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1 Introduction

Many problems of asymptotic behaviour of tail distributions may be reduced to
asymptotic analysis of the Laplace integral

Iλ =

∫
U

a(u)e−λf(u)du, (1)

where U is a compact set in Rd. Here a is called the amplitude and f the phase.
Both a and f are supposed to be smooth enough. We shall assume below that
minu∈U f(u) = 0 and that the set

M = {u ∈ U : f(u) = 0}

is an m-dimensional smooth manifold, 0 ≤ m ≤ d− 1.
Textbooks and monographs on Laplace asymptotic method usually consider the

case m = 0, that is, f(u) has isolated points of maximum, in a pinch m = d −
1, whereas in applications one often meets intermediate cases. There are several
approaches to study the case of an arbitrarym. For instance, an interesting approach
is to integrate over the level set f(u) = c and then with respect to c ≥ 0. Then the
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integral becomes a usual Laplace integral, with the differential form df(u)∧ωf (u) =
dx1∧· · ·∧dxd, where the (d−1)-form ωf (u) is called the Gelfand–Leray differential
form. For those u0 where the gradient ∇f(u0) is non-zero, the form ωf (u) exists in
a neighborhood of u0; its restriction to the level manifold {u : f(u) = c} is uniquely
defined and

ωf (u) =
1

|∇f(u)|2
d∑
j=1

(−1)j−1∂f(u)

∂uj
du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ dud, (2)

where d̂uj means its absence, see e.g. Arnold et al. [2, Chap. 7]. Therefore, we have∫
U

a(u)e−λf(u)du =

∫ ∞
0

e−λc
(∫

f(u)=c

a(u)ωf (u)

)
dc. (3)

In this way the problem has been reduced to the asymptotic expansion of the fol-
lowing function at zero

F (c) =

∫
f(u)=c

a(u)ωf (u).

Assume for a moment that F (c) can be expanded as

F (c) = F0c
ρ0 + F1c

ρ1 + · · · as c ↓ 0, (4)

for some −1 < ρ0 < ρ1 < . . . and non-zero Fj’s; the main difficulty to follow
this approach is how to deduce such an expansion especially for the case of an
arbitrary dimension m of the manifold M. However, assuming that (4) holds, then
the integration with respect to c finally leads to the expansion

Iλ = F0Γ(ρ0 + 1)λ−ρ0−1 + F1Γ(ρ1 + 1)λ−ρ1−1 + · · · .

This approach was discussed by Combet [7, Chap. 2] for the case of a single mini-
mum, i.e., m = 0.

In this paper we shall follow another, also direct approach based on integrating
alongM, using Fubini’s Theorem, and then using uniform asymptotic single-point-
minimum results. So we start with the classical Laplace asymptotic method result
which deals with the case where the minimum is attained at a single point, so that
m = 0.

2 Standard Laplace asymptotic method in case

m = 0

We assume f ∈ C2(U); denote by f ′′(u) :=
[
f ′′ij, i, j = 1, . . . , d

]
the Hessian matrix

of the amplitude f at point u, where f ′′ij is the partial derivative of f with respect
to ui and uj.
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Theorem 1. Let a function f(u) ≥ 0 have the unique inner point of minimum in
U , say u0,

f(u0) = 0, inf
u:‖u−u0‖≥ε

f(u) > 0 for every ε > 0. (5)

Suppose that the minimum of f is non-degenerate, i.e.,

det f ′′(u0) > 0. (6)

If, in addition, a ∈ C2r(U) and f ∈ C2r+2(U) for some r ∈ Z+, then the following
decomposition holds:∫

U

a(u)e−λf(u)du = λ−d/2
[
c0 +

r∑
i=1

ciλ
−i + o(λ−r)

]
as λ→∞, (7)

where

c0 = a(u0)
(2π)d/2√
det f ′′(u0)

. (8)

The intuition behind the fact that so many derivatives are necessary for obtaining
the decomposition (7) with r+ 1 terms may be found, e.g. in Bender and Orszag [4,
Sect. 6.4], where the decomposition with two terms, r = 1, was considered in the
univariate case d = 1, see also Fedoryuk [9, p. 69] and Trofimov and Friezen [14].
We should also mention asymptotic expansions, r = ∞, by Combet [7, Chap. 1]
and by Wong [17, Chap. IX, Sect. 5]; and, for a boundary point u0 and finite r, by
Bleistein and Handelsman [5, Sect. 8.3]. Notice that Fulks and Sather [10] derived
a similar asymptotic expansion of the form

∑r
i=0 ciλ

−(d+i)/2 assuming asymptotic
expansions of a and f along every radius instead of differentiability; our assumptions
on differentiability of a and f cancel the terms λ−(d+i)/2 with i odd.

Various approaches for calculation of the coefficients cj for j ≥ 1 in the one-
dimensional case d = 1 are discussed, in particular, in Wojdylo [15] and López et al.
[12].

Proof. In order to make formulas shorter, let us suppose that 0 ∈ U and u0 = 0.
Since the point of minimum is non-degenerate and the function is everywhere positive
except 0 (the conditions (6) and (5)), there exists a δ > 0 such that f(u) ≥ δ‖u‖2

for all u ∈ U . Therefore,∫
‖u‖≥ log λ√

λ

|a(u)|e−λf(u)du ≤ ‖a(u)‖C(U)

∫
‖u‖≥ log λ√

λ

e−λδ‖u‖
2

du

= o(λ−r) as λ→∞. (9)

Since a(u) ∈ C2r(U), Taylor’s theorem for multivariate functions justifies the
following decomposition:

a(u) = a(0) +
∑

1≤|γ|≤2r

Dγa(0)

γ!
uγ + o(‖u‖2r) as u→ 0,
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where, for γ ∈ (Z+)d and u ∈ Rd, we follow the multi-index notation |γ| = γ1 +

· · ·+ γd, γ! = γ1! · · · γd!, uγ = uγ11 · · ·u
γd
d and Dγa = ∂|γ|a

∂u
γ1
1 ···∂u

γd
d

. Then

a(u/
√
λ) = a(0) +

2r∑
i=1

Ai(u)λ−i/2 + o(‖u‖2rλ−r) (10)

as λ → ∞ uniformly in ‖u‖ ≤ log λ, where Ai(u) is a homogeneous polynomial of
degree i.

Similarly, since f(u) ∈ C2r+2(U), f(0) = 0 and ∂f(0)/∂ui = 0,

f(u) =
1

2
(f ′′(0)u,u) +R(u),

where

R(u) :=
∑

3≤|γ|≤2r+2

Dγf(0)

γ!
uγ + o(‖u‖2r+2) as u→ 0.

In particular,

sup
‖u‖≤ log λ√

λ

|λR(u)| ≤ const
log3 λ√

λ
→ 0 as λ→∞.

Therefore, Taylor’s expansion for the exponent is applicable:

e−λR(u) = 1 +
2r∑
i=1

λiRi(u)
1

i!
+O((λR(u))2r+1)

as λ→∞ uniformly in ‖u‖ ≤ log λ√
λ

. Hence, as λ→∞ uniformly in ‖u‖ ≤ log λ,

e−λR(u/
√
λ) = 1 +

2r∑
i=1

Qi(u)λ−i/2 + o(λ−r), (11)

where Q2i(u) is a polynomial consisting of terms of even degree and Q2i+1(u) is a
polynomial consisting of terms of odd degree.

Combining (10) and (11), we deduce that

a(u/
√
λ)e−λf(u/

√
λ) = e−(f ′′(0)u,u)/2

[
a(0) +

2r∑
i=1

Ti(u)λ−i/2 + o(λ−r)

]
, (12)

where T2i(u) is a polynomial consisting of terms of even degree and T2i+1(u) is a
polynomial consisting of terms of odd degree. For i odd,∫

Rd
e−(f ′′(0)u,u)/2Ti(u)du = 0.
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The latter integral over the set ‖u‖ ≥ log λ is of order o(λ−r), so that∫
‖u‖<log λ

e−(f ′′(0)u,u)/2Ti(u)du = O(λ−r) as λ→∞.

Thus, integrating (12) over ‖u‖ < log λ we should exclude all polynomials Ti of odd
degrees and then, as λ→∞,∫
‖u‖<log λ

a(u/
√
λ)e−λf(u/

√
λ)du = a(0)

∫
‖u‖<log λ

e−(f ′′(0)u,u)/2du

+
r∑
i=1

λ−i
∫
‖u‖<log λ

T2i(u)e−(f ′′(0)u,u)/2du+ o(λ−r),

which together with (9) is equivalent to the theorem conclusion.
We also need a generalization of this theorem to functions a and f depending

on some parameter. In [8] there is a corresponding theorem for the case d = 1. We
formulate a version of its multidimensional generalisation. Consider the integral

Iλ,θ =

∫
U

a(u, θ)eλf(u,θ)du, (13)

where θ ∈ Θ is a parameter. We assume that f ∈ C2(U) for every θ ∈ Θ.

Theorem 2. Let a function f(u, θ) ≥ 0 have the unique inner point of minimum
in U , say u0(θ),

f(u0(θ), θ) = 0, inf
θ∈Θ,u:‖u−u0(θ)‖≥ε

f(u, θ) > 0 for every ε > 0.

Suppose that, for every θ ∈ Θ, the minimum of f is non-degenerate, i.e.,

det f ′′(u0(θ), θ) > 0.

Suppose that, for some r ∈ Z+, we have a ∈ C2r(U) and f ∈ C2r+2(U) in u ∈ U for
every θ ∈ Θ. If all partial derivatives of a(u, θ) of order 2r and of f(u, θ) of order
2r + 2 are uniformly continuous in θ ∈ Θ, then the following decomposition holds:∫

U

a(u, θ)e−λf(u,θ)du = λ−d/2
[
c0(θ) +

r∑
i=1

ci(θ)λ
−i + ψ(λ, θ)

]
, (14)

where ψ(λ, θ)λr → 0 as λ→∞ uniformly in θ ∈ Θ.

Proof. Since all partial derivatives of a(u, θ) of order 2r and of f(u, θ) of order 2r+2
are uniformly continuous in θ ∈ Θ, we may apply Taylor’s decomposition as in the
previous proof with the remainder terms uniform in θ. This allows to follow the
same calculations as above.

Notice that, for every j, the coefficient ci(θ) is a smooth function of the partial
derivatives of a(u, θ) at point u0(θ) of order not greater than 2i and of partial
derivatives of f(u, θ) at point u0(θ) of order not greater than 2i+ 2.

Notice also that due to the uniformity of the decomposition it can be integrated
in θ in the case where Θ is a manifold, say, in Rd1 .
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3 Laplace asymptotic method in case 1 ≤ m ≤ d−1
In this section we consider the case where M—the set of minimum of the phase
f(u)—is a m-dimensional manifold without boundary, 1 ≤ m ≤ d− 1, of finite and
positive volume.

We assume that all the points of M are points of non-degenerate maximum
in the sense that for any v ∈ M, the rank of f ′′(v) is equal to d − m. Denote
by det f ′′d−m(v) any non-zero (d − m)-minor of the matrix f ′′(v); notice that all
(d−m)-minors are equal one to another, by using orthogonal transform.

Fix some r ∈ Z+. We assume that the manifold M is C2r+2-smooth. Moreover,
we assume that U may be partitioned into a finite number of disjoint sets U1, . . . ,
Un such that, for every 1 ≤ j ≤ n, the manifold M ∩ Uj is elementary, that is,
there exists a bijection hj : [0, 2]d → cl (Uj) (the closure of Uj) which is 2r+ 2 times
differentiable, non-degenerate and such that

hj([0, 2]m × {1}d−m) =M∩ cl (Uj).

It is non-degenerate in a sense that its Jacobian Jj(z) := deth′j(z) is non-zero at
every point z ∈ [0, 2]d.

For every u ∈ U , denote by ρ(u,M) := infv∈M ‖u− v‖ the distance from u to
the manifold M.

Theorem 3. Suppose that, for every ε > 0,

inf
u∈U :ρ(u,M)‖≥ε

f(u) > 0. (15)

Suppose that
inf
v∈M

det f ′′d−m(v) > 0. (16)

If the above conditions on M are fulfilled and if a(u) ∈ C2r, f(u) ∈ C2r+2, then the
following asymptotical expansion takes place:

Iλ = λ−
d−m

2

(
c0 +

r∑
i=1

ciλ
−i + o(λ−r)

)
as λ→∞, (17)

where

c0 := (2π)
d−m

2

∫
M

a(v)√
det f ′′d−m(v)

dV,

where dV is the m-dimensional volume element of M and c1, . . . , cr ∈ R.

Similar integrals over the manifold—where the function attains its minimum—
appear in different sources, for instance, in an asymptotic equivalence proven by
Barbe [3, Theorem 7.1] for the case where 0 /∈ U and f is a strictly convex, α-
positively homogeneous function, so thatM is a boundary set of U ; by Breitung [6,
Theorem 50].
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Proof. Consider the following decomposition:

Iλ =
n∑
j=1

∫
Uj

a(u)e−λf(u)du =:
n∑
j=1

Iλ,j

and compute the asymptotic behaviour of the jth integral.
Since hj([0, 2]m × {1}d−m) = M ∩ cl (Uj), we have f(hj(s,1)) = 0 for every

point s ∈ [0, 2]m. For every s, the function f(hj(s, ·, . . . , ·)) of d −m arguments is
2r + 2 times differentiable while the function a(hj(s, ·, . . . , ·)) of d −m arguments
is 2r times differentiable. Applying Theorem 2 to functions a ◦ hj and f ◦ hj and
parameter θ = s ∈ [0, 2]m, we obtain∫

t∈[0,2]d−m
a(hj(s, t))e

λf(hj(s,t))| det Jj(s, t)|dt

= λ−
d−m

2

(
c0j(s) +

r∑
i=1

cij(s)λ−i + o(λ−r)

)
as λ→∞ uniformly in s, with

cj0(s) = (2π)
d−m

2
a(hj(s,1))| det Jj(s,1)|√
| det(f ◦ hj)′′d−m(s,1)|

,

where the Hessian of g ◦ hj is taken with respect to the last d − m arguments.
Integration over s ∈ [0, 2]m finally implies that

Iλ,j =

∫
(s,t)∈[0,2]d

a(hj(s, t))e
λf(hj(s,t))| det Jj(s, t)|dtds

= λ−
d−m

2

(
c0j +

r∑
i=1

cijλ
−i + o(λ−r)

)
as λ→∞ where

c0j = (2π)
d−m

2

∫
[0,2]m

a(hj(s,1))| det Jj(s,1)|√
| det(f ◦ hj)′′d−m(s,1)|

ds

= (2π)
d−m

2

∫
M∩Uj

a(v)√
| det f ′′d−m(v)|

dV.

Summation over j ≤ n completes the proof.

4 Weibullian type random chaos

In this section we present a family of Gaussian and non-Gaussian random chaoses
such that their tail asymptotics may be calculated via the Laplace asymptotic
method.
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Let η = (η1, . . . , ηd) be a random vector in Rd, d ≥ 2, with the standard nor-
mal distribution. Let g : Rd → R be a continuous homogeneous function of order
α > 0, that is, g(xt) = xαg(t) for all x > 0 and t = (t1, . . . , td) ∈ Rd. We say
that the random variable g(η) is a Gaussian chaos of order α. In the literature, the
term Gaussian chaos of order α ∈ N is traditionally reserved for the case where g
is a homogeneous polynomial of degree α; this case goes back to Wiener [16] where
polynomial chaos processes were first time introduced. Here we follow the extended
version of the term Gaussian chaos. Examples of the Gaussian chaoses include
quadratic forms of components of Gaussian vector, other homogeneous polynomi-
als of the components (for example some Hoeffding symmetric statistics), random
determinants, products of degrees of Gaussian variables.

Gaussian chaos may be considered as a particular example of more general
Weibullian type random chaos. We say that a random vector in Rd, d ≥ 2, say
η = (η1, . . . , ηd), has density function of Weibullian type, if its density function may
be represented as

pη(v) = a
( v

‖v‖β

)
‖v‖βaβ e

−f( v
‖v‖β

)‖v‖ββ , v ∈ Rd, (18)

where both a and f are nonnegative functions on the unit sphere Sd−1,β in Lβ; the
function a(·) is homogeneous of order βa, while the function f(·) is homogeneous of
order β. Hereinafter ‖v‖β stands for the Lβ-norm of the vector v ∈ Rd, that is, for

(vβ1 + · · ·+ vβd )1/β. As above, ‖v‖ := ‖v‖2.
Equivalently, the density (18) may be rewritten in terms of the L2-norm in the

following way:

pη(v) = ã
( v

‖v‖

)
‖v‖βae−f̃( v

‖v‖ )‖v‖β ,

where the functions ã and f̃ are defined on the unit sphere Sd−1 in L2 as follows:
for u ∈ Sd−1,

ã(u) = a
( u

‖u‖β

)∥∥∥ u

‖u‖β

∥∥∥−βa and f̃(u) = f
( u

‖u‖β

)∥∥∥ u

‖u‖β

∥∥∥−βa , u

‖u‖β
∈ Sd−1,β.

Now let us show how the Laplace asymptotic method helps to derive the asymp-
totic behaviour of the tail distribution of the Weibullian chaos g(η). We suppose
that g is not negative, that is, for some x, g(x) > 0, otherwise our problem is trivial.

We start with the equality

P{g(η) > x} =

∫
{v∈Rd:g(v)>x}

pη(v)dv.

By homogeneity of g, the domain of integration is determined by the inequality
‖v‖αβg(v/‖v‖β) > x, so that

P{g(η) > x} =

∫
{v: ‖v‖β> x1/α

g1/α(v/‖v‖β)
, g(v/‖v‖β)>0}

a
( v

‖v‖β

)
‖v‖βaβ e

−f( v
‖v‖β

)‖v‖ββdv.
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Now it is natural to introduce new integrating variables v = (r, `), where r = ‖v‖β ≥
0 and ` = v

‖v‖β
∈ Sd−1,β. The volume of dv is equal to rd−1J(1, `)d`dr. Changing

in such a way variables, we have (we set g(`) = g(v/‖v‖β), a(`) = a(v/‖v‖β) and
f(`) = f(v/‖v‖β))

P{g(η) > x} =

∫
{r> x1/α

g1/α(`)
, g(`)>0}

a(`)rd−1+βae−f(`)rβdrd`

=
1

β

∫
`∈Sd−1,β : g(`)>0

a(`)

f
d+βa
β (`)

[∫ ∞
f(`) xβ/α

gβ/α(`)

s
d+βa
β
−1e−sds

]
d`, (19)

where we use Fubini’s theorem and put s = f(`)rβ.
The inner integral is just the incomplete Gamma function which may be approx-

imated in the following way (see, e.g., Abramowitz and Stegun [1, 6.5.32]):∫ ∞
y

sβe−sds = yβe−y
[
1 +

n−1∑
k=1

β · · · (β + 1− k)y−k +Rn(y)

]
, (20)

where Rn(y) = O(y−n) as y →∞ for every fixed n and, moreover,

|Rn(y)| ≤ |β · · · (β + 1− n)|y−n for n > β.

Notice that for β ∈ N the sum is finite, up to β + 1. Therefore,∫ ∞
f(`) xβ/α

gβ/α(`)

s
d+βa
β
−1e−sds = f

d+βa
β
−1(`)

x
d+βa−β

α

g
d+βa−β

α (`)
e
−f(`) xβ/α

gβ/α(`)

×
[
1 +

∞∑
k=1

(d+ βa
β
− 1
)
· · ·
(d+ βa

β
− k
)(

f(`)
xβ/α

gβ/α(`)

)−k]
,

this asymptotic expansion holds uniformly in ` ∈ Sd−1,β because both f(`) and g(`)
are continuous on Sd−1,β which implies that f(`) is bounded away from zero and
g(`) from infinity.

Inputting this into (19) we get

P{g(η) > x} =
x
d+βa−β

α

β

∫
`∈Sd−1,β :g(`)>0

a0(`)e−f0(`)xβ/αd`

×
[
1 +

∞∑
k=1

(d+ βa
β
− 1
)
· · ·
(d+ βa

β
− k
)(

f(`)
xβ/α

gβ/α(`)

)−k]
,

where

a0(`) :=
a(`)

f(`)g
d+βa−β

α (`)
and f0(`) :=

f(`)

gβ/α(`)
. (21)
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Therefore,

P{g(η) > x} =
x
d+βa−β

α

β

[
I0(x) +

∞∑
k=1

(d+ βa
β
− 1
)
· · ·
(d+ βa

β
− k
)
x−k

β
α Ik(x)

]
,

(22)

where

Ik(x) :=

∫
`∈Sd−1,β : g(`)>0

ak(`)e
−f0(`)xβ/αd`

and

ak(`) := a0(`)

(
gβ/α(`)

f(`)

)k
=

a(`)

fk+1(`)g
d+βa−(k+1)β

α (`)
.

We see that our problem has been reduced to the problem of finding the asymp-
totic behaviour of the integral Ik(x) for k ≥ 0 as x→∞. In order to apply Laplace
method, we need to introduce some parametrisation on the unit sphere Sd−1,β in Lβ.
We pass to the hyperspherical coordinates, `(ϕ), that is, for ` = (`1, . . . , `d) ∈ Sd−1,β,

`1 = ‖`‖ cosϕ1

`2 = ‖`‖ sinϕ1 cosϕ2

. . .

`d−1 = ‖`‖ sinϕ1 sinϕ2 · · · sinϕd−2 cosϕd−1

`d = ‖`‖ sinϕ1 sinϕ2 · · · sinϕd−2 sinϕd−1, (23)

where ϕ = (ϕ1, . . . , ϕd−1) ∈ Πd−1 := [0, π)d−2 × [0, 2π) are the angular coordinates
of ` ∈ Sd−1,β; clearly, ‖`‖ depends on ϕ. (One may also pass to the so-called
generalised spherical coordinates, which are more adjusted for Lβ, see [13].) Its
Jacobian is equal to

det J(ϕ) := sind−2 ϕ1 · · · sinϕd−2
‖∇(`β1 + · · ·+ `βd)‖‖`‖
(∇(`β1 + · · ·+ `βd), `)

=
sind−2 ϕ1 · · · sinϕd−2√
`

2(β−1)
1 + · · ·+ `

2(β−1)
d ‖`‖

. (24)

Changing in such a way variables, we have (we set g(ϕ) = g(`), ak(ϕ) = ak(`) and
f0(ϕ) = f0(`))

Ik(x) =

∫
ϕ∈Πd−1:g(ϕ)>0

ak(ϕ)e−f0(ϕ)xβ/α | det J(ϕ)|dϕ. (25)
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In the light of the Laplace methodology we are interested in the set of minimum
points of f0(`), ` ∈ Sd−1,β. Denote

f̂0 := min
`∈Sd−1,β

f0(`) = min
ϕ∈Πd−1

f0(ϕ)

and

M := {` ∈ Sd−1,β : f0(`) = f̂0}, Mϕ := {ϕ ∈ Πd−1 : f0(ϕ) = f̂0}.

We consider two different cases of the structure of the set M:

(i) M consists of a finite number of isolated points.

(ii) M is a smooth m-dimensional manifold without boundary, 1 ≤ m ≤ d− 2, on
the unit sphere Sd−1,β in Lβ.

In fact, the first case is a particular case of the second one, the dimension of
the manifold equals zero, nevertheless we consider it separately, because of our
considerations in this case are elementary applications of the classical multivariate
Laplace asymptotic method.

4.1 The case of finite M
Here we consider a homogeneous continuous function g : Rd → R of order α > 0
and a function f such that M consists of a finite number of points, say M =
{`(1), . . . , `(k)}; equivalently, Mϕ = {ϕ(1), . . . ,ϕ(k)}.

Let g(ϕ), f(ϕ) ∈ C2(Πd−1). Assume that det f ′′0 (ϕ(j)) > 0 for every j = 1, . . . ,
k, where

f ′′0 (ϕ) :=

[
∂2f0(ϕ)

∂ϕi∂ϕl

]
i,l=1,...,d−1

is the Hessian matrix of f0(ϕ). Applying Theorem 1 to the integrals Ik(x) and
substituting the resulting asymptotics into (22), we deduce the following asymptotic
expansion for the Weibullian chaos.

Theorem 4. Let a(ϕ) ∈ C2r(Πd−1) and g(ϕ), f(ϕ) ∈ C2r+2(Πd−1) for some r ≥ 0.
Then the following asymptotic expansion holds:

P{g(η) > x} = x
2d+2βa−(d+1)β

2α e−f̂0x
β/α

(
h0 +

r∑
i=1

hix
−iβ/α + o(x−rβ/α)

)
as x→∞, where

h0 :=
1

β
(2π)

d−1
2

k∑
j=1

a0(ϕ(j))| det J(ϕ(j))|√
det f ′′0 (ϕ(j))

and h1, . . . , hr ∈ R.
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4.2 The case of a manifold

Now consider the case where Mϕ is a m-dimensional manifold without boundary,
1 ≤ m ≤ d− 2, of finite volume.

We assume that the rank of f ′′0 (ϕ) is equal to d − 1 − m for every ϕ ∈ Mϕ.
Denote by det f ′′0,d−1−m(ϕ) any non-zero (d − 1 − m)-minor of the matrix f ′′0 (ϕ);
notice that all such minors are equal one to another. Denote

h0 :=
1

β
(2π)

d−1−m
2

∫
Mϕ

a0(ϕ)| det J(ϕ)|√
det f ′′0,d−1−m(ϕ)

dVϕ,

where dVϕ is the volume element of Mϕ ⊂ Πd−1. Applying now Theorem 3 to the
integrals Ik(x) we deduce the following result.

Theorem 5. Let the manifold Mϕ is C2r+2-smooth for some r ≥ 0. Assume also
that a(ϕ) ∈ C2r(Πd−1) and f(ϕ), g(ϕ) ∈ C2r+2(Πd−1). Then the following asymp-
totic expansion holds:

P{g(η) > x} = x
2d+2βa−(d+1−m)β

2α e−f̂0x
β/α

(
h0 +

r∑
i=1

hix
−iβ/α + o(x−rβ/α)

)
as x→∞, where h1, . . . , hr ∈ R.

This result generalises asymptotics given in Barbe [3, Theorem 7.1], where it
was additionally assumed that (i) a(v/‖v‖β) ≡ const, (ii) βa = 0, (iii) the function

f(v/‖v‖β)‖v‖ββ is strictly convex (in particular, β > 1).

5 Random chaos with independent coordinates

Now consider a special case of the Weibullian chaos where the coordinates of the
random vector η in Rd are independent with the following marginal density function:

pηk(v) = c1e
−c2|v|β , k = 1, . . . , d,

where c2 > 0, β > 0 and c1 is the normalising constant, so that

pη(v) = cd1e
−c2(|v1|β+···+|vd|β) = cd2e

−c2‖v‖ββ . (26)

It is a particular case of (18) with a(v) ≡ cd1, βa = 0 and f(v) ≡ c2.
Let us apply Theorem 5 in order to understand the tail behaviour of g(η) in this

case. Then the functions defined in (21) are equal to

a0(`) =
cd1

c2g
d−β
α (`)

and f0(`) =
c2

gβ/α(`)
.
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We have
f̂0 = min

ϕ∈Πd−1

f0(ϕ) =
c2

ĝβ/α

where
ĝ := max

ϕ∈Πd−1

g(ϕ) = max
`∈Sd−1,β

g(`).

Then

M := {` ∈ Sd−1,β : g(`) = ĝ}, Mϕ := {ϕ ∈ Πd−1 : g(ϕ) = ĝ}.

The Hessian of f0 at the point of its minimum is equal to

f ′′0 (ϕ) = − c2β

αĝ
β+α
α

g′′(ϕ),

so that, for a non-zero (d− 1−m)-minor of the matrix f ′′0 (ϕ), we have

det f ′′0,d−1−m(ϕ) =

(
c2β

αĝ
β+α
α

)d−1−m

| det g′′d−1−m(ϕ)|.

Therefore, in the case of Weibullian radius (26), Theorem 5 reads as follows.

Theorem 6. Let the manifold Mϕ is C2r+2-smooth for some r ≥ 0. Assume also
that g(ϕ) ∈ C2r+2(Πd−1). Then the following asymptotic expansion holds:

P{g(η) > x} = (x/ĝ)
2d−(d+1−m)β

2α e−c2(x/ĝ)β/α
(
h0 +

r∑
i=1

hix
−iβ/α + o(x−rβ/α)

)
as x→∞, where

h0 :=
( 2π

c2β

) d−1−m
2 cd1

βc2

(αĝ)
d−1−m

2

∫
Mϕ

| det J(ϕ)|√
| det g′′d−1−m(ϕ)|

dVϕ,

and h1, . . . , hr ∈ R.

6 Gaussian random chaos

Here we deduce a corollary of Theorem 6 for the case of the Gaussian chaos which
was defined at the beginning of Section 4. So, now η is a random vector in Rd

with the standard normal distribution which means that, in the representation (18),
a(v) ≡ cd1 = (2π)−d/2, βa = 0 and f(v) ≡ c2 = 1/2, β = 2. Then we have the
following corollary of Theorem 6 for the case of Gaussian chaos.
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Corollary 7. Let the manifold Mϕ is C2r+2-smooth for some r ≥ 0. Assume also
that g(ϕ) ∈ C2r+2(Πd−1). Then the following asymptotic expansion holds:

P{g(η) > x} = (x/ĝ)
m−1
α e−(x/ĝ)2/α/2

(
h0 +

r∑
i=1

hix
−2i/α + o(x−2r/α)

)
(27)

as x→∞, where

h0 :=
1

(2π)
1+m

2

(αĝ)
d−1−m

2

∫
Mϕ

| det J(ϕ)|√
| det g′′d−1−m(ϕ)|

dVϕ,

and h1, . . . , hr ∈ R.

Corollary (27) was first proved in [11] by a direct probabilistic method. For
references to the corresponding literature on the topic of various Gaussian models
the interested reader is referred to the aforementioned reference.
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