, and, as in the previous section, their
phenotype distribution across populations was used to
estimate the MS matrices (MANOVA), r̂st (Equations 4
and 11), and test for proportionality between MSb and
MSw (using only the Bartlett-adjusted test, which is more
accurate). This process was replicated 100 times starting
from the same initial population, to compute the dis-
tribution of r̂st every 20 generations and of the P-value
of the proportionality test. As the P-value distribution
did not change over time, we studied the pooled values
over the whole course of divergence (i.e., on a total of
100 3 5 ¼ 500 replicate values).

In parallel, the expected value of Fst was computed
using the theoretical recursion from one generation to
the next: Fst(t 1 1) ¼ (1 � U/L)2(1/N 1 (1 � 1/
N)Fst(t)), starting at Fst(0) ¼ 0, where U and L are the
per-generation genomic mutation rate and the number
of loci determining the traits, respectively. This re-
cursion corresponds to haploid individuals in isolated
populations undergoing mutation (infinite-allele model)
and drift. Because we use U and L at the quantitative trait
loci, it gives Fst at these loci under neutrality, but should
not differ from Fst estimated from molecular markers in
the limit of a low per-locus mutation rate of both QTL
and markers (Whitlock 1999). In our examples, we
simulated L¼ 25 loci and U¼ 0.1 so that, per locus, m¼
U/L ¼ 0.1/25 ¼ 0.004.

As in the above section, the accuracy of test i was
studied by comparing the mean and the range of r̂st-
estimates from replicate simulations at each 20-gener-
ations time interval to their predicted value under
neutrality: a mean r ¼ Fst=ð1� FstÞ (for haploids) and
range r̂st 2 ½rð1 1 za=2sÞ; rð1� za=2sÞ�. To study the
accuracy of test ii, the distribution of the P-values of
the (Bartlett-adjusted) proportionality test in replicate
simulations and over the 100 generations of divergence
was compared to the uniform [0, 1], expected under
neutrality (Equation 10, MSb and MSw are proportional
under neutrality, H0 should be true).

These simulation checks were performed under pure
neutrality (only mutation, recombination, and drift)
and under three selection regimes: homogeneous selec-
tion for a new optimum (the same in each population),
heterogeneous selection for distinct new optima in each
population, and a mixed regime where three traits were
under homogeneous selection and the two remaining
were under heterogeneous selection.
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Individual-based simulations: Mutation and selection
on individual phenotypes were modeled according to
the classic multivariate pleiotropic model of Lande

(1979), except that allele states after mutation were
independent of the ancestral allele state (house-of-cards
model, Kingman 1978). Each individual consisted of L
haploid loci. Mutation followed the K-allele model with
a large number (K ¼ 2000) of possible alleles per locus,
which is effectively equivalent to the classic ‘‘infinite-
allele model’’ (Kimura and Crow 1964). For each indi-
vidual, at each generation, the number of new muta-
tions in the genome (occurring at a random subset of
the loci) was drawn into a Poisson distribution with
parameter U, the genomic mutation rate. The index of
each mutant allele was drawn into an integer uniform
distribution in the range [1:2000]. Each allele had
completely pleiotropic effects on the five quantitative
traits, and allelic effects were additive across loci. A new
mutant allele replaced the current allele effect at the
locus considered (no memory of the previous allele
state, house-of-cards model). For simplicity, the same set
of 2000 possible allele effects was used for all loci, by
drawing 2000 vectors dz (of pleiotropic effects on all five
traits) into a multivariate Gaussian distribution with
mean 0 and mutational covariance matrix M.

To model selection, the phenotype z of a multilocus
genotype was computed as the sum of the effects of its
alleles at each locus l (z ¼ Sl dzl, additivity), and the
fitness W of this genotype was computed as a multivar-
iate Gaussian function of z around an optimum zo:
W ðzÞ ¼ expð� 1

2 ðz� zoÞTSðz� zoÞÞ, where S is the ma-
trix of selective covariances.

In the simulations with selection, the strength of
selection was controlled by the parameter so ¼ zT

o Szo:
the log fitness of the optimal phenotype (z¼ zo) relative
to the mean fitness of the initial population (Martin

and Lenormand 2006). It was set to so¼ 0.7 in all cases,
such that mean fitness increased by ,1% per genera-
tion, which corresponds to an intermediate level of
selection. Random mating of haplotypes and free re-
combination occurred at each generation within each
subpopulation. Drift and (optionally) selection were
jointly simulated each generation by sampling (with
replacement) into each subpopulation of parents to
produce the next generation with sampling probability
equal to the fitness of each genotype in the parent pop-
ulation. This corresponds to the Wright–Fisher model
of genetic drift. Under neutrality, all fitnesses were set to
W ¼ 1.

The selective and mutational covariance matrices S
and M were created randomly by drawing into Wishart
distributions and evenly scaled so as to get a given
distribution of the fitness effects of single deleterious
mutations [i.e., known value of the average E(s) and
variance V(s)], as in Martin and Lenormand (2006).
This allows parameterizing the simulations according to
known mutational parameters in model species. Here,

parameters roughly corresponded to Drosophila mela-
nogaster: U¼ 0.1, E(s)¼ 0.1, and V(s)¼ 0.012. With these
settings, there are fairly strong mutational and selective
correlations and heterogeneity among traits for both
mutational and selective (co)variances.

RESULTS

Detection of the expected pattern under neutrality:
Accuracy of the proportionality test as a function of sampling
effort: Figure 1 shows the impact of the number of popu-
lations sampled (nb 1 1) on the accuracy of the proportion-
ality test. From simulations of phenotype distributions
across sets of populations with proportional between- and
within-covariance matrices, we estimated the r̂st-estimates
between G and D and compared them with their expected
mean (r¼ 1.5) and range (see methods). Figure 1a shows
that, even for the smallest values of nb, the sample distri-
bution of the proportionality coefficient r̂st (3000 replicate
simulations) is accurately predicted by the application (to
MANOVA estimates, Equation 11) of the Flury approach
(Equations 4 and 5). This suggests that test i (r̂st vs. Fst/
(1 � Fst)) should be valid even when very few populations
are sampled empirically, although the test would have
reduced power (larger C.I. for r̂st with small nb).

Figure 1b shows the distribution of the P-values of the
test of proportionality between MSb and MSw (test ii,
Equation 10) over the same 3000 replicate simulations.
We show two options for testing proportionality: the
classic asymptotic x2-test proposed by Flury (1988) and
used in the CPC software (Phillips and Arnold 1999)
and the version proposed by Eriksen (1987) with a
Bartlett adjustment for small samples. Figure 1b, left,
shows that the asymptotic x2-test is not very accurate for
realistic numbers of sampled populations (i.e., up to 20
populations, an already large sampling effort). Indeed,
the distribution of P-values is not the uniform U[0, 1]
expected under the null hypothesis (which was simu-
lated), and rejection of the true H0 hypothesis occurs
more often than the expected a ¼ 5% level (type I
error). This occurs because the null (x2-) distribution of
X 2 predicted in Equation 7 is valid only when both
degrees of freedom n1 and n2 are large. In our case, nb ,

20 appears to be too small for the asymptotic distribu-
tion to be accurate. However, Figure 1b, right, shows
that the Bartlett-adjusted test (B1X 2, see methods and
Eriksen 1987) is accurate for realistic numbers of
sampled populations ($10 populations), as the distri-
bution of P-values is uniform [0, 1] as expected. On the
basis of our simulations (not shown), the test seems to
be more accurate when p > nb, where p is the number of
traits (e.g., p # 2nb). Detailed study of the power of the
test for a given data set can be easily performed by
simple simulations such as those presented here, so we
did not delve into these aspects any further.

Overall, it appears that the Bartlett-adjusted test is
necessary and sufficient to test proportionality between
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MSb and MSw among realistic samples based on MANOVA
estimates. Furthermore, it appears that a moderate to
large number of sampled populations are required to
obtain a reliable proportionality test (test ii), the more
so when many traits are measured, while the sampling
distribution of r̂st (test i) is correctly predicted even with
samples from only very few populations (although its
C.I. is then large).

Accuracy of the neutrality test under neutral evolution: We
checked whether the relationship predicted under
neutral divergence (Equations 10 and 11) was correct
using individual-based simulations and with the same
approach as in the previous section (Figure 1). For each
of 100 replicate simulations, every 20 generations, MSb

and MSw were estimated by MANOVA, their proportion-
ality was tested (Bartlett adjustment), and r̂st was
estimated following Equation 11:

Test i: Figure 2, left, shows that, for all time intervals
(corresponding to distinct values of Fst in the x-axis), r̂st-
estimates lie within their predicted range (dashed lines)

with mean Fst/(1 � Fst) as predicted under neutrality
(test i).Note also that therangeof r̂st-values is reasonably
small, smaller than most estimates of Qst (means over
traits) found in the literature (e.g., McKay and Latta

2002).
Test ii: Figure 2, right, shows the distribution of P-values

for the proportionality test (test ii), pooled over all
time intervals (100 replicate simulations 3 5 time
intervals ¼ 500 P-values). The distribution does not
differ from a uniform [0, 1] [Kolmogorov–Smirnov
(KS) test, P ¼ 0.156] as appears in Figure 2, and the
type I error is equal to that predicted at the a ¼ 5%
level (type I error probability ¼ 5.6%). Overall, this
shows that the hypothesis of proportionality between
MSb and MSw (Equation 11) under neutral diver-
gence (only drift, recombination, and mutation are
occurring) is correct and that the (Bartlett-corrected)
proportionality test accurately detects it.

Detecting selection by departures from the neutral pattern
(joint use of the two tests): Figure 3 corresponds to Figure

Figure 1.—Effectof thenumber
of populations sampled on the ac-
curacy of the tests: application of
tests i and ii on 3000 simulated phe-
notype distributions with propor-
tional G and D matrices, D ¼ 1.5
G (see methods). Each of nb 1 1
populationsconsistedofN¼100 in-
dividuals with multivariate normal
distributions of phenotypes (five
traits), and MS matrices were esti-
mated by MANOVA on samples of
nf¼ 20 individuals per population.
The number of sampled popula-
tionswasvaried from7to20tostudy
the effect of sampling effort on the
tests. (a) Test i: the distribution of
r̂st-estimates from replicate simula-
tions. Dashed lines give the theoret-
ical C.I. (Equation 5 inverted, see
methods), solid lines give the esti-
mated C.I. from simulations, and
circles give the mean r̂st from simu-
lations compared to its expected
mean r ¼ 1.5 (straight line). For
allvaluesofnb, thetheoreticaldistri-
bution is accurate. (b) Test ii: the
distribution of P-values of the pro-
portionality test between MSb and
MSw, using the asymptotic x2-test
for the likelihood-ratio X 2 (Equa-
tions 6 and 7) (left) or for the
Bartlett-adjusted likelihood ratio
(B1X 2, Eriksen 1987). The solid
line gives the density of the uniform
over [0, 1], which is the expected
distribution of P-values in our simu-
lations(GandDproportional,H0 is
true). The Bartlett adjustment
makes the test accurate even for
small numbers of sampled popula-
tions (nb , 10, right).
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2 for the case of nonneutral divergence between pop-
ulations. Figure 3a shows the behavior of the two tests
under homogeneous selection (for the same optimum
in each population). It appears that test i (Figure 3a,
left) accurately rejects neutrality as the estimated r̂st

from simulations all lay below their expected neutral
range. On the contrary (Figure 3a, right, test ii), al-
though the distribution of P-values for the proportion-
ality test differed from a uniform (KS test, P , 10�4), as
expected because MSb and MSw are not proportional, a
large number of the tests failed to (correctly) reject
proportionality (i.e., there was a large type II error
probability ¼ 84.4%).

Similarly, Figure 3b shows that in the case of hetero-
geneous selection, test i (left) accurately rejects neu-
trality as r̂st from simulations all lay above their expected
neutral range, but that test ii (right) was not very
powerful to detect selection. Again, although a uniform
distribution of P-values is clearly rejected (KS test, P ,

10�4, H0 is false), many of the P-values were above the
rejection level (type II error probability ¼ 91.5%).

Finally, in some situations, the set of traits under
study may be under a ‘‘mixed’’ selection regime, where
some of the traits are under directional selection while
the others are under stabilizing selection. In this case,
the average divergence of quantitative traits under
opposite forces may equal that of neutral markers, so
that a comparison of a mean Qst among traits with Fst

leaves selection undetected. However, using the mul-
tivariate approach, this selection regime can be de-
tected, as a mixed selection regime does not keep an
overall proportionality between G and D. Figure 3c
illustrates this: the mixed regime can hardly be dis-
tinguished from pure neutrality only on the basis of
the values of r̂st, which remain close to or within the
range expected under neutrality (test i, left). However,
proportionality between MSb and MSw is clearly re-
jected in almost all simulations (test ii, right: type II

error probability ¼ 1%), which allows identifying the
presence of selection.

Overall, the joint use of both tests allows properly
detecting all selection regimes, while still correctly
retaining H0 under neutral conditions. Homogeneous
and heterogeneous selection on all traits is efficiently
detected by test i in a way similar to classic Qst–Fst

comparisons, with r̂st lying respectively below or above
its expected value under neutrality (Fst/(1 � Fst)). On
the other hand, the case where some traits are under
homogeneous and others under heterogeneous selec-
tion is detected through test ii as the proportionality
between MSb and MSw is strongly rejected. Further-
more, it is noteworthy that the predicted C.I. for r̂st

based on its estimate (Equation 5, shaded dashed lines
in Figure 3) is still fairly accurate under selective
divergence. It need not be the case, as the C.I. is predicted
under the assumption of proportionality between MS
matrices, which fails when selection is occurring. This
point is useful as test i is based on comparing an em-
pirical C.I. with a predicted C.I. under neutrality and
would fail to be accurate under selection if the empirical
C.I. was not well predicted by Equation 5 in this case.
Note, however, that in the case of homogeneous se-
lection (Figure 3c) the predicted C.I. tended to un-
derestimate the observed C.I., so that care should be
taken when only a small gap between the neutral and
the observed C.I. is observed, before concluding to the
influence of homogeneous selection.

The results of the test in each type of selection
regime are summarized in Table 1, which shows that
the joint use of both tests allows detecting every selec-
tion regime.

DISCUSSION

In this article, we devised and tested a new neutrality
test for quantitative traits, which is a multivariate

Figure 2.—Accuracy of the tests under neutral
divergence. Among- and within-population MS
matrices were estimated by MANOVA for 100 rep-
licate simulations of neutral evolution (see
methods), at 20-generations time intervals (cor-
responding to increasing Fst in the x-axis). Each
of 10 isolated subpopulations of size N¼ 100 hap-
loid individuals with five additive traits under-
went mutation, drift, and recombination. For
each time point and replicate simulation, r̂st

was estimated according to Equation 11 and
the proportionality of MS matrices was tested
(Bartlett-adjusted test). (Left) Test i: box plot
of the estimated r̂st. The estimated 95% C.I.’s
of r̂st (bars) correspond to the predicted C.I.’s
(dashed lines) under neutrality, and the esti-
mated means (solid squares) are in perfect agree-

ment with their predicted value [Fst/(1 � Fst), solid line] at all levels of population divergence (Fst x-axis). (Right) Test ii:
distribution of the P-values (pooled from all time intervals) of the Bartlett-adjusted test on MS matrices. The distribution does
not differ from the expected uniform [0, 1] (type I error and P-value for the one-sided KS test of comparison with the uniform
given on the graph).
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extension of the classic Qst–Fst comparison. The idea is
to compare the among-population (D) and within-
population (G) covariance matrices and to test the
neutral pattern of D¼ Fst/(1� Fst)G (for haploids, as in
our simulations, and with a factor 2 for diploids). The
test is twofold: (i) testing for equality between an
estimate of the proportionality coefficient (r̂st, Equa-
tion 11) and its expectation (Fst/(1� Fst)) from neutral
markers and (ii) testing for proportionality itself be-
tween D and G. The first test (test i) is very close to the
classic Qst–Fst comparisons but in a rigorous multivariate
framework, while test ii is more akin to the approaches
proposed in the studies of G matrix evolution (e.g.,
Schluter 1996). Our tests make use of Flury’s (1988)
framework of sample covariance matrix comparisons

(CPC analysis), with a Bartlett correction for small
sample sizes proposed by Eriksen (1987), which proves
essential for realistic sampling designs (,20 popula-
tions sampled, Figure 1). Note that the software CPC
(Phillips and Arnold 1999), although a pioneer in
divulging the CPC framework among evolutionary biol-
ogists, does not use the Bartlett adjustment, which could
be problematic for at least some data sets in evolutionary
studies, with typically relatively small sample sizes. When
using the proportionality test in our particular context,
the correction will always be necessary, as one of the
degrees of freedom is given by the number of popula-
tions (rarely exceeding 10).

Our simulations suggest that, with a realistic sampling
design (10 populations, 20 families per population, five

Figure 3.—Power to detect nonneutral diver-
gence: the same as Figure 2 but with individuals
undergoing selection in addition to drift, muta-
tion, and recombination. In addition to its ex-
pected range under neutrality [Equation 5
inverted with r ¼ Fst/(1 � Fst), solid dashed
lines], the theoretical C.I. of r̂st predicted from
its observed value (Equation 5 inverted with r ¼
mean r̂st) was also reported (shaded dashed
lines), to check the robustness of Equation 5 to
nonproportionality between MS matrices. (a) Ho-
mogeneous selection for the same optimum: r̂st is
significantly lower than the neutral expectation
Fst/(1 � Fst) (estimated and predicted C.I.’s do
not overlap, left) and the P-value distribution of
the Bartlett test is significantly different from uni-
form [0, 1] (right). However, in a large propor-
tion of simulations, proportionality is not
rejected, although false (high type II error risk,
indicated on the graph). (b) Heterogeneous se-
lection for distinct optima in each population:
r̂st is significantly higher than Fst/(1 � Fst) (left)
and the P-value distribution is not uniform [0, 1]
but again there is a high type II error risk (right).
(c) Mixture of both selection regimes with two
traits under heterogeneous selection and three
traits under homogeneous selection: this time,
r̂st is not significantly different from Fst/(1 �
Fst) (left), but proportionality is systematically re-
jected (low type II error risk, right ). In all cases,
the theoretical C.I. of r̂st is relatively accurate
(compare shaded bars and shaded dashed lines),
although MS matrices are not proportional.
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traits measured), the predicted neutral pattern is exact
when only mutation and drift (and potentially migra-
tion) affect the trait (Figure 2) and that different forms
of selection can efficiently be detected (Figure 3). The
efficiency of this neutrality test stems from the fact that
two independent tests are used that are complementary
in detecting different types of departures from the
neutral pattern (Figure 3 and Table 1). We believe the
combined tests have more power than the classic mean
Qst–Fst comparisons for three reasons. First, the confi-
dence intervals of r̂st -estimates appear to be fairly
reduced even with the limited data sets of our simu-
lations, and the effect of sampling on these C.I.’s
appears to be accurately predicted by the CPC frame-
work. This is often not the case with classic mean Qst

estimates over several traits, which have notoriously
large C.I.’s and for which the correct statistical inference
of the C.I. is problematic, both for univariate Qst (as in
O’Hara and Merila 2005) and for their mean over
traits (often with the implicit and wrong assumption of
independence between traits). Second, the C.I. for r̂st

(Equation 5) is a simple product of r̂st by a factor that is
determined only by the sampling design (nw, nb, p),
which allows making straightforward power analysis
before any empirical study (detailed below). Finally and
maybe more importantly, averaging over traits that are
under opposite selective forces (mixture regime, Figure
3c) can lead to the erroneous acceptation of neutrality
in the classic Qst approach. Logically, it is also the case
based on test i, which is akin to the Qst–Fst comparison;
however, test ii efficiently rejects neutrality in this case as
the existence of opposite selection forces breaks down
the proportionality between G and D. Overall the
combined tests i and ii give a fairly powerful and sta-
tistically rigorous framework to detect various selection

regimes, including some that are undetected by the
classic Qst approach. Below, we discuss the robustness of
our theoretical and statistical results, practical implica-
tions for empirical designs, and future developments of
this approach to study multivariate evolution in natural
populations.

Robustness of the theoretical expectation and the
statistical method: Our simulations made precise as-
sumptions for the genetic basis of the quantitative traits
under study. Some are required for the theoretical
prediction (Equation 2) to be valid (additivity and
neutrality of the loci, no linkage disequilibrium), and
some are not. For instance, as for its univariate version
in Whitlock (1999), Equation 2, being derived from
coalescent theory, is independent of the ecological
mechanism of neutral population divergence (migration
between demes of arbitrary sizes, isolation by distance,
extinction/colonization dynamics, etc.), although we
simulated only the simpler case of identical and isolated
demes. As an example, this is confirmed in simulations
of a finite-island model with migration, provided in
supplemental Figure 1. Similarly, heterogeneity among
loci for mutational effects, or the number of loci itself,
does not influence our results based only on the total
mutational variance, summed over loci (Equation 1);
this was confirmed by simulations (not shown), for the
number of loci. The choice of an alternative mutation
model to the house of cards with Gaussian distribution
of effects in our simulations should also not influence
the results, as long as the mutational covariance between
traits remains independent of the current state of the
individual (Whitlock 1999) and as long as the breeding
value distribution for each trait remains approximately
Gaussian. For example, Equation 2 should still be valid
in the classic infinite-allele model (Kimura and Crow

1964), where new mutation effects add up to the current
allele effect at each locus, but are still drawn into a
distribution that is independent of the current state.
Our results should in fact still be valid when mutational
covariances change through time, but the net input of
mutational covariance averaged over generations is the
same along every branch of the coalescent (i.e., within
each subpopulation). Finally, because Equation 2 is
based on coalescent theory, wrong identification of the
subpopulation units in the field (e.g., if one of the
samples includes in fact several biological subunits)
should not invalidate the prediction under neutrality.
Under selective divergence, however, such erroneous
sampling would lead to including part of the among-
population divergence in the within-population level.
This may tend to artificially align G with D and could
favor the neutrality hypothesis, when selection is in
fact occurring. In this case, r̂st should still be different
from its neutral expectation (test i), but this difference
may not be significant anymore. Therefore, correct
identification of biological subpopulation units is re-
commended, as is the case for many methods in

TABLE 1

Results of the neutrality tests according to the
selection regime

Selection
regime

Test i:
r̂st ¼ Fst=ð1� FstÞ

Test ii:
MSb and MSw

proportional

Neutral Minimal rejection Minimal rejection
Homogeneous

selection
High rejection Low rejectiona

Heterogeneous
selection

High rejection Low rejectiona

Mixed regime Low rejectiona High rejection

For all divergence scenarios considered in Figures 2 and 3
the outcome of the two neutrality tests in our simulations is
summarized. Both tests are accurate under neutrality but in
all cases of selection, one of them fails. However, at least
one test is accurate so that the joint use of tests i and ii allows
detecting all selection regimes.

a An outcome that does not correspond to the correct situ-
ation (in all cases it corresponds to a high type II error risk).
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metapopulation studies. Note that molecular markers
could be used to this end, with identification of units
via Bayesian clustering algorithms (e.g., Pritchard

et al. 2000).
Moreover, discrepancies with basic assumptions of the

model may not always invalidate its results. Linkage
disequilibrium between loci determining the traits is
assumed to be negligible in the coalescent approach we
used (Whitlock 1999). However, as detailed in (Le

Corre and Kremer 2003), significant linkage disequi-
librium need not affect the Qst¼ Fst relationship (nor its
multivariate equivalent in Equation 2) provided that it
affects the between-population and the within-population
covariances similarly. There are two possible sources of
genetic covariance between traits: linkage disequilib-
rium and pleiotropic mutation. In this article, the mecha-
nism studied is pleiotropy, but interestingly, when
linkage disequilibrium, not pleiotropic mutation, is the
source of the genetic covariance between traits, Equation
2 was also obtained by Rogers and Harpending (1983),
although only for diallelic and nonpleiotropic loci and in
an island model. However, we can expect that when
neutral divergence occurs with an initial negative linkage
disequilibrium buildup by past selection (Bulmer effect),
the value of r may tend to fall below its neutral ex-
pectation (which assumes linkage equilibrium), as pre-
dicted by Le Corre and Kremer (2003) for univariate Qst

measures. This effect should be even stronger with
asexual populations. Finally, as shown in methods, in
the case of species with some level of inbreeding, the test
can still be performed but a correction must be applied
by changing the expected ratio in Equation 2 to 2Fst/
((1 � Fst)(1 1 Fis)), where Fis is the inbreeding co-
efficient, also estimated from the neutral marker data.

Regarding Fst estimation, the relevant Fst value in
Equation 2 should be that of the loci encoding the
quantitative traits (QTL) under study and may differ
from that empirically measured on neutral markers.
However, as discussed in Whitlock (1999), when the
influence of mutation on Fst is weak relative to that of
demography and the genetic system (strong drift and/or
migration relative to the mutation rate for both markers
and QTL), Fst is mainly determined by demography,
common to both markers and QTL, so that the neutral
pattern can be tested with Fst from neutral markers.

We can see two key assumptions to which the results
should be sensitive: normality of the breeding values
and additivity across loci encoding the traits. The
method should be fairly strongly dependent on the
normality assumption, as is the case for both the CPC
analysis framework (Flury 1988) and the parametric Qst

estimation methods (O’Hara and Merila 2005). Con-
sequently, proper transformation of the phenotypic
data to conform to the Gaussian assumption is recom-
mended before analyzing the empirical data. We did not
study the effect of nonnormality on the tests presented
here, but one prediction can be made. When traits are

non-Gaussian, the deviance of all models in the CPC
analysis should be lower (as the Wishart distribution
does not give a good fit to the sample covariance esti-
mates), whereas the number of parameters for each
model will remain unchanged. Therefore, (i) the propor-
tionality test may reject the neutral pattern even when it is
in fact correct (type I error), and (ii) the estimate of r

and its C.I. may be incorrect. The first point should
artificially favor selective interpretations against neutral
ones. The second one may induce any unwanted effect
(type I or II error) and we did not study this impact here.
Our simulations (Figure 3) revealed that the C.I. for r was
fairly correctly predicted by Equation 5, even under
nonneutral conditions for which the proportionality as-
sumption was violated. Consequently, we may suspect
that test i based on the comparison of r with 2Fst/(1� Fst)
should also be more robust to nonnormality than test ii.
However, again, proper standardization of the data to
approach normality is a general recommendation in many
multivariate analyses, and this method is no exception.

Nonadditivity of the quantitative traits, even neutral,
is an acknowledged source of bias in Qst–Fst com-
parisons, leading, in most cases, to a downward bias
of Qst relative to Fst. Both additive-by-additive variance
(Whitlock 1999) and dominance variance (Goudet

and Buchi 2006) affecting a neutral trait are expected
to lower Qst relative to Fst, which in our case would lead
to a value of r , 2Fst/(1 � Fst). Note that this effect is
expected in many but not all cases when there is only
dominance variance (discussed in Goudet and Martin

2007; Lopez-Fanjul et al. 2007). Together with the
probable negative bias induced by negative linkage
disequilibria due to past selection, these results suggest
that a pattern of r , 2Fst/(1� Fst) should be interpreted
with some caution, as previously outlined (Whitlock

1999; Goudet and Buchi 2006) for the univariate Qst–
Fst comparison. Such a pattern (if weak, at least) may
reflect nonadditivity or linkage disequilibria affecting
otherwise approximately neutral traits. On the contrary,
the opposite pattern r . 2Fst/(1 � Fst) can be taken
with greater reliability as evidence of heterogeneous
selection.

Finally, in some studies, the phenotypic covariance
matrix P is used as a proxy for the genetic covariance
matrix G, because it is easier to estimate. If our tests are
applied to phenotypic distributions instead of breed-
ing value distributions, environmental variance might
influence the result. Let E be the environmental covari-
ance matrix within subpopulations. Then the within-
population phenotypic covariance is Pw ¼ G 1 E while
the between-population phenotypic covariance is Pb ¼
D 1 E/nb (nb is the number of populations), so that the
environmental variance increases Pw more than Pb

and creates a bias. In the neutral case where D ¼ Fst/
(1 � Fst)G, the relationship on phenotypic covariances
will be Pb , Fst/(1 � Fst)Pw, with nonproportionality
between Pw and Pb, thus mimicking the effect of
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stabilizing selection. The impact of this bias is larger
with smaller Fst and larger environmental variance E.
Overall it is therefore advisable to apply the test on
breeding values, and when applied on phenotypic
values and rejecting proportionality with a pattern r ,

2Fst/(1 � Fst), the results will again have to be inter-
preted with caution, as with nonadditivity (above).

We did not simulate all departures from our model
assumptions. However, on the basis of the above the-
oretical arguments and our simulations, we believe that
the test presented in this article is fairly robust to several
genetic and ecological details underlying quantitative
variation in a metapopulation. Yet, we note that some
departures from the basic assumptions of the model
may lead to erroneous conclusions. In this regard, the
test on r̂st-values (test i) is probably more robust than
the proportionality test (test ii).

Best experimental design and method to detect
selection: The analytic expression of the C.I. for r

(Equation 5) gives a straightforward basis for optimization
of any empirical sampling design. Two conclusions can
be drawn from this equation and from our study in
general. First, the number of traits (p) and the effect of
sampling [harmonic mean of sampling sizes between
and within populations (1/nw 1 1/nb)] act multiplica-
tively to reduce the sample variance of r̂st, so that it is not
necessary to pool numerous traits together if the
sampling design is large enough. This is important in
the perspective of being able to distinguish between
different types of traits: indeed, by choosing a biologi-
cally coherent set of traits (e.g., morphological, life
history, etc.), which may be rather small, the results can
be interpreted with more relevance. Second, the sam-
pling effort should be balanced as much as possible
between the among-population and the within-popula-
tion levels, as the sampling variance decreases with the
harmonic mean of relative sample sizes (1/nw 1 1/nb).
Furthermore, the x2-distribution of the log-likelihood
ratio (Equation 7) under proportionality, even with the
Bartlett correction of Eriksen (1987), is an asymptotic
result that is more accurate when both nb and nw are
large (in our simulations, at least 10, Figure 1). Overall,
this means that sampling of many populations is advis-
able to get a more accurate measure of r̂st (test i) and a
more reliable proportionality test (test ii). On the
contrary, the number of families per population may
be rather small if many populations are sampled: the
within-population degree of freedom in the MANOVA
(nw) will still remain large. Finally, the required number
of populations to be sampled increases with the number
of traits studied for the proportionality test (at least nb .

p), which again argues in favor of avoiding the study of
too many traits together. Overall, to detect selection, we
recommend that sampling efforts in studies of meta-
populations be oriented to considering more popula-
tions (e.g., .10–20), even at the cost of a reduced
number of families per population or of a reduced

number of traits measured. Again, power analysis can be
carried out very easily as the sample variance of r has a
simple close form (Equation 5), a main advantages of
this test compared to several classic methods of Qst

estimation.
Because it is directly based on the estimation of

variance components from the data set by MANOVA,
the method can be extended to hierarchical designs (e.g.,
populations within habitats, etc.), using the correspond-
ing mean square matrices (MS) and degrees of free-
dom. However, the power and the accuracy of the tests
will be reduced at higher levels of the hierarchy for
which the degrees of freedom are very small (often two
habitats so that d.f.¼ 1). This makes the proportionality
test (test ii) irrelevant as it requires d.f. . p for all MS
matrices. However, test i could still be applied as the
estimate and C.I. of r̂st seems valid even for very low
degrees of freedom (Figure 1a). Nevertheless, r̂st at the
habitat level will likely have a very large C.I. in this case,
which would also greatly reduce the power of the test.
Improvements of the test to gain power in the study of a
small number of groups will be necessary in the future to
provide powerful tests based on quantitative genetic
data from, e.g., two distinct habitats. Meanwhile, it may
be best to study larger sets of habitat types (e.g., using
several thresholds along a gradient).

Further issues: The main problem common to all
multivariate Qst analyses (means over traits or our
method) is that different traits are pooled and the net
effect of evolutionary forces on the whole trait set is the
only information available. This problem is partly over-
come by our approach, which can detect when distinct
subsets of traits are under qualitatively different selection
regimes. However, it remains a ‘‘pooled-traits’’ approach
for which individual traits information is lost. The
alternative of using single-trait Qst is obviously worse,
as such, because in most cases the C.I. for each Qst is of
the order of [0, 1] and is sometimes not easy to compute
(O’Hara and Merila 2005), so that a test against the
value of Fst has no power and may be inaccurate. To
allow the proper biological interpretation of the type of
multitrait analysis presented here, it is therefore best to
consider sets of biologically coherent traits for which
similar evolutionary forces are expected to act. Such
an a priori interpretation is always difficult to state,
but because the method can detect mixed selection
regimes, it may be possible to conduct exploratory
studies and find the set of biologically coherent traits
to be analyzed.

In molecular evolution, the same problem applies:
neutrality tests have been designed that use compar-
isons of diversity between populations (divergence
between species) and within populations (polymor-
phism within species) such as the McDonald–Kreitman
test (McDonald and Kreitman 1991), in a way akin to
the Qst–Fst method. An inherent limit to these methods
is that information from different nucleotide sites/
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genes is pooled. Therefore, improvements have been
proposed by including an explicit model of selection on
distinct sites (Yang et al. 2000).

In a similar way, an alternative to the approach
presented here (and to all neutrality tests in quantitative
genetics) would be to model selection on the set of traits
under study, together with drift and mutation. Fst

estimates could then be used to correct for the effect of
drift, then test for a significant component due to
selection, and finally estimate this selection effect if
it is significant. This would provide insights into the
strength of selection, on each trait of the set. Such multivar-
iate models exist: under the assumption of Gaussian
breeding values, the evolution of multivariate genetic
covariances among isolated populations (i.e., of D) under
the joint action of drift, selection, and mutation has
been modeled, first for Gaussian stabilizing selection
(Lande 1980) and later for various other types of selec-
tion regimes [both directional and stabilizing and homo-
geneous and heterogeneous (Hansen and Martins

1996)]. These models, which relate D to G, provide a
powerful framework for the detection and the estimation
of the impacts of drift and selection on sets of quantitative
traits. However, as such, they assume constancy of G over
time, are not expressed in terms of Fst, and consider
independent lineages as they have been developed in the
context of speciation theory. However, the general
framework proposed in these articles could be applied
to not only test for, but also estimate selection effects. Such
an approach seems possible and we believe is essential if
we are to understand the interplay of drift and adapta-
tion in wild populations, for the largest class of traits
affecting fitness: continuous polygenic traits.
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