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ADJOINT TRANSFORM, OVERCONVEXITY
AND SETS OF CONSTANT WIDTH

FRANCOIS BAVAUD

ABSTRACT. The properties of the adjoint transform (associating to a set the in-
tersection of all disks of given radius centered in the set) are systematically in-
vestigated, in particular its relationship with the overconvex, the parallelisation
and completion of sets. Sets conjugate by the transform can be characterised in
a new way as the union or the intersection of all completions of the reference
body. New relationships satisfied by their areas and perimeters are derived. Two
applications in problems of random intersection of disks are finally treated.

1. INTRODUCTION

Let K be a compact, plane (possibly nonconvex) set, and s a positive real
number. We call s-adjoint transform £/ (..., s) the operation which to K
associates its s-adjoint K*(s), defined as the intersection of all disks of radius
s whose centers lie in K :

(1) K*(s):=(K,s):=[) B(x, s)

x€K

where B(x, s) denotes the disk of center x and radius s.

Judging from the existing literature, it appears that different authors (includ-
ing the present one) have independently made use of the operation (1) in one
way or another, with different applications in mind: in the thirties, Mayer [13]
and Biickner [7] explored the notion of overconvexity, the former for its own
sake, the latter as a tool for the study of the sets of constant width. A decade
later, Blanc [4, 5] investigates relations linking the overconvexity and the adjoint
transform. In the sixties, Eggleston [10] characterizes the complete sets as fixed
points of the adjoint transform. Let us also mention Maehara [12] for his paper
on sets conjugate with respect to the adjoint transform, and Sallee [14, 15] for
his generalised adjoint transform which associates to a set K the intersection
of all K-translates of a given centrally symmetric convex body. Our own in-
terest has arisen initially from considerations relative to the theory of random
polytopes.

We have tried to keep the level of exposition as self-contained and elementary
as possible. Already known facts previously scattered in the literature are gath-
ered here in a unified exposition. Many results appear here for the first time to
your knowledge: we have attempted to dignify the most evocative among them
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316 FRANCOIS BAVAUD

as theorems. We have restricted ourselves in this paper to two-dimensional,
euclidean geometry. If one sees no reason forbidding the straightforward gen-
eralisation of most of our results in higher dimensions, one nevertheless knows
(see e.g. [10]) that it is not the case anymore for Minkowskian geometries.

Section 2 reviews the basic properties of the transform. In §3, we gener-
alise to areas a result of Blanc concerning the perimeters of a conjugate pair;
investigating the composition of the adjoint transform with the operation of par-
allelisation, we obtain differential equations obeyed by the areas and perimeters
of a conjugate pair, somehow analogous to the Steiner formulae for parallel
bodies. We propose in §4 a construction (one more!) for completing a plane
body; this leads to the new characterisation of the elements of a conjugate pair
as the union, respectively the intersection of all the completions containing the
reference body. In §5 we study the stochastic processes arising from the random
intersection of disks of fixed radius, each containing the centers of all the other
disks. The differences between the sequential and the simultaneous processes
are elucidated.

2. BASIC PROPERTIES

We denote the area, perimeter, diameter, minimal width, circumcenter and
circumradius of K by |K|, |0K|, d(K), 6(K), C.(K) and R(K) respectively.
|x — y| stands for the euclidean distance between two points x and y.

The following properties are immediate consequences of the definition (1):

(@) & (U, Ki, 5) = ;& (Ki, 5)

(b) ¥ (N; K, s) c o (UK, 5),

(c) K*(s) is a nonempty convex set provided s > R(K), and K*(R(K)) =
{C.(K)},

(d) K*(s) c K*(s") iff s < s,

(e) K*(s) c K*(s) if KCK,

(f) K C K*(s) iff s >d(K).

We shall as well consider the double adjoint transform (..., s), defined
as the operation which to K associates K**(s), the adjoint of its adjoint:

(2) K*(s):=Z%*K,s) =L (Z(K,s)) =L (K*s),s)= ﬂ B(x, s)
x€EK*(s

Let us first check that, provided K*(s) itself is nonempty (i.e. s > R), K**(s)
is also nonempty; we actually have

(g) K C K**(s),forall s >R.

Secondly, one more iteration of the adjoint transform does not bring anything
new; using an obvious notation, one has

(h) K***(s) = K*(s) .

(Proofs of (g) and (h) can be found e.g., in [12 or 15].)

As x € K*(s) iff K C B(x, s), we get from (2) the equivalent characterisa-
tion

(i) K**(s) = Np(x,5ox B(x, 5).
Asa consequence

(G) K**(s) CK**(s") if s 25,

(k) K**(s) C K**(s) if K C K.
From (i) and (j), the following picture emerges:
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(1) For s € [R, ), the sets K**(s) constitute a decreasing nested family
of convex sets, the largest one being K**(R), the circumcircle of K, and the
smallest one being lim,_,., K**(s) = K , the convex hull of K . (The limit refers
here to the Hausdorff metric or any equivalent metric: see e.g. [6].)

In particular, all the members of the family coincide when K is a circle.
Keeping in mind that K is obtained from K by adjunction of all points be-
longing to any segment whose endpoints lie in K, one might wonder at this
stage whether a similar construction exists for the other members of the family.
The answer is positive, and leads to the very heart of the concept of overconvex-
ity, introduced independently by Mayer [13] and Biickner [7] (the latter speaks
of “sets rounded off to the index s™):

Definition. A set K is said to be s-overconvex if, for any pair of points x and
y belonging to K, the closed lens resulting from the intersection of the two
disks of radius s passing through x and y is contained in K.

Clearly, a circle of radius R is s-overconvex iff s > R, and more generally
a set is s-overconvex iff its curvature radius satisfies 0 < p(¢) < s, for all
¢ € [0, 2n] [13]. In the limit s — co one recovers the usual notion of convexity.
As the intersection of two s-overconvex sets is still s-overconvex, the adjoint
K*(s) of K (and therefore K**(s)) is s-overconvex. From (i), K**(s) is the
set obtained by rounding off K by arcs of radius s, and we get the following
link between the concepts of adjoint transform and convexity [4]:

(m) K = K**(s) iff K is s-overconvex.

Incidentally, it comes from properties (h) and (m) that the adjoint transform,
applied on sets of points, enjoys properties very similar to those associated with
the Legendre-Fenchel transform (see e.g. [8]) applied on functions. In particular,
we leave to the reader to verify:

(n) K is s-overconvex iff it is the s-adjoint transform of some convex set.

Moreover, taking (d) into account:

(0) Any s-overconvex set is contained in some disk of radius s.

3. CONJUGACY PROPERTIES

As a consequence of (2) and (h), K*(s) and K**(s) are obtained from each
other by means of the same operation: we propose therefore to refer to them as
a conjugate pair. For fixed s, the larger is a set, the smaller is its conjugate: for
instance, the conjugate to the circle of radius R (R < s) is the circle of radius
s— R . This “competition” between conjugates is quantitatively expressed in the
following theorem:

Theorem L. The perimeters |0K*(s)|, |0K**(s)| and areas |K*(s)|, |K**(s)| of
a conjugate pair satisfy
(3) |0K*(s)| + |0K**(s)| = 2ms.
(4) 2|K*(s)| — s|oK*(s)| = 2|K™"(s)| — s|oK™*(s)|.
The first relation is due to Blanc [5], whereas we believe the second to be

new.

Proof. Given a set K , we denote by (@) its support function, that is h(¢) :=
sup{x, cos(¢) + xpsin(@)|x = (x1, x2) € K}. By construction, the support
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functions A*(¢) and h**(¢) of K*(s) and K**(s) satisfy
(5) h* () + h**(n+ ¢) =s.

(Actually, (5) can be shown to be not only a necessary condition for two support
functions to describe a conjugate pair, but also a sufficient one [12].) The
perimeter of a set being equal to the integral of its support function (see e.g.
[6]), one immediately gets (3). On the other hand, the area of a set K is given
by

2n
(6) K| = A p(®)h(¢)d¢

where p(¢) = h(¢)+h"(¢) is the curvature radius. Taking into account p*(¢§)+
p**(m + ¢) =s as well as (5), one gets

(7) [K*(5)| = K**(5)| = S|OK**(5)| + ms?
which, using (3), is equivalent to (4). O

Remark. An alternative proof of (4) starts with the observation that a point x
belongs to K*(s) iff K**(s) C B(x, s); this implies the area of K*(s) to be the
measure of all translations of K**(s) (or K) in which it is contained in a disk
of radius s. As the curvature radius of K**(s) does not exceed s, the above
measure can be computed explicitly (see e.g. [16, p. 95]) and coincides precisely
with the right-hand side of (7).

A third proof of (4) is based upon Poincaré’s formula (see e.g. [16, p. 111]).
Let n(x) be the number of intersections of the circle dB(x,s) with the
boundary 0K*(s) of K*(s). Up to sets of measure zero, n(x) = 2 for x €
(K*(s))s\K**(s), and n(x) = 0 otherwise. ((K*(s))s is the set parallel to K*(s)
at distance s, as defined below.) By Poincaré’s formula, the integral of n(x)
over the plane is 45|0 K*(s)|, and one recovers (7).

Other conjugacy properties between K*(s) and K**(s) are easily obtained:
for instance, the sum of their widths in any direction is equal to 2s. Those
properties, combined with K C K**(s) C B(C,, R(K)) and Theorem I, enable
the obtention of straightforward lower and upper bounds for quantities associ-
ated with K*(s) and K**(s), expressed in terms of quantities associated with
K . We also mention in this context the following:

(p) K**(s) C K*(s) iff s > d(K),

(@) d(K**(s)) =d(K) if s >d(K),
and its conjugate

(r) 6(K*(s))=2s—d(K) if s >d(K).

(A proof of these last statements will be given in §4.)

Let us now recall that K being a plane convex set of boundary 9K , the set
parallel to K at distance t, denoted by K;, is defined as

(8) K -_{ Ucex B(x, t) = {x: minyeg |x —y| <t} fort>0,

Tl {xek: maxyesk |X — y| > —t} fort <0.
Obviously, K; is nonempty for ¢ > —r(K) only, where r(K) is the inner radius
of K. We have

(s) K**(s) = (all disks of radius s containing K)
=() (all s-overconvex sets containing K).
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(t) K*(s))s = (all disks of radius s containing K)
=J (all s-overconvex sets containing K).

Proof. (s) readily follows from (i) and (0). On the other hand, a point y belongs
to some disk B(x, s) containing K (thatis, x € K*(s)) iff |x —y| < s, that
is y € (K*(s))s. O

The conjugacy symmetry, while apparently broken when comparing (s) with
(t), will be restored in §4 by replacing “s-overconvex sets containing K by “sets
of constant width s containing K .”

We shall now compare the “growth” properties of adjoint sets with those of
parallel sets.
Theorem II. Let K be convex and s > R(K). Then
) (K*(s+ 1)t =K*(s) = (K))*(s +1t) fort>0,

(K*(s+1)—: CSK*(s) C(K)*(s+1) for —s<t<0.

Proof. (i) Suppose t > 0. The following chain of equivalences holds: x €
K*(s+t)-; & B(x,t) CK*(s+t)eVzeK, B(x,t)CB(z,s+t)&VzeK,
x—z|<s&exeK*s). O

Similarly, x € (K)*(s+1¢) & K; C B(x,s+t) & K C B(x,s) & x €
K*(s). O

(ii) Assume t<0. x e K*(s+¢t)_; & Iy e K*(s+¢) (i.e. KC B(y,s+1)),
with x e B(y, —-t)=VzeK, |[x—z|<s&xe€K*(s). O

Similarly, x € K*(s)© K C B(x, s)=K; C B(x, s+t)&x € (K)*(s+¢t). O

For fixed s, let us now consider the areas of the sets involved in (9) as a
function of ¢, and define f(¢) := [(K*(s));| and g(¢) := |[K*(s + )| . One can
show both functions to be C? in a neighborhood of ¢ = 0. Since f(¢) < g(¢)
with f(0) = g(0), one has f’(0) = g’(0) and f”(0) < g”(0). On the other
hand, Steiner formula (see e.g. [1]) gives f’(0) = |[0K*(s)| and f"(0) = 2=.
We have as a result the following:
Theorem III. The perimeters |0K*(s)|, |0K**(s)| and areas |K*(s)|, |K**(s)|
of a conjugate pair satisfy

d * _ *
(10) 75 K () = [0K*(s)].
d *ok _ i *k
(1) LK™ (9) = s LK™ (9)].
d . =2n if K is s-overconvex,
(12) 251K (S)l{ > 2n  otherwise.

(11) follows from (10) and Theorem I. We have also taken into account in
(12) the fact that |0 K**(s)| is constant in s iff K is s-overconvex. O

Remark. The lack of symmetry between (10) and (11) was to be expected, since
by (d) and (j) K*(s) is increasing in s whereas K**(s) is decreasing in s. It
is here that the concept of conjugacy breaks down.

4. RELATION WITH THE SETS OF CONSTANT WIDTH

Let us now address the question of characterising the sets K left invariant by
the adjoint transform, first raised by Eggleston in another context [10]. Before
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doing so, we shall recall that a convex set K is said to be of constant width d if
its support function satisfies everywhere 4(¢$)+h(n+¢) = d . This amounts (in
the euclidean case) to say that K is complete, that is such that the addition of
any point to K strictly increases its diameter. (See Chakerian and Groemer [9]
for a recent and fairly exhaustive survey of properties of sets of constant width.)
Finally, a set K, is said to be a completion of K if K C K., d(K) = d(K.) and
K, is of constant width. Every convex body possesses at least one completion
(see e.g. [6]). This incidentally will be proved in this section.

Suppose K = & (K,s) = K*(s). Then, clearly, the diameter of K must
be equal to s. Suppose now a point y ¢ K is added to K. As K = K*(s),
this imply y to be at distance bigger than s from some point of K, i.e. K
is complete. Conversely, let K be of constant width s. By (f), one has K C
K*(s). Suppose there is a point y belonging to K*(s) but not to K. The
distance between y and any point of K is then less or equal to s, contradicting
the fact that K is complete. Therefore K*(s) C K, and we have [10]:

(u) K= (K, s)=K*(s) iff K is of constant width s.

The sets of constant width are therefore the fixed points of the adjoint trans-
form, whereas the overconvex sets are the fixed points of the double adjoint
transform. Clearly, a set of constant width s is s-overconvex.

In the following, s will be taken equal to the diameter d = d(K) of K and
will be omitted. Let K. be a completion of K. As K C K, = & (K., d), we
have, using (e) and (k), the very useful corollary:

(v) Any completion K, of K satisfies K** C K, C K*.

(p), (q) and (r) are direct consequences of (v). The following finite construc-
tion, we believe to be new, leads to the obtention of two completions of an
arbitrary, plane body:

Construction. Given a convex body K of diameter d, select two points Xx;
and X, belonging to the boundary K of K such that |x; — x| = d . The line
L(x;, x;) passing through x; and x, divides the plane into two closed half
planes E, and E_. We now construct two sets K, and K; as

(13) K, =(K*NE,))U(K*™NE_).
(14) Ky :=(K*NE_)U(K*™NE,).
As announced, we have

(w) K, and K, are completions of X .

Proof. Choose a coordinate system in which the line L(x;, Xx;) has direction
¢ = 0. Then the support functions of K, and K, are respectively given by:
h*(¢), 0<¢<m, (), 0<¢<m,
13) @) = { 10 m@) ={ .
h**(¢), n<¢<2m, h*(¢), mn<¢<2m,
where h*, resp. h** are the support functions of K*, resp. K**. By the choice
of x; and x,, we have x; € K*, aswell as x; € K** for i=1, 2, and so K,

and K, are convex bodies possessing continuous support functions, which by
(4) satisfy

(16) ha(9) + ha(m + @) = ho(d) + hp(n + ¢) = d

which completes the proof.
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X1
X2

FIGURE 1

(w) contains as a corollary the theorem of Pal, stating that every bounded
set possesses at least one completion. Alternatively [12], one can observe that
the set 1(K* + K**) (Minkowski sum) possesses a support function satisfying
(16) and, taking (f) and (g) into account, constitutes then a completion of K
as well.

By (v), the intersection of all completions K. of K contains K**, and the
union of all completions is contained in K* . On the other hand, K,NK; = K**,
and K, UK, = K*. We therefore get the following new characterisation, to be
compared with (s) and (t):

Theorem IV. Let K be a plane compact set of diameter d . Then
(17) K**(d) = ﬂ (all completions of K).
(18) K*d) = U (all completions of K).

Remark. Clearly, K, = K, iff K* = K** is, in which case its completion
is trivially unique. When however this is not the case, the set

{hs := Aha + (1 = A)hp}acpo, 1)

constitutes an infinite one-parameter family of support functions of completions
of K. One can easily convince oneself that the family under consideration is
generally far from being exhaustive.

As an example, let K be a segment of length d and extremities x; and
X, (see Figure 1). K*(d) is the lens of radius d and extremities y; and
y2, whereas K**(d) is the lens of radius d and extremities x; and x;.
Both K, and K, are Reuleaux triangles with vertices x;, X2, y; , respectively
X15 X252 _

As any set K of diameter d contains  a congruent copy of K,andas K*(d) C
K*(d) by (e), Theorem IV applied on K implies that any set of constant width
can be contained in a congruent copy of K*(d), i.e. K*(d) is a universal cover.
However, K*(d) does not constitute a minimal universal cover, i.e. it contains
proper subsets themselves universal covers. To see this, consider K**(d/2),
the circumcircle of K , whose boundary splits K*(d) into three disjoint parts
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K., Kz = K*(d/2) and K, . Since it is impossible for any set of diameter
d to have a nonempty intersection with both K, and K, , one then deduces
(by reflection symmetry around the axis x;x;), that K, UKp (or equivalently
K, U Kp) alone is a universal cover. Moreover, the set in question constitutes
a minimal universal cover, since no proper subset of itself can contain at the
same time the disk and the Reuleaux triangle of diameter 4.

The identification of K, UKy as a minimal universal cover (and apparently
the only one discovered so far) belongs to Eggleston [11]. Our proof is however
considerably simpler than the original one.

5. APPLICATION: AREA OF A RANDOM SET OF MAXIMAL GIVEN DIAMETER

We consider in this section the following two stochastic processes:

n points are sequentially (respectively simultaneously) thrown in the plane,
uniformly with respect to the Lebesgue measure, submitted to the condition that
the distance between any two points must not exceed a fixed distance D .

As we shall see, the probability measures generated by the two processes are
different.

Let us begin with the sequential process: we denote by xp, X1, ..., X, the
positions of the n+1 first points realised in the process, and by K,, their convex
hull. We fix xo = 0 for convenience. By construction, d(K,) < D, and the next
point x,,; will be uniformly distributed in the region {x: max;—g, . ,|x—x;| <
D} =K (D). As K (D) C K;(D), the limit K2 (D) := lim,_., K} (D) exists
for any realisation. The following theorem holds:

Theorem V. In the sequential process, K* (D) is a set of constant width D with
probability one.
Proof. Suppose the assertion does not hold; by (p) and (u), K* (D)\KX*(D)
is then nonempty, and moreover (see e.g. (3), (7) and (p)) of strictly positive
area. By construction, any point x thrown in this set will “delete” a part of
KX (D), because a further point, in order to satisfy the diameter constraint,
will be confined in (K% (D) N B(x, D)) C KX (D) only. This implies the sur-
vival probability of K% (D) after m throws to be (|Kx*(D)|/|K%|(D))™ ; hence
KX (D) = K% (D) with probability one. O

(See Sallee [14] for a deterministic version of Theorem V.)

Let A(x;, ..., x,) be a sufficiently regular function of the points positions.

Bearing in mind the fact that each point is conditionally distributed with respect
to its predecessors, one finds that the average of A4 is given by

[ O0(D—-d(Kn)A(X1, ..., Xp)dx1---dxy
(A(XI 9 seey xn))seq = / |K6“(D)| — |K;_1(D)I 1

where 6(---) denotes the unit step function. In particular,

(19)

(20) Qoo ,seq = nlingo(|K;(D)|)seq

exists, and as a consequence of Theorem V satisfies:
— D2

(21) il zﬁD2<aoo,scq< ”T.

The bounds in (21) correspond to the minimal, respectively maximal area of a
set of constant width D, realised as it is well known by the Reuleaux triangle,
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respectively the disk. On the other hand, it is easy to realise that these two sets
are themselves destroyed with nonzero probability for » = 3 already, whence
the strict inequalities in (21). Improving (21) seems to be awkward.

In contrast, the corresponding problem for the simultaneous process can be
fully solved. Actually, using the same notation, we have the somewhat surprising
theorem:

Theorem VI. In the simultaneous process, KX (D) is a disk radius D/2 with
probability one.

Theorem VI is equivalent to the statement

2
(22) lim d g = 2
n—oo ’ 4
where
(23) Ap,sim = (lK;(D)Dn,sim-

Let us make it clear that, by construction, the average of an observable
A(x1, ..., X,) is now given by

Le— fe(D _d(Kn))A(-xl s eeey xn)dxl < dxpy
B = TG~ d R d -

where as before K, is the convex hull of xo =0, x;, ...x,. Itis now necessary
to specify the index n outside the bracket, for the average of, say, a quantity
A(x1, x2) depending on two points only will generally be sensitive to the number
n > 2 of particles to be simultaneously thrown. Let us now consider:

(25) U = /B(D —d(Kp))dx,dx;---dx,.

Suppose K, satisfies D > d(K,). Then D > d(K,) iff x,+1 € K;;(D), and
therefore
(26) P T— fa(D — d(K,J)'K;(D)l d'xl o 'dxn — Uni1

", sim [6(D—d(Ky))dx; - --dx, Un

Let K, be the convex hull of the points X, =0, X;, ..., X,. We have

[ 0D = d({ns1} U KO = d({Fs1} UK dy
v dXpp1dXy o dXpg
< [ 0D - d(Ea)OD - d({3a1} U (Fnsr} UK )
oo dXpp1dXy - dXpyg .

The above inequality is an immediate consequence of the fact that the measure
of the positions available to x,,; (conditionally to d(K,) <D, d(K,) <D and
Xns1 € (Ky)*(D)) is on average bigger in the Lh.s. than in the r.h.s. (observe

that K, and K, are generated in a similar way). But equation (27) is the same
as

(28) ,ur2;+1 > Unlns2
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and therefore, by (26), @n+1,sim < @y, sim » Which was intuitively to be expected.
This proves the existence of the limit dy, sim := limy— oo @y, sim » Which can as
before be shown to satisfy a., sm < 7D?/4. On the other hand,

2\ "
(29) n > / 0D — d(Ky))dx; -~ dxy = <ﬂ) _
(B(0,D/2))" - 4
Hence, from (26),
(30) Ao, sim = nlilglo(ﬂn)l/" > 7ZD2/4

and the theorem is proved. O

Remark. Believe it or not, in statistical mechanics u, is called microcanonical
partition function and Theorem VI is equivalent to: “The Gibbs free energy of
an assembly of N particles in the plane with Hamiltonian H(x, ..., x,) =
Amax; ;|x; — x;|* at temperature B-! is g = f~!In(484/n); moreover, the
shape of their convex hull is asymptotically circular with radius (N/484)~1/2.”
We refer the reader to [2, 3] for further details.
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