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Abstract. In classical risk theory, the infinite-time ruin probability of a surplus
process Ct is calculated as the probability of the process becoming negative at some
point in time. In this paper we consider a relaxation of the ruin concept to the
concept of bankruptcy, according to which one has a positive surplus-dependent
probability to continue despite temporary negative surplus. We study the resulting
bankruptcy probability for the compound Poisson risk model with exponential claim
sizes for different bankruptcy rate functions, deriving analytical results, upper and
lower bounds as well as an efficient simulation method. Numerical examples are
given and the results are compared with the classical ruin probabilities. Finally,
it is illustrated how the analysis can be extended to study the discounted penalty
function under this relaxed ruin criterion.

Key words: Classical Risk Process, Omega Model, Ruin Probability, Discounted
Penalty Function, Bankruptcy Rate Function
JEL classification: C02, C63, G22, G33

1 Introduction

In classical risk theory, ruin of a company is defined as the event that some surplus process Ct

becomes negative for the first time. Conversely, using a bankruptcy concept, the entity would

go bankrupt randomly for negative Ct levels at some bankruptcy rate ω(·), subject to no prior

bankruptcy event. The idea of extending ruin to this more general bankruptcy concept was intro-

duced in Albrecher/Gerber/Shiu (2011) in a discussion around a company’s equity value process
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described by its expected discounted dividends over time, with dividends being paid up to the time

of bankruptcy whenever an underlying process exceeds some dividend barrier b.

This paper examines the bankruptcy idea for a surplus processes with jumps, and we will formulate

the ideas for an insurance application although other interpretations will be possible. Consider a

Cramér-Lundberg setup to describe the insurer’s surplus Ct at time t as

Ct = x+ ct− St, (1)

where C0 = x ≥ 0 is the initial surplus, c is the premium rate, and St is the aggregate claim

amount up to time t modelled as a compound Poisson random variable with intensity λ and

positive jump sizes with cumulative distribution function FY (in most parts of the present paper,

the jump size distribution will be assumed to be exponential, although more general distributions

(such as phase-type) lead to structurally similar equations and solution strategies which can still

yield explicit results, see the respective remarks in later sections). In classical ruin theory, the

insurer goes out of business at the time of ruin τruin = inf {t > 0|Ct < 0}.

In this paper it is assumed that the insurer may be allowed to continue the business despite

temporary negative surplus. The approach taken here differs from models with absolute ruin, as

for instance studied in Gerber (1971), Dassios/Embrechts (1989) and Zhu/Yang (2011) in that

we take a fully probabilistic approach. Concretely, a suitable locally bounded bankruptcy rate

function ω(Ct) depending on the size of the negative surplus is defined on (−∞, 0]. Given some

negative surplus Cs < 0 and no prior bankruptcy event, the probability of bankruptcy on the time

interval [s, s + dt) is ω(Cs)dt. We assume that ω(·) ≥ 0 and ω(x) ≥ ω(y) for |x| ≥ |y| to reflect

that the likelihood of bankruptcy does not decrease as the surplus becomes more negative. Let τ

be the resulting time of bankruptcy, and define the overall probability of bankruptcy as

ψ(x) = E
[
1{τ<∞}|C0 = x

]
= P [τ <∞|C0 = x] . (2)
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Note that the classical ruin probability ψruin(x) is retained for the limit ω(y) ≡ ∞ for all y < 0.

In general, the idea is that whenever the surplus level becomes negative, there may still be a chance

to survive, and it is modelled that survival is less likely the lower such a negative surplus level is.

Conceptually, the replacement of the ruin concept by bankruptcy first of all removes the binary

feature of the classical framework where the surplus process survives at x = 0, but is killed for

arbitrarily small negative surplus levels x = 0−. From a practical viewpoint, this is underpinned

by the fact that in many jurisdictions the regulator would take control as an insurer’s financial sit-

uation deteriorates, and measures would be undertaken during a rehabilitation period with the aim

of curing the insurer’s financial problems. Only when such measures fail, the insurer will typically

go into liquidation (cf. Schacht and Hepler (2007) or Insurance Information Institute (2012)).

In particular, temporary financial support to bridge a period of negative surplus could come from

a solvent parent company that fears reputational damage in case of liquidation of one of its sub-

sidiaries, from insurance guarantee schemes (cf. Oxera (2007)), or from governments that consider

the insurer too big to fail (which was observed on several occasions in the U.S. and Europe during

the financial crisis starting in 2007). If corrective actions and the decision whether an insurance

business can continue its operations are taken already before hitting negative surplus levels (for

example, regulator intervention when a minimum surplus level s is not obeyed), one can translate

this situation into the shifted bankruptcy problem with initial capital x−s and an adequate choice

of ω(·).

To add another possible interpretation, there is a conceptual connection to contingent capital ar-

rangements (cf. Glasserman/Nouri (2010), Chen/Glasserman/Nouri (2012) or Maes/Schoutens (2010)),

where financial service firms pre-arrange capital injections or guarantees that could be triggered

by low or negative surplus levels. For example, choose a > 0 and define ω(x) arbitrarily large for

x < −a and ω(x) ≡ ωc for −a ≤ x < 0. One could then interpret the connected bankruptcy model
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as an unfunded financial guarantee where the guarantor promises to pay open claims up to some

level a in case of liquidation of the insurer. There will be counterparty risk linked to the guarantee,

and default of the guarantor would mean bankruptcy for the insurer at negative surplus levels.

The rate ω(x) could be seen as a guarantor default rate in this case.

For the particular case of constant bankruptcy rate functions ω(x) ≡ ωc, the bankruptcy concept

is mathematically also linked to other recent results. In Albrecher/Cheung/Thonhauser (2011b),

a model was set up where the surplus level Ct is only observed at discrete random observation

times (lack-of-information), so that ruin does not occur automatically as soon as the surplus drops

negative. For exponentially distributed observation times, those results for the corresponding ruin

probability coincide with our bankruptcy probability for constant bankruptcy function ωc. Also,

Landriault/Renaud/Zhou (2011) generally discuss occupation times for spectrally negative Lévy

processes. For exponential implementation delay rates ωc, the authors mention the link between

occupation times and the probability of ruin as 1 − P[τruin < ∞] = E[exp{−ωc
∫∞

0 1{Ct<0}dt}].

Again, this result coincides with our result for a constant bankruptcy rate function ωc.

This paper is organized as follows. Section 2 derives equations for the probability of bankruptcy

ψ(x), which are solved explicitly for some simple choices of bankruptcy rate functions and ex-

ponential claim sizes. Since for general bankruptcy rate functions exact expressions for ψ(x) are

hard to obtain, Section 2.2 demonstrates how piecewise constant bankruptcy rate functions can be

efficiently used as approximations, and Section 3 illustrates numerically the accuracy of such ap-

proximations. An effective simulation technique is introduced and tested as well. Finally, Section

4 discusses extensions from the probability of bankruptcy to the discounted penalty function which

allows to investigate additional risk measures, such as the shortfall at the time of bankruptcy.
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2 The Probability of Bankruptcy

For technical reasons, let us extend the definition of ω(x) to the entire real line by specifying

ω(x) = 0 for x ≥ 0. Conditioning on the first occurrence time of either a claim or an event of

bankruptcy up to time h > 0 yields for x ≥ 0 that

ψ(x) = e−λhψ(x+ ch) +

∫ h

0
λe−λt

∫ ∞
0

ψ(x+ ct− y)dFY (y)dt, (3)

and for x < 0 that

ψ(x) = e−λh−
∫ h
0 ω(x+cy)dyψ(x+ ch) +

∫ h

0
e−λtω(x+ ct)e−

∫ t
0 ω(x+cy)dydt

+

∫ h

0
e−
∫ t
0 ω(x+cy)dyλe−λt

∫ ∞
0

ψ(x+ ct− y)dFY (y)dt. (4)

Choosing x = 0 in (3) and letting h→ 0 shows right-continuity of ψ(x) in x = 0, whereas choosing

x = −ch in (4) and letting h → 0 provides left-continuity (recall that ω(0−) is by definition

bounded), so that ψ(x) is indeed continuous in x = 0, i.e.

ψ(0−) = ψ(0+). (5)

By the same line of reasoning, one can see that ψ(x) is continuous for all values of x ∈ R.

Differentiating (3) and (4) w.r.t. h and taking the limit h→ 0 leads to

x ≥ 0 : 0 = cψ′+(x)− λψ(x) + λ

∫ ∞
0

ψ(x− y)dFY (y), (6)

x < 0 : 0 = cψ′+(x)− (λ+ ω(x))ψ(x) + ω(x) + λ

∫ ∞
0

ψ(x− y)dFY (y) (7)

where ψ′+(x) denotes the right-hand derivative of ψ(x). Replacing x by x − ch in (3) and (4) for
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sufficiently small h, followed by a differentiation w.r.t. h and h→ 0 accordingly yields

x > 0 : 0 = cψ′−(x)− λψ(x) + λ

∫ ∞
0

ψ(x− y)dFY (y), (8)

x < 0 : 0 = cψ′−(x)− (λ+ ω(x))ψ(x) + ω(x) + λ

∫ ∞
0

ψ(x− y)dFY (y) (9)

for the left-hand derivative ψ′−(x). By the continuity of ψ(x) for all x ∈ R, comparing (6) and (8)

it is hence clear that the derivative ψ′(x) exists for all x > 0. Correspondingly, comparing (7) and

(9) shows that for x < 0 the derivative ψ′(x) exists whenever ω(x) is continuous. Furthermore,

from (5), (6) and (9) one sees that

ψ′+(0)− ψ′−(0−) =
1

c

[
ω(0−)(1− ψ(0−))

]
, (10)

so that the derivative of ψ(x) is continuous in x = 0 if ω(0−) = 0 (the other case ψ(0−) = 1

refers to the classical ruin situation with ω(0−) = ∞, which is not of interest here). For ease of

notation, we will always write ψ′(x) for x < 0 in the sequel with the understanding that this is to

be interpreted as a one-sided derivative at discontinuity points of ω(x).

Let us divide ψ(x) into an upper (’u’) and a lower (’l’) function depending on the value of x,

ψ(x) =

 ψu(x) for x ≥ 0

ψl(x) for x < 0
,

to give

x ≥ 0 : 0 = cψ′u(x)− λψu(x) + λ

(∫ x

0
ψu(x− y)dFY (y) +

∫ ∞
x

ψl(x− y)dFY (y)

)
, (11)

x < 0 : 0 = cψ′l(x)− (λ+ ω(x))ψl(x) + ω(x) + λ

∫ ∞
0

ψl(x− y)dFY (y), (12)

with ψu(0+) = ψl(0
−) and ψ′u(0+)−ψ′l(0−) = 1

c [ω(0−)(1− ψl(0−))]. For simplicity, we will assume

throughout the rest of the paper that the claim sizes are exponentially distributed (Y ∼ Exp(ν)).
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In this case, the integrals can be eliminated by applying the operator (d/dx+ ν) to (11) and (12),

and one arrives at the following system of linear differential equations,

x ≥ 0 : 0 = cψ′′u(x) + (νc− λ)ψ′u(x) (13)

x < 0 : 0 = cψ′′l (x) + (νc− (λ+ ω(x)))ψ′l(x)− (ω′(x) + νω(x))ψl(x) + ω′(x) + νω(x). (14)

For x ≥ 0, (13) has constant coefficients and one can easily obtain

ψu(x) = Ae−(ν−λc )x +B, (15)

with constants A,B ∈ R. By the net profit condition, one has ν− λ
c > 0, and from limx→∞ ψu(x) =

0 it follows that B = 0. Note that

ψruin(x) =
λ

νc
e−(ν−λc )x, x ≥ 0, (16)

in the classical case if claim sizes are exponentially distributed (see e.g. Gerber (1971)), which

differs from (15) only by the constant A. Clearly ψl(x) ≡ 1 is always a particular solution of (14),

so that one can write

ψl(x) = 1 +Al · h(x), (17)

where Al is some constant and h(x) is the homogeneous solution of (14) that fulfils h(−∞) = 0. The

latter condition ensures the natural requirement limx→−∞ ψl(x) = 1. The continuity conditions

(5) and (10) now give the equation system

A = 1 +Al · h(0)

−
(
ν − λ

c

)
A = Al · h′(0) +

1

c
ω(0−)(−Al · h(0)),
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such that the constants A and Al can be expressed as functions of h(0) and h′(0),

A = 1−
(
ν − λ

c

)
h(0)

h(0)
(
ν − λ

c −
ω(0−)
c

)
+ h′(0)

Al = −
ν − λ

c

h(0)
(
ν − λ

c −
ω(0−)
c

)
+ h′(0)

,

to give the following result.

Proposition 2.1. Consider a compound Poisson surplus process (as defined in (1)) with initial

capital x, income rate c, intensity λ > 0 and exponentially distributed claim sizes with parameter

ν > 0. For a given bankruptcy rate function ω(x) ≥ 0 for x < 0, the probability of bankruptcy is

given by

ψ(x) =


[

1− (ν−λc )h(0)

h(0)
(
ν−λ

c
−ω(0

−)
c

)
+h′(0)

]
e−(ν−λ/c)x, x ≥ 0

1− ν−λ
c

h(0)
(
ν−λ

c
−ω(0

−)
c

)
+h′(0)

· h(x), x < 0,

(18)

where h(x) is defined as the homogeneous solution to (14).

From the form of ψ(x) in (18), it is obvious that the two branches of the function meet in x = 0.

Also, A and Al remain unchanged if c ·h(x) is used instead of h(x) for some constant factor c 6= 0,

such that it suffices to determine h(x) up to this scaling factor. Note that h(0), h′(0) and ω(0−)

will depend on the choice of the bankruptcy rate function, and in the next section some particular

choices of such functions will be discussed in more detail.

Remark. The transition from IDEs to ODEs as performed in this section is not limited to the

exponential claim size case. Suppose that the density function f(y) of the claim size distribution

exists and that it is the solution of the homogeneous ODE

pY

(
d

dx

)
f(x) := f (m)(x) + dm−1f

(m−1)(x) + ...+ d1f
′(x) + d0f(x) = 0 (19)

for constants dj ∈ R and d0 6= 0 (or, equivalently, the distribution shall have a rational Laplace
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transform, cf. e.g. Asmussen/Albrecher (2010)). This property is, for example, fulfilled by the rich

class of phase-type distributions (which can theoretically be applied to approximate any distribu-

tion on the positive halfline arbitrarily well) including hyper-exponential and Erlang distributions.

Applying the operator dk/dxk to (11) then returns

0 =
dk

dxk
[
cψ′u(x)− λψu(x)

]
+ λ

(
k−1∑
i=0

ψ(k−1−i)
u (x)f (i)(0)

+

∫ x

0
ψu(y)

dk

dxk
f(x− y)dy +

∫ 0

−∞
ψl(y)

dk

dxk
f(x− y)dy

)
,

and due to (19) one eventually arrives at the ODE

x ≥ 0 : 0 = pY

(
d

dx

)[
cψ′u(x)− λψu(x)

]
+ λ

m∑
k=1

k−1∑
i=0

dkψ
(k−1−i)
u (x)f (i)(0)

with dm = 1. Similarly, the functional pY
(
d
dx

)
transforms (12) into the ODE

x < 0 : 0 = pY

(
d

dx

)[
cψ′l(x)− λψl(x)

]
−

m∑
k=0

k∑
i=0

dk

(
k

i

)
ω(k−i)(x)ψ(k)(x) +

m∑
k=0

dkω
(k)(x)

+ λ
m∑
k=1

k−1∑
i=0

dkψ
(k−1−i)
u (x)f (i)(0).

Note that the ODE for x ≥ 0 does not depend on ω(·) and gives the same dynamics as in the

classical case. It remains to solve this new system of higher-order ODEs in order to attain an

expression for the probability of bankruptcy. This, however, can be a cumbersome task; one might

not be able to identify an analytical solution to the ODE for the lower branch (x < 0) with its

generally non-constant coefficients. In the case of non-exponential claim size distributions, it might

hence be advisable to turn to alternative numerical solution methods (e.g. as the ones described

in Sections 2.2 and 3.3). �
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2.1 Examples of Bankruptcy Rate Functions

2.1.1 Constant Bankruptcy Rate Functions

Let ω1(x) ≡ ωc · 1{x<0} with ωc > 0. This is the simplest choice of bankruptcy rate function

and could, for example, be used when the exact deficit level is not transparent in practice (lack

of information) or when the surplus is observed only at discrete times. The latter corresponds to

the case where the periods between observation times are assumed i.i.d. exponentially distributed

with an expected time between observations of 1/ωc (cf. Albrecher/Cheung/Thonhauser (2011b)).

The dynamics of h(x) are then given by

0 = ch′′(x) + (νc− (λ+ ωc))h
′(x)− νωch(x), x < 0.

We obtain

h(x) = A1e
−Rx +B1e

ρx,

with −R < 0 and ρ > 0 being the two solutions to the characteristic equation

ξ2 +

(
ν − λ+ ωc

c

)
ξ − νωc

c
= 0. (20)

The lower boundary condition limx→−∞ h(x) = 0 implies A1 = 0, and we choose w.l.o.g. B1 = 1.

From the resulting h(0) = 1 and h′(0) = ρ, one ultimately finds

A =
ωc − ρ c

−c ν + λ+ ωc − ρ c
= 1− ν − λ/c

R
,

so that one arrives at the following result.

Proposition 2.2. Consider a compound Poisson surplus process (as defined in (1)) with initial

capital x, income rate c, intensity λ > 0 and exponentially distributed claim sizes with parameter
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ν > 0. For a constant bankruptcy rate function ω(x) = ωc for x < 0, the probability of bankruptcy

is given by

ψ(x) =


R−(ν−λ/c)

R e−(ν−λ/c)x, x ≥ 0

1− 1
R (ν − λ/c) eρx, x < 0,

(21)

where −R < 0 and ρ > 0 are solutions of equation (20).

Note that this result corresponds to the case δ = 0 of Formula (2.18) of Albrecher/Cheung/Thonhauser (2011b),

where a risk model with random exponential observation times is considered. Also, for ωc → ∞,

we have R→ ν and ρ→∞, so that (21) converges to (16) for x ≥ 0 and to 1 for x < 0.

2.1.2 Linear Bankruptcy Rate Functions

Let now ω2(x) = −ax · 1{x<0}, for some a > 0. This case reflects one of the most basic choices of

strictly decreasing bankruptcy rate function, which is simple enough to enable an explicit solution

of the probability of bankruptcy, which can be used to gain insight in parameter sensitivities. In

this case the dynamics of h(x) are given by

0 = ch′′(x) + (νc− (λ− ax))h′(x) + (a+ νax)h(x), x < 0. (22)

Substituting h(x) = e
x(2λ−ax)

2c · g(x) yields a linear ODE for g(x) as

0 = cg′′(x) + (λ+ cν − ax)g′(x) + λνg(x).

A second substitution, z = (−λ−cν+ax)2

2ac , such that y(z(x)) = g(x), produces the Kummer differen-

tial equation (also known as Weiler’s canonical form),

0 = z
d2y

dz2
+

(
1

2
− z
)
dy

dz
+
λν

2a
y.

This equation is well-known to have the general solution (cf. Abramowitz/Stegun (1972), Section
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13)

y(z) = A2 ·M
(
−λν

2a
,
1

2
, z

)
+B2 ·U

(
−λν

2a
,
1

2
, z

)
,

with A2, B2 ∈ R, M(α, β, z) = 1 +
∑∞

k=1
(α)k
(β)k

zk

k! being the Kummer series (also known as confluent

hypergeometric series of the first kind, 1F1(α, β, z)) for β /∈ Z−0 , and (α)k = α(α+ 1)...(α+ k− 1),

(α)0 = 1, and one defines

sinπβ

β
U(α, β, z) =

1

Γ(1 + α− β)Γ(β)
M(α, β, z)− z1−β

Γ(α)Γ(2− β)
M(1 + α− β, 2− β, z). (23)

This leads to the general solution of (22),

h(x) = e
x(2λ−ax)

2c ·
[
A2 ·M

(
−λν

2a
,
1

2
,
(−λ− cν + ax)2

2ac

)
+B2 ·U

(
−λν

2a
,
1

2
,
(−λ− cν + ax)2

2ac

)]
.

For z →∞ it is well-known that M(α, β, z) = Γ(β)
Γ(α)e

zzα−β(1 +O(1/|z|)) and U(α, β, z) = z−α(1 +

O(1/|z|)). Hence, for x→ −∞ the two homogeneous solutions have the asymptotic behavior

Γ(1/2)

Γ(−λν/(2a))
e−νx

(
−λ− cν + ax√

2ac

)−λν/a−1

O

(
1 +

1

|x|

)
(24)

and

e
x(2λ−ax)

2c

(
−λ− cν + ax√

2ac

)−λν/a+2

O

(
1 +

1

|x|

)
, (25)

respectively. For x→ −∞, (24) is unbounded, while (25) tends to 0. The lower boundary condition

limx→−∞ h(x) = 0 thus implies A2 = 0, and w.l.o.g. B2 = 1. It is concluded that

h(x) = e
x(2λ−ax)

2c ·U
(
−λν

2a
,
1

2
,
(−λ− cν + ax)2

2ac

)
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and it follows that

h(0) = U
(
−λν

2a
,
1

2
,
(−λ− cν)2

2ac

)
h′(0) =

λ

c
U
(
−λν

2a
,
1

2
,
(−λ− cν)2

2ac

)
+
λν(λ+ cν)

2ac
U
(
−λν

2a
+ 1,

3

2
,
(−λ− cν)2

2ac

)
,

leading to the following result.

Proposition 2.3. Consider a compound Poisson surplus process (as defined in (1)) with initial

capital x, income rate c, intensity λ > 0 and exponentially distributed claim sizes with parameter

ν > 0. For a linear bankruptcy rate function ω(x) = −ax for x < 0, the probability of bankruptcy

is given by

ψ(x) =



1−
(ν−λc )U

(
−λν

2a
, 1
2
,
(−λ−cν)2

2ac

)
νU
(
−λν

2a
, 1
2
,
(−λ−cν)2

2ac

)
+
λν(λ+cν)

2ac
U
(
−λν

2a
+1, 3

2
,
(−λ−cν)2

2ac

)
 e−(ν−λ/c)x for x ≥ 0,

1−
(ν−λc )·e

x(2λ−ax)
2c ·U

(
−λν

2a
, 1
2
,
(−λ−cν+ax)2

2ac

)
νU
(
−λν

2a
, 1
2
,
(−λ−cν)2

2ac

)
+
λν(λ+cν)

2ac
U
(
−λν

2a
+1, 3

2
,
(−λ−cν)2

2ac

) for x < 0,

. (26)

where U(·) is the Kummer series as defined in (23).

While the above formulas look quite complex, it is straight-forward to evaluate them for specific

values of a, c, λ and ν to attain an explicit representation for the probability of bankruptcy.

2.1.3 Exponential Bankruptcy Rate Functions

Let now ω3(x) = e−ax · 1{x<0}, for some a > 0. Such a function choice could be better suited

than its linear counterpart to approximate targeted bankruptcy rates by a simple one-parameter

function, when bankruptcy rates for lower absolute levels of negative surplus are expected to be

somewhat flat while the exponential shape will ensure higher rates for higher deficit levels. The

differential equation for h(x) is given by
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0 = ch′′(x) + (νc− (λ+ e−ax))h′(x)− e−ax(ν − a)h(x), x < 0.

Techniques similar to the ones applied in the linear case lead to a solution. The substitutions

h(x) = e−
e−ax
ac · g(x) and, subsequently, z = 1

ace
−ax, with y(z(x)) = g(x), lead again to a Kummer

differential equation, and this time it is of the form

0 = z
d2y

dz2
+

(
ac+ λ− νc

ac
− z
)
dy

dz
− λ

ac
y.

From the general solution to the above, one finds

h(x) = e−
e−ax
ac ·

[
A3 ·M

(
λ

ac
,
λ− νc
ac

+ 1,
e−ax

ac

)
+B3U

(
λ

ac
,
λ− νc
ac

+ 1,
e−ax

ac

)]
. (27)

for constants A3, B3 ∈ R.

Remark. When choosing the more general bankruptcy rate function ω̃3(x) = b · e−ax ·1{x<0}, one

would simply have to replace all terms e−ax

ac in (27) by be−ax

ac to attain the general solution h(x),

and we restrict computations in this section to the case b = 1 to keep notation compact. In this

context, ω̃3(x) can be interpreted as the failure rate of a Gompertz distribution. �

Examining the asymptotic behavior for x → −∞, the two homogeneous solutions in (27) behave

as

Γ
(
λ−νc
ac + 1

)
Γ
(
λ
ac

) (
e−ax

ac

) ν
a
−1

O

(
1 +

1

|x|

)
(28)

and

e−
e−ax
ac

(
e−ax

ac

)− λ
ac

O

(
1 +

1

|x|

)
, (29)

respectively. Let us assume that ν > a in the sequel (by the lack-of-memory property of the

exponential distribution, the first jump to a negative surplus level always leads to an exponentially
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distributed deficit and one sees that E[ω3(Y )] < ∞ only if ν > a). Then the first homogeneous

solution in (27) is unbounded for x → −∞ (cf. (28)), while the latter tends to 0. Again it is

required that limx→−∞ h(x) = 0, such that A3 = 0 and w.l.o.g. B3 = 1. It follows that

h(x) = e−
e−ax
ac ·U

(
λ

ac
,
λ− νc
ac

+ 1,
e−ax

ac

)
, (30)

and in particular

h(0) = e−
1
ac ·U

(
λ

ac
,
λ− νc
ac

+ 1,
1

ac

)
(31)

h′(0) = e−
1
ac ·
[

1

c
U
(
λ

ac
,
λ− νc
ac

+ 1,
1

ac

)
+

λ

ac2
U
(
λ

ac
+ 1,

λ− νc
ac

+ 2,
1

ac

)]
, (32)

so that the following result is obtained.

Proposition 2.4. Consider a compound Poisson surplus process ((as defined in (1)) with initial

capital x, income rate c, intensity λ > 0 and exponentially distributed claim sizes with parameter

ν > 0. For an exponential bankruptcy rate function ω(x) = exp(−ax) for x < 0, the probability of

bankruptcy is given by

ψ(x) =


[
1− (ν−λc )U( λ

ac
,λ−νc
ac

+1, 1
ac)

(ν−λc )U( λ
ac
,λ−νc
ac

+1, 1
ac)+ λ

ac2
U( λ

ac
+1,λ−νc

ac
+2, 1

ac)

]
e−(ν−λ/c)x for x ≥ 0,

1−
(ν−λc )·e

1
ac ·e−

e−ax
ac ·U

(
λ
ac
,λ−νc
ac

+1, e
−ax
ac

)
(ν−λc )U( λ

ac
,λ−νc
ac

+1, 1
ac)+ λ

ac2
U( λ

ac
+1,λ−νc

ac
+2, 1

ac)
for x < 0,

. (33)

where U(·) is the Kummer series as defined in (23).

From the examples in this section it becomes clear that finding an explicit expression of the

probability of bankruptcy can be cumbersome. Computationally efficient numerical alternatives

include simulation (cf. Section 3.3) and piecewise constant approximations of the bankruptcy rate

functions as discussed in the following.
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2.2 Piecewise Constant Bankruptcy Rate Functions

Piecewise constant functions are of particular interest, as they can approximate arbitrarily closely

any given function from below and above. Furthermore, in some situations it may be sufficient to

assign bankruptcy rates to certain ranges of negative surplus. The choice of such rates and their

ranges may depend on in-place contingent capital arrangements, local insurance regulation, etc.

Define a grid on the negative half-line by choosing distinct values xi, 0 ≤ i ≤ n, such that

−∞ = x0 < x1 < ... < xn−1 < xn = 0, and set

ω(x) = ωk for xk−1 < x ≤ xk, (34)

with the typical requirement ω1 > ω2 > ... > ωn ≥ 0. Suppose one would like to approximate

some bankruptcy rate function ω0(x). As in Albrecher/Gerber/Shiu (2011), one can produce

a lower piece-wise constant approximation by choosing ωk = ω0(xk). Similarly, ω0(x) can be

approximated from above by choosing ωk = ω0(xk−1) (cf. Figure 1). These lower and upper

approximations of ω0(x) will subsequently provide lower and upper bounds for the probability of

bankruptcy, respectively.

Under (34), (14) can be re-written as n differential equations, describing the local dynamics de-

pending on the value of x,

xk−1 < x < xk : 0 = cψ′′k(x) + (νc− (λ+ ωk))ψ
′
k(x)− νωkψk(x) + νωk.

Each differential equation has now constant coefficients so that we solve

ψk(x) = Ake
−rkx +Bke

ρkx + 1, xk−1 < x < xk, (35)
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Figure 1: Upper and lower approximation of a bankruptcy rate function ω0(Ct) on a grid −∞ =
x0, x1, ..., xn = 0

where −rk < 0 and ρk > 0 are the solutions of the characteristic equation

ξ2 +

(
ν − λ+ ωk

c

)
ξ − νωk

c
= 0,

Ak and Bk are constants to be determined. Note that this form of the solution even applies if

ωk = 0 as the constant term is then simply Bk + 1.

Conditions on the Coefficients. As in the previous section, we have the outer boundary con-

ditions limx→∞ ψu(x) = 0 and limx→−∞ ψ1(x) = 1, which imply that B = 0 and A1 = 0.

Imposing continuity at the xk’s yields the conditions

Ake
−rkxk +Bke

ρkxk = Ak+1e
−rk+1xk +Bk+1e

ρk+1xk , (36)

for 1 ≤ k ≤ n− 1, and

An +Bn + 1 = A. (37)
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Substituting the general form (35) of ψk(x) into (12) produces n more conditions. For xk−1 < x <

xk and 1 ≤ k ≤ n, we find

0 = c
(
−rkAke−rkx + ρkBke

ρkx
)
− (λ+ ωk)

(
Ake

−rkx +Bke
ρkx + 1

)
+ ωk + λ

∫ x−xk−1

0

(
Ake

−rk(x−y) +Bke
ρk(x−y) + 1

)
νe−νydy

+ λ

k−1∑
j=1

∫ x−xk−j−1

x−xk−j

(
Ak−je

−rk−j(x−y) +Bk−je
ρk−j(x−y) + 1

)
νe−νydy. (38)

The properties

−crk − (λ+ ωk) +
λν

ν − rk
= 0, cρk − (λ+ ωk) +

λν

ν + ρk
= 0

can be used to rewrite the first two terms of (38), and evaluating the integrals leads to

0 = λνe−νx
[
− Ak
ν − rk

exk−1(ν−rk) − Bk
ν + ρk

exk−1(ν+ρk) − 1

ν
exk−1ν

+
k−1∑
j=2

(
Aj

ν − rj

(
−exj−1(ν−rj) + exj(ν−rj)

)
+

Bj
ν + ρj

(
−exj−1(ν+ρj) + exj(ν+ρj)

)
+

1

ν

(
−exj−1ν + exjν)

))
+

B1

ν + ρ
ex1(ν+ρ) +

1

ν
ex1ν

]
, (2 ≤ k ≤ n). (39)

Similarly, we can rearrange the IDE as in (11) for x ≥ 0 and with −r = −
(
ν − λ

c

)
to yield

0 = λνe−νx
[
− A

ν − r
+

An
ν − rn

(
1− exn−1(ν−rn)

)
+

Bn
ν + ρn

(
1− exn−1(ν+ρn)

)
+

1

ν
(1− exn−1ν)

+

k−1∑
j=2

(
Aj

ν − rj

(
−exj−1(ν−rj) + exj(ν−rj)

)
+

Bj
ν + ρj

(
−exj−1(ν+ρj) + exj(ν+ρj)

)
+

1

ν
(−exj−1ν + exjν)

)
+

B1

ν + ρ
ex1(ν+ρ) +

1

ν
ex1ν

]
. (40)
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Noting that λνe−νx > 0, one can simplify conditions (39) and (40) to give, for 1 ≤ k ≤ n− 1,

Ak
e−rkxk

ν − rk
+Bk

eρkxk

ν + ρk
−Ak+1

e−rk+1xk

ν − rk+1
−Bk+1

eρk+1xk

ν + ρk+1
= 0 (41)

and

An
1

ν − rn
+Bn

1

ν + ρn
−A 1

ν − r
= −1

ν
. (42)

As it is our aim to solve for the parameters B1, Ak, Bk, A, with 2 ≤ k ≤ n, we summarize all

attained conditions, (36), (37), (41) and (42), as a linear equation system of the form

U · z = v. (43)

Here

z′ = [B1, A2, B2, ..., An, Bn, A] ,

the matrix U is of dimension 2n× 2n, scarcely populated around the main diagonal and given by

U =



ex1ρ −e−x1r2 −ex1ρ2 0 · · · · · · · · · · · · 0

ex1ρ

ν+ρ − e−x1r2
ν−r2 − ex1ρ2

ν+ρ2
0 · · · · · · · · · · · · 0

0 e−x2r2 ex2ρ2 −e−x2r3 −ex2ρ3 0 · · · · · · 0

0 e−x2r2
ν−r2

ex2ρ2
ν+ρ2

− e−x2r3
ν−r3 − ex2ρ3

ν+ρ3
0 · · · · · · 0

0
. . . . . . . . . 0

0 · · · · · · · · · · · · 0 1 1 −1

0 · · · · · · · · · · · · 0 1
ν−rn

1
ν+ρn

− 1
ν−r



,

and

v′ =

[
0, 0, 0, ...,−1,−1

ν

]
.
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For example, one can now write the probability of bankruptcy for x ≥ 0 as

ψ(x) = (U−1v)2n e
−(ν−λc )x,

where the index indicates the 2n-th component of the vector.

3 Illustrative Computations of the Probability of Bankruptcy

We now illustrate the evaluation of ψ(x) for linear and exponential bankruptcy rate functions

ω2(x) = −ax and ω3(x) = e−ax, respectively, and for several parameter values a > 0. The results

will be compared with the values of the classical ruin probability ψruin(x) . The first set of plots is

obtained by evaluating the explicit formulas for the probability of bankruptcy as in (26) and (33).

This is then compared with the corresponding results based on piecewise constant approximation of

the respective bankruptcy rate functions as described in Section 2.2. The probability of bankruptcy

for given initial capital is then attained through solving the linear equation system (43). Finally, as

an additional computational alternative, a Monte Carlo simulation algorithm will be implemented.

All illustrations will be based on the following parameters. Let λ = 5,000, ν = 1, c=6,000. This

could correspond to a Collective Risk Model approximating a portfolio of 100,000 independent

policies, each having a claim probability of q = 5% per time unit, an expected claim size given its

occurrence of E[Y ] = 1
ν = 1, and a premium loading of θ = 20%, i.e. c = (1 + θ)E

[∑N(1)
i=1 Yi

]
=

1.2×5,000 = 6,000. In the linear case we depict ψ(x) for alin ∈ {1, 10, 100} and in the exponential

case aexp ∈ {0.1, 0.2, 1}. The results are plotted in comparison to the classical ruin probability in

order to illustrate the effect of introducing the bankruptcy concept.

3.1 Plotting the Explicit Solution

Figures 2 and 3 were produced by evaluating the explicit expressions in (26) and (33). As expected,

the functions show a smooth shape and, compared to the classical ruin case, are pulled more and
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more to the left as a is increased.

Figure 2: Probabilities of bankruptcy for linear ω2(x) and various parameter levels a

3.2 Piece-Wise Constant Approximations of ω(x)

3.2.1 Methodology

When numerically solving the linear equation system (43), we observe that the matrix is scarcely

populated around the diagonal and we find the Gauss-Seidel method to produce satisfactory results

(with non-iterative methods we were facing numerical stability issues due the alternately very

large and small coefficients in U for some parameter sets). The Gauss-Seidel algorithm applies the

iteration law

z
(m+1)
k =

1

ukk

(
vk −

k−1∑
i=1

ukiz
(m+1)
i −

n∑
i=k+1

ukiz
(m)
i

)
(44)

where z(m) is the step-m approximation of the solution vector z, with z(m) → z for m → ∞ such

that U · z = v. If one sets U = L + D + R, where D is a diagonal matrix, and L and R are
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Figure 3: Probabilities of bankruptcy for exponential ω3(x) and various parameter levels a

strictly lower and upper diagonal matrices, it can be shown that the method converges as the

spectral radius of −(D + L)−1R is smaller than 1. The algorithm is terminated with z(m+1) as

the approximation of the solution z once
∥∥z(m+1) − z(m)

∥∥
max

< ε and for the present purposes we

found ε = 10−10 to give satisfactory results. The grid x1, x2, ..., xn is set in an equidistant way

such that the quality of the approximation is mainly driven by the choice of x1 and the number n

of grid points.

3.2.2 Results

Linear Bankruptcy Rate Functions. Convergence of the upper and lower approximations is

illustrated in Figure 4, where we use ω2(x) = −ax, a = 1 and x1 = −100. The dashed line depicts

the probability of bankruptcy for the upper approximation of the bankruptcy rate function, i.e. the

case where ω2(x) = ω2(xi) for xi ≤ x < xi+1, and the dash-dot line gives the lower approximation

with ω2(x) = ω2(xi) for xi−1 ≤ x < xi. The solid line shows the classical ruin probability as
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a reference point. As the width of the grid becomes more dense, the upper and lower bounds

converge as expected (note that the discontinuities of ψ′1(x) at the discontinuity points of the

bounding step-function for ω2 are of negligible magnitude here). Table 1 depicts the influence of

x1 on the upper and lower approximation of the A coefficient in the probability of bankruptcy

ψ1(x) = Ae−(ν−λc )x, x > 0.

Figure 4: Upper and lower approximations of the probability of bankruptcy for ω2(x) and given
x1 = −100 depending on the grid width n
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x1 -10 -20 -30 -40 -50 -60 -70 -80

n 20 40 60 80 100 120 140 160

upper approx. A 0.1026 0.0371 0.0279 0.0268 0.0267 0.0267 0.0267 0.0267

lower approx. A 0.0212 0.0241 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245

Table 1: The impact of x1 on the upper and lower approximations of the A coefficient

Note that for the chosen parameters, moving lower from x1 = −40 does not greatly affect the

upper and lower approximations.

In a next step we illustrate the impact of the bankruptcy rate function ω2(x) = −ax for various

parameter choices a > 0. Table 2 shows how the coefficient A changes depending on the choice of

a. As a increases, the coefficient A grows towards λ
νc which is the corresponding coefficient in the

classical ruin case. The corresponding probabilities of bankruptcy depending on the initial surplus

level x are depicted in Figure 5.

a 1 5 10 20 50 100

upper approx. A 0.0261 0.0911 0.1401 0.2015 0.2960 0.3719

lower approx. A 0.0250 0.0874 0.1344 0.1933 0.2839 0.3566

Table 2: Approximation of A in the probability of bankruptcy (corresponding to x > 0), for linear

ω2(x) and various values a

Exponential Bankruptcy Rate Function. We can now perform the same analysis for expo-

nential bankruptcy rate functions ω3(x) = e−ax. We again choose x1 = −100 and n = 200. In

Table 3 we find that for given a, the probability of bankruptcy converges to the classical ruin prob-

ability faster than for linear bankruptcy rate functions, which is in line with expectations. Hence,
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Figure 5: Probabilities of bankruptcy for linear ω2(x) and various parameter levels a

we regard a lower parameter range a in comparison to the discussion of the linear case. Note

that already for a = 2, the approximating coefficients A are closer to the corresponding coefficient

λ
νc = 5

6 of the classical ruin case, than the linear case with parameter a = 100. The corresponding

probability of bankruptcy functions are depicted in Figure 6, and show similar shapes to the linear

case.

a 0.1 0.2 0.5 1 2 5

upper approx. A 0.0111 0.0282 0.1172 0.2578 0.4285 0.6220

lower approx. A 0.0106 0.0263 0.1125 0.2474 0.4110 0.5928

Table 3: Coefficients A in the probability of bankruptcy (corresponding to x > 0), for exponential

ω3(x) and various values a
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Figure 6: Probabilities of bankruptcy for exponential ω3(x) and various parameter levels a

3.3 Monte Carlo Simulation

Monte Carlo simulation is another alternative to obtain numerical estimates of the bankruptcy

probability.

3.3.1 Methodology

Note that a crude Monte Carlo approach simulating claims and bankruptcy events for negative

surplus levels will be relatively inefficient. However, two observations enable to increase simulation

speed significantly.

First, for positive initial surplus levels x+ > 0 we note that, as bankruptcy implies ruin in the

classical sense, ψ(x+) = ψruin(x+)P[τ < ∞|τruin < ∞, C0 = x+]. In particular, with exponential

claim sizes Yi ∼ Exp(ν), it follows that

ψ(x+) =
λ

νc
e−(ν−λ/c)x+ E[ψ(−D)] (45)
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where D ∼ Exp(ν). This is due to ruin always occurring at claim times, and the ruin deficit D

being again Exp(ν)-distributed by the lack-of-memory property of the exponential distribution.

Hence, the problem of simulating the probability of bankruptcy for positive initial surplus can be

translated into generating sample paths of exponentially distributed negative initial surplus. In

this way one avoids generating paths that never become negative.

Second, the computation of E[ψ(−D)] can be improved compared to a crude MC case. It holds

for any surplus level x ∈ R that

ψ(x) = 1− E
[
e−
∫∞
0 ω(Ct)1{Ct<0} dt

∣∣∣C0 = x
]
,

as bankruptcy can only be avoided if there is no event of the Poisson process with level-dependent

intensity ω(·) during the time the process spends on the negative half-line. The above expectation

can then be computed by conditioning on the simulated sample path. Concretely, conditioning on

the jump times Ti and jump sizes Θi, with

Ψ(ω, u)| (T1,Θ1), (T2,Θ2)... = −
∫ ∞

0
ω(Ct) · 1{Ct<0}dt

= −
∞∑
i=0

1{CTi<0}

∫ min(Ti+1,Ti−CTi/c)

Ti

ω(Cs)ds (46)

with T0 = 0, we can write

ψ(ω, u) = E(T1,Θ1),(T2,Θ2)...

[
1− eΨ(ω,u)|(T1,Θ1),(T2,Θ2)...

]
.
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In particular, for the two choices ω2(x) = −ax and ω3(x) = e−ax, a > 0, (46) reads

Ψ(ω2, u)| (T1,Θ1), (T2,Θ2)... =
∞∑
i=0

1{CTi<0} · a
[
(CTi − cTi)

(
min

[
Ti+1 − Ti,−

CTi
c

])

+
c

2

((
min

[
Ti+1, Ti −

CTi
c

])2

− T 2
i

)]
, (47)

and

Ψ(ω3, u)| (T1,Θ1), (T2,Θ2)... =

∞∑
i=0

1{CTi<0} ·
1

ac
e−a(CTi−cTi)

·
[
e−ac(min(Ti+1,Ti−CTi/c)) − e−acTi

]
. (48)

Figure 7 depicts a particular path, and the shaded area refers to Ψ2(−x, u)| (T1,Θ1), (T2,Θ2)... as

in (47).

Figure 7: Computation of Ψ(−x, u) conditional on a realized sample path

In the following simulations, n surplus paths are generated and for the k-th such path, the function

Ψ(ω, u)k| (T1,Θ1), (T2,Θ2)... is computed as per (47) and (48). The estimator of the bankruptcy

probability is then given by

ψ̂(u)n =
1

n

n∑
k=1

(
1− eΨ(ω,u)k

)
, (49)

and the two-sided 99% confidence interval of the estimator can be written as
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(
max

[
ψ̂(u)n −

2.81√
n
σn, 0

]
,min

[
ψ̂(u)n +

2.81√
n
σn, 1

])
,

with σn =

√
1

n−1

∑n
k=1

(
1− eΨ(ω,u)k − ψ̂n(u)

)2
, such that the bounds of the confidence interval

converge to ψ̂(u)n for n→∞.

3.3.2 Results

In order to underline the fast speed of convergence, the above simulation algorithm is executed

based on only 500 sample paths. This already gives a solid approximation of the exact bankruptcy

probabilities, which is illustrated in Figures 8 and 9 for the cases of linear and exponential

bankruptcy functions. The curves depict the estimators of the bankruptcy probabilities for vari-

ous choices of parameter a, and the shaded areas around those lines indicate the 99% confidence

intervals based on the simulation outcome. When the number of sample paths is increased to only

1,000, the confidence intervals are no longer visible and the curves display the smooth shapes of the

exact solutions. This illustrates the effectiveness of the two involved variance-reduction methods.

Remark. The application of the above Monte Carlo method is not limited to the case of expo-

nential claims. In particular, for claim size distributions where the classical ruin probability is

known and where one can efficiently simulate from the deficit-at-ruin distribution, the same pro-

cedure as above can be employed. To state an example, consider the case of phase-type claims

with representation (α,T). The ruin probability is then well-known to be ψruin,pt(x) = −λ
cαT−1 ·

e(T−λ/c tαT−1)x1 with 1 = (1, ..., 1)′ and t = −T1 (cf. e.g. Asmussen/Albrecher (2010), page 264),

and the deficit-at-ruin−D is again phase-type distributed with parameters
(

αT−1e(T−λ/c tαT−1)x

αT−1e(T−λ/c tαT−1)x1
,T
)

(cf. Drekic et al. (2004)). Hence, the simulation for positive surplus levels can again be simplified

by replacing the classical ruin probability in (45) by ψruin,pt(x+), D can be sampled from the

appropriate phase-type distribution and (46) does not depend on the claim size distribution. �
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Figure 8: Simulation of ψ(u) with ω2(x) = −ax. 500 runs, shaded areas are the 99% confidence
intervals.

4 Discussion of the Discounted Penalty Function

The analytical approach for the probability of bankruptcy can be extended to study more general

quantities of the risk process. In this section will illustrate this for the discounted penalty function

at bankruptcy

mδ(x) = E
[
e−δτw(|Cτ |)1{τ<∞}

∣∣∣C0 = x
]

(50)

where δ ≥ 0 is a discount force and w(·) is a function of the bankruptcy deficit at time τ (note that

the surplus immediately before bankruptcy coincides with the bankruptcy deficit and, hence, does

not need to be considered separately). For δ = 0, w = 1 the discounted penalty function reduces

to the bankruptcy probability ψ(x).

Proceeding as in Section 2, one derives the following extensions of (6) and (7), as we distinguish
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Figure 9: Simulation of ψ(u) with ω3(x) = e−ax. 500 runs, shaded areas are the 99% confidence
intervals.

by negative and positive surplus levels x:

x ≥ 0 : 0 = cm′δ(x)− (δ + λ)mδ(x) + λ

∫ ∞
0

mδ(x− y)dFY (y), (51)

x < 0 : 0 = cm′δ(x)− (δ + λ+ ω(x))mδ(x) + ω(x)w(−x)

+λ

∫ ∞
0

mδ(x− y)dFY (y),

with continuity at x = 0 and more generally for all x ∈ R (also, the derivative m′δ(x) exists at all

continuity points of ω(x)). Using

mδ(x) =

 mδ,u(x) for x ≥ 0

mδ,l(x) for x < 0
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gives

x ≥ 0 : 0 = cm′δ,u(x)− (δ + λ)mδ,u(x) + λ

(∫ x

0
mδ,u(x− y)dFY (y)

+

∫ ∞
x

mδ,l(x− y)dFY (y)

)
, (52)

x < 0 : 0 = cm′δ,l(x)− (δ + λ+ ω(x))mδ,l(x) + ω(x)w(−x)

+λ

∫ ∞
0

mδ,l(x− y)dFY (y), (53)

with mδ,u(0) = mδ,l(0).

As the claim sizes are assumed i.i.d. exponential here, i.e. fY (y) = νe−νy, we can eliminate the

integrals by applying the operator
(
d
dx + ν

)
to (52) and (53), and we arrive at the following system

of linear differential equations,

x ≥ 0 : 0 = cm′′δ,u(x) + (νc− (δ + λ))m′δ,u(x)− νδmδ,u(x) (54)

x < 0 : 0 = cm′′δ,l(x) + (νc− (δ + λ+ ω(x)))m′δ,l(x)− (ω′(x) + ν(δ + ω(x)))mδ,l(x)

+(ω′(x)w(−x)− ω(x)w′(−x) + νω(x)w(−x)). (55)

For x ≥ 0, (54) has constant coefficients and one obtains

mδ,u = Ae−Rx +Beρx,

with A,B ∈ R, where −R < 0 and ρ > 0 are the solutions to the characteristic equation

ξ2 +

(
ν − δ + λ

c

)
ξ − νδ

c
= 0.

For general functions ω(x) it is not straight-forward to obtain a solution to (55) with x < 0,

as functions of ω(x) appear both in the coefficients of the homogeneous equation and in the
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inhomogeneous term. In the following we will only discuss the case of approximating ω(x) by

piecewise constant functions and penalty function w(x) = e−qx, q ≥ 0, which leads to quite

tractable expressions.

4.1 Piecewise Constant Bankruptcy Rate Functions

Using (34), (55) can be re-written as a system of n differential equations, describing the local

dynamics depending on the value of x,

xk−1 < x < xk : 0 = cm′′δ,k(x) + (νc− (δ + λ+ ωk))m
′
δ,k(x)− ν(δ + ωk)mδ,k(x)

+ωke
qx(ν + q).

Each differential equation has now constant coefficients so that we solve

mδ,k(x) = Ake
−rkx +Bke

ρkx + Cke
qx, xk−1 < x < xk, (56)

where −rk < 0 and ρk > 0 are the solutions of the characteristic equation

ξ2 +

(
ν − δ + λ+ ωk

c

)
ξ − ν(δ + ωk)

c
= 0,

Ak and Bk are to be determined constants, and

Ck = − ωk(q + ν)

cq2 + (νc− (δ + λ+ ωk))q − ν(δ + ωk)
= − ωk(q + ν)

c(q + rk)(q − ρk)
,

results from finding an inhomogeneous solution to the equation.

We now have to find the constants A,B,Ak, Bk, for 1 ≤ k ≤ n.

Boundary Conditions. The upper boundary condition limx→∞mδ,u(x) = 0 implies B = 0. As
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a lower boundary condition we find

lim
x→−∞

mδ,1(x) =

 0 for q > 0,

ω1
ω1+δ for q = 0,

since limx→−∞mδ,1(x) = E[e−δτ1{τ<∞}|U(0) = −∞] simply describes the Laplace transform of

the time of bankruptcy which is the first epoch of the Poisson process with intensity ω1. As

limx→−∞mδ,1(x) is finite, we have A1 = 0.

Continuity and IDE conditions. Imposing continuity at the xk’s yields the conditions

Ake
−rkxk +Bke

ρkxk + Cke
qxk = Ak+1e

−rk+1xk +Bk+1e
ρk+1xk + Ck+1e

qxk , (57)

for 1 ≤ k ≤ n− 1, and

An +Bn + Cn = A. (58)

Substituting the general form of mδ,k(x), as derived in (56), into (53) produces n more conditions.

For xk−1 < x < xk and 1 ≤ k ≤ n, we find

0 = c
(
−rkAke−rkx + ρkBke

ρkx + qCke
qx
)
− (δ + λ+ ωk)

(
Ake

−rkx +Bke
ρkx + Cke

qx
)

+ ωke
qx + λ

∫ x−xk−1

0

(
Ake

−rk(x−y) +Bke
ρk(x−y) + Cke

q(x−y)
)
νe−νydy

+ λ
k−1∑
j=1

∫ x−xk−j−1

x−xk−j

(
Ak−je

−rk−j(x−y) +Bk−je
ρk−j(x−y) + Ck−je

q(x−y)
)
νe−νydy.

The above can be re-written by using

−crk − (δ + λ+ ωk) +
λν

ν − rk
= 0, cρk − (δ + λ+ ωk) +

λν

ν + ρk
= 0
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and

ωk + Ck

(
cq − (δ + λ+ ωk) +

λν

ν + q

)
= 0,

and after evaluating the integral expressions, we find, for 2 ≤ k ≤ n, that

0 = λνe−νx
[
− Ak
ν − rk

exk−1(ν−rk) − Bk
ν + ρk

exk−1(ν+ρk) − Ck
ν + q

exk−1(ν+q)

+
k−1∑
j=2

(
Aj

ν − rj

(
−exj−1(ν−rj) + exj(ν−rj)

)
+

Bj
ν + ρj

(
−exj−1(ν+ρj) + exj(ν+ρj)

)
+

Cj
ν + q

(
−exj−1(ν+q) + exj(ν+q)

))
+

B1

ν + ρ
ex1(ν+ρ) +

C1

ν + q
ex1(ν+q)

]
. (59)

Similarly, we can rearrange the IDE (51) for x ≥ 0 to yield,

0 = λνe−νx
[
− A

ν − r
+

An
ν − rn

(
1− exn−1(ν−rn)

)
+

Bn
ν + ρn

(
1− exn−1(ν+ρn)

)
+

Cn
ν + q

(
1− exn−1(ν+q)

)
+

k−1∑
j=2

(
Aj

ν − rj

(
−exj−1(ν−rj) + exj(ν−rj)

)
+

Bj
ν + ρj

(
−exj−1(ν+ρj) + exj(ν+ρj)

)
+

Cj
ν + q

(
−exj−1(ν+q) + exj(ν+q)

))
+

B1

ν + ρ
ex1(ν+ρ) +

C1

ν + q
ex1(ν+q)

]
. (60)

Noting that λνe−νx > 0, we can simplify the conditions as in (59) and (60) as follows to have, for

1 ≤ k ≤ n− 1,

Ak
e−rkxk

ν − rk
+Bk

eρkxk

ν + ρk
−Ak+1

e−rk+1xk

ν − rk+1
−Bk+1

eρk+1xk

ν + ρk+1
= Ck+1

eqxk

ν + q
− Ck

eqxk

ν + q
, (61)

and

An
1

ν − rn
+Bn

1

ν + ρn
−A 1

ν − r
= −Cn

1

ν + q
. (62)

All obtained conditions (57), (58), (61) and (62) can again be summarized by a linear equation

system of the form

U · z = v (63)
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for

z′ = [B1, A2, B2, ..., An, Bn, A] ,

where

U =



ex1ρ −e−x1r2 −ex1ρ2 0 · · · · · · · · · · · · 0

ex1ρ

ν+ρ − e−x1r2
ν−r2 − ex1ρ2

ν+ρ2
0 · · · · · · · · · · · · 0

0 e−x2r2 ex2ρ2 −e−x2r3 −ex2ρ3 0 · · · · · · 0

0 e−x2r2
ν−r2

ex2ρ2
ν+ρ2

− e−x2r3
ν−r3 − ex2ρ3

ν+ρ3
0 · · · · · · 0

0
. . . . . . . . . 0

0 · · · · · · · · · · · · 0 1 1 −1

0 · · · · · · · · · · · · 0 1
ν−rn

1
ν+ρn

− 1
ν−r



.

and
v′ =

[
ex1q(C2 − C1), e

x1q

ν+q (C2 − C1), ..., exn−1q(Cn − Cn−1),

exn−1q

ν+q (Cn − Cn−1),−Cn,−Cn 1
ν+q

]
.

The discounted penalty function for x > 0 (which would be the typical case of interest) then is

mδ(x) =
(
U−1v

)
2n
e−Rx,

where the index indicates the 2n-th component of the vector, and U−1 is the inverse matrix of U .

The Laplace-Transform of the Time of Bankruptcy. We numerically illustrate the procedure

for the Laplace transform of the time of bankruptcy E
[
e−δτ1{τ<∞} |C0 = x

]
(i.e. q = 0). In the

classical ruin case one then has (see e.g. Dickson (2005), p174)

mδ,ruin(x) =

(
1− Rδ

ν

)
e−Rδx,
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where −Rδ < 0 is the negative solution of

ξ2 +

(
ν − λ+ δ

c

)
ξ − νδ

c
= 0.

As in Section 3.2, linear and exponential bankruptcy rate functions are approximated by piecewise

constant functions, and the linear equation system (63) is again solved using the Gauss-Seidel

method. We choose δ = 0.1, and for the considered cases it turns out sufficient to set x1 = −100

and n = 200. Figures 10 and 11 depict the resulting Laplace transform of the time of bankruptcy

as a function of initial surplus. One observes that the shapes are similar to those of the probability

of bankruptcy.

Figure 10: Laplace transform of the time of bankruptcy for linear ω2(x)

5 Concluding Remarks

In this paper we considered a generalization of the classical ruin concept to a concept of bankruptcy,

under which the surplus process can possibly continue despite temporary negative surplus, where
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Figure 11: Laplace transform of the time of bankruptcy for exponential ω3(x)

the probability for having to indeed close the business increases, the more negative the surplus be-

comes. This amends a frequently raised critic of the classical ruin concept that crossing the surplus

level 0 does not necessarily automatically mean ruin. The way in which this relaxed ruin concept

is introduced provides some tractability. We showed in this paper that the resulting bankruptcy

probability can be obtained explicitly in a Cramér-Lundberg model with exponential claims and

certain types of bankruptcy functions. In addition, an approximation scheme with piecewise con-

stant bankruptcy rates was worked out, which can approximate results for any bankruptcy rate

function arbitrarily closely. Exploiting a link to occupation times, we also proposed an efficient

simulation scheme, which may be used in much more general models as well. In particular, if the

deficit distribution under the classical ruin concept is available, the simulation performance can

be improved further. Finally, the results can be extended to more general quantities such as the

bankruptcy deficit and the time of bankruptcy.
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