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Abstract The advent of simple and affordable tools
for molecular identification of novel insect invaders

and assessment of population diversity has changed

the face of invasion biology in recent years. The
widespread application of these tools has brought with

it an emerging understanding that patterns in biogeog-

raphy, introduction history and subsequent movement
and spread of many invasive alien insects are far more

complex than previously thought. We reviewed the

literature and found that for a number of invasive
insects, there is strong and growing evidence that

multiple introductions, complex global movement,

and population admixture in the invaded range are
commonplace. Additionally, historical paradigms

related to species and strain identities and origins of

common invaders are in many cases being challenged.
This has major consequences for our understanding of

basic biology and ecology of invasive insects and

impacts quarantine, management and biocontrol pro-
grams. In addition, we found that founder effects

rarely limit fitness in invasive insects and may benefit

populations (by purging harmful alleles or increasing
additive genetic variance). Also, while phenotypic

plasticity appears important post-establishment,

genetic diversity in invasive insects is often higher
than expected and increases over time via multiple

introductions. Further, connectivity among disjunct

regions of global invasive ranges is generally far
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higher than expected and is often asymmetric, with

some populations contributing disproportionately to

global spread.We argue that the role of connectivity in
driving the ecology and evolution of introduced

species with multiple invasive ranges has been histor-

ically underestimated and that such species are often
best understood in a global context.

Keywords Admixture ! Bridgehead effects !
Invasion genetics ! Invasive species management !
Multiple introductions

Introduction

A fundamental problem in invasion biology has long

been how to reconcile the likelihood of reduced
genetic diversity via founder effects with invasive

success across a range of habitats and niches in the

short and long term. Once a central ‘‘paradox’’ of the
discipline, researchers now understand that genetic

diversity has been historically underestimated in many

introduced species, while other invaders appear
remarkably tolerant to genetic uniformity and may

even benefit from periodic founder effects (Roman

and Darling 2007). Considerable work in the past few
decades has focused on understanding the role of

phenotypic plasticity in invasion success, mechanisms

of tolerance to low diversity and rapid evolution in
introduced populations—all of which appear to be

variously important in different systems to invasion

success (Lee 2002; Dlugosch and Parker 2008;
Whitney and Gabler 2008; Lawson Handley et al.

2011). There is also growing recognition that high

levels of genetic diversity can be preserved during
introduction and establishment (e.g., via high propag-

ule number or multiple introductions) and that genetic

diversity can increase over time since establishment,
primarily due to subsequent introductions from the

native or adventive range (Kolbe et al. 2007; Keller

and Taylor 2010; Rius and Darling 2014; Gladieux
et al. 2015). A new paradigm emerging from this work

contends that global movement and spread for many

invasive alien species (IAS) is rapid and often
complex and that multiple introductions and migration

among disjunct parts of the adventive range are

common. Thus, apparently disparate populations
across continents are effectively connected by gene

flow at ecologically relevant time scales. Such patterns
have important consequences from the perspective of

the evolutionary biology of alien populations that

researchers have only just begun to appreciate and
explore. The implications for IAS policy and man-

agement are also likely to be profound.

IAS are a major threat to natural and managed
ecosystems worldwide. The rate of accumulation of

IAS continues to be very high in some parts of the

world (Aukema et al. 2010) and to increase in others
(Essl et al. 2015). Despite the laudable goal of

prevention and/or eradication of IAS, this is a hugely

difficult task, likely to be unsuccessful in the vast
majority of cases. In most situations, managing

invasive alien populations and controlling rates of

spread are the only options (Pyšek and Richardson
2010). Effective management relies on a comprehen-

sive understanding of ecological and evolutionary

patterns in IAS. We argue that this can only be
achieved by taking both a regional and global view

that explicitly considers patterns of movement within

and among regions in the context of adaptive evolu-
tionary change.

The goals of this review are threefold. First, we

present representative examples from the growing list
of cases where global connectivity appears to be a

plausible model for understanding invasive success.

Second, we explore some of the potential conse-
quences of rapid and complex patterns of spread and

the concomitant mixing of potentially divergent

genotypes on eco-evolutionary dynamics. Third, we
examine the ways in which cryptic movement and

complex spread may influence management in the

future. We do not attempt to recapitulate findings of
recent comprehensive reviews (Lee 2002; Dlugosch

and Parker 2008; Le Roux and Wieczorek 2009;

Lawson Handley et al. 2011; Rius and Darling 2014)
but rather build on a growing body of theory and

empirical evidence around globally distributed inva-

ders to explore the potential fundamental shifts in our
understanding of invasion biology.

Patterns of global insect movement

There is an accumulating number of examples where

the global movements of IAS are characterized by (1)

rapid spread from points of introduction via popula-
tion growth and natural dispersal; (2) frequent jump

J. R. Garnas et al.

123

Author's personal copy



dispersal to uncolonized, noncontiguous areas; (3)
multiple introductions from the native range; and (4)

frequent exchange among disjunct invasive popula-

tions worldwide. In some cases, there is also evidence
for back-introduction from invasive populations into

the native range. The Sirex woodwasp, Sirex noctilio,

provides an excellent example of such complexity.
Since 1900, S. noctilio has invaded exotic Pinus

plantations in Australasia, South America and South-

ern Africa and more recently (2005) into native and
exotic Pinus stands in North America (Slippers et al.

2015). Original hypotheses based on limited data

proposed a simple, stepwise route of introduction
between countries in the Southern Hemisphere (Slip-

pers et al. 2001). However, a recent comprehensive

analysis using mitochondrial cytochrome oxidase I
(COI) sequence and Simple Sequence Repeat (SSR)

data, as well as various population genetic tools

[including Approximate Bayesian Computation
(ABC) analysis; Cornuet et al. 2008] revealed far

greater complexity in patterns of global spread

(Boissin et al. 2012). Two evolutionarily distinct
lineages of the wasp have spread widely, one of which

has a proximate origin in Europe while the origin of

the other is unknown. These lineages co-occur in some
regions including Chile and South Africa where they

interbreed, resulting in admixture. Most regions

appear to have received migrants from other invasive
populations (e.g., South America from Europe, Aus-

tralasia and a population of unknown origin; South

Africa from South America and Australasia, etc.),
creating complex population admixtures of different

proximate sources, which may or may not represent

distinct lineages (but that differ at neutral markers).
Even North American populations, where the invasion

was most recently reported, appear to have experi-

enced introductions from at least two sources (Berg-
eron et al. 2011; Boissin et al. 2012; Castrillo et al.

2015). Interestingly, these analyses also suggest that

Europe, where the wasp is native, has been invaded by
a lineage of unknown origin, possibly via an invasive

population in South America (Boissin et al. 2012).
The complex pattern of spread and mosaic of

genetic mixing among invasive populations, as illus-

trated by the S. noctilio example, is by no means
unique to that system. A quantitative review by

Dlugosch and Parker (2008) of recent population

genetic studies of plant, animal and fungal invasions
concluded that while most invaders experience a loss

of diversity initially (i.e., years to decades post-
establishment), diversity is often restored through

multiple introductions, increased populations sizes

(countering drift) and interconnectivity of popula-
tions, and sometimes can even exceed that of native

source populations (e.g., Kolbe et al. 2004, 2007).

Interestingly, Dlugosch and Parker (2008) found a
U-shaped pattern in diversity loss over time; that is,

reductions in allelic richness are most severe at

intermediate time points post-introduction, perhaps
suggesting the importance of drift over founder

effects. A number of studies on invasive alien insect

populations also support the generality of the pattern
that diversity increases with time since introduction.

For example, in an extensive review of medfly

(Ceratitis capitata) studies, Malacrida et al. (2007)
found that multiple introductions consistently con-

tribute to the maintenance or enhancement of genetic

diversity in this important global invader. Similar
processes have been described in invasive populations

of the Eucalyptus Bronze Bug, Thaumastocoris pere-

grinus (Nadel et al. 2009), Harlequin Ladybird,
Harmonia axyridis (Lombaert et al. 2010; Roy et al.

2016), Red Tomato Spider Mite, Tetranychus evansi

(Boubou et al. 2012), Eastern Subterranean Termite,
Reticulitermes flavipes (Scaduto et al. 2012), mosquito

Aedes japonicas japonicas (Zielke et al. 2014), and a

number of other insect invaders (Table S1). The
changing nature of invasive alien populations caused

by multiple introductions over time highlights the

need to periodically reassess diversity in such popu-
lations (something that is not currently being done

routinely for most invasive populations), especially in

light of the implications this can have for manage-
ment, as discussed below.

Genetic diversity in invasive populations is not only

linked to multiple introductions, but can also result
from high propagule pressure, whether as a single

event or as a result of sustained pressure over time. For

example, Kerdelhué et al. (2014) showed that the
original introduction of the Maritime Pine Blast Scale,

Matsucoccus feytaudi, into southeastern France was
comprised of a very large number of individuals.

These introductions possibly occurred during World

War II due to large-scale wood movement. Conse-
quently, the genetic bottleneck in these original

invasive populations appears to have been relatively

weak. Similarly, though the invasion of Drosophila
subobscura from Europe into South America was
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initiated by only a few founders, the subsequent
(serial) introductions into North America apparently

involved a less severe bottleneck (Pascual et al. 2007).

Low numbers of individuals arriving during the early
phase of invasion do not necessarily result in invasion

failure, however. For example, the recent colonization

ofWestern Europe by the Asian hornet, Vespa velutina
nigrithorax, was initiated by the arrival in France of a

single multiply-mated female (Arca et al. 2015).

One of the outcomes of multiple introductions from
the native range of invasive insects is that globally,

populations of some invading pests can comprise two

or more distinct lineages, or even cryptic species
(Miura 2007). For example, in globally invasive

populations of a Eucalyptus leaf weevil (Gonipterus

spp.), at least three distinct species have been found
with two species co-occurring in some regions without

the knowledge of the practitioners managing the pest

(Mapondera et al. 2012). Here an incorrect name,
‘Gonipterus scutellatus’, has been applied to the

invasive pest for decades, becoming a serious imped-

iment to management, including the selection of
specific biocontrol agents and understanding of inva-

sion patterns. Invasive mites too, most notably erio-

phyoids, have regularly been found to comprise
multiple cryptic lineages and/or species (Carew et al.

2009; Skoracka et al. 2014) with closely related,

morphologically indistinguishable but molecularly
distinct forms that differ in important ecological

characteristics (particularly host range; Skoracka

et al. 2013), that co-occur in complex mosaics. The
degree to which the cryptic species and/or lineages

require more nuanced, targeted (or diversified) man-

agement strategies is largely unknown. Cryptic forms
are at the very least a complicating factor for research

and management. The Gonipterus and eriophyoid

examples clearly illustrate how genetic tools can
inform management but also highlight the desperate

need for adequate taxonomic systems to describe this

diversity. In many cases expertise to identify and
describe cryptic species or distinct lineages using

traditional tools simply does not exist. New ways to
systematically characterize and/or name biological

diversity that go beyond traditional taxonomic

approaches will have to be explored, particularly with
respect to microbes (Maddison et al. 2012), though

also for insects.

Apart from the complications arising from the
existence of different lineages in distinct parts of an

invader’s range (e.g., if management must be cus-
tomized), the uniting or reuniting of previously

isolated populations or species can result in unique

combinations of alleles via hybridization or admix-
ture, which can further complicate management

approaches. For example, the emergence of new

genetic combinations resulting from uniting or reunit-
ing separately evolving lineages has been shown for

the Pine Processionary Moth, Thaumethopea pity-

ocampa. While the moth was considered to have
expanded naturally from southern Europe with global

warming, its northward spread now appears to have

been driven at least in part by long-distance transport
by humans of potted pine trees. As a result, the

northern front of the advancing distribution is charac-

terized by genetic admixture combining genes of
populations from different parts of Europe having

different primary phenologies (Kerdelhué et al. 2015).

The existence of globally distributed species is not
new, and in some cases appears to be largely

independent of modern trade (i.e., in highly dispersive

species with wide environmental tolerances, though
cryptic species also commonly occur in these groups;

Spellerberg and Sawyer 1999; Nelson 2002). Very

clearly, however, global spread is very strongly
influenced by the movement of our own species

(e.g., Liebhold et al. 2012; Santini et al. 2013). Based

on a recent spate of invasions of pests of agriculture,
including forest plantations of pine and eucalypts

(particular the latter), it appears that many invasive

insects are reaching global status much more rapidly
than before (Hurley et al. 2016; Roques et al. 2016).

Species such as S. noctilio, Gonipterus spp. and

Ctenarytaina eucalypti (among others) that escaped
their respective native ranges in the late 1800s/early

1900s generally took between 50 and 100 years to

reach truly global distributions (i.e., presence on all or
most continents where hosts occur). Among more

recently emerging invasive insects, several have

achieved such distributions in little more than a
decade or less. For example, Leptocybe invasa, a gall

wasp on Eucalyptus, was first reported in Israel in
2000 (Mendel et al. 2004). At that time, this wasp was

completely unknown, but by 2008 it had spread

throughout the North and South America, southern
and southeast Asia, the Mediterranean and Africa in

what appeared to be a more or less stepwise fashion

(Nugnes et al. 2015). L. invasa spread has been
exceptionally rapid, but several other pests of
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Eucalyptus (e.g., Glycaspis brimblecombei, Ophe-
limus maskelli and Thaumastocoris peregrinus) are

currently spreading globally with similar pace. This

phenomenon has been seen in a number of insects
from diverse taxonomic lineages, as well as across

hosts, herbivorous feeding guild, and life histories

(Hurley et al. 2016). While some recently emerging
pests that exhibit rapid spread could be specifically

and idiosyncratically linked to pathways that permit it

(Paine et al. 2010), Roques et al. (2016) showed that
this faster spread constitutes a general phenomenon

for invasive insects since the mid-1990s, for Europe at

least.
There is widespread agreement that increasing

global connectivity, in particular the growing volumes

and rates of movement of goods and people, is the
most important factor influencing the increase in the

number of invasive insects and micro-organisms

(Fisher et al. 2012; Garnas et al. 2012; Liebhold
et al. 2012; Boyd et al. 2013; Santini et al. 2013; Roy

et al. 2014). Garnas et al. (2012) highlight the complex

interplay between factors that influence the global
movement of pests, leading to the rapid attainment of

global distributions and ‘pest homogenization’ on crop

and forestry hosts. Apart from trade and the movement
of people, these include: (1) the global homogeniza-

tion of host species (e.g., Eucalyptus that is increas-

ingly becoming a global fiber crop; Hurley et al.
2016); and (2) the positive feedback between global

introduction and spread and subsequent invasion. This

latter phenomenon, where invasive populations act as
the source of further introductions, has been termed

the ‘‘bridgehead effect’’ and is increasingly seen as an

important driver of increasing rates of global invasive
species.

The ‘‘bridgehead effect’’ was first described by

Lombaert et al. (2010) in the context of the invasion of
the Harlequin ladybird beetle (H. axyridis), where a

highly fit invasive population in North America

appears to have acted as a source from which further
invasions into Europe, South America and Africa

originated. This event was particularly noteworthy as
it follows on many years where beetles reared and

repeatedly released in multiple regions failed to

establish and invade, and appears to have resulted
from population admixture (Facon et al. 2011). This

phenomenon—where one or more invasive popula-

tions serve as a source or hub for further global
introduction—has also subsequently been described

for many other insects (see Table S1) and is evident in
invasions of S. noctilio, L. invasa and other insects

given to global spread. A particularly successful

original invasion that serves as the source of subse-
quent invasions could be the result of an evolutionary

shift in this population that increases its invasive

ability. Alternatively, such patterns could be ascribed
to a geographic or other advantage with respect to

human movement and trade (Garnas et al. 2012).

Understanding the processes that influence some
populations to serve as sources of invasion while

others not is an important objective of future studies of

invasive insects.
The increased recognition of the complexity of

invasion patterns in insects (and other organisms) has

been driven in a large part by advances in the
availability of more powerful molecular markers and

analysis tools. In insects, mitochondrial COI sequence

data have long been used to trace the origin of invasive
populations. While useful and often very informative,

this tool is also plagued by problems, such as poor

amplification in some groups or the presence of
nuclear mitochondrial pseudogenes (numts) that can

cause an overestimation of diversity and otherwise

confound phylogenetic relationships if not detected
(Song et al. 2008; Haran et al. 2015). The ease with

which modern sequencing platforms allow the devel-

opment of SSR markers (Santana et al. 2009) as well
as their power and repeatability for population genetic

analysis, has led to a dramatic increase in the use of

such approaches over the past decade. These same
advances in sequencing technology are now also

driving the increased use of single nucleotide poly-

morphisms (SNPs) as preferred markers, particularly
at a whole genome or transcriptome level (Chown

et al. 2014). These genomic approaches to population

genetics not only vastly increase the power of the
markers available to describe patterns of diversity, but

also enable the study of the causes and consequence of

invasion at a population genetic level. These tools
have not yet been widely applied to invasive insects.

Apart from standard population genetic and phylo-
genetic tools that have long been used to characterize

molecular data from invasive populations, clustering

methods and likelihood-free ABC methods have in
recent years made it possible to evaluate among and

quantify key parameters of increasingly complex

hypotheses about invasion routes, dubbed ‘‘scenarios’’
(Miura 2007; Estoup and Guillemaud 2010). Two such
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tools that appear to be most widely used at present
(together with traditional tools) are STRUCTURE

(Pritchard et al. 2000) and DIYABC (Cornuet et al.

2008). In particular, DIYABC (as other model-based
ABC programs) makes it possible to combine molec-

ular marker data with data about invasion history,

bottlenecks and historical population sizes. This
allows for quantifying the relative probabilities of

multiple complex scenarios in ways that were previ-

ously not possible (see Table S1 for recent applica-
tions of DIYABC). These tools are responsible for

elucidating a number of the surprisingly complex

invasion routes described above. Interpretation of
results from analyses using STRUCTURE and ABC

(among other tools) can be challenging, especially in

the face of imperfect knowledge of introduction dates
and incomplete and non-standardized sampling of

some populations. Dlugosch and Parker (2008), how-

ever, point out that invasive populations are typically
‘oversampled’ and that in most cases the results should

reflect a fairly accurate picture of the diversity and

relations of at least invasive populations. There have
also been some criticisms of ABC approaches on

theoretical grounds that should be considered when

using or interpreting these data (Robert et al. 2011).

Consequences of complex global movement
of invasive species

The recognition that globally IAS are moving in
complex ways, that the number of propagules per

establishment event is often large, and that multiple

introduction events are common (sometimes from
disparate parts of the native or invasive range) has

broad consequences for predicted evolutionary trajec-

tories of IAS (Lee 2002; Dlugosch and Parker 2008;
Wilson et al. 2009; Lawson Handley et al. 2011; Rius

and Darling 2014). In this section we focus on the

subset of invasive taxa that are adventive in at least
two or three disjunct regions and thus are currently—

or have the potential to become—globally distributed,
and consider some of the consequences that such

patterns might have on fitness, local adaptation and

long-term invasiveness.
Rates of secondary transfer to new areas and

migration between established populations increase

with the size and dispersion of the global adventive
population. Thus, with each novel establishment

event, connectivity among regions increases and with
it the potential for the formation of novel genotype

assemblages in different regions (Fig. 1). Interestingly

(if intuitively), the probability of transfer to a new,
uncolonized region peaks then begins to decline once

half of the possible regions have been colonized, as the

opportunities for new establishments decline until a
species becomes cosmopolitan (Fig. 1, red line). This

contrasts starkly with the probability of movement of

individuals when secondary transfer among occupied
regions is included, which increases linearly with the

number of established regions (Fig. 1, blue line). The

fact that movement of individuals and propagules does
not stop and in fact continues to increase once an area

has been invaded is perhaps an under-appreciated

aspect of IASmanagement. Unless there are barriers to
secondary introduction or spread, the probability of

admixture continues to increase and remains high as

species become globally distributed, unless underly-
ing pathways are disrupted (Garnas et al. 2012).

Myriad direct and indirect effects of invasion have

been elucidated by researchers since Elton (1958) or
earlier and have been extensively reviewed (Liebhold

et al. 1995; Parker et al. 1999). However, the influence

of regional invasion on local and regional ecological
and evolutionary dynamics as well as on global

processes is perhaps less appreciated (Lee 2002;

Lawson Handley et al. 2011). For example, the
phenomenon that ‘‘invasion begets invasion’’ is well

recognized, as reflected in emerging concepts such as

the bridgehead effect (Lombaert et al. 2010). Some
authors invoke rapid evolution in the adventive range

(e.g., selection for dispersal, for association with

human commerce or for other traits that enhance
fitness) as a key driver of the elevated probability of

subsequent transfer (Whitney and Gabler 2008). In

some cases, this is surely true (Kolbe et al. 2007;
Turgeon et al. 2011). However, it is important to

recognize that these elevated rates are a property of

global population size and distribution and do not
require a specific mechanism to act when global

connectivity exists.
The increased potential for movement among

invaded regions brings with it a number of theoretical

possibilities for the mixing of genotypes or for the
sharing of acquired microbial associates and/or natural

enemies. Very high rates of secondary transfer could

have the effect of homogenizing populations and/or
communities across the adventive range, but this
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seems unlikely given that introduction and establish-

ment are still low-probability, chance events. Empir-

ical evidence likewise supports the existence of
structure in the distribution of genotypes around the

world for many systems, rather than a pattern of global

panmixia (Sakai et al. 2001; Lombaert et al. 2010;
Boissin et al. 2012 and other examples discussed

above). Cases where haplotype diversity is low

typically arise from rapid spread of a genotype rather
than homogenization. Whether the creation of novel

assemblages via admixture is an important driver of

evolution (and perhaps of further rates and patterns of
spread) or whether genotype mixing is simply an

inevitable consequence of global invasiveness is a key

question with both practical and theoretical
considerations.

Admixture that brings together individuals and

genes from different source populations in the inva-
sive range is now considered to be a common

phenomenon in invasive populations (Bossdorf et al.

2005; Wares et al. 2005; Rius and Darling 2014).
However, understanding the importance of admixture

to evolution in the invasive range is not a simple
matter. The proposed roles of admixture include

promoting (1) genetic rescue of low diversity popu-

lations (e.g., those at risk due to inbreeding or drift);
(2) adaptive evolution by increasing additive genetic

variance; (3) the aggregation of favorable traits or

gene combinations with possible effects on fitness; or
(4) disrupting local adaptation or creating mosaics of

maladaptation. Alternatively, admixture may have no

direct effects on population fitness or may be
confounded with correlated factors such as propagule

pressure that are difficult to tease apart (Rius and

Darling 2014). Finally, the effects of admixture may
be positive, negative or neutral depending on ecolog-

ical context, the existence and outcomes of rapid

evolution in various parts of the invasive range, and/or
by the stochastic sampling of alleles via the processes

of both drift and secondary transmission. Some of the

hypothetical consequences of elevated propagule
pressure as well as different types of admixture are

highlighted in Fig. 2.

The role of genetic diversity

The importance of genetic diversity to population

success is so intuitive that it has become deeply

ingrained in the scientific literature. This is despite
myriad examples of widespread ecological success of

species that are either exclusively asexual, partheno-

genetic, or have experienced severe bottlenecks post-
introduction into a new range (Roman and Darling

2007). Two broad truths about the role of genetic

diversity and invasion success have emerged in the
past decades, as described in various examples above.

First, genetic diversity is not a prerequisite for the

establishment or spread of invasive organisms (e.g.,
Keller and Waller 2002; Rius and Darling 2014; Arca

et al. 2015). Second, many invasive populations

exhibit high allelic diversity and are fully capable of
rapid adaptive evolution in the adventive range (e.g.,

Kolbe et al. 2004, 2007; Lawson Handley et al. 2011).

Key mechanisms

The idea of diversity as a prerequisite for long-term

population growth and viability takes a few different

forms. First, there are direct effects on individual
fitness. Genetic diversity reduces inbreeding

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Native I1 I2 I3 I4 I5 I6
Discrete populations (native + alien invasive)

P(
in

tro
du

ct
io

n 
pe

r g
en

er
at

io
n)

●

●

1° introductions
1° introductions +
    2° transfers

Fig. 1 Rates of transfer (P) to uninvaded regions (red lines) and
to all regions irrespective of colonization status (blue line) based
on simulation model employing a random transition matrix
representing connectivity among region (n = 20,000). Note that
when once half of the regions are colonized, the probability of
populations reaching uncolonized regions decreases (to zero)
while actual rates of transfer (and therefore the potential for
transfer of cryptic genotypes or forms) continues to increase. It
is likely that quarantine efforts would be abandoned once all six
uncolonized regions (I1–I6) are invaded while the movement of
individuals continues. R code available upon request
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depression, and in sexually reproducing individuals
facilitates the purging of deleterious mutations and the

decoupling of unfavorable gene combinations, partic-

ularly under bottlenecks of intermediate intensity
(Gleman 2003). Recent observational and experimen-

tal evidence from the invasion of H. axyridis strongly

suggests that moderate bottlenecks can positively
affect invading populations, in part by increasing

robustness to inbreeding (Facon et al. 2011). In

contrast, levels of genetic diversity appeared to play
little or no role in the success of at least five

independent introductions of the Western Corn Root-

worm from native North America into Europe (Ciosi
et al. 2008). In this case multiple introductions from

the same source pool have not resulted in admixture to

date but have led to the continental co-occurrence of
independent populations that are genetically distinct,

most likely as a result of drift.

The second main argument in support of the
importance of genetic diversity is that it enhances

the capacity for adaptive evolution. Heritable genetic

variation is required for adaptation to novel or

changing conditions, which has been shown to occur
in a number of introduced species (Lee and Gelembiuk

2008; Whitney and Gabler 2008; Jones and Gomulk-

iewicz 2012; Zenni et al. 2014; Tanaka et al. 2015).
Very often, IAS occupy a breadth of habitats and

niches, in many cases across broad geographic ranges

with divergent biotic and abiotic environments. Many
authors have taken this pattern as implicit evidence

that genetic diversity would at least benefit exotic

invaders if not represent a requirement for medium- to
long-term population success (Kolbe et al. 2004;

Roman and Darling 2007). However, phenotypically

plastic genotypes capable of coping with a variety of
conditions have been shown to be crucial to invasive-

ness in many systems (Zepeda-Paulo et al. 2010;

Barrett 2015). In fact, phenotypic plasticity itself—
once considered an impediment to adaptive evolu-

tion—can mask cryptic diversity and promote the

emergence of novel traits, ultimately leading to an
increase in heritable genetic variation and to popula-

tion and/or species divergence or local adaptation

(Hughes et al. 2008; Pfennig et al. 2010; Hughes
2012). Additionally, theoretical models demonstrate

that genetic bottlenecks have the capacity to increase

additive genetic variation in affected populations—
either by ‘‘converting’’ epistatic into additive variation

via the fixation of some alleles due to drift (Goodnight

1988) or by increasing the frequency of rare recessive
alleles at loci where dominance effects occur (Robert-

son 1952; Willis and Orr 1993). While some studies

are consistent with such predictions (Bryant and
Meffert 1993; Saccheri et al. 2006), on the whole

empirical evidence has been equivocal (van Heer-

waarden et al. 2008; Jarvis et al. 2011; Dlugosch et al.
2015) and primarily derived from limited laboratory

studies.

Genetic effects of population size and population

growth

Invasive populations tend to be characterized by high

population densities, rapid population growth, rapid
spread and broad geographic extent. Theory predicts

that population abundance and rates of expansion can

themselves influence the rates of loss, maintenance
and accrual of genetic diversity. For example, the total

number of mutations per generation and neutral

genetic diversity tend to scale linearly with population
size (Dlugosch et al. 2015). However, the relationship
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Fig. 2 Hypothetical consequences for mean individual fitness
(x) arising from common invasion scenarios. In these scenarios,
the capacity for adaptive evolution in invasive populations is
shown to increase (from left to right) with higher propagule
number, where multiple introductions from the native range
(N) result in simple admixture in an invasive range (I), and
where admixture follows adaptive evolution in part of the global
invasive range (I, I0 and I00). Of course, not all empirical
examples conform to this paradigm, and there are many counter
examples. Still, these ideas are pervasive in the literature and
warrant additional testing. Though not strictly necessary,
scenario complexity may tend to increase as function of time
since initial invasive establishment, indicated by the black
arrow
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between rate of evolution and effective population size
(Ne) is complex and difficult to predict in natural

systems given the opposing processes of drift and

selection. Theoretical and empirical studies tend to
support a negative relationship between population

size and rates of evolution (Lanfear et al. 2014),

though population expansion or contraction can tem-
porarily increase these rates if some mutations are

adaptive (Charlesworth and Eyre-Walker 2007; Lan-

fear et al. 2014). Thus, as invasive populations
increase rapidly post-establishment, rates of adaptive

evolution may be elevated. However, this effect is

likely to be ephemeral in the absence of population
subdivision (which can allow small Ne to persist even

as global population size increases). Population struc-

ture has been shown in a number of invasive insect
species, especially in patchy environments (Vill-

ablanca et al. 1998), but its role as a driver of

evolutionary change in rapidly spreading global
invaders is far from established.

Genetic diversity and niche breadth

The idea of a positive relationship between niche

breadth and genetic and/or phenotypic diversity has
been around since at least Van Valen (1965). How-

ever, it has been notoriously difficult to establish

generality with respect to this phenomenon. Steiner
(1977) showed a moderate positive correlation

between average heterozygosity in Hawaiian Droso-

phila species and host plant use (as well as elevation),
though other authors have concluded that genetic

diversity is more strongly associated with habitat or

environmental heterogeneity (Pamilo 1988). In at least
one case, that of the globally invasive Argentine

ant (Linepithema humile), the loss of genetic diversity

during invasion is cited as one of the key elements
promoting ecological success (Starks 2003; Tsutsui

et al. 2003). However, this phenomenon may be

unique to social insects and therefore linked more to
life history and patterns of polygyny than to diversity

within invasive populations per se (Pedersen et al.
2006; Garnas et al. 2007).

Many species appear capable of occupying a range

of habitats and climatic conditions despite single
introductions of only a few individuals or propagules.

For example, Drosophila subobscura populations in

the New World are estimated to have originated from
fewer than 15 individuals and have now spread to

cover over 15 degrees of latitude in both the Northern
and Southern Hemispheres (Huey et al. 2000; Pascual

et al. 2007; Balanyà et al. 2009). In this case, despite a

strong bottleneck, there appears to have been strong
selection for chromosomal inversion frequency and

for wing size, both of which show a predictable lati-

tudinal cline in the native range that has developed
independently in both northern and southern intro-

duced populations. While the D. subobscura example

provides strong evidence of contemporary evolution in
low-diversity introduced populations—indeed some

of the fastest rates of trait evolution documented to

date in natural populations—the strength of the cline is
still considerably weaker than in native Europe.

Whether this reflects some consequences of reduced

diversity or simply the wider temperature range (and
variability) experienced by flies across their European

range, is not known. Additional chromosomal inver-

sion types that correlate with climate regime are
present in Europe but have not yet been introduced

elsewhere. The idea that the arrival of one or more of

these types could enhance adaptive potential is an
intriguing possibility that cannot currently be tested.

Niche breadth may also expand in response to

relaxed interspecific competition, which along with a
loss of natural enemies may facilitate the occupation

of a greater proportion of the fundamental niche.

However, the question of whether more generalized
populations are themselves more genetically variable

has been elusive. There is a clear role for phenotypic

plasticity and/or selection for a generalized genotype,
particularly in recently introduced populations (Rius

and Darling 2014). However, structured or diversified

habitat use does appear to arise as population niche
breadth increases (Bolnick et al. 2007), though the

changes may or may not be heritable or even

genetically based (but see Pfennig et al. 2010).

Success of clonal invaders

Asexual organisms often have superior capacity for

colonization and rapid spread, owing at least in part to
the ability of single individuals to start new popula-

tions, the absence of a need for mate finding, and the

roughly twofold advantage in rates of population
growth (Maynard Smith 1978). There is some evi-

dence, however, that habitat stability (i.e., low levels

of disturbance) and temporal instability (i.e., annual
crops which must be re-invaded each growing season)
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favor parthenogens (Hoffmann et al. 2008). For
example, a study of sympatric sexual versus asexual

populations of Rhopalosiphum padi (the bird cherry-

oat aphid) showed that the diversity of host plants
utilized by the two forms differed significantly.

Isotopic signatures of asexual populations strongly

suggested feeding on C4 host plants (represented only
by maize in the region where the study was per-

formed), whereas sexually reproducing individuals

primarily fed on C3 plants, likely utilizing a far greater
diversity of grassland plants in the family Poaceae

(Gilabert et al. 2014).

A disproportionate number of IAS exhibiting low
genetic diversity are asexual, at least in aquatic

systems (Roman and Darling 2007). Many insects,

even those for which recombination is common in the
native range, also show a tendency to switch to

obligate or facultative parthenogenesis in introduced

populations (Dybdahl and Kane 2005; Caron et al.
2014). Clonal lineages do exhibit some genetic

variability, however, though inheritance and selection

typically occur at the scale of the genome (rather than
genes) in the absence of recombination. Most of this

variation in asexual lineages probably derives from

mutation, though gene duplication, chromosomal
rearrangement and horizontal gene transfer (among

other plausible mechanisms) can result in intraclone

variability, including in insects (Lushai et al. 2003). In
fact, evidence of within or among clone diversity in

asexually reproducing organisms is accumulating. For

example, Dybdahl and Kane (2005) found non-zero
heritabilities in important life history traits in a

parthenogenetic freshwater snail invader, though no

evidence of local adaptation was detected (suggesting
evolutionary potential but not necessarily that rapid

evolution had occurred). The same study also reported

evidence for phenotypic plasticity across elevations
but no all-purpose genotype (Baker 1965), which

according to the authors predicts a flat reaction norm

landscape across habitats.
Whether or not the success of clonal invaders bears

directly on the importance of genetic diversity and/or
admixture in non-clonal invaders is an open question.

In addition, there are contravening examples where

sexual invaders appear to displace ecologically sim-
ilar, asexual congeners (Auger-Rozenberg and Roques

2012). In the absence of horizontal gene transfer or

occasional or cryptic sex, there is no direct effect of
admixture in asexual organisms, as genomes do not

introgress. However, the concept of a true clonal
population has received criticism in recent years due to

high rates of intraclone variability, persistence of rare

genotypes and strong evidence for adaptive evolution
(Loxdale and Lushai 2003; Lushai et al. 2003).

Numerous asexual pests, for example, have evolved

resistance to insecticides, including the spotted alfalfa
aphid, Therioaphis maculata in North America (Dick-

son 1962). Populations of this insect currently com-

prise numerous strains, including some with
insecticide-resistance traits, despite apparently being

derived from a small asexual founder population

within a few generations (Lushai et al. 2003). In fact,
intraclone selection in obligate parthenogens appears

to be the norm across many groups, and in some cases

may be strong (Vorburger 2006).

Admixture and interspecific hybridization

Among the factors with the potential to influence

evolutionary trajectories in globally invasive popula-

tions, perhaps the one most likely to be strongly
influenced by complexity in patterns of global spread

is admixture. Admixture refers to the genomic mixing

that results from the interbreeding of individuals from
distinct source populations or lineages. Secondary

contact outside the native range scales with the rate of

transfer among regions along with the number of
independent introductions outside the native range,

both of which are strongly influenced by growing

volumes of global trade. The importance of admixture
has historical precedent too and has been well

characterized with respect to the evolution of our

own species. Reconstructions of intraspecific admix-
ture throughout human pre-history strongly suggests

that this has been common during range expansion and

secondarymigration in humans, and very likely was an
important force favoring the sharing of favorable

alleles and for adaptive evolution (Hellenthal et al.

2014). There is also growing evidence that interspeci-
fic admixture with Neanderthals was an important

source of adaptive variation for skin phenotype, and
perhaps other traits as well (Vernot and Akey 2014).

Admixture has also been implicated in facilitating

range expansion under conditions of both current and
historical climate change in insects and other taxa

(Petit et al. 2003; Krehenwinkel and Tautz 2013).

Understanding how admixture influences fitness,
local adaptation and adaptive potential in invasive
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species is not a simple task. First, multiple intro-
ductions are a logical requirement for admixture in

the invasive range to occur (including for indepen-

dently introduced lineages which come into contact
via secondary spread). However, multiple introduc-

tions can have direct effects on spread potential via

elevated propagule number, irrespective of source
population identity or differentiation. Second, while

short-term gains linked to heterosis—even if ulti-

mately lost via backcrossing—can be an important
mechanism for demographic rescue in small popu-

lations, such effects might be easily confused with

longer term benefits linked to increased additive
genetic variation (Rius and Darling 2014). Admix-

ture arising from the arrival of novel alleles and

gene combinations from secondary spread within
and among regions can disrupt locally adapted

populations via gene swamping (Verhoeven et al.

2011). Alternatively, admixture can increase genetic
diversity and adaptive potential, or bring new ‘‘pre-

adapted’’ traits with consequences for fitness to

established populations. In one case—that of H.
axyridis—admixture is credited as a principal cause

in the creation of a bridgehead population in eastern

North America, which then exported individuals
with increased fitness and propensity to invade to

Europe and perhaps beyond (Lombaert et al. 2010).

A follow-up laboratory study showed that key life
history traits were changed in favor of higher fitness

in experimental crosses designed to recreate

observed admixture (between the North American
and biocontrol strains; Turgeon et al. 2011). In the

majority of cases where admixture is implicated,

however, little evidence exists that the mixing of
genotypes has had serious impacts on global inva-

siveness (Chapple et al. 2013; Rius and Darling

2014). In addition, several of the studies that have
detected positive effects of admixture attribute these

to short-term heterotic effects rather than gains in

additive genetic variation (Keller and Taylor 2010;
Keller et al. 2014), though this can still have

important long-term consequences.

Resource use and genetic diversity in insects

From the perspective of management of invasive pests,

particularly those under intensive management such as

in forestry or agricultural landscapes, a positive

correlation between admixture and invasiveness is not
the only way in which admixture could influence

relevant dynamics. To the degree that admixture

enhances fitness (e.g., via local adaptation or the
acquisition of favorable life history traits), impacts

equilibrium abundances and/or increases the propensity

for outbreak dynamics, such mixing could be very
important. Perhaps more relevant in such systems,

however, is how admixture might influence either host

range or the capacity for adaptation to mitigation
strategies themselves. For example, the importation of

insecticide-resistance alleles has occurred via sec-

ondary transfer in the peach potato aphid and has had
major consequences for growers in affected regions

(Margaritopoulos et al. 2009).

Biotypes and cryptic species

The increasingly widespread use of molecular tools
for species identification and the exploration of

population substructure has led to major increases in

the identification of cryptic species and/or biotypes
(Lawson Handley 2015). Biotypes are generally

considered to be population or lineages within a

species that differ in key traits. Often, biotypes are
asexual lineages and can differ in host preference (host

races), geography (geographic races) or other aspects

of life history, ecology or morphology. In addition to
differentiation in host (plant or insect) use, differences

in phenology among distinct types appear important to

maintaining separation. There are several examples of
the arrival of a genotype or species that is morpho-

logically similar to individuals in an already invaded

area that has resulted in additional damage, increased
niche breadth, or that has confounded management

(Perring 2001; Saltonstall 2002; Peccoud et al. 2008;

Garnas et al. 2012; Mapondera et al. 2012; Wenger
andMichel 2013; Shadmany et al. 2015). For example,

distinct host races of the pea aphid (Acyrthosiphon

pisum) feeding on pea and broad bean, alfalfa and red
clover in Chile are descended from biotypes in Europe

(rather than evolving in situ; Peccoud et al. 2008).
Thus it seems likely that multiple introductions of

host-adapted biotypes are responsible for the broad

host range of this species rather than in situ evolution
in the invasive range. Similarly, some species of the

wheat curl mite (‘‘Aceria tosichella complex’’) are

widely distributed with broad host range while others
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are restricted and specialized (Carew et al. 2009;
Skoracka et al. 2013, 2014). Other co-introduced

lineages (e.g., S. noctilio, T. peregrinus) do not appear

to differ markedly in host range, though more subtle
differences in preference cannot be excluded. Estab-

lishing the generality of biotype-specific host use in

invasive insects has major implications for quarantine
and pest management.

Community sharing and symbiont transfer

The Enemy Release Hypothesis is a central and well-

supported (if partial) explanation of the success of
invasive species (Roy and Lawson Handley 2012;

Heger and Jeschke 2014). However, when individuals

from distinct source populations or lineages come
together, they rarely come alone. Invasive insects, for

example, bring with them a suite of obligate and

facultative symbionts, including mutualists, parasites
and commensals, some of which can have important

effects on fitness (Dillon and Dillon 2004; Moran

2007). In addition, there is growing evidence of
symbiont switching in novel communities (Werren

et al. 2008; Taerum et al. 2013). For example, increased

performance and the production of female-biased
offspring in Rickettsia-infected whiteflies (Bemisi

tabaci) provide a strong case for the role of a facultative

endosymbiont in the insect’s invasion in California
(Himler et al. 2011; Lawson Handley et al. 2011).

Fungal symbionts once thought to be obligately asso-

ciated with specific hosts have also been seen to change
in invasive populations. Populations of native Sirex

nigricornis in North America now regularly carry

Amylostereum areolatum, a fungal symbiont carried—
and putatively introduced—by the invasive S. noctilio,

and vice versa with the A. chailletii symbiont of S.

nigricornis (Hajek et al. 2013; Olatinwo et al. 2013;
Wooding et al. 2013). The fitness consequences of this

switch are not yet known, but what is clear is that

secondary transfer of North American populations of S.
noctilio now carries additional risk. Given the ubiqui-

tous associations between insects and microbes, the co-
introduction and/or novel acquisition of microbial

associates by invasive insects may be quite common,

with impacts that are typically subtle or at least
overlooked. There are cases, however, where novel

associations acquired in a non-native range can have

truly devastating consequences (Hulcr and Dunn 2011;
Wingfield et al. 2016).

Implications of complex movement patterns
for management

Quarantine and control

Controlling the movement of harmful or invasive
species is an incredibly complex task. Even for known

pests, restricting pathways and/or maintaining effective

quarantine requires constant vigilance as well as
cooperation from all relevant trade partners. Agree-

ments such as those under the International Plant

ProtectionConvention (IPPC) aim toestablish standards
to ensure fairness and technical soundness of trade

controlmeasures, but competing interests, the economic

benefits of free trade and the sheer volume of global
shipping and transport make the prevention of primary

or secondary pest establishment a daunting task (Mum-

ford 2002; Saccaggi et al. 2016). Application of
phytosanitarymeasures under these protocols, container

inspection, and post-harvest treatments (e.g., irradia-

tion, heat, methyl bromide treatment, or exposure to
high CO2 or lowO2 concentrations) are often expensive

and/or inadequately applied, variably effective and

inconsistently enforced (Liebhold et al. 2012; Haack
et al. 2014; Roy et al. 2014; Eschen et al. 2015). Still,

programs aimed at maintaining pest-free zones (PFZs)

have been successful in some cases, such as for the
medfly inChilewhere consistentmonitoring and regular

eradication efforts have prevented populations from

gaining a foothold since 1982 (Follett and Neven 2006).
Given the difficulties of maintaining a PFZ or of

preventing the establishment of known and unknown

pests alike, it is not surprising that managing genotype
or provenance-specific movement of established pests

receives very little consideration. Once a pest has

become firmly established, maintaining quarantine
import restrictions is likely to be complicated by fair

trade regulations (Mumford 2002). The one exception

is for species where clear biotypes or strains can be
identified, though this is the case for only a small

subset of species. The arrival of new biotypes of the

pea aphid to Chile increased the host range of the
insect considerably, with major economic effect

(Caron et al. 2014).

So what of the knowledge that admixture, at least
under certain circumstances, can influence invasive-

ness or the capacity for adaptive evolution in intro-

duced populations? In the face of massive economic
forces promoting free trade, it is unlikely that a purist
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strategy (such as banning or severely restricting trade
among regions with different genotypes of the same

pest) is feasible or even desirable. However, in a

number of cases, ongoing vigilance may have pre-
vented the movement of genotypes, biotypes or key

symbionts, potentially avoiding further catastrophic

effects of invasion. We advocate increased consider-
ation of genetic and microbial diversity when imple-

menting quarantine or the regulation of movement of

globally established pests. It is critical for governments
and regulatory agencies to recognize that the proba-

bility of movement of individuals increases signifi-

cantly with global population size andwith each region
that is invaded. This is probably reasonably accepted

with respect to the likelihood of new colonization

events. However, greater recognition is needed that
rates of secondary transfer increase and remain high

even once a pest attains a global distribution (Fig. 1).

This can have dramatic consequences for evolutionary
trajectories, and the long-term efficacy of control

methods is underappreciated at best.

Prospects for the future

Molecular tools have powerful potential for detecting
the spread of pests and pathogens, but there are many

challenges (Armstrong and Ball 2005; Bohmann et al.

2014; Chown et al. 2014; Lawson Handley 2015).
Environmental sampling, for example, is already being

used to track the movement and spread of aquatic

invaders via the detection of invader DNA rather than
the species themselves (Jerde et al. 2011). Bulk

screening of insect or microbial samples using mas-

sively parallel barcoding approaches could potentially
be used to flag known invaders at ports of entry. Current

limitations linked to cost, time and the availability of

comprehensive barcoding databases of known pests
present significant difficulties. However, there is little

doubt that such technical barriers could be overcome

with time and sufficient effort. In fact, there is scope for
considerable automation of such screening, which

would clearly be necessary given the volumes of trade
in question. While at their core, inspection-based

methods require a ‘‘blacklisting’’ philosophy where

known pests are denied, such lists could be expanded to
incorporate aspects of population-level diversity in the

context of the known distribution of genotypes. In

addition, enhanced databases together with advanced
clustering algorithms should allow the flagging of

species that are phylogenetically related to known
invaders. Potentially harmful symbionts could also be

readily detected in this way.

Conclusions

In this paper we examine and reflect on the growing

evidence of complex patterns of global movement of a

number of important invasive pests. One consequence
of this complexity is widespread admixture and a

general increase in genetic diversity over time. While

the consequences of these patterns are not always
clear, there is evidence that mixing of divergent

lineages contributes to rapid evolution and to inva-

siveness and may seriously complicate management
efforts. There are currently few, if any, effective

mechanisms in place to systematically track genetic

and evolutionary changes in populations at regional,
national or international scale. There appears to be

even less action with regard to policy to mitigate

secondary spread between invaded regions despite
clear evidence of its importance. Inclusion of such

considerations within risk assessment protocols would

be a first step. The patterns and consequences high-
lighted in this paper will hopefully contribute to an

urgent call for efforts to address these shortcomings.
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