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Abstract

We introduce an algebraic operator framework to study discounted penalty
functions in renewal risk models. For inter-arrival and claim size distributions
with rational Laplace transform, the usual integral equation is transformed
into a boundary value problem, which is solved by symbolic techniques. The
factorization of the differential operator can be lifted to the level of boundary
value problems, amounting to iteratively solving first-order problems. This
leads to an explicit expression for the Gerber-Shiu function in terms of the
penalty function.

1. Introduction

We consider the collective renewal risk model introduced by Sparre Andersen
(1957) that describes the amount of free capital U(t) at time t in an insurance
portfolio by

U(t) = u+ ct−

N(t)
∑

k=1

Xk.

Here N(t) is a renewal process that counts the number of claims incurred
during the time interval (0, t], the constant c is the premium rate and the
random variables (Xk)k≥0 denote the claim sizes that occur at random times
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(Tk)k≥0, with τk = Tk − Tk−1 i.i.d. random variables denoting the k-th
interclaim (or inter-arrival) time (T0 = 0). The initial surplus (after the
claim at time 0 is paid) is given by u ≥ 0. Moreover, (Xk)k≥0 and (τk)k≥1 are
assumed to be independent. Ruin occurs when the surplus process becomes
negative for the first time, so the time of ruin is given by

Tu = inf{t |U(t) < 0}

and the ruin probability of a company having initial capital u is given by

ψ(u) = P (Tu <∞|U(0) = u).

The net profit condition cE(Tk) > E(Xk) is imposed to ensure that ψ(u) < 1
for all u ≥ 0.

Denoting by f(x, y, t | u) the joint probability density function of the sur-
plus immediately before ruin U(Tu−), the deficit at ruin |U(Tu)| and the time
of ruin Tu, we have

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(x, y, t | u) dx dy dt = ψ(u).

Let w(x, y) be a penalty function, nonnegative for x ≥ 0, y ≥ 0. Then
for u ≥ 0, the expected discounted penalty function (also called Gerber-Shiu
function) is defined by

m(u) = E
(
e−δTu w(U(Tu−), |U(Tu)|) 1Tu<∞ |U(0) = u

)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−δt w(x, y) f(x, y, t | u) dx dydt,

where δ > 0 is a discount rate.
Since the introduction of this function in the compound Poisson model

in the papers of Gerber and Shiu (1997, 1998), there has been a vast litera-
ture on its analysis and extensions to more general models. Li and Garrido
(2004) and Gerber and Shiu (2005) were the first to investigate the Gerber-
Shiu function in renewal models. In this paper we will concentrate on a
new method for deriving explicit expressions for m(u) in the case of renewal
models. In the renewal context, explicit expressions are usually restricted
to models where the claim size distribution and in particular the interclaim
distribution are (a subclass of) distributions with rational Laplace transform
(which includes Erlang and phase-type distributions as well as mixtures of
these); see also Willmot (1999); Li and Garrido (2005b). Our method is
perfectly suitable for this class of distributions.

2



The established methods for deriving explicit expressions for functions
arising in risk theory (e.g. ruin probability, Laplace transform of the time
to ruin, Gerber-Shiu function) are either based on defective renewal equa-
tions or integral equations (Volterra of second kind). Specifically, starting
with the defective renewal equation satisfied by the Gerber-Shiu function,
Lin and Willmot (2000) propose a solution expressed in terms of the tail of a
compound geometric distribution. For particular claim sizes (combinations
of exponentials, mixture of Erlangs) they derive explicit analytic solutions for
this distribution. In Willmot (2007) this defective renewal equation method is
adapted to the analysis of renewal risk models with arbitrary distributions.
Another strategy, based on the defective renewal equation, was suggested
in the classical compound Poisson model by Drekic et al. (2004). They use
Mathematica to obtain the moments of the time to ruin, based on the system
of defective renewal difference equations derived by Lin and Willmot (2000).
In this paper, we introduce an algebraic operator approach with symbolic
techniques for deriving explicit expressions for Gerber-Shiu functions. These
techniques are easy to implement, and their further analysis can draw on the
full potential of current computer algebra systems.

In general renewal models, m(u) can alternatively be expressed as the
solution of a Volterra integral equation of the second kind and hence as a
Neumann series, see Gerber and Shiu (1998). Under the further assump-
tion that the interclaim times have rational Laplace transform, the inte-
gral equation can be transformed into an integro-differential equation (IDE)
with suitable boundary conditions. For the solution of the IDE, due to
its convolution structure, Laplace transforms are often the key tool to de-
rive explicit solutions; see e.g. Cheng and Tang (2003), Albrecher and Boxma
(2005) and Li and Garrido (2005b). Landriault and Willmot (2008) obtain
explicit expressions for the Laplace transform that can be inverted back
by partial fractions, for arbitrary interclaim times and Coxian claim sizes.
However, explicitly inverting the Laplace transform is in general difficult.
Li and Garrido (2004) solved the IDE for Erlang(n) [E(n)] (sum of n inde-
pendent exponential random variables) interclaim times by repeatedly inte-
grating the integro-differential equation satisfied by the Gerber-Shiu function.

In the present paper, we want to advocate an alternative approach to
derive explicit expressions for the Gerber-Shiu function in renewal models.
For interclaim time distributions with rational Laplace transform—or equiva-
lently if the interclaim density satisfies a linear ordinary differential equations
(LODE) with constant coefficients—we first use the systematic approach
of Constantinescu (2006) to transform the integral equation for m(u) into an
integro-differential equation. If the claim size distribution also has a ratio-
nal Laplace transform, the IDE can be further reduced to a linear boundary
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value problem with appropriate boundary conditions (Section 2). Evaluat-
ing the IDE and its derivatives at 0 and imposing regularity conditions at
∞, we supplement the differential equation with sufficiently many boundary
conditions so that the Gerber-Shiu function is uniquely determined. This
program considerably extends the approach of Chen et al. (2007), who de-
rived a LODE for m(u) in a Poisson jump-diffusion process with phase-type
jumps and solved it explicitly for penalty functions that depend only on the
deficit at ruin.

Having arrived at a linear boundary problem, we employ the symbolic
method developed in Rosenkranz (2005) and Rosenkranz and Regensburger
(2008) for computing the integral operator (Green’s operator) that maps the
penalty function to the corresponding Gerber-Shiu function; see Section 3
for a brief description of this approach. Based on an algebraic operator
framework, this method uses noncommutative Gröbner bases for transform-
ing integro-differential and boundary operators to normal forms.

Whereas the classical version of this method works only for boundary
value problems on compact intervals, we extend the approach to problems on
the positive half-line in Section 4. There we consider operators on functions
vanishing at infinity, which is the appropriate setup for our purposes.

In Section 5 we present the solution of the boundary value problem in
terms of the Green’s operator. The method relies on the factorization of the
differential operator using the roots of the Lundberg fundamental equation.
This factorization is then lifted to the level of boundary value problems:
One can iteratively solve a sequence of first-order boundary value problems
with appropriate boundary conditions. It turns out that there is a crucial
difference between the roots with positive and negative real part and that
there are natural links to the so-called Dickson-Hipp operator. Altogether,
this approach allows to compute the Gerber-Shiu function up to quadratures.

In previous papers e.g. Li and Garrido (2004) and Chen et al. (2007), the
boundary conditions of the IDE are computed recursively in terms of deriva-
tives of m(u) at zero. In Section 6, we use an integrating factor method with
different integration bounds and exploit the Vandermonde-type structure of
the resulting matrix for directly deriving an explicit expression for each of
these boundary values. This in turn makes it possible to arrive at a fully
explicit formula for m(u) in terms of the penalty function. An illustration
of our method for E(n) interclaim times with E(m) claim sizes is given in
Section 7. The method also covers more general models like the case of re-
newal risk models perturbed by a Brownian motion treated in Section 8. We
conclude in Section 9 by discussing possible extensions of this approach.
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2. Reduction to a Boundary Value Problem

Consider T1 to be the epoch of the first claim. Since ruin cannot occur in the
interval (0, T1), by the standard renewal argument of Feller (1971, p.183-184)
one has

m(u) = E
(
e−δT1m(u+ cT1 −X1)

)

=

∫ ∞

0

e−δtfτ (t)

(
∫ u+ct

0

m(u+ ct− y) (1)

+

∫ ∞

u+ct

w(u+ ct, y − u− ct)

)

fX(y) dy dt,

for any claim size density fX and interclaim time density fτ . Due to the net
profit condition, the model satisfies the regularity condition

lim
u→∞

m(u) = 0. (2)

Define the polynomial

pτ (x) = xn + an−1x
n−1 + . . .+ a0, (3)

where aj are real numbers for j = 0, 1, . . . , n, and a0 6= 0. Assume that
fτ satisfies a linear ordinary differential equation with constant coefficients,
compactly written in operator notation as

pτ (
d

dt
)fτ (t) = 0, (4)

where d
dt

is the differentiation operator. For convenience, we consider those
LODE representations of fτ with almost homogeneous initial conditions

f (k)
τ (0) = 0 (k = 0, . . . , n− 2),

f (n−1)
τ (0) = a0.

(5)

The Laplace transform of such a distribution is a rational function that has
only a constant as the numerator.

Remark 1. One can express any density which is a convolution of n expo-
nential densities with parameters λi in the above way, namely the polynomial
(3) is

pτ (x) =

n∏

i=1

(x+ λi), (6)
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with almost homogenous initial conditions (5). In the special case of expo-
nentials with the same parameter λ, this is an Erlang(n) density fτ (t) =

1
(n−1)!

λntn−1e−λt, satisfying equation (4) with almost homogenous initial con-

ditions (5) and polynomial

pτ (x) = (x+ λ)n. (7)

Under assumption (4) one can now use the technique of integration by parts
as in Theorem 3 of Constantinescu (2006, Sec. 3.2) to obtain from (1) the
integro-differential equation

p∗τ (c
d

du
− δ)m(u) = a0

∫ u

0

m(u− y) dFX(y) + a0 ω(u), (8)

where the derivatives of m are assumed to exist and to be bounded. Here
ω(u) =

∫∞

u
w(u, y − u) dFX(y) and

p∗τ (x) = (−1)nxn + (−1)n−1an−1x
n−1 + . . .+ a0,

where p∗τ (
d
dt

) denotes the adjoint operator of the operator pτ (
d
dt

) defined
through

〈
pτ (

d
dt

)f, g
〉

=
〈
f, p∗τ (

d
dt

)g
〉

with 〈f, g〉 =
∫∞

0
f(x)g(x) dx together

with (5). In addition to the model regularity condition (2), we will derive in
Section 6 the initial values Mi (i = 0, . . . , n−1) of the IDE (8) through a vari-
ation of the classical integrating factor method of Gerber and Shiu (1998),
obtaining

m(0) = M0, m
′(0) = M1, . . . , m

(n−1)(0) = Mn−1. (9)

Together with (2), these boundary conditions make the boundary value prob-
lem regular.

Remark 2. Note that the same analysis also works for the case in which the
boundary conditions are not of homogeneous type (as for instance would be
the case for a mixtures of Erlangs). In that case the Laplace transform of
fτ has a polynomial numerator of lower degree than of the polynomial in the
denominator. As a consequence, one obtains further integral terms on the
right-hand side of (8), leading to a slightly more cumbersome procedure.

Define the polynomial

pX(x) = xn + bn−1x
n−1 + . . .+ b0. (10)

If moreover the claim size density fX satisfies a LODE with constant coeffi-
cients

pX(
d

dy
)fX(y) = 0,
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and (for simplicity) almost homogeneous boundary conditions

f
(k)
X (0) = 0 (k = 0, . . . , n− 2),

f
(n−1)
X (0) = b0,

then the Gerber-Shiu function satisfies a well-posed boundary value problem,
namely the LODE

pX(
d

du
) p∗τ(c

d

du
− δ)m(u) = a0b0m(u) + a0 pX (

d

du
)ω(u) (11)

together with boundary conditions (2) and (9). The characteristic equation

pX(s) p∗τ (cs− δ) − a0b0 = 0 (12)

of (11) is the Lundberg fundamental equation of this model. Since both the
claim sizes and the inter-arrival times have rational Laplace transforms, we
know by the results in Li and Garrido (2005a) and Landriault and Willmot
(2008) that this equation has exactly n roots with positive and m roots with
negative real part as long as δ > 0. Note that we exclude the limiting case
δ = 0, which is equivalent to having 0 as a solution of the Lundberg equation;
see Section 5 for a brief discussion of this case.

3. An Algebraic Operator Approach for Boundary Value Problems

In order to solve the boundary value problem for (11) we will employ the
symbolic computation approach developed in Rosenkranz and Regensburger
(2008) and Rosenkranz (2005). As this approach is targeted at boundary
value problems for LODE in general differential algebras, we have to extract
and adapt the parts needed for our present purposes.

As we can restrict ourselves to LODE with constant coefficients, we first
consider two-point boundary value problems on a compact interval [a, b]:
Given a forcing function f(x) ∈ C[a, b], find a solution g(x) ∈ Cn[a, b] of

(Dn + cn−1D
n−1 + . . .+ c1D + c0) g = f,

β1(g) = . . . = βn(g) = 0,
(13)

where D = d
dx
, ci are real numbers and the boundary conditions βi are linear

combinations of g(a), . . . , g(n−1)(a) and g(b), . . . , g(n−1)(b).
Note that the boundary conditions in (13) are homogeneous. As one

easily sees, the solution for the general case of inhomogeneous boundary
conditions is given by the solution of (13) plus the particular solution of the
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simple boundary value problem with inhomogeneous boundary conditions
but f = 0.

The boundary value problem (13) is called regular if for every f there
exists a unique g or equivalently if the associated homogeneous problem only
has the trivial solution. This can be checked by testing whether the matrix
formed by evaluating the boundary conditions on a fundamental system is
regular; for details see Kamke (1967, p. 184). In this case, there is a well-
defined operator G : C[a, b] → Cn[a, b] mapping f 7→ g, known as the Green’s
operator of (13). While G is usually represented by its associated Green’s
function (Stakgold, 2000), the operator formulation is more practical in the
present setting.

An essential feature of the symbolic operator calculus is that it allows to
compose two boundary value problems (in particular those of the form (13))
such that the composite Green’s operator is given by the composition of
the constituent Green’s operators. For solving boundary value problems,
the other direction is more important: Any factorization of the underly-
ing differential operator can be lifted to a factorization of boundary value
problems. Since we are dealing with differential operators with constant co-
efficients, we can actually achieve a factorization into first-order boundary
value problems. For more details on composing and factoring boundary value
problems for LODE, we refer again to Rosenkranz and Regensburger (2008).
The theory is developed in an abstract algebraic setting, including in prin-
ciple also boundary value problems for linear partial differential equations,
in Regensburger and Rosenkranz (2009).

In the present setting, we can describe the first-order Green’s operators
as follows. Writing

A =
r x

a
, B =

r b

x
, and F =

r b

a
= A+B,

and
Aσ = eσxAe−σx, Bρ = eρxBe−ρx, and Fσρ = eσxFe−ρx

for ρ, σ ∈ C, the basic first-order boundary value problems, with respect
to each of the end points of the interval, (D − σ) g = f, g(a) = 0 and
(D − ρ) g = −f, g(b) = 0, have respectively Aσ and Bρ as their Green’s
operators as one can see by the fundamental theorem of calculus. Written as
operator identities, this means in particular that

{

(D − σ)Aσ = 1,

(D − ρ)Bρ = −1,
(14)

so Aσ and −Bρ are right inverses of respectively D−σ and D− ρ on C[a, b].
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By Rosenkranz (2005,Table 1), we obtain furthermore for any ρ̃, σ̃ ∈ C







(σ − σ̃)AσAσ̃ = Aσ −Aσ̃

(ρ̃− ρ)BρBρ̃ = Bρ − Bρ̃

(ρ− σ)AσBρ = Aσ +Bρ − Fσρ

(15)

on C[a, b]; the first two are called resolvent identities (Yosida, 1995). For the
extension to non-compact intervals in Section 4 we mention an alternative,
purely algebraic, way to derive (15), namely as a consequence of conditions
that will be simpler to establish in the more general case:

Lemma 1. The identities (15) are algebraic consequences of






Aσ(D − σ)Aσ̃ = Aσ̃

Bρ(D − ρ)Bρ̃ = −Bρ̃

Aσ(D − σ)Bρ = Bρ − Fσρ

(16)

and the identities (14).

Proof. By (14), we have Aσ = Aσ(D− σ̃)Aσ̃ = Aσ(σ− σ̃+D− σ)Aσ̃, which
equals (σ − σ̃)AσAσ̃ + Aσ̃ because of (16); analogously for the other two
identities of (15).

4. Operators on Functions Vanishing at Infinity

In the next section, we need the case a = 0 and b = ∞. So we consider
the Banach algebra (C0, ‖·‖∞) of all continuous functions f : [0,∞) → C

vanishing at infinity (Conway, 1990, p. 65). The subalgebra of C0 consisting of
n-times continuously differentiable functions is denoted by Cn

0 . The following
proposition makes precise in how far the situation on C[a, b] carries over to C0;
confer also Butzer and Berens (1967, Prop. 1.3.12) for the case of bounded
uniformly continuous functions on R.

Proposition 2. For ρ ∈ C with Re(ρ) > 0, we have continuous integral
operators

A−ρ, Bρ, e
−ρxA, Be−ρx : C0 → C1

0 (17)

with norm bounded by 1/Re(ρ), and the identities (14),(15) are valid for all
ρ, ρ̃, σ, σ̃ ∈ C with Re(ρ),Re(ρ̃) > 0 and Re(σ),Re(σ̃) < 0.

Proof. Let η = Re(ρ). We first check that the operators (17) map C0 into C0.
For A−ρ we use that

|A−ρf(x)| ≤ e−ηx

∫ y

0

eηξ |f(ξ)| dξ + e−ηx

∫ x

y

eηξ |f(ξ)| dξ
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for all f ∈ C0 and x ≥ y ≥ 0. Fixing ε > 0, the first summand is smaller than
ε/2 for x ≥ x0(ε, y) because η > 0. Since f ∈ C0, we have |f(ξ)| < εη/2 for
all ξ ≥ y0(ε), so the second summand is smaller than ε/2 for x ≥ y0(ε) and
y = y0(ε). Thus we obtain |A−ρf(x)| < ε for all x ≥ max {y0(ε), x0(ε, y0(ε))}.
Using a similar argument as for the second summand, we obtain Bρf ∈ C0.
One immediately checks that e−ρxA and Be−ρx map even bounded functions
into C0.

Next we verify that the operators are continuous. The norm bound for
A−ρ follows from |A−ρf(x)| ≤ e−ηx ‖f‖∞

∫ x

0
eηξ dξ and e−ηx

∫ x

0
eηξ dξ ≤ 1/η;

similarly for e−ρxA and Be−ρx. For Bρ we use the representation

Bρf(x) =

∫ ∞

0

e−ρξf(ξ + x) dξ (18)

and the fact that
∫∞

0
e−ηξ dξ = 1/η.

Now we turn to differentiability and identities (14). For A−ρ this follows
immediately from the fundamental theorem of calculus. Using representa-
tion (18), the difference quotient (Bρf(x+ h) −Bρf(x))/h is given by

eρh − 1

h

∫ ∞

h

e−ρξf(ξ + x) dξ −
1

h

∫ h

0

e−ρξf(ξ + x) dξ,

which converges to ρBρf(x)−f(x) as h→ 0. Finally, e−ρxAf is differentiable
again by the fundamental theorem and Be−ρxf = e−ρxBρf is differentiable
because Bρf is by what we have just seen.

It remains to prove the identities (15), (16); by Lemma 1 it suffices to
show the latter. These are an easy consequence of the fact that

Aσ(D − σ)f(x) = f(x) − eσxf(0) and Bρ(D − ρ)f(x) = −f(x)

for all f ∈ C1
0 . The identity for Aσ carries over from the bounded case and is

even valid on C1[0,∞), the one for Bρ follows from the representation (18)
and integration by parts.

Remark 3. Note that Bρ also appears in the literature as the Dickson-Hipp
operator (Dickson and Hipp, 2001; Li and Garrido, 2004), and the second
equation of (15) is also used in these papers. The crucial contribution of the
present result is the third equation of (15), i.e. the interaction between the
Dickson-Hipp operator Bρ and its counterpart Aσ.

We write E0 ⊂ C0 for the subalgebra of exponential polynomials spanned by
xje−ρx with Re(ρ) > 0.
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Proposition 3. The subalgebra E0 is dense in C0, and the operators (17)
map E0 into itself.

Proof. Density follows from the Stone-Weierstrass Theorem for locally com-
pact spaces (Conway, 1990, p. 147). For proving that the operators (17) map
E0 into itself, one uses induction on j and integration by parts.

Note that—by the same reasoning—the operators Aρ and Bρ also map
E0 into itself if Re(ρ) = 0 but they are no longer continuous.

This proposition provides an alternative approach to proving the iden-
tities (14), (15): Since E0 is dense in C0 and the operators are continuous,
it suffices to prove them for exponential polynomials—this can be done by
an elementary computation and induction on j. Density arguments of this
type could also be useful for generalizing to larger function spaces like Lp or
spaces based on regular variation (Bingham et al., 1987).

5. Solving Boundary Value Problems on the Half-Line

For computing the Gerber-Shiu function, the method described in Section 2
leads to a boundary value problem on the half-line. In fact, we can rewrite
equation (11) as

Tm = f, (19)

with

T = pX(
d

du
) p∗τ(c

d

du
− δ) − a0b0 and f(u) = a0 pX (

d

du
)ω(u),

initial values m(i)(0) = Mi, and regularity condition m(∞) = 0. As noted
earlier (beginning of Section 3), it suffices to consider the corresponding
homogeneous boundary conditions and incorporate the boundary values in
specific settings afterwards (Sections 7 and 8).

So let us now consider the general boundary value problem on the half-line
with homogeneous boundary conditions,

Tg = f,
g(0) = . . . = g(m−1)(0) = 0 and g ∈ C0,

(20)

where the forcing function f is required to vanish at infinity.
We assume that the characteristic equation of T has distinct roots, which

we divide into ρ1, . . . , ρn with positive and σ1, . . . , σm with negative real part
(for the case of roots with zero real part see the discussion at the end of the
section). Thus we have the differential operator T = TρTσ with

Tρ = (D − ρ1) · · · (D − ρn) and Tσ = (D − σ1) · · · (D − σm).
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Note that in order to have a regular boundary value problem, it is sufficient
to prescribe m initial conditions even though the order of T is m + n. This
is due to the regularity condition g ∈ C0: The general solution g of the
associated homogeneous differential equation Tg = 0 is a linear combination
of eρjx and eσix, where all terms with positive roots must vanish and the
remaining m coefficients are determined by the m conditions at zero.

The crucial point is that it is possible to factor this boundary value prob-
lem along T = TρTσ into the regular boundary value problems

Tσg = h,
g(0) = . . . = g(m−1)(0) = 0

and
Tρh = f,
h ∈ C0

(21)

with forcing function f ∈ C0.

Lemma 4. The boundary value problems (21) have

Gσ = Aσ1
· · ·Aσm

=
m∑

i=1

aiAσi
and Gρ = (−1)nBρ1

· · ·Bρn
=

n∑

j=1

bjBρj

with

ai =

m∏

k=1,k 6=i

(σi − σk)
−1 and bj = −

n∏

k=1,k 6=j

(ρj − ρk)
−1

as their Green’s operators, so g = Gσh and h = Gρf, where
∏1

k=1,k 6=1 = 1.

Proof. Let us first prove the identity for Gσ by induction (the case for Gρ is
analogous). The base case m = 1 is trivial, so assume the identity for m− 1.
Then (15) yields

Aσ1
· · ·Aσm−1

Aσm
=

m−1∑

i=1

aiAσi
−
(m−1∑

i=1

m∏

k=1,k 6=i

(σi − σk)
−1
)

Aσm

and we are done since the parenthesis is equal to −am by the well-known
partial fraction formula.

By Proposition 2, the Green’s operators Gρ and Gσ map C0 to Cm
0 and Cn

0 ,
respectively, and (14) yields TσGσ = 1 and TρGρ = 1. It remains to check
that Gσf satisfies the initial conditions. For that we prove for all i < m the
identity

DiGσ =

i∑

l=0

hi−l(σ1, . . . , σl+1)Aσl+1
· · ·Aσm

, (22)

where hi−l denotes the complete homogeneous symmetric polynomial of de-
gree i − l in the indicated variables (Stanley, 1999, p. 294); the claim then
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follows because Aσ1
f(0), . . . , Aσm

f(0) = 0. The base case i = 0 is trivial, so
assume (22) for i− 1. Using DAσl+1

= 1 + σl+1Aσl+1
from (14), this gives

DiGσ =

i−1∑

l=0

hi−l−1(σ1, . . . , σl+1)DAσl+1
· · ·Aσm

=

i−1∑

l=1

(

hi−l(σ1, . . . , σl) + σl+1hi−l−1(σ1, . . . , σl+1)
)

Aσl+1
· · ·Aσm

+ σi
1Aσ1

· · ·Aσm
+ Aσi+1

· · ·Aσm

after a little rearrangement. But the parenthesized factor in the sum sim-
plifies to hi−l(σ1, . . . , σl+1), while the outlying summands also have the right
factors hi−0(σ1) = σi

1 and hi−i(σ1, . . . , σj+1) = 1, respectively.

Theorem 5. The boundary value problem (20) has the Green’s operator

GσGρ =
m∑

i=1

n∑

j=1

cij(Aσi
+Bρj

− Fσiρj
)

=

m∑

i=1

n∑

j=1

cij

(

eσixA(e−σix − e−ρjx) + (eρjx − eσix)Be−ρjx
)

where cij = aibj (ρj − σi)
−1, i.e. g = GσGρf.

Proof. Let f ∈ C0. From Proposition 2 we know that G = GσGρ maps f into
Cm+n

0 . By the previous lemma, Gf satisfies the differential equation and the
initial conditions. For proving that G has the indicated sum representations,
we use again Lemma 4, the identities (15) and the definition of Fσiρj

.

If some of the ρj have zero real part, the above Green’s operator G no
longer maps C0 into itself, so the boundary value problems (20) cannot be
expected to have a solution for all f ∈ C0. But if Gf ∈ C0, it is the unique
solution of (20); by the observations after Proposition 3, this in particular
true for f ∈ E0.

6. Initial Values for E(n) Risk Processes

The next step for solving the boundary value problem for (19) is to determine
the initial values Mi of (9). We consider the case of E(n) distributed inter-
claim times (under assumption that m has bounded derivatives). Using (7)
in the integro-differential equation (8), we obtain

(
− c

d

du
+ (λ+ δ)

)n
m(u) = λn

∫ u

0

m(u− y) dFX(y) + λnω(u) (23)

13



with the corresponding Lundberg fundamental equation

(−cz + (λ+ δ))n − λnf̂X(z) = 0, (24)

where f̂X(z) = E(e−zX) is the Laplace transform of fX(u). Equation (24)
has exactly n solutions ρi (i = 1, . . . , n) with positive real part, according
to Li and Garrido (2004).

We will use a similar integrating factors technique as the one proposed
in Gerber and Shiu (1998) and arrive at a system of linear equations in the
initial values that we can solve explicitly. A different choice of the inte-
gration bounds will simplify some steps compared to a related approach
of Li and Garrido (2004). The change of variables and order of integration
used in Gerber and Shiu (1998) is then not necessary here. Let us multiply
equation (23) by e−ρiu for each i = 1, . . . , n, and then integrate from u = ∞
to u = x to arrive at

n∑

j=0

(
n

j

)

(−c)j(λ+ δ)(n−j)

∫ x

∞

e−ρium(j)(u) du

= λn

∫ x

∞

e−ρiu

∫ u

0

m(u− y) dFX(y) du+ λn

∫ x

∞

e−ρiuω(u) du.

Now we use integration by parts together with

lim
u→∞

e−ρium(j)(u) = 0 (j = 0, . . . , n, i = 1, . . . , n)

to obtain

∫ x

∞

e−ρium(j)(u)du =

j−1
∑

k=0

e−ρixρk
im

(j−k−1)(x) + ρj
iIi(x),

where Ii(x) =

∫ x

∞

e−ρium(u)du.

Then evaluating each equation at x = 0, we note that the left-hand side and
the right-hand side terms pertaining to Ii(0) cancel due to (24) evaluated at
z = ρi. Also we see that in the right-hand side the second integral is actually
−ω̂(ρi), the Laplace transform of ω evaluated at ρi. We obtain a system of
n equations in n unknown variables m(k)(0)

n∑

j=1

(
n

j

)

(−c)j(λ+ δ)n−j

j−1
∑

k=0

ρk
im

(j−k−1)(0) = −λnω̂(ρi)

14



for k = 0, . . . , n− 1. Collecting and rearranging the terms, we get

n−1∑

k=0

m(k)(0)

n−k−1∑

j=0

(
n

j

)(

−
λ+ δ

c

)j

ρ
(n−k−1)−j
i

︸ ︷︷ ︸

pn−k−1(ρi)

= −

(

−
λ

c

)n

ω̂(ρi), (25)

for i = 1, . . . , n. Note that the polynomials

pk(x) =

k∑

j=0

(
n

k − j

)(

−
λ + δ

c

)k−j

xj (26)

appearing in the coefficients of m(n−k−1)(0) are monic of degree k.
We express the system in matrix form Ax = b as






p0(ρ1) · · · pn−1(ρ1)
...

. . .
...

p0(ρn) · · · pn−1(ρn)











m(n−1)(0)
...

m(0)(0)




 = −

(

−
λ

c

)n






ω̂(ρ1)
...

ω̂(ρn)




 .

According to Cramer’s rule, the solution of this system of equations is of the
form

m(k)(0) =
det(Bn−1−k)

det(A)
(k = 0, . . . , n− 1), (27)

where Bk is the n × n matrix obtained from A by replacing the (k + 1)-th
column of A by the right-hand side b.

The following result generalizes the formula form(0) given in Gerber and Shiu
(2005, Eqn. 8.1).

Proposition 6. The k-th derivative of the expected discounted penalty func-
tion evaluated at zero has the form

m(k)(0) = (−1)k

(
λ

c

)n n∑

i=1

ω̂(ρi)S(ρ′i, k)
∏

l=1,...,n; l 6=i

(ρl − ρi)
, (28)

for k = 0, . . . , n− 1, where ρ′i = (ρ1, . . . , ρi−1, ρi+1, . . . , ρn) and

S(ρ′i, k) =

k∑

j=0

(

−
λ+ δ

c

)j (
n− 1 + j

j

)

ek−j(ρ
′
i),

with ek the elementary symmetric polynomials of degree k.
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Proof. According to Krattenthaler (1999), the determinant of the matrix A
is the same as the Vandermonde determinant Vn = Vn(ρ1, . . . , ρn) so

det(A) =
∏

1≤i<j≤n

(ρj − ρi).

We will show that the determinant of Bk is the product of a Vandermonde
determinant and a linear combination of symmetric polynomials in the ρi

and ω̂(ρi). Expanding along the (n− k)-th column, one gets

det(Bn−1−k) =
n∑

i=1

(−1)i+n−kbi det(Ai,n−k),

where Ai,k is the (n− 1)× (n− 1) matrix obtained from A by removing the
i-th row and the k-th column. By applying Corollary A2 of the appendix to
the matrix Ai,k and observing that

q(x) = (1 −
λ+ δ

c
x)n −

(

1 +
(
−
λ+ δ

c
x
)n
)

,

we obtain

det(Ai,n−k) = Vn−1(ρ
′
i)

k∑

j=0

djek−j(ρ
′
i),

where

dj =
[
xj
] (−1)j +

(
(1 − λ+δ

c
x)n −

(
1 +

(
− λ+δ

c
x
)n))j+1

(1 − λ+δ
c
x)n −

(
− λ+δ

c
x
)n

and [xj ]f(x) = f (j)(0)/j! denotes the coefficient of xj of a power series f(x).
We will show below that

dj =

(

−
λ+ δ

c

)j (
n− 1 + j

j

)

. (29)

Inserting the resulting formula for the determinant Ai,k into the expansion
of det(Bk) in Cramer’s rule, we get

m(k)(0) = (−
λ

c
)n

n∑

i=1

(−1)i+n−k+1ω̂(ρi)
Vn−1(ρ

′
i)

Vn

k∑

j=0

djek−j(ρ
′
i),

which after cancellation of the Vandermode terms leads to the result stated.
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It remains to show equation (29). From equation (34) we get that (−1)jdj =
[xj ]

∑j
m=0(−q(x))

m. Since j < n we can safely add terms of order at least
n to q(x). We do this and replace q(x) with (1 − λ+δ

c
x)n − 1. Inserting the

modified q(x) and expanding the expression, we obtain

j
∑

m=0

(−q(x))m =

j
∑

m=0

(−1)m

((

1 −
λ+ δ

c
x

)n

− 1

)m

=

j
∑

m=0

m∑

l=0

(
m

l

)

(−1)l

nl∑

h=0

(
nl

h

)(

−
λ + δ

c
x

)h

=

nm∑

h=0

(

−
λ + δ

c
x

)h j
∑

m=0

m∑

l=0

(−1)l

(
m

l

)(
nl

h

)

,

so that dj =
(

λ+δ
c

)j∑j
m=0

∑m
l=0(−1)l

(
m

l

)(
nl

j

)
. Rearranging and using the

simple binomial identities of Graham et al. (1989, 5.10 and 5.14), we can
simplify the double sum to

j
∑

l=0

(−1)l

(
nl

j

) j
∑

m=0

(
m

l

)

=

j
∑

l=0

(−1)l

(
j + 1

l + 1

)(
nl

j

)

=

j+1
∑

l=0

(−1)l+1

(
j + 1

l

)(
n(l − 1)

j

)

+

(
−n

j

)

=(−1)j

(
n− 1 + j

j

)

−

j+1
∑

l=0

(−1)l

(
j + 1

l

)(
n(l − 1)

j

)

.

Finally, the last sum vanishes due to Graham et al. (1989, 5.42) since it is
the (j + 1)-th difference of

(
n(l−1)

j

)
as a polynomial in l, which is only of

degree j.

Since the Gerber-Shiu function is the unique solution of (19), it has the
form

m(u) = GσGρf(u) +mp(u),

where GσGρ is given in Theorem 5 and mp(u) is the particular solution
obtained as a linear combination of the eσiu, with factors determined by the
initial values from Proposition 6.

7. Explicit Solution for E(n) Risk Processes with E(m) Claims

Let us now specialize the differential equation (11) for the Gerber-Shiu func-
tion to the case of Erlang(n, λ) interclaim times and Erlang(m,µ) claim sizes,
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with discount rate δ > 0. From the previous section we get n boundary con-
ditions. As described in Section 5 one in fact needs m boundary conditions,
so we assume m ≤ n (otherwise, one can derive the remaining conditions by
evaluating higher derivatives of the integro-differential equation (23)). We
obtain a boundary value problem for the differential equation Tm = f with
D = d

du
, where

T = (D + µ)m (−cD + λ+ δ)n − λnµm,

f(u) =
λnµm

(m− 1)!
(D + µ)m

∫ ∞

u

w(u, y − u) ym−1e−µy dy (30)

and boundary conditions (2) and (9). To apply the results from Section 5,
we can choose any sufficiently smooth penalty function w(x, y) such that
limu→∞ f(u) = 0. By Proposition 3 this includes all bivariate exponential
polynomials whose terms xiyjeαxeβy satisfy α < β < µ.

Since the characteristic equation for T is the Lundberg fundamental equa-
tion, we know from the general results mentioned in Section 2 that it has n
roots ρ1, . . . , ρn with positive real part and m roots σ1, . . . , σm with negative
real part. So we have the factorization

T = TρTσ = (D − ρ1) · · · (D − ρn)(D − σ1) · · · (D − σm),

and Theorem 5 gives us the Green’s operator for the corresponding homoge-
neous boundary value problem.

Writing f̂ for the Laplace transform of f and using the definition of the
corresponding operators, we obtain from Theorem 5 the explicit form of the
Gerber-Shiu function

m(u) =
m∑

i=1

n∑

j=1

cij

(
(∫ u

0

eσi(u−ξ)+

∫ ∞

u

eρj(u−ξ)
)

f(ξ) dξ−f̂(ρj)e
σiu

)

+mp(u)

(31)
with

cij = −
m∏

k=1,k 6=i

(σi − σk)
−1

n∏

k=1,k 6=j

(ρj − ρk)
−1 (ρj − σi)

−1.

With the initial values from formula (28) the computation of the particu-
lar solution mp satisfying the inhomogeneous boundary conditions reduces
to solving a system of linear equations, obtained from imposing the condi-
tion that the particular solution satisfies these given initial conditions, i.e.
(mp)(i)(0) = Mi. As remarked in Section 5, formula (31) remains valid for
suitable f also in the limiting case δ = 0, which is equivalent to having 0
among the ρ1, . . . , ρn.
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So the problem of computing the Gerber-Shiu function for a given penalty
function is reduced to quadratures: Since symbolic algorithms for evaluat-
ing one-dimensional integrals are very powerful (Bronstein, 2005) and easily
accessible in current computer algebra systems, one will often obtain an ex-
plicit expression for the Gerber-Shiu function. Otherwise one can resort to
standard numerical methods for obtaining approximations.

In the particular case n = 2, m = 1 one has

T = (D + µ) (−cD + λ+ δ)2 − λ2µ,

f(u) = λ2µ (D + µ)

∫ ∞

u

w(u, y − u) e−µy dy.

After calculating the particular solution using the initial value from Propo-
sition 6, we obtain the Gerber-Shiu function in the explicit form

m(u) =
eσu

ρ1 − ρ2

(

f̂(ρ1)

ρ1 − σ
−

f̂(ρ2)

ρ2 − σ
−

(
λ

c

)2

(ω̂(ρ1) − ω̂(ρ2))

)

−
1

ρ1 − ρ2

∫ ∞

u

(
1

ρ1 − σ
eρ1(u−ξ) −

1

ρ2 − σ
eρ2(u−ξ)

)

f(ξ) dξ

+
1

ρ1 − σ

1

ρ2 − σ

∫ u

0

eσ(u−ξ) f(ξ) dξ,

where one should recall that ρ1, ρ2 are the positive roots and σ is the negative
root of the fundamental Lundberg equation. For example, when w(x, y) =
xjyk with j and k positive integers, one obtains

∆µk

k!λ2
m(u) = −

ρ2 − σ

(ρ1 + µ)j

(

j Γ
(
j, (ρ1 + µ)u

)
eρ1u +

j!

c2

(ρ1 − σ

ρ1 + µ
− c2

)

eσu

)

+
ρ1 − σ

(ρ2 + µ)j

(

j Γ
(
j, (ρ2 + µ)u

)
eρ2u +

j!

c2

(ρ2 − σ

ρ2 + µ
− c2

)

eσu

)

−
ρ1 − ρ2

(σ + µ)j

(

j Γ
(
j, (σ + µ)u

)
− j!

)

eσu,

where ∆ = (ρ1 − ρ2)(ρ1 − σ)(ρ2 − σ) is the square root of the discrim-
inant associated to the fundamental Lunderberg equation and Γ(a, x) =
∫∞

x
ta−1e−t dt is the incomplete Gamma function. This formula extends Equa-

tion (3.8) of Cheng and Tang (2003) and similar examples with n = 2 from
Li and Garrido (2004, 2005b) and Gerber and Shiu (2005).

8. Explicit Solution for the Classical Perturbed Risk Model

For the case of an Erlang(n, λ) risk model perturbed by a Brownian motion,
the Gerber-Shiu function satisfies an integro-differential equation as given
in Constantinescu (2006)
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(−
σ̃2

2

d2

du2
− c

d

du
+ λ+ δ)nm(u) = λn

∫ u

0

m(u− x)fX(x)dx+ λnω(u), (32)

where σ̃ is the diffusion coefficient. Since the differential operator of this
equation has constant coefficients, the method introduced in this paper ap-
plies. As before, for claim distributions with rational Laplace transform, the
equation reduces to a LODE. For instance, in the case of E(m,µ) claim sizes,
this LODE has the same form Tm = f with D = d

du
, with

T = (D + µ)m (−
σ̃2

2
D2 − cD + λ + δ)n − λnµm,

and f(u) as in (30) and the appropriate boundary conditions. The charac-
teristic equation for T is again the fundamental Lundberg equation.

Also in this case we can derive explicit expressions for the Gerber-Shiu
function. To exemplify, we consider the well-known case of a compound
Poisson process perturbed by a Brownian motion with exponential claim
sizes, E(1, λ)-E(1, µ) in the notation introduced here. Then the LODE is of
order three, with

T = (D + µ) (−
σ̃2

2
D2 − cD + λ+ δ) − λµ

and

f(u) = λµ (D + µ)

∫ ∞

u

w(u, y − u) e−µy dy.

The initial value at zero m(0) = w(0, 0) is in this case simply the penalty
function evaluated at zero. Since according to Li and Garrido (2005a), in the
case of a compound Poisson risk model perturbed by a Brownian motion, the
Lundberg equation has only one positive solution that we will denote ρ, we
can apply the integrating factor technique only once. It yields the linear
equation

σ̃2

2
m′(0) +

(

ρ
σ̃2

2
+ c

)

m(0) = λω̂(ρ), (33)

which we can solve for m′(0). With these initial values, we can compute the
particular solution and Equation (31) leads to

m(u) = −
1

(ρ− σ1)(ρ− σ2)

∫ ∞

u

eρ(u−ξ)f(ξ) dξ −
f̂(ρ)

σ2 − σ1

(
eσ1u

ρ− σ1
−

eσ2u

ρ− σ2

)

+
1

σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ− σ1

−
eσ2(u−ξ)

ρ− σ2

)

f(ξ) dξ

+
1

σ2 − σ1

(

[σ2m(0) −m′(0)]eσ1u + [−σ1m(0) +m′(0)]eσ2u
)
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as an explicit expression for the Gerber-Shiu function. This formula gener-
alizes equation (4.6) of Chen et al. (2007) for the case of exponential claim
sizes and Example 1 of Li and Garrido (2005a) for exponential inter-arrival
times.

9. Conclusion

We have shown that the link between symbolic computation and risk theory
can be mutually fruitful and can be utilized to identify fully explicit expres-
sions for the Gerber-Shiu function in general renewal models in terms of the
employed penalty function. In the presented approach, Laplace transforms
only enter in a very restricted form:

• Only the Laplace transform of the penalty (not of the Gerber-Shiu
function) is computed. This has the advantage that one does not need
artificial analyticity conditions on m.

• Moreover, the Laplace transform of the penalty is only evaluated at
ρ1, . . . , ρn, the positive solutions of the Lundberg equation, for com-
puting the boundary values.

• No inverse Laplace transform is involved. This is in contrast to many
previous papers that give explicit formulae for the Laplace transform
of the Gerber-Shiu function, which often cannot be inverted in closed
form.

In principle, the symbolic method introduced in this paper can be ex-
tended to models that include investment as well as to models with interclaim
time densities that satisfy ODEs with polynomial coefficients as long as the
spectral structure of the Lundberg fundamental equation is still tractable.
This will be pursued in future research. The factorization approach for
boundary value problems generalizes in principle also to partial differential
equations (Regensburger and Rosenkranz, 2009), which in the context of risk
theory means that more general models including one more variable could
be considered. Finally, the method may be applicable in boundary value
problems that occur in other contexts in risk theory.

The formulas developed in this paper can easily be implemented in a com-
puter algebra system, which in turn allows to quickly perform (quantitative
and graphical) sensitivity analysis of the corresponding discounting penalty
functions with respect to parameter and penalty changes.
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Appendix: A Generalized Vandermonde Determinant

For computing the initial values in Proposition 6 we are led to consider the
n× n alternant matrix

A =






p0(x1) · · · pn−1(x1)
...

. . .
...

p0(xn) · · · pn−1(xn)






with polynomials pi(x) = ai,ix
i + . . . + ai,0 with ai,i = 1. In the special

case pi(x) = xi this is the usual Vandermonde matrix with the determi-
nant Vn in the indeterminates x1, . . . , xn, but detA = Vn holds in gen-
eral (Krattenthaler, 1999, Prop. 1).

We want to compute the (k, l) minor of A, the determinant of the (n −
1)×(n−1) matrix Ak,l obtained by deleting the k-th row and the l-th column.
It suffices to consider

An,l =






p0(x1) · · · pl−1(x1) pl+1(x1) · · · pn−1(x1)
...

. . .
...

...
. . .

...
p0(xn−1) · · · pl−1(xn−1) pl+1(xn−1) · · · pn−1(xn−1)






since
A(x1, . . . , xn)k,l = A(x1, . . . , xk−1, xk+1, . . . , xn, xk)n,l.

For pi(x) = xi it is known (Heineman, 1929) that detAn,l/Vn−1 yields the
elementary symmetric polynomial en−1−l in x1, . . . , xn−1.

Proposition A1. We have

detAn,l

Vn−1
= en−1−l +

n−1∑

j=l+1

(
∑

J

(−1)j+l+maj1,j2aj2,j3 · · ·ajm,jm+1

)

en−1−j,

where the inner sum ranges over J = (j1, . . . , jm+1) such that m ≥ 1 and
j = j1 > . . . > jm+1 = l.

Proof. Writing xj for the column vector (xj
1, . . . , x

j
n−1)

T , the determinant of
the matrix

An,l =

(
0∑

r=0

a0,rx
r · · ·

l−1∑

r=0

al−1,rx
r

l+1∑

r=0

al+1,rx
r · · ·

n−1∑

r=0

an−1,rx
r

)

is given by multilinearity as

0∑

r0=0

· · ·

l−1∑

rl−1=0

l+1∑

rl+1=0

· · ·

n−1∑

rn−1=0

cr det(xr0 , . . . , xrl−1 , xrl+1, . . . , xrn−1)
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with cr = a0,r0
· · ·al−1,rl−1

al+1,rl+1
· · ·an−1,rn−1

. Observe that for the first l
indices r0, . . . , rl−1 there always exist some i < j < l such that ri = rj unless
ri = i for all i < l. Since the determinant vanishes for the cases ri = rj and
the pi are monic (i.e., ai,i = 1), the determinant reduces to

l+1∑

rl+1=l

· · ·
n−1∑

rn−1=l

al+1,rl+1
· · ·an−1,rn−1

det(x0, . . . , xl−1, xrl+1, . . . , xrn−1)

where rl+1, . . . , rn−1 can be restricted to mutually distinct indices.
We view the indices as the permutations r : {l, . . . , n−1} → {l, . . . , n−1}

satisfying rs ≤ s for s > l; note that rl is determined as the index omitted
in rl+1, . . . , rn−1. By the monotonicity condition on r, all cycles without
l in the cycle representation of r are trivial: If we have a nontrivial cycle
(j1 . . . jm+1), with jm+1 6= l we are led to the contradiction j1 > rj1 = j2 >
. . . > jm+1 > rjm+1

= j1. Consequently r either possesses only one nontrivial
cycle (j1 . . . jm+1) with j1 > . . . > jm+1 = l, unless r is the identity. Since
the pi are monic, the factor of the determinant ∆r occurring in the above
sum is given by aj1,j2 · · ·ajm,jm+1

in the former and by 1 in the latter case.
For finding ∆r, we use row expansion for computing

(−1)l+n−1∆r = det

(
x0 · · · xl−1 xl xrl+1 · · · xrn−1

0 · · · 0 1 0 · · · 0

)

.

This determinant is the result of r acting on the columns of the determinant

det

(
x0 · · · xj−1 xj xj+1 · · · xn−1

0 · · · 0 1 0 · · · 0

)

= (−1)j+n−1en−1−j Vn−1

according to the above mentioned result on Vandermonde minors. Since r as
a cycle of length m+ 1 has sign (−1)m, this yields

∆r = (−1)j+l+men−1−j Vn−1,

which proves the formula.

Note that the inner sum in Proposition A1 can also be interpreted as
ranging over all ordered subsets of {l, . . . , j} containing l and j. It can be
simplified further in the following special case, which we use in Section 6. We
give two representations, one in terms of compositions and the other using
generating functions. Here we use the customary notation [xi] f(x) for the
coefficient of xi in a power series f(x).
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Corollary A2. If pi(x) = a0x
i + . . . + ai, a0 = 1, the formula in Proposi-

tion A1 simplifies to

detAn,l

Vn−1
= en−1−l +

n−1∑

j=l+1

(−1)j−l

(
∑

m≥1

(−1)m
∑

d1,...,dm

ad1
. . . adm

)

en−1−j,

where the inner sum ranges over d1, . . . , dm > 0 such that d1+. . .+dm = j−l.
Using generating functions, we have also

detAn,l

Vn−1
=

n−1−l∑

j=0

(
[
xj
] (−1)j + q(x)j+1

1 + q(x)

)

en−1−l−j ,

where q(x) = a1x+ . . .+ an−1x
n−1.

Proof. Applying the above remark to the case ai,j = ai−j , the inner sum in
Proposition A1 gives

∑

j>j2>···>jm>l

(−1)maj−j2aj2−j3 · · ·ajm−1−jm
ajm−l

=
∑

d1,...,dm>0,
P

i di=j−l

(−1)mad1
. . . adm

for j > l, since the differences d1 = j − j2, d2 = j2 − j3, . . . , dm = jm − l can
take arbitrary nonnegative values, provided they sum up to j − l. Now the
first formula follows by multiplying with (−1)j+l = (−1)j−l.

For the second formula observe that the sum over the compositions of j−l
that appears within the bracket of the first formula is equal to the coefficient
of xj−l in the product

m∏

i=1

(
a1x+ . . .+ an−1x

n−1
)

= q(x)m,

for m ≤ j − l; for m > j − l the sum over the composition is empty. Note
that this even covers the cases m = 0, for which the term is zero except for
j − l = 0, when it becomes one. The stated formula then follows by

(−1)j−l

j−l
∑

m=0

[xj−l](−q(x))m = (−1)j−l[xj−l]
1 − (−q(x))j−l+1

1 + q(x)
(34)

= [xj−l]
(−1)j−l + q(x)j−l+1

1 + q(x)
.
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As a final remark note that the determinant takes an even simpler form
if the pi are not ‘reversed’ as they are in the previous corollary.

Corollary A3. If pi(x) = aix
i + . . . + a0, the formula in Proposition A1

simplifies to

detAn,l

Vn−1
= en−1−l +

n−1∑

j=l+1

(

al

j−1
∏

k=l+1

(ak − 1)

)

en−1−j ,

Proof. The proof proceeds in a similar way as for the previous corollary. Here
we have the case ai,j = aj , so the inner sum in Proposition A1 evaluates to

∑

{j2,...,jm}⊆{l+1,...,j−1},
j>j2>···>jm>l

(−1)maj2 · · ·ajm
ajm+1

= al

j−1
∏

k=l+1

(ak − 1),

and the rest follows.

Acknowledgements

We would like to thank Jose Garrido for his encouraging feedback at an
early stage of this project. We would also like to thank Christian Kratten-
thaler for valuable hints on simplifying the determinant of Proposition A1
and Peter Paule and Christoph Koutschan for help with proving the ex-
plicit form of dj in the proof of Proposition 6. Furthermore we thank the
anonymous referees for helpful comments to improve the presentation of the
manuscript. Hansjörg Albrecher was partly supported by the Austrian Sci-
ence Fund Project P18392, Gottlieb Pirsic was partly supported by the Aus-
trian Science Fund Project P19004-N18.

References

Albrecher, H., Boxma, O. J., 2005. On the discounted penalty function in
a Markov-dependent risk model. Insurance: Mathematics & Economics
37 (3), 650–672.

Bingham, N. H., Goldie, C. M., Teugels, J. L., 1987. Regular Variation.
Vol. 27 of Encyclopedia of Mathematics and its Applications. Cambridge:
Cambridge University Press.

Bronstein, M., 2005. Symbolic Integration. I, 2nd Edition. Vol. 1 of Algo-
rithms and Computation in Mathematics. Berlin: Springer-Verlag.

25



Butzer, P. L., Berens, H., 1967. Semi-groups of Operators and Approxi-
mation. Die Grundlehren der mathematischen Wissenschaften, Band 145.
New York: Springer-Verlag New York Inc.

Chen, Y.-T., Lee, C.-F., Sheu, Y.-C., 2007. An ODE approach for the ex-
pected discounted penalty at ruin in a jump-diffusion model. Finance and
Stochastics 11 (3), 323–355.

Cheng, Y., Tang, Q., 2003. Moments of the surplus before ruin and the deficit
at ruin in the Erlang(2) risk process. North American Actuarial Journal
7 (1), 1–12.

Constantinescu, C., 2006. Renewal Risk Processes with Stochastic Returns on
Investments - A Unified Approach and Analysis of the Ruin Probabilities,
PhD Thesis Edition. Corvallis, OR: Valley Library.

Conway, J. B., 1990. A Course in Functional Analysis, 2nd Edition. Vol. 96
of Graduate Texts in Mathematics. New York: Springer-Verlag.

Dickson, D. C. M., Hipp, C., 2001. On the time to ruin for Erlang(2) risk
processes. Insurance: Mathematics & Economics 29 (3), 333–344.

Drekic, S., Stafford, J. E., Willmot, G. E., 2004. Symbolic calculation of the
moments of the time of ruin. Insurance: Mathematics & Economics 34 (1),
109–120.

Feller, W., 1971. An Introduction to Probability Theory and its Applications.
Vol. II. Second edition. New York: John Wiley & Sons Inc.

Gerber, H. U., Shiu, E. S. W., 1997. The joint distribution of the time of ruin,
the surplus immediately before ruin, and the deficit at ruin. Insurance:
Mathematics & Economics 21 (2), 129–137.

Gerber, H. U., Shiu, E. S. W., 1998. On the time value of ruin. North Amer-
ican Actuarial Journal 2 (1), 48–78.

Gerber, H. U., Shiu, E. S. W., 2005. The time value of ruin in a Sparre
Andersen model. North American Actuarial Journal 9 (2), 49–84.

Graham, R. L., Knuth, D. E., Patashnik, O., 1989. Concrete Mathemat-
ics. Reading, MA: Addison-Wesley Publishing Company Advanced Book
Program.

Heineman, E. R., 1929. Generalized Vandermonde determinants. Transac-
tions of the American Mathematical Society 31 (3), 464–476.

26



Kamke, E., 1967. Differentialgleichungen. Lösungsmethoden und Lösungen.
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