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Abstract 
 
This PhD thesis is an examination of the concept of “suitability” in friction ridge analysis. The 
decision of whether or not a friction ridge impression is forensically useful, and what specifically 
it is useful for, can have far-reaching consequences to the criminal justice system since it is the 
gate through which marks must pass to proceed in the examination at all. This thesis unpacks 
suitability into component parts, questioning what different decisions examiners may face in 
determining what a particular mark may be useful for and to what degree it may be useful, as 
well as investigating what features they use to support those decisions. It proposes four distinct 
scales of suitability that have applications for policy, practice, quality assurance, research, 
testing, training, and testimony. 
The work is divided into two main parts: first, a white box study to better understand the 
information that is most considered by examiners when making decisions; and second, 
development and validation of a predictive suitability model that relies on both key 
observations from a human expert and automated measures from existing quality tools. 
 
This thesis introduces the benefits of considering suitability in an expanded and more nuanced 
way. It also demonstrates the performance that can be achieved by a hybrid examiner-
algorithm model that leverages the strengths of both to provide consensus-based guidance. 
 
Résumé  
 
Cette thèse de doctorat étudie le concept de "suffisance" associé à l'analyse des traces 
papillaires. La décision de savoir si une trace est utile ou non d'un point de vue forensique, et à 
quoi elle sert spécifiquement, peut avoir des conséquences considérables pour le système de 
justice pénale, puisqu'il s'agit de la porte d'entrée par laquelle toutes les traces doivent passer 
pour pouvoir éventuellement continuer vers la phase de comparaison. Cette thèse décompose 
le concept de suffisance en plusieurs composants, en s'interrogeant sur les différentes décisions 
auxquelles les examinateurs sont confrontés lorsqu'ils déterminent la qualité d'une trace 
particulière et son degré d'utilité, et en étudiant les caractéristiques qu'ils utilisent pour étayer 
ces décisions. Ce travail propose quatre échelles distinctes de suffisance qui ont des 
applications pour la politique systémique, la pratique, l'assurance qualité, la recherche, les tests 
de compétence, la formation ou le témoignage de l'expert. 
Le travail est divisé en deux parties principales : premièrement, une étude de type "boîte 
blanche" pour identifier quelles sont les informations les plus prises en compte par les 
examinateurs lorsqu'ils prennent leurs décisions ; et deuxièmement, le développement et la 
validation d'un modèle prédictif de la suffisance qui repose à la fois sur les observations clés 
d'un expert humain et sur les mesures automatisées des outils de qualité existants. 
 
Cette thèse présente les avantages de considérer le concept de suffisance d'une manière 
élargie et plus nuancée. Elle démontre également les performances qui peuvent être atteintes 
par un modèle hybride examinateur-algorithme qui exploite les forces des deux pour fournir 
des évaluations basées sur le consensus. 
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1 Introduction 

Friction ridge comparison is done using a process that is often articulated in four phases: 
Analysis, Comparison, Evaluation, and Verification (ACE-V). During each phase of this process, 
the human examiner makes decisions in which subjectivity is unavoidably introduced. This 
subjectivity has led to variability, which has resulted in multiple examinations of the same 
friction ridge images yielding different conclusions (Ulery et al. 2011, 2012; Swofford et al. 
2013; Neumann et al. 2013; Ulery et al. 2016), including several high-profile disagreements 
(United States Department of Justice and Office of the Inspector General - Oversight and 
Review Division 2006; Campbell 2011). These disagreements have manifested both as between-
examiner variability and as within-examiner variability upon viewing the same evidence at 
different times. 
 
This potential for variability can reflect negatively on friction ridge comparison science in a 
variety of ways. First, consistency (repeatability and reproducibility) is a component of the 
reliability of a method (Langenburg 2009). Without demonstrated reliability of results and 
conclusions, friction ridge examinations may not meet the threshold for admissibility in a court 
of law (The National Judicial College & Justice Speakers Institute 2019). Second, variability leads 
to professional disagreements. If two experts cannot agree on their conclusions after reviewing 
the same data using the same methodology, both the methodology itself and the expertise of 
the experts are called into question. Third, without consistency in methods and terminology, 
experts are not speaking the same language, and thus cannot communicate effectively, or 
conduct and report meaningful research. Without consistency of methods and terminology, 
there will always be some level of confusion regarding which version of the method was being 
used, or what level of difficulty was tested, or how the conclusion was reached, to name only a 
few. 
 
(A brief note given the importance of terminology: throughout this work, terms will be used 
that may be unfamiliar to the lay reader, or that we are using in very specific ways that may 
differ slightly from the way some examiners may understand them. Whenever a term that 
needs defining is used for the first time, it will be underlined and in italics. This will alert the 
reader to terms that are defined or described in Appendix A.) 
 
The observed variability caused by subjectivity in every step of the friction ridge comparison 
process has been a source of concern to observers and has been commented upon in several 
notable publications (Edwards 2009; President’s Council of Advisors on Science & Technology 
2016; AAAS 2017). This work aims to reduce variability in friction ridge comparisons by making 
a deep exploration into the suitability—or “value”—decision that comes at the end of the initial 
Analysis phase after the quality of a mark has been assessed to determine whether to continue 
the ACE-V process. There are a number of decision points within the Analysis phase, including 
the selection and weight assignment of minutiae and other features; the interpretation of 
distortion and noise; and the ultimate determination of suitability, each of which is an 
opportunity for variability to enter the process. This research seeks to reduce this variability to 
the extent possible by first understanding what information is most important to latent print 
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examiners (LPE) in reaching a suitability decision, then building a predictive hybrid examiner-
algorithm model that combines that highly diagnostic information with automated measures to 
produce standardized guidance on suitability. The overall approach to the research is described 
in Section 1.4. 
 
There are additional factors that add to the challenge of understanding how examiners reach 
suitability decisions, such as the lack of clear thresholds and the fact that very little is known 
about how the information that supports the suitability decision is weighted. These factors, 
which increase the complexity of the undertaking, are described in Sections 1.1 and 1.2.  
 
Finally, a central question to this thesis is, “What is suitability?” We will argue that there is 
much more to this question than a simple determination of value versus no-value. This 
argument is broached in Section 1.3, then explored in greater detail in Chapter 2. 
 
The outcome of this work will be a greater understanding of the nature of the suitability 
decision and how examiners reach that decision, the introduction of new scales and conclusions 
to give LPEs a more nuanced way to think about suitability, and the development of a software 
tool capable of providing consensus suitability guidance across several dimensions following the 
input of only a few key observations. Although some commentators feel that all of these 
questions could be resolved by the simple application of an automated, probabilistic 
assessment tool, this research takes the stance that there may still be value to the intervention 
of the human examiner and that the field is not yet ready for a fully probabilistic approach. 
Thus, we approach the field through the lens of taking the next logical step away from binary 
conclusions toward conclusion scales with more gradients, while evaluating the contribution of 
the human examiner to the decision-making process. 

1.1 Thresholds remain undefined 

When considering suitability, there is one obvious threshold—value or no-value, usually taken 
to mean whether or not a mark will be taken forward to the next step in the comparison 
process. But where does that threshold lie? Each examiner has a personal threshold for where 
value is achieved, and many also differ on their definition of value. Value can variably refer to a 
mark that contains sufficient information to be identified to a source, to a mark that contains 
sufficient information only to definitively exclude a subject, or simply a mark that contains 
sufficient information to provide some useful information to inform an investigation such as 
providing an investigative lead. 
 
And once value has been established, there can be the issue of complexity—the of-value mark 
represents a wide range in quality of marks from the barely-of-value mark to the mark that is so 
clear and complete, it may exceed the corresponding print in quality. Within this range, there 
exists a hidden threshold separating marks that are complex from those that are not. With no 
clear definition of what constitutes a “complex” mark, this decision is essentially subjective and 
thus expected to vary widely from examiner to examiner. 
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Many reports addressing bias, error rate, and variability in decisions (Dror et al. 2005; 
Langenburg 2012; Ashbaugh 1999),  have noted the greatest fluctuation on “complex,” 
“difficult,” or “borderline” marks, but these terms are not defined. Most often in studies, the 
difficulty of the test mark is determined by a consensus of some number of experts, but no 
objective measure of how those experts came to their determination is given, nor is discourse 
typically had on the treatment of outliers. Likewise, one of the most prevalent criticisms of 
commercial proficiency tests, such as that offered by Collaborative Testing Services (CTS), is 
that the difficulty of the marks given on the test is not representative of casework, or is not 
challenging enough (Max et al. 2019; Kelley et al. 2020; Koertner and Swofford 2018). Although 
Koertner and Swofford do measure the clarity of images to reach this conclusion, they also note 
that other factors in addition to clarity likely contribute to subjective assessments of difficulty 
and complexity, and they do not set thresholds or definitions for either term, simply noting that 
as clarity measurements decreased, difficulty assessments increased. Thus, terms are being 
used in the literature that have no real agreed-upon meaning. What is a “difficult mark”? What 
is “representative of normal casework”? Without objective thresholds that define and 
standardize these terms, meaningful communication on the issues surrounding them seems a 
hopeless task. 
 
Marks of varying qualities should not be treated equally. Complex marks should be more 
carefully analyzed and more thoroughly documented and reviewed (Scientific Working Group 
on Friction Ridge Analysis Study and Technology (SWGFAST) 2013; Dror 2009). Policy should 
require increased quality assurance (QA) measures or prohibit examiners from making 
identifications as mark complexity increases, whereas time-savings will result from loosening 
regulations on high-quality marks that carry a low chance of error (Ulery et al. 2013; Kellman et 
al. 2014; Ashbaugh 1999). However, without a standardized method to define these thresholds 
and ascertain complex marks, any such policies would be arbitrary. 
 
In essence, without some means of standardizing thresholds, whether or not a mark will be 
declared of value and compared or declared no-value and discarded, or whether a mark will be 
recognized as complex and treated with extra care or designated as high quality and given 
superficial review is largely a matter of chance. One examiner will reach one conclusion 
regarding the suitability of the mark, another examiner may reach a different conclusion 
entirely. This jeopardizes our criminal justice system, as decisions that could affect the outcome 
of a case are left to little more than the luck of the draw—which examiner will be assigned the 
case? Will they be having a “good eye day” when they are? 
 
One goal of this research will be, not to define thresholds directly, but to create a tool that can 
put a given mark on one side or the other of these thresholds in such a way that a consensus of 
experts would likely agree with the decision. 
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1.2 Information supporting decisions is largely unknown 

It is not understood what specific factors go into determinations of value, complexity, and 
assignment of weight. Ashbaugh suggests factors that should be considered during Analysis 
(substrate, matrix, red flags, etc) (Ashbaugh 1999), but their interpretation and weighting is left 
up to the individual examiner. 
 
Although the Analysis phase has been described as an intelligence-gathering process where the 
quality of the mark is assessed, and the areas to consider during Analysis have been well laid-
out (e.g. Levels One, Two, and Three detail, distortion factors, anatomical source, orientation, 
size of the impression, etc) (Ashbaugh 1999), nobody has broken down the steps, or phases, of 
Analysis itself. 
 
This work proposes that there are three distinct steps, or tasks, that occur while gathering 
information about the mark during Analysis:   
 

• The Observation Task – What do you see? 
The first task of Analysis is to catalog the observations that are made of the 
mark. This may be done sub-consciously, or explicitly; mentally, or with extensive 
documentation. Regardless of how it is done or how it is documented, the first 
step is always the same—look at the mark and determine what information is 
visible. 
 

• The Assigning Weight Task – Is it useful? 
During this task, the features that were noted are assessed for their value to the 
mark, and ultimately, to a comparison. The assignment of weight to each piece 
of observed data is determined by answering (again, whether sub-consciously or 
explicitly) two questions: 

§ How distinctive is it? 
This concept is often expressed by use of the terms “selectivity” or 
“discriminability”.  However, selectivity is a statistical concept that is not 
often clear or linguistically accessible to jurors, along with being 
frequently misused by latent print examiners themselves and 
discriminability is a term that is commonly misunderstood as 
“discrimination” in the sense of racial discrimination and negatively 
interpreted by laypersons. Hence, clearer terminology is desirable. 
 
The author prefers the use of the term “distinctive”. This is a word that is 
in common usage in the English language and will be more familiar to the 
average juror. Its definitions include “markedly individual,” “notable,” 
and “serving to differentiate.” Thus, it neatly encapsulates the real crux 
of the concept of selectivity—when a feature is being selected, the 
examiner is considering its rarity (how markedly individual it is); whether 
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it is notable (if there is something quirky or unusual about the feature 
that makes it stand out and grab one’s notice—that feeling that the 
examiner would be certain to recognize it if they saw it again); and, 
overall, its capacity to differentiate (whether it can help to discriminate 
this particular mark from other marks that may have a similar 
appearance). 

 
§ How confident am I? 

Because every touch differs slightly in pressure, deposition matrix, 
substrate, etc, no two impressions can ever be exactly alike. Thus, every 
time an LPE looks at a mark, there is some amount of distortion present 
and the examiner is doing some level of interpretation of the differences 
between two impressions and assigning tolerances for how much 
dissimilarity is acceptable. They are also assessing the reproducibility of 
the features, considering whether what they see is likely to appear in 
other impressions of the same area. 
 
Although they may not be aware of it, when the examiner is interpreting 
distortion and assigning tolerances, what they are really doing is 
assessing the risk of error associated with each feature determination. 
How certain are they that something is there? How certain are they of 
the identity of the thing they see (e.g. is it a ridge ending, or a 
bifurcation? Is that pattern a loop, or could it be a whorl?). What is the 
chance the examiner has misinterpreted what they think they see? What 
may be the consequences of such a misinterpretation (e.g., could it lead 
to a false identification or a false exclusion? Would it simply make the 
search or comparison more difficult?). The murkier the image, the more 
difficult it is to answer these questions, and thus, the higher the chance 
of making an incorrect determination. 
 
On top of this, there are cultural, policy-driven aspects to be considered.  
Some agencies (for example, the Dutch experts discussed by Langenburg 
(2012)) put a premium on only utilizing minutiae that are clear and 
unambiguous. Others may have additional documentation requirements 
for marks that have low clarity or are deemed “complex.”  For an 
examiner operating in such an agency culture, using a minutia in a 
smudged or low-contrast area would carry considerably higher risk of 
negative outcomes, ranging from being required to complete additional 
documentation to being subject to discipline or re-training if the agency 
determined their decisions were frequently not supported by a 
consensus. Thus, they must decide for each feature that they think they 
see, how high is the risk associated with using this feature? Is the risk 
worth the potential benefit (i.e. having the use of that feature during the 
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Comparison phase, or having sufficient features to even proceed to the 
Comparison phase)? 
 
This concept of risk has a flipside with which most examiners are more 
familiar—that of confidence. Risk and confidence have an inverse 
relationship—the lower the risk, the higher the confidence. Thus, when 
an examiner assigns high confidence to a feature, they have de facto 
determined that the risk of an error (or the risk of an unacceptably 
negative outcome, should there be an error) is low. Conversely, if the 
examiner assigns low confidence to a feature, they are indicating that 
there is a high chance the feature is not what they think it is, or is not 
present at all, and that there is a higher risk of a negative outcome 
associated with its use. 

 
In the assigning weight task, the two questions work in concert to settle on an 
overall, appropriately balanced, opinion of the value, or usefulness, of the 
observed data. Does this mark contain sufficient weight, to be worth carrying 
forward into a comparison? This brings us to the third task of Analysis. 
 

• The Decision Task – What decision do you make? 
In this final step, the actual Analysis decision is made. The examiner considers 
the observed data, the cumulative weight of those data, along with any 
associated concerns about the reliability of the data, and makes a predictive 
determination about the anticipated usefulness of the mark without having ever 
seen any relevant print(s). Depending upon the particular agency policies, the 
examiner may consider whether the mark can be used to identify; whether it is 
of sufficient quality to exclude only; or whether it can merely be used to inform 
an investigation, even in the absence of the ability to render a definitive 
conclusion.  This consideration results in the determination of value or no-value. 
 

Two types of information that may affect the Assigning Weight task are rarity and clusters. 
Examiners tend to give additional weight to what they perceive as rare features. Simply put, 
every examiner knows that a plain ridge ending by itself is more common than a compound 
feature, such as a spur or an enclosure. Most examiners would even agree that some 
compound features, such as enclosures, are more common than others, such as trifurcations. 
Thus, when a rare compound feature is seen during comparison, it is given relatively more 
weight than a common feature would be given. 
 
Likewise, examiners may factor the presence of highly distinctive clusters or target groups into 
their suitability decisions. Groupings of highly distinctive features carry more weight than 
groupings of common features much in the same way that a cluster of two or more simple 
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minutiae in extremely close proximity may form a more distinctive compound feature1. Thus, 
the value of a target group is closely linked with the concept of rarity. 
 
Whether the target group is noted during Analysis for the searching benefit it may provide, or 
for the value in distinctiveness offered by its components, it seems clear that the presence of 
one or more target groups is a criterion that contributes to the overall usefulness of the mark, 
as assessed during Analysis. A mark that has one or more easily-recognizable target groups 
should be easier to locate and identify, and likewise may be identified with greater confidence, 
than a mark that has a spattering of solo minutiae spread throughout the mark without any 
neighbors to anchor them. 
 
The research approach of this project is designed to take these factors along with other analysis 
factors into account. A custom web interface (PiAnoS – Picture Annotation System, version 
4.2.2-h0.2) was created to capture the information examiners considered while reaching their 
suitability decisions, including minutiae, clarity, distortion, target groups, feature clusters, 
rarity, incipient ridges, scars, pores, and confidence in features. These tools and the reasoning 
behind their inclusion are described in Sections 3.1 and 3.2.1. 

1.3 Suitability is multi-faceted 

Suitability is often thought of as a binary proposition—either a mark is of value, or it is not. 
However, in reality, the question of suitability—or what uses a mark may be good for and the 
level of its goodness for that use—is much more nuanced. Even confining ourselves to the 
concept of value, suitability is considered by many laboratories to be more than a binary 
decision. Some laboratories allow for designations of no value, value for identification (VID), 
and value for exclusion only (VEO), a trinary choice; others label these distinctions as value for 
identification versus no-value (Approach 1), whereas still others prefer value for comparison 
versus no-value (Approach 2) (Scientific Working Group on Friction Ridge Analysis Study and 
Technology (SWGFAST) 2013). 
 
Once a mark has been declared as suitable for something, there are still additional things about 
the usefulness of the mark that the examiner might wish to know. For example, is it complex or 
not? Is it suitable for AFIS entry or not? The answers to these questions will affect the way LPEs 
proceed through their workflow and may invoke different policies and requirements. Thus, they 
are all part of the overall decision of whether a mark is “suitable” and what it is suitable for. 
 
The multiple facets of the concept of suitability will be explored in much greater detail in 
Section 2.2. Because this research seeks to develop a tool capable of measuring the consensus 
perception of usefulness of a mark along several different dimensions, or scales, this work will 
refer to the resulting tool throughout as a utility tool. The term “utility” throughout this work 

 
1 For example, a spur is more distinctive than a bifurcation and a ridge ending standing alone (Gupta 1968; 

Osterburg et al. 1977). 
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will be used as synonymous with “usefulness” and is not meant to invoke or imply utility 
functions as related to decision theory (Biedermann et al. 2008). 

1.4 Objectives of the Thesis 

The main objective of this work is to measure and potentially reduce variability between 
examiners in the suitability decision. We seek to meet this objective through a multi-step 
process, which is outlined in this section. One obvious solution to mitigate the challenge of 
variability is to embrace a fully automated, objective process. Although this would indeed 
reduce variability, it would not 
necessarily improve overall outcomes 
(one could imagine a model that 
predicted the exact same, wrong 
response every time). Additionally, 
there are advantages in observation and 
interpretation skills that the human 
examiner brings to the process that 
would be lost in a fully-automated 
system. 
 
The box above and to the right lists a number of potential strategies that could be employed to 
mitigate the impact of the variability that is introduced by a human examiner. This research 
capitalizes on several of these suggestions. We introduce a standardized tool that focuses the 
attention of the examiner on highly diagnostic information and away from less fruitful areas. 
This information is then combined with objective data to offer guidance on the suitability 
decision along four scales. The information that was noted by the examiner will be recorded 
and transparent and the tool can be useful to agencies in setting policies and as a training tool. 

1.4.1 Demonstrate the current level of variability in decision-making  

The first step in the research was to demonstrate the current level of inter-rater variability in 
decision-making. We began by undertaking a white-box study in which LPEs were requested to 
annotate only the information they used to reach their suitability decision, to answer a few 
questions about the quality of the image, and to record their suitability decisions along four 
scales (described in Section 2.2). We then evaluated the trends in agreement on suitability 
decisions. 

1.4.2 Characterize the information examiners use to make decisions 

Next, we used descriptive analyses and machine learning to understand what information 
examiners were relying upon to reach conclusions. Here, we tested how well each participant’s 
annotations predicted their own suitability decisions along the four scales described in Section 
2.2. 

Ways to mitigate inter-rater human variability 

• Introduce standardized tools; 
• Incorporate objective data; 
• Introduce standards and guidelines for 

policy and training; 
• Focus attention on a limited number of 

highly diagnostic features; and 
• Increase transparency to allow review. 
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1.4.3 Identify the key predictive variables 

From this point forward, we worked on designing a model that could to a high degree predict 
the consensus suitability decision along each scale. Using well-known and common machine 
learning techniques, we identified the key predictive variables under both idealized (unlimited 
resources of examiner time and computational resources) and operational (limiting examiner 
input to minimize time requirements and avoiding expensive software development or heavy 
computational load) conditions. 

1.4.4 Evaluate the benefit of human examiner input 

A main question of this thesis was whether the human examiner adds anything to the suitability 
decision process, or whether a fully automated process would yield more consistent results 
against a decision made by a consensus of examiners. We tested this question by creating 
models using examiner-only input, automated-only input, and combinations of examiner and 
automated input to find which yielded the best performance. 

1.4.5 Develop and optimize a model to predict consensus decisions 

Once we had finished exploratory modeling, we optimized the model to reach the highest 
predictive ability using the fewest required inputs and tested the completed model on a new 
set of participants and new images that were not used in the initial study and model building. 

1.5 Structure of the Thesis 

Taking an exploded view of suitability……………………………………………………………………..Chapter 2 
This chapter explores the idea that suitability is not a single, binary decision, but a multi-faceted 
one that we will explore along four scales: value, complexity, AFIS quality, and difficulty. 
 
Understanding how examiners evaluate suitability…………………………………………………..Chapter 3 
In this chapter, we present the manuscript of a published journal article (Eldridge et al. 2020) 
that describes the white box study used to examine the information examiners use to reach 
suitability decisions. This chapter provides additional depth and examples that are not included 
in the article for publication. 
 
Predicting consensus suitability decisions…………………………………………………………………Chapter 4 
In this chapter, we present the manuscript of a published journal article (Eldridge et al. 2021) 
that describes the process of developing, optimizing, and testing the predictive model. This 
chapter provides additional in-depth discussion of the development and decision-making 
processes that were part of this research but were not included in the published article for 
publication. 
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Limitations, Recommendations, and Future Research……………………………………………….Chapter 5 
This chapter describes limitations of the present study and makes recommendations for policy, 
practice, and future research. 
 
Conclusion……………………………………………………………….……………………………………………….Chapter 6 
This chapter is a standalone summary of the entire dissertation, providing a high-level overview 
of the purpose, methods, and results of the research and presenting our vision for the future of 
the field. 
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2 Taking an exploded view of suitability 

An exploded view generally refers to a drawing in which the component parts of an item are 
shown separately, and their relative position is maintained. For example, Figure 1 is an 
exploded view sketch of a Swiss Army Knife. In forensic science crime scene work, exploded 
views are often used to show both the floor and the walls of a scene, giving a simple way of 
understanding the relationships between items of evidence on the walls and those on the floor 
or furniture (Figure 2). 
 
In this chapter, we will take an exploded view of the notion of suitability. Rather than 
considering it as a single thing, we will examine its component parts and consider how they 
may fit together in the decision-making process that occurs during analysis of a mark. First, we 
will review the literature that has already considered the question of suitability. We will then 
describe in detail the four scales of suitability proposed by this work. Finally, we will touch on 
the implications of these scales for crime laboratory workflow and policy and for the criminal 
justice system. 
 
Figure 1 Exploded view of a Swiss Army Knife (copyright Matteo Garbi, 
http://www.studentshow.com/gallery/24369919/swiss-army-knife, used with permission under CC BY-NC 3.0.) 
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2.1 Existing Quality Metrics 

This research does not represent the first attempt to understand the nature of quality 
assessments or to develop a metric of quality; however, it may be the most holistic and focused 
on the needs of manual comparisons in an operational laboratory. Most previous research in 
contrast has been focused on the quality needed for an AFIS search and in fact some have 
focused only on the quality of prints and are not adequate for assessing marks. However, 
several groups have been working on various ways to measure quality and automate the 
suitability decision. Here we briefly summarize their previous work. 
 
In 2011, Hicklin et al. used an examiner survey approach to create an automated metric of mark 
quality (Hicklin et al. 2011). However, they explicitly stated that to them, quality was equated 
with clarity (“…determined in terms of the confidence that the presence, absence, and details 
of features can be precisely detected”) only and no other factors affecting the quality of a mark 
(such as specificity or quantity of features) were considered.  Furthermore, they explicitly 
instructed their participants to ignore any agency notions of utility, saying:  
 

“The participants were instructed to base their assessments on their fundamental understanding of 
friction ridge impressions with no operational goals or legal consequences, not to invoke any agency 
practices or policies for the analysis of a latent print, and not to consider whether they would testify in 
court to their assessments” (p. 393). 
 

 
These results were incorporated into their follow-up research in 2013, in which they presented 
a clarity map tool that utilized a color-coding scheme for local clarity assessments (Hicklin et al. 
2013). This scheme was incorporated into the Extended Feature Set (EFS) that is part of the 

Figure 2 An exploded view of a hypothetical crime scene. 
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Universal Latent Workstation (ULW) and will be tested as a potential predictor variable in early 
phases of the model development work in the present research. 
 
This research, as with their previous 2011 work, was at pains to distinguish between quality and 
clarity, and emphasized that this software focused on only the clarity of the mark, not its overall 
quality (a label that they define to include the quantity and distinctiveness of features). Local 
clarity scores were aggregated into an overall clarity score for the mark that was thresholded 
into four bins (no value; VEO; very difficult or difficult; and easy or very easy). These results 
were compared to subjective results from an examiner survey with good correlation. However, 
this study did not take rarity of features or minutiae counts into consideration. It did suggest 
that the quality maps could be used for designating complex comparisons and for determining 
areas of a mark that may not be given weight due to deficiencies in the corresponding areas of 
the print. Langenburg (2012) suggested this tool could be used for quantifying the number of 
pixels in each quality category versus the total area of the image to calculate an overall quality 
score for the image. 
 
The research group of Yoon et al. published two studies in 2012 and 2013 that sought to 
develop a lights-out approach to measuring quality for use in an AFIS environment (Yoon et al. 
2012; Yoon et al. 2013). Their approach focused on average ridge clarity and minutiae count as 
the main factors driving quality. Rarity of features was not considered in this approach and the 
focus of the research was on looking at the probability of getting a hit in the top-100 candidate 
list. The algorithm generated by this research (LFIQ) generated overall quality assessment 
scores, which will be tested as possible variables for inclusion in the model being tested in this 
research. 
 
Research in 2012 by Murch et al. also focused on AFIS applications and sought to develop 
software for automated feature extraction for use in a lights-out AFIS system (Murch et al. 
2012). This study considered “rare features,” which they defined not as minutiae types that 
were less frequent in the population, but as rare configurations of multiple minutiae that were 
designated by creating triangles between minutiae and measuring the ridge counts between 
minutiae pairs to come up with statistically unusual compound features. 
 
Additionally, in 2013, a group at Pennsylvania State University published on a quality grading 
system that utilized three readily-available software programs to produce a measurement of 
the quality of a mark (Pulsifer et al. 2013). This process utilized clarity, identifiable minutiae, 
and percentage of area with identifiable minutiae to calculate the grade of the mark.  As with 
the others, this metric focused on the quality of the mark (i.e. its clarity and minutiae count), 
but did not address its overall usefulness (i.e. what can reasonably be done with the mark), nor 
did it provide quality thresholds for different decisions. 
 
Another model published by Neuman et al. in 2016 predicted whether a mark should be 
entered into AFIS based upon number of minutiae marked by a human examiner, specificity of 
the spatial relationships between the minutiae (represented by the proportion of exemplars in 
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a reference database that shared at least the same number of minutiae in common with the 
mark as the true source did), and several measures of local clarity (Neumann et al. 2016). 
 
Additional approaches to automated quality metrics for AFIS have included evaluating 
variations in ridge direction (Tabassi et al. 2004; Yen and Guzman 2007) or frequency 
magnitude (Fierrez-Aguilar et al. 2005; Nill 2007) to distinguish ridge flow from background and 
reach estimates of image clarity. Later work has approached the problem using a receptive field 
approach that relies on a self-organizing map and random forest algorithms (Tabassi et al. 2013; 
Danov et al. 2014; Wang et al. 2014). The work of Tabassi et al. has resulted in metrics known 
as NFIQ and NFIQ2, which are widely used, but utilized prints rather than marks in their 
development with biometric applications in mind and thus have limited applicability to manual 
comparisons. 
 
Finally, Chugh et al. (2018) developed a model capable of assigning a quantitative value score to 
a latent mark, rather than a print, which could then be used to predict AFIS rank. This model 
was trained based upon crowdsourced expert examiner opinions of the quantity and quality of 
information present in the mark holistically. However, it did not take specific features or rarity 
into account, nor did it consider the value of a mark for a manual comparison. 
 
Although these approaches all represent steps in the right direction, most focused on the 
mark’s clarity or quantity without considering the distinctiveness of the information contained 
therein, which we posit is an important component of both the suitability decision and the 
weight given to the ultimate sufficiency decision. Although some of the models did incorporate 
a measure of rarity, or specificity, of the features, those that did did not conceive of 
distinctiveness in the same way that examiners think about it or take the importance that 
human examiners put on it into account. Additionally, most of these models put a heavy 
emphasis on AFIS applications, if not focusing there exclusively, without consideration for how 
suitability thresholds differ for manual comparisons and several used prints exclusively in their 
development, reducing their usefulness with marks. Furthermore, none of these models offer 
guidance on the overall utility of the mark for different applications, and most do not provide 
thresholds for more than binary decisions.  
 
Our work seeks to break the notion of the utility of a mark into four distinct scales which cover 
applicability for both manual and AFIS comparisons, and to provide guidance in sorting marks 
across multiple categories on each of these four scales, providing flexibility for different needs 
of operational laboratories. Additionally, we will incorporate the notion of distinctiveness into 
our assessments and utilize real-world marks in the development of our model. 

2.2 Four Scales of Suitability 

Although the suitability decision is often approached as a single concept—value or no value—
this work proposes four aspects of suitability that are useful in forensic science work, training, 
testing, and research. These aspects have been formalized as four separate scales: Value, 
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Complexity, AFIS Quality, and Difficulty. The conceptualization of these four scales and their 
relationship to one another is novel and represents a paradigm shift in how examiners and 
supervisors can think about the “value” of a mark. Because each of these four scales measures 
something different about the usefulness, or utility, of a mark, a single mark’s value along each 
scale may vary. The theoretically overlapping nature of the four scales is illustrated in Figure 3. 
This research creates a tool that is capable of sorting marks into the overlapping categories 
along each scale. 
 
Figure 3 A hypothetical depiction of the possible relationships between the four scales of utility, showing how a single mark can 
rank differently on each scale. Mark (A) is simultaneously insufficient for a categorical conclusion; of value, complex; and not 
AFIS quality and encompasses three different quality rating colors (where green is the highest quality and red, the lowest). (B) 
and (C) are both of value but only AFIS quality with additional QA measures; however, (B) is complex, and (C) is not. The exact 
relative relationships of these scales are unknown; this figure shows one way the thresholds could be placed to illustrate the 
concept. Note that this image is from an early conceptualization of the project and in the final model, the Difficulty scale 
comprised 3 categories (as represented by the 3 colors below) but was not resolved into 10 Difficulty scores. 

 
 

2.2.1 The value scale 

The value scale considers whether or not a mark should be used in a comparison, and if so, how 
strong a conclusion it has the potential to reach. Although some laboratories currently consider 
a “value for comparison” decision, which is separate from a “value for identification decision,” 
many laboratories that have separated the VID decision from the VEO decision have done so in 
a hierarchical manner. That is, it is assumed that if a mark is VEO (value for exclusion only), it is 
inferior in quality to a mark that is VID (value for identification and presumed to also be suitable 
for exclusion). 
 
This brings up a series of questions, the first of which is: are there marks that can be excluded 
that can’t (or shouldn’t) be identified? Figure 4 presents 3 marks that may fall below many 
examiners’ thresholds to identify, yet they could be excluded from most clear prints. Figure 4(A) 
and (B) presents marks with very few clear minutiae, yet these are located right next to an 
anchor, so they could be easily excluded. Figure 4(C) shows a mark that appears to be a whorl 
pattern. Although it is highly distorted and so could potentially be a loop, all arches could easily 
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be excluded. This brings up an additional question: are marks that are of value to exclude 
suitable for excluding all non-donor prints, or are some suitable only for excluding some non-
donor prints? If they can exclude any non-donors, then shouldn’t they be considered “suitable” 
for exculpatory purposes? 
 
Figure 4 Three marks that could be easily excluded from at least some prints but may be more difficult to identify. Marks (A) and 
(B) are focused around an anchor. Mark (C) could easily be excluded from some prints, but not necessarily from all. 

 
 
The converse question is more interesting: are there marks that can be identified that can’t be 
excluded? We propose to represent this using the label “Value for identification only” (VIDO), 
which is not in common use in laboratories today. However, let’s examine the concept. Figure 5 
presents 3 marks that are suitable to identify but may pose a practical challenge for exclusion. 
Figure 5(A) and (B) presents marks that likely come from the tip of a finger and it is unclear how 
far they are from the core. The examiner might request better standards, but they might never 
feel comfortable excluding, since they might never be certain that all the necessary ridge detail 
had been clearly recorded far enough up and out, even if major case prints were requested. 
Figure 5(C) presents a mark with very few orientation and location clues. This mark could be 
identified if it was found using a brute force search. But again, if every part of available ridge 
detail had been searched and this mark wasn’t found, could the examiner be certain and 
confident that the prints they received truly recorded all the subject’s friction ridge skin? In this 
case, the mark could be easily identified, but if it wasn’t, Inconclusive or the Support for 
Different Sources conclusion proposed by the Organization of Scientific Area Committees 
Friction Ridge Subcommittee (OSAC-FRS) might be better conclusion options than Exclusion. 
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Figure 5 Three marks that could be easily identified if located but might pose practical challenges for exclusion. Marks (A) and 
(B) appear to be from the tips of fingers. Mark (C) has few orientation or location clues. In all 3 cases, it might be difficult to be 
certain sufficient exemplars had been received. 

 
 
What do the examples in Figure 4 and Figure 5 have in common? All the marks in Figure 4 that 
could be excluded but not identified (VEO) lacked quantity or quality. All the marks in Figure 5 
that could be identified but should maybe not be excluded (VIDO) lacked anchors. However, 
although all the example VEO marks had low quantity or quality, it is not necessarily true that 
all marks with low quantity or quality are VEO. In other words, particularly when anchors are 
missing, there are situations in which a low quantity or quality mark also can be identified but 
not easily excluded. 
 
This is important to the assumption that VEO marks are somehow inferior in quality to VIDO 
marks because there are times when you would actually need more information (i.e. a higher 
quality or quantity mark) to be able to exclude than what is required to identify. For example, in 
the well-known “zero-point identification” reported in the Journal of Forensic Identification 
(Reneau 2003), a mark was presented that appeared to be from the tip of a finger (Figure 6). 
This mark was not, in fact, a tip, but came from the side of a loop in the middle. If it had been 
excluded because it was not present in any fingertip exemplars, an error would have been 
made. Yet, this mark was identified by the author of the article. Whether or not that 
identification was sufficiently supported is not generally agreed upon within the latent print 
community. 
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Another well-known example of this phenomenon is a case shared by David Ashbaugh (1999), 
in which an identification was made on a telephone wire, based upon poroscopy. Naturally, this 
mark could not be excluded with so little reproducible information available and no anchors. 
 

Both of these two examples 
involve identifications made 
exclusively using Level 3 Detail, a 
risky practice. The very reason 
this practice is risky is because 
Level 3 Detail is reliable, but not 
always reproducible. That is, if it 
is present in both impressions, 
you may rely upon it, but it does 
not always record. Thus, we find 
ourselves in a situation in which if 
an examiner finds the detail in 
both impressions, they may feel 
comfortable reaching an 
identification, but “absence of 
evidence is not evidence of 
absence,” thus one cannot 
exclude on the same information.  
 

Just because a pore, or an incipient ridge, did not record, it does not necessarily follow that it is 
not present in the source skin. In these cases, a VIDO mark could actually be considered inferior 
to a VEO mark because there is not enough information here to successfully exclude. 
 
Finally, Figure 7 presents a mark that does include an anchor, orientation information, and even 
a core and possible pattern type. However, this is another example that could be fairly easily 
identified to a clear print but might be difficult to exclude (thus VIDO). This is due to reliability 
issues with the observed data and falls under the same philosophy as the above. If one marks 
out ambiguous minutiae during analysis that are weakly believed to be present, then they are 
found in the print, this is seen as a confirmation of their existence and an Identification is 
effected. 
 
However, if the ambiguous minutiae are not found, the examiner is not confident enough that 
they truly existed to reach an exclusion decision. Once again, the mark is suitable for ID 
(Identification), but more information, or higher quality information is needed for an exclusion.  
 
 
 
 
 

Figure 6 A “zero-point identification” made using exclusively level 3 
detail. Reprinted with permission from JFI (Reneau 2003). 
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The salient point when 
considering VEO versus VID 
(in the traditional sense, 
which really implies Value for 
both identification and 
exclusion) versus VIDO is not 
that one value designation 
requires more information, 
but rather that they require 
different information.  
 
Some laboratories, such as 
Arizona Department of Public 
Safety, already take this into 
account, and have set 
separate criteria for a mark 
to be suitable for 
identification or suitable for 

exclusion, and a mark may be suitable for one, the other, both, or neither [personal 
communication]. 
 
Table 1 illustrates the different criteria that are logically needed, at a minimum, to reach an 
Identification decision versus an Exclusion decision, without reference to any particular agency 
policy. 
 
It can be easily seen from this table that the necessary attributes to reach an Identification are 
nearly opposite to those necessary to reach an Exclusion. For an Identification, one must reach 
a certain accumulation of data in agreement. That data can be accumulated due to the quantity 
of information in agreement, or due to the distinctiveness, or rarity, of that information. The 
exact opposite is true of exclusions. It doesn’t matter at all how rare a feature is if it is not 
present in both impressions. And it doesn’t matter how much information is in disagreement if 
the impressions are both clear and the location of the data is unambiguous. 
 
Similarly, location information is irrelevant to reach an Identification. It makes the search 
easier, but an Identification can be made using a brute force search. For an Exclusion, on the 
other hand, location information is critical unless every bit of potential ridge detail has been 
clearly and completely recorded, which is operationally uncommon. 
 
Finally, to reach an Identification decision, the data in agreement must be at least at Level 2 or 
3—one cannot make an Identification based solely on Level 1 detail. However, to reach an 
Exclusion decision, the data in disagreement should be at Level 1 or 2—one should not exclude 
based solely on Level 3 detail. 
 
 

Figure 7 A mark that could be identified but may be difficult to exclude 
(VIDO) due to reliability issues with the information in the mark. 

 



 2-10 

 
Table 1 The criteria necessary to effect an identification versus those necessary to effect an exclusion. The type of information 
needed for each is fundamentally different and, in some cases, opposite. 

Suitable to Identify 
What is needed What is NOT needed 

Reliable data in agreement (which must 
include at least Level 2 or Level 3) 

Location information 
• Anatomical source 
• Orientation 
• Anchors 
• Target Groups 

Data in agreement must be: 
• High quantity; or 
• High distinctiveness; or 
• Both high quantity and high 

distinctiveness 

Completely recorded exemplars 
• Only the relevant area is needed 

Suitable to Exclude 
What is needed What is NOT needed 

Reliable data in disagreement (which must 
include Level 1 or Level 2) 

High quantity 

In addition: 
• Completely recorded exemplars; or 
• Clear location information and the 

relevant exemplars 

High distinctiveness 

 
 
It is because different information is needed for Identifications versus Exclusions and because 
sometimes a VEO mark is “better” than a VIDO mark that we have elected in this research to 
create 5 categories on the Value scale so we can examine the properties of marks that are 
considered to be VEO, VIDO, or VB. 
 
In addition to the question of whether there is a difference in what is needed for VEO, VID, or 
VIDO, there is also the question of whether all marks that are VID are really equally suitable, or 
looked at another way—are all identifications equal? Due in part to a philosophy that was 
codified in 1979, when the International Association for Identification (IAI) passed Resolution 
VII2 (Moenssens 1979; Davis 1979), expressly forbidding its members to testify to probabilistic 

 
2 This resolution was hotly debated at the time and was eventually passed despite the arguments of objectors such 

as Moenssens and Davis, who argued that the Resolution represented a step backward for the legitimacy of 
friction ridge examination as a science, noting particularly that no information on similarity at all could be offered 
in court without an absolute conclusion under this Resolution (Moenssens) and that marks have exculpatory as 
well as incriminatory value and that information less than “proof-value” could still be probative (Davis).  
Interestingly, these arguments are still being made today and are at the backbone of the pressure that resulted 
in the IAI rescinding this Resolution in 2010. 
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conclusions (Champod 1995), all identifications were, in the words of the Resolution, “positive” 
and to the exclusion of all others. 
 
During this time, it was widely held within the discipline that the only valid reason for an 
Inconclusive decision was that better standards were needed. It was thought that if one had 
appropriate exemplars, the competent examiner should be able to conclusively determine 
whether the mark did, or did not, originate from a particular individual. If the problem was with 
the quality of the mark, then that mark was clearly not suitable and should not have been 
designated as such in the first place. 
 
This philosophy created a culture in which all identifications were treated as equal. A mark of 
very high clarity that was identified was given the same label (Identification) as a mark of 
marginal quality. Once the “Identification” threshold was crossed, all Identifications carried the 
same amount of weight, were reported the same way, and were presented in court the same 
way. This practice created two phenomena: First, examiners were forced to claim the same 
amount of confidence in the Identification to the poor-quality mark as they had in the high-
quality mark—a situation that was very uncomfortable for many and that seemed to defy logic 
and common sense. Second, examiners were often compelled to identify marks that they 
probably should not have been identifying. Poor quality marks where some detail could be 
found in common with the corresponding print were being identified because there was 
institutionalized pressure to reach a definitive conclusion and the mark could not be excluded. 
 
Now, after the release of the NAS Report, with the advent of probabilistic models, and with the 
IAI rescinding their prohibition on probabilistic conclusions, there is a growing trend toward 
creating more bins of conclusions, or shades of grey3 (Champod 1995; Neumann 2012). 
 
Not all identifications are created equal.  Some carry more information than others, and 
therefore, more confidence. Similarly, there is sometimes not enough information present that 
an Identification decision is warranted, yet the fact that some information was found in 
common is still probative. Some of these differences in strength of comparison conclusion can 
be anticipated during the analysis phase. If a mark on its own clearly does not contain sufficient 
information to support a full Identification decision, yet may be sufficient to provide some 
probative or investigative value to the case, it could be so-labeled prior to ever viewing any 
prints, thus limiting the allowable conclusions from such a comparison. 
 
Some agencies and standard-setting bodies are beginning to embrace this distinction in 
comparison conclusions, creating sub-categories of Inconclusive. For instance, the Friction 
Ridge Subcommittee (FRS) of the OSAC has proposed conclusion language on a 5-point scale, 
which includes the category “Support for Same Source” between Inconclusive and Source 
Identification (OSAC friction ridge skin subcommittee 2019; Carter et al. 2020). The Las Vegas 

 
3 This was argued by Champod well before the development of the current statistical models.  He characterized the 

interpretation of friction ridge evidence as “an increasing scale [that] runs from exclusion to identification”.  
More recently, Neumann has also argued against the dichotomous model of conclusion reporting. 
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Metropolitan Police Department (LVMPD) has an allowable conclusion of “Cannot Exclude,” 
which indicates that detail was found in agreement between the mark and the print, but not 
enough to rise to the threshold of an Identification [personal communication]. This conclusion 
is in keeping with the third prong of Locard’s 1914 recommendation (Champod 1995) that: 
 

(1) if more than 12 concurring points are present and the fingerprint is sharp, the certainty 
of identity is beyond debate 
 

(2) if 8 to 12 concurring points are involved, then the case is borderline and the certainty of 
identity will depend on: 
 

(a) the sharpness of the fingerprint 
(b) the rarity of its type 
(c) the presence of the center of the figure and the triangle in the exploitable part of 

the print 
(d) the presence of pores 
(e) the perfect and obvious identity regarding the width of the papillary ridges and 

valleys, the direction of the lines, and the angular value of the bifurcations 
 

(3) if a limited number of characteristic points are present, the fingerprints cannot provide 
certainty for an identification, but only a presumption proportional to the number of 
points available and their clarity. 

 
Although conclusions such as “Cannot Exclude” or “Support for Same Source” do not 
incorporate a numerical proportion4 (Lennard 2013), they do at least convey some presumptive 
information to the jury. This information is typically lost entirely under the current leading 
practice, where the results of such comparisons would either be reported as Inconclusive, and 
would likely never make it into a courtroom for further explanation; or would be reported as an 
Identification, which would be overstating the strength of the evidence. 
 
Thus a question of interest is: can it be determined during analysis whether a mark will be 
suitable for identification, or only for a less definitive, but still probative, conclusion, such as 
“Support for Same Source”? The answer to this question may depend on the quantity of the 
information available in the mark. For example, Figure 8 presents a mark with 4 clearly 
discernable, reliable, but not particularly distinctive, minutiae (marked in green) and 1 more 
clearly discernible but less reliable, and still not particularly distinctive, minutia (marked in red). 
These may not be sufficient to reach an identification decision, but if all 4 (or 5) minutiae were 
found in agreement with a print, it could provide an investigative lead to a detective, or some 
probative information that a person of interest could have left the mark, although due to the 

 
4 Lennard espouses a compromise of sorts, in which the expert’s opinion is presented along with statistical 

information to back it up; but he also presents the research of Martire, which suggests that jurors are poor 
Bayesians and may struggle to understand evidence presented in a statistical framework.  Nevertheless, he 
conclusively states that the Inconclusive category is “overly broad and uninformative”. 
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low quantity and specificity of the information, it is quite reasonable to assume that a number 
of other people could also have left the mark. 
 

In addition to quantity of information, a mark 
may be insufficient for identification (but 
sufficient to provide probative information) 
due to the reliability of the information in the 
mark. In some cases, this may be unknown 
until after the print has been seen. For 
example, Figure 9 shows a mark that contains a 
great deal of information—but most of it is in 
the form of incipient dots, detail that is 
notoriously unreliable in its recording. It is 
clear that the dots are present in the mark, but 
are they also present in the print? If not, the 
few minutiae visible might lead to a “support 
for same source” conclusion, but if they are 
present in both impressions, an identification 
decision may be warranted. 
 
Because the value decision is so nuanced, in 
this research, we have investigated a scale that 
includes five possible decisions on the value 
scale: No value; Some probative or 
investigative value, but insufficient for an 
identification or exclusion; Value for exclusion 
only (VEO); Value for identification only (VIDO); 
or Value for both identification and exclusion 
(VID). 
 
These five options were explained to study 
participants in the PiAnoS User Manual they 
were provided and a table summarizing the 
five options was also provided and is 
reproduced here as Table 2. 

 
 
 
 
 
 
 
 
 

Figure 8 A mark that may only ever rise to the 
threshold of “support for same source” or “cannot 
exclude” regardless of the print it is compared to, 
due to the low quantity and distinctiveness of the 
information it contains. This mark could be 
classified as “investigative value.” 
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If adopted, this expanded scale 
will provide additional guidance 
and nuance to the determination 
of value, both limiting conclusions 
when insufficient information is 
available during analysis and 
expanding the number of marks 
that will be considered “of value” 
for something by separating the 
notions of VEO and VIDO. This 
research will test both whether 
the proposed conclusions can be 
successfully modeled, and 
whether the new conclusions 
would be embraced by the latent 
print examiner community. 
 
 
 
 
 
 
 
Table 2 The five possible decisions of the value scale along with their brief definitions and some clarifying text, reproduced from 
the User Manual provided to study participants.  

Decision Definition Clarification 

No value 

The mark does not contain 
sufficient information to 
proceed with a comparison 

This decision indicates that the mark does 
not contain enough information to be 
searched or compared at all, even to a 
single 10-print card; or if it was 
compared, it is not expected that the 
comparison would yield any useful 
information to inform an investigation or 
provide support for one source 
proposition over the other. 

Some probative or 
investigative value, but 
insufficient for an 
identification or 
exclusion 
 

The mark contains sufficient 
information to proceed with a 
comparison, but insufficient 
information to reach either an 
identification or exclusion 
decision 

This decision indicates that the mark 
contains sufficient minutiae and 
orientation/location information that it 
could be effectively searched; however, 
the information is limited enough that if 
an association were made, it would not 
be strong enough to rule out the 
possibility that someone else could share 
the same features. 

Figure 9 A mark that may be VID or value for investigative value only 
depending on the print to which it is compared. Here, the limitation 
of the data is not the quantity of the information, but its reliability 
(in this case, its likelihood to robustly reproduce). 
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Similarly, if the features in the mark were 
not found in an exemplar, or if apparent 
differences were found, they would not 
be sufficient to rule out the possibility 
that the mark could have been made by 
that source. This may occur, for instance, 
in marks with sufficient distortion that 
the features or anchors are somewhat 
unreliable. 
While there is not enough information to 
reach the highest level of reported 
conclusions, these marks still may be 
useful in providing investigative leads, or 
may provide support for one source 
proposition over the other.  

Of value for a 
categorical conclusion* 

The mark contains sufficient 
information to potentially 
reach either an identification 
or exclusion decision, or both 

These decisions indicate that the mark is 
or may be identifiable or excludable. 
One conclusion is not considered to 
require better, or more, information than 
the other. If the mark is in this category, 
you will specify whether it is of value for 
an Exclusion only, an Identification only, 
or if it could be used for both an 
Identification and an Exclusion (assuming 
legible and completely recorded 
exemplars for each circumstance). 

• Value for Exclusion 
only 

• Value for 
Identification only 

• Value for both 
Identification and 
Exclusion 

* It is recognized that some laboratories never reach a categorical conclusion; that is, they report only on the 
strength of the association without taking the final step of declaring an identification (Swofford 2015). For those 
laboratories, the term Identification, as used here, will represent their strongest level of association. 

 
It is recognized, of course, that none of these decisions exist within a vacuum. Although there 
are general ideas about what “should” be enough to reach a definitive conclusion, or to use 
AFIS without additional QA measures, or even to keep a mark for comparison at all, in reality 
these decisions are colored by the agency culture in which the examiner is operating. So, 
although it is true that “not all identifications are created equal” in the sense that some have 
higher quantity and quality of information, it may also be said that “not all agencies are created 
equal”. What may be an acceptable practice in one agency culture may be considered 
shockingly reckless by another. 
 
Put back into an Analysis perspective, these cultural differences may contribute heavily to 
observed differences in value decisions. A large agency that deals predominantly with violent 
crimes may have a significantly different threshold for value decisions than a small local agency 
that sees a high volume of property crimes, which may again differ from a culture such as that 
of the Dutch experts reported by Langenburg (2012), who place a premium on consistency of 
minutiae selection, but consequently allow many marks to go uncompared that would likely be 
considered by other agencies. 
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Even within the same agency, there will be some differences in perspective that will allow two 
examiners (or the same examiner at two different times) to reach different value decisions on 
the same mark (and thus, the same available information). For example, an examiner who has 
recently had a false positive identification discovered in his work may become for a time much 
more conservative, and let many marks go that he would have consistently called “of value” 
prior to the error being discovered. 
 
These decision criteria can be properly explored using a decision theory framework, as 
described by Biedermann et al. (2008). This research does not directly exploit the decision 
theory framework, although we do note how it can be incorporated into the final model to best 
reflect the priorities of an agency. Instead, we focus on exploring the expansion of the Value 
scale into a 5-category scale and learning what information examiners use to support their 
Value scale decisions. Our hope is that the introduction of this expanded scale will lead to its 
adoption and to more nuanced thought in the field about both the limitations of marks that can 
be ascertained during analysis and the inclusion of marks for comparison that might be suitable 
for only exclusion or only identification. 

2.2.2 The complexity scale 

Although we spent a good deal of time and energy exploring the nuances of the value scale, a 
determination of value is not the only dimension of suitability with which we concern ourselves.  
A mark that has been declared to be suitable for comparison or database search may still be 
situated anywhere along a continuum of quality for “of value” marks. A mark’s position along 
this continuum is often referred to as its “complexity.” Typically, a mark is referred to as 
complex, or non-complex, yet there is no set threshold to distinguish between the two. 
 
Once again, we are faced with a situation in which multiple viewings of the same mark (by the 
same examiner or different examiners) may result in different assessments of the mark. This 
challenge is not unique to friction ridge examinations. Other pattern-comparison disciplines, 
such as document examination, are similarly working on automated or standardized methods 
to assess sample complexity (Found and Rogers 1996; Found et al. 1998; Stern et al. 2018) 
although in the case of signature complexity, higher complexity is judged to allow for more 
certain conclusions, in contrast to how complexity affects friction ridge conclusions. 
Nonetheless, and despite a small sample size (n = 5 examiners) document examiners were 
found to vary considerably in their subjective judgements of signature complexity (Stern et al. 
2018). 
 
The literature has been clear and consistent in recommending that more complex marks should 
be afforded more time for consideration, be analyzed with more care, be documented more 
thoroughly, and be reviewed more closely (Ashbaugh 1999; Scientific Working Group on 
Friction Ridge Analysis Study and Technology (SWGFAST) 2012; Forensic Science Regulator 
2015).  It may be reasonable to require additional quality assurance (QA) measures or that 
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examiners not use conclusions stronger than support for same source or support for different 
sources in the case of increasingly complex marks. 
 
At the other end of the spectrum, there are marks of exceptional quality that should not 
require such close scrutiny. These marks might justifiably require less QA oversight and less 
documentation than the average mark, resulting in time- and cost-savings to the agency. It may 
be reasonable, then, to set a threshold of high quality, beyond which abbreviated 
documentation procedures are followed. Furthermore, the level of scrutiny applied to these 
high-quality marks in court may be reasonably expected to be different than with poor quality 
marks that score lower on the quality metric scale. 
 
However, since the determination of complexity varies from examiner to examiner, it is difficult 
to construct and consistently apply policies to govern the examination of a complex mark.  
 
The complexity scale considers the chance that two examiners will disagree about the 
suitability or interpretation of features and distortion in the mark or the sufficiency of 
conclusions reached after comparison of the mark. The complexity scale aims to predict the 
marks that are prone to causing disagreements, which will in turn influence the quality 
assurance (QA) measures that will be appropriate for the mark. 
 
The complexity scale is broken into three main categories (rather than simply complex or non-
complex). These categories represent marks that are complex; marks that are non-complex, but 
also not high-quality (this should be the bulk of the routine, non-complex casework marks); and 
marks that are of exceptionally high quality. There is a fourth category for marks that are not of 
value at all, which corresponds to the “no value” category on the value scale. 
 
The four options of the complexity scale were explained to study participants in the PiAnoS 
User Manual they were provided and a table summarizing the four options was also provided 
and is reproduced here as Table 3. 
 
Table 3 The four possible decisions of the complexity scale along with their brief definitions and some clarifying text, reproduced 
from the User Manual provided to study participants. Note that the text for “No value” is exactly the same as that provided for 
the value scale. 

Decision Definition Clarification 

No value 

The mark does not contain 
sufficient information to 
proceed with a comparison 

This decision indicates that the mark does not 
contain enough information to be searched or 
compared at all; or if it was compared, it is not 
expected that the comparison would yield any 
useful information to inform an investigation or 
provide support for one source proposition over 
the other. 

Of value, 
complex 

The mark contains sufficient 
information to proceed with a 
comparison, but due to 
limitations of quality, a high 

This decision indicates that the mark contains 
sufficient information to search and compare, 
but the high degree of interpretation required 
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degree of interpretation is 
required 

means that there is a high chance of variability in 
judgments between examiners. 
Disagreements may occur regarding suitability, 
sufficiency, or existence and type of features and 
distortion in this mark. The mark may be at or 
near the value/no value threshold. 
This mark should be subject to additional 
documentation5 and quality requirements. It is 
critical to thoroughly demonstrate the basis for 
any conclusions rendered on this mark. 

Of value, non-
complex; 
requiring 
documentation 

The mark contains sufficient 
information to proceed with a 
comparison, and although some 
interpretation may be required, 
no significant disagreements 
over suitability, sufficiency, or 
interpretation are anticipated 

This decision indicates that the mark contains 
sufficient information to search and compare, 
and the quality and quantity of information 
available is about average. 
This mark may require some interpretation, and 
there may be limited disagreements between 
examiners on suitability, sufficiency, or 
interpretation. This mark represents the 
average, run-of-the-mill mark encountered in 
casework. 
This mark should be subject to standard 
documentation and review requirements. 

Of value, non-
complex; self-
evident 

The mark contains sufficient 
information to proceed with a 
comparison and requires 
minimal or no interpretation 

This decision indicates that the mark contains 
sufficient information to search and compare, 
and that the overwhelming quality and quantity 
of information available makes the basis for any 
conclusions virtually self-evident. There should 
be no expectation of disagreement between 
examiners regarding this mark. 
This mark can be subject to reduced 
documentation (e.g., only name the mark and 
indicate orientation and anatomical source) and 
review requirements. 
If this was a casework mark, you would feel that 
the documentation you have done to this point 
due to the requirements of the research was a 
waste of time (thank you for doing it anyway – 
we are going to use it!) 

 

 
5 We recognize that different agencies have different standards of documentation. For purposes of this study, 

“additional documentation requirements” presumes that standard documentation is fairly minimal. If an agency 
already does full documentation of every mark, they would not need to do MORE for complex marks, although 
they might do LESS for very high-quality marks under this philosophy. 
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2.2.3 The AFIS quality scale 

In addition to being complex or non-complex, an of-value mark may also be suitable or 
unsuitable for search in an AFIS. In some agencies, these value decision and the AFIS decision 
are congruent—that is, it is considered that if a mark is suitable to be compared, it is also 
suitable for AFIS search. However, in the majority of agencies, these are two distinct decisions 
with different thresholds. This makes sense, since whether a mark is AFIS quality may vary 
according to the size of the reference database, the quality of the particular AFIS vendor’s 
matching algorithms, or the workload of a particular agency. Thus, individual determinations of 
AFIS quality could rely on very different criteria than those used to determine value. 
 
Interestingly, the AFIS decision is one place where most agencies do embrace a numerical 
threshold (those that will acknowledge a numerical minutiae threshold for the value decision 
are in the minority in the United States). This threshold is frequently set at 8 minutiae, although 
it does vary by agency and is often set in accordance with the technical recommendations of 
the agency’s AFIS vendor. There is also often a requirement that orientation and core location 
be known for AFIS entry of distal phalanges. Some AFIS systems have required a putative 
pattern type to be entered as well, but this is becoming less common as AFIS algorithms and 
internet bandwidths improve, reducing the need to increase penetration of the database. 
 
Indeed, some agencies, such as LVMPD, have two AFIS thresholds—one for regular casework, 
and one for the rapid AFIS screening program (which they call Administrative AFIS) [personal 
communication]. In this program, a higher threshold of 12 minutiae is set. This allows the 
agency to “cherry-pick” only the very clear marks with an abundance of minutiae from a case 
and get those run through AFIS very quickly in order to generate investigative leads without the 
case waiting in the backlog line to even be glanced at. If no AFIS hit is made with these best 
marks, the case is returned to the regular queue and when it is fully worked at a later time, 
additional marks that did not meet the Administrative AFIS criteria may also be searched. 
 
Similar to the way all Identifications are currently treated as equal, all AFIS quality marks tend 
to be treated as equal. Once a mark has been declared to be AFIS quality, it is searched 
thorough AFIS, and the resulting candidate list is screened, the same way, regardless of the 
quality of the mark. Furthermore, any Identifications effected as the result of an AFIS search are 
treated as equal in strength and certainty to those that came from comparing a known subject. 
Dror et al. (2012) have demonstrated that a risk of erroneous conclusions due to bias created 
by list position may exist with the use of AFIS (although, see (Kukucka et al. 2020) for an 
argument that evidence lineups, such as occur with an AFIS may reduce the effects of bias 
when compared to evidence showups, such as occur when a single known candidate is 
compared); whereas Dror and Mnookin (2010) have outlined reasons to exercise caution when 
making identifications using AFIS; and numerous sources (see, e.g. (Neumann 2012; Langenburg 
2012; United States Department of Justice and Office of the Inspector General - Oversight and 
Review Division 2006; Lennard 2013)) have pointed out the statistical dangers of making an 
Identification decision based upon selecting a candidate out of the large pool provided by an 
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AFIS. Some qualities of a mark, such as low minutiae count, low specificity minutiae groupings, 
or high interpretation areas, can increase this risk. 
 
In light of these concerns, it may be prudent to establish a quality threshold below which 
Identifications made using AFIS must be subjected to additional QA or documentation 
requirements. Additional QA measures could include ideas such as additional or blind 
verifications; using poor quality marks to generate investigative leads, but not to identify; or 
requiring that additional minutiae not entered in AFIS be found in agreement between mark 
and print before an identification may be declared. 
 
The AFIS scale considers whether a mark should be entered into an AFIS system, and if so, 
whether additional QA measures are warranted (expanding the traditional decision scale from 
two options to three). The QA measures to be implemented will be determined by agency 
policy, but this scale seeks to measure which marks should be subject to some additional QA 
measure, whatever it may be. 
 
The three options of the AFIS quality scale were explained to study participants in the PiAnoS 
User Manual they were provided and a table summarizing the three options was also provided 
and is reproduced here as Table 4. 
 
Table 4 The three possible decisions of the AFIS scale along with their brief definitions and some clarifying text, reproduced from 
the User Manual provided to study participants. 

Decision Definition Clarification 

Not AFIS quality 

The mark is not suitable for entry 
into an AFIS system 

The mark may or may not be of value 
for comparison, but this decision 
indicates that it either does not meet 
your agency’s threshold for AFIS 
entry, or if AFIS criteria are left to 
analyst discretion, you do not feel 
that the mark contains sufficient 
information for an effective AFIS 
search in your primary search system. 

AFIS quality, with 
additional QA measures 

The mark is suitable for entry into 
an AFIS system, but due to the 
presence of risk factors, 
additional QA measures should 
be used 

This decision indicates that, while it 
meets your minimum agency or 
personal criteria for AFIS entry, this 
mark contains risk factors (e.g. low 
minutiae count, low specificity 
groupings, or high interpretation) for 
a coincidental match or contains 
unreliable information. You would 
enter this mark into AFIS, but feel it 
would be prudent to apply additional 
QA measures as a precaution. 
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AFIS quality 

The mark is unconditionally 
suitable for AFIS entry 

This decision indicates that the mark 
meets or exceeds your agency or 
personal criteria for AFIS entry and 
does not contain risk factors or 
unreliable information. This mark is 
suitable for a standard AFIS entry 
procedure without need for 
additional caution beyond accounting 
for the size of the database in your 
decision-making process. 

 

2.2.4 The difficulty scale 

The final suitability scale we will consider is the difficulty scale. The difficulty scale considers the 
mark for training, testing, testimony, and research purposes and predicts how difficult it would 
be to compare.  Section 2.3 discusses in more depth the applications of the difficulty scale. 
 
This scale can be used to assign difficulty levels to marks such that examiners can be trained to 
specific levels, tested at those levels, and ultimately testify at specific levels (i.e. by stating the 
difficulty level of a case image in relation to their tested proficiency level. This could provide 
jurors with a framework by which to judge how much weight to give the evidence). The 
difficulty scale will be resolved into three bins: low, medium, or high difficulty. 
 
Low difficulty marks are those that should require very little effort to compare (because this 
research is focused on the analysis decision, the difficulty of the comparison is not considered, 
and a high-quality exemplar is assumed for all of these categories). A low difficulty mark has 
high quality and quantity and may also have highly distinctive features.  
 
Medium difficulty marks are the average marks that make up the bulk of the impressions that 
are compared in casework (not the marks that are seen, which are largely no value). They are 
not exceptionally clear, nor are they exceptionally distorted. They may have some clear areas 
and some distorted areas. Their comparison may be expected to require some effort, but not to 
be so difficult that the examiner wishes they did not have to compare them at all.  
 
High difficulty marks are the worst marks encountered in casework. At the extreme end, they 
are not of value at all. When they are of value, the examiner may wish they weren’t. These are 
marks that are retained for comparison because they meet an agency’s minimum suitability 
criteria, or if the agency doesn’t have a stated threshold, because the examiner feels they could 
be compared and would feel guilty if they didn’t try, even though they anticipate that it will be 
a very difficult task. They may have low quantity, low clarity, or both. They may be severely 
distorted. They may lack a target group. They may lack an anchor. They may lack cues for 
orientation or anatomical source.  



 2-22 

2.3 Potential implications for policy and practice 

The expansion of the suitability decision into four scales and development of a utility tool that 
can place marks along each of those scales has multiple potential applications and benefits for 
laboratories, researchers, and the criminal justice system. We will address these benefits in 
detail in Section 5.2. Here, we present only a brief list of the areas where the tool can 
potentially provide practical benefits to reduce variability, provide guidance, support quality 
assurance, and improve communication and efficiency. Many of these benefits may not be 
readily measurable and have not been quantified in this work. Nonetheless, they can provide 
tangible improvements and transparency to forensic operations and research. 
 
The five main areas this work will address that the creation of a utility tool will benefit are: 
Research, Proficiency Testing and Training, Testimony, Quality Assurance (QA), and Providing a 
Consensus.  

2.4 Chapter 2 summary 

In this chapter, we have explored the idea of deconstructing the suitability decision and 
considering it along four separate dimensions, or scales, which are: Value, Complexity, AFIS, 
and Difficulty. In addition to introducing new scales, this work will introduce new conclusion 
options on several of the scales, which will add additional nuance to the suitability decisions 
they represent. 
 
Previous research into developing a quality tool has focused on a single suitability 
determination and has been strongly focused upon AFIS applications. It has also predominantly 
utilized prints (not marks) and dealt with rarity superficially, or not at all. The current research 
will consider among its four scales both suitability for AFIS entry and for manual comparison. It 
will also incorporate a measure of rarity directly into the model through use of ESLR 
assessments. This research will also materially differ from previous efforts by assessing whether 
examiners alone, lights-out methods alone, or a hybrid of the two produce the best results. 
 
During the white box study portion of the research, examiners will be asked to annotate the 
information they use to reach their suitability decisions, as well as to render those decisions on 
each of the four scales for each impression they view. These data will be used to identify the 
information that is the most diagnostic in reaching decisions for each of the four scales. This will 
assist us in better understanding how the four scales differ in terms of the utility they evaluate 
and the underlying information that supports suitability decisions for each use. 
 
In the second part of the study, the same data will be used to predict consensus ground truth 
suitability decisions for each of the four scales and a model will be developed and optimized to 
maximize accuracy in these predictions while minimizing necessary user input and 
computational load. This optimized model will be externally validated with new participants 
and images to test for generalizability. 
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The completed model will be a valuable tool that will reduce variability between examiners and 
provide guidance in five key areas: Research, Proficiency Testing and Training, Testimony, 
Quality Assurance (QA), and Providing a Consensus. 
 





 3-1 

3 Understanding how examiners evaluate suitability 

The first step to developing a model that can predict examiners’ suitability decisions is to 
understand the information they rely upon when reaching those decisions. In the first paper 
concerning this research, “Examining and expanding the friction ridge value decision,” we 
present the results of a white box study conducted to explore just that. Section 3.1 presents the 
manuscript of that paper, which has been published in Forensic Science International (Eldridge 
et al. 2020), here with figure and table captions prefixed with “3.1 –“ to integrate with this 
dissertation. Note that citations have been changed to author-date format to be consistent 
with this dissertation and footnotes have been re-named to simple asterisks. Figures may 
appear in different locations in the manuscript due to journal formatting. 
 
For length and to appeal broadly to the friction ridge examiner community, the main findings of 
the white box study were incorporated into the article, but some additional discussion of why 
particular research design choices were made and in-depth review of some additional specific 
image examples, were omitted. Section 3.2 of this chapter dives a little deeper into the design, 
observations, and data of the white box study as well as taking a deeper look at the general 
underlying philosophy of suitability. 
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3.1 Examining and expanding the friction ridge value decision 

Examining and expanding the friction ridge value decision 
 
Heidi Eldridge, MSca, b, Marco DeDonno, MScb, Julien Furrer, PhDb, Christophe Champod, PhDb 

aRTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709 USA 
 
bSchool of Criminal Justice, Faculty of Law Criminal Justice and Public Administration. University 
of Lausanne, 1015 Dorigny, Switzerland 
 
Abstract  
 
The first step of a friction ridge examination involves determining the suitability—or value—of 
an impression. Often, this is interpreted as whether the impression is suitable for comparison. 
However, examiners tend to be variable in their suitability determinations, and suitability itself 
can be a multi-faceted decision, comprising suitability for comparison, suitability for exclusion, 
suitability for identification, suitability for AFIS entry, complexity, and others. We undertook a 
white box study to explore the different facets of suitability determinations and to measure the 
specific categories of information upon which examiners most heavily rely when reaching these 
decisions. Although minutiae count was the best indicator of a value determination, clarity and 
distortion were better predictors of complexity determinations. Examiners were found to be 
highly variable in their determinations, as well as in their annotations of what information they 
relied upon. Some unanimous decisions were reached for only high-quality impressions; there 
was never unanimity on “no value” determinations. Examiners tended to use high-confidence 
minutiae markers, even when there was connective ambiguity or low clarity. Several new 
suitability categorizations were introduced and had good usage from study participants, 
indicating that they might have some value for inclusion in routine casework. 
 
Keywords friction ridge, latent prints, suitability, value, variability, standardization 
 
Introduction 
 
It has been well-established through both structured research (Ulery et al. 2011; Hicklin et al. 
2011; Ulery et al. 2012; Ulery et al. 2013; Ulery et al. 2014, 2016, 2017, 2015; Pacheco et al. 
2014; Neumann et al. 2013) and anecdotal experience, such as the well-known Mayfield and 
McKie cases, that friction ridge examiners are variable in their decision-making. At every 
decision-point in the comparison process, from minutiae selection (Ulery et al. 2013; Ulery et al. 
2014, 2016, 2015; Neumann et al. 2013; Swofford et al. 2013; Langenburg 2012), to suitability* 
determination (Ulery et al. 2011; Hicklin et al. 2011; Ulery et al. 2012; Ulery et al. 2013; Ulery et 

 
* Although the terms “suitability” and “sufficiency” are often used interchangeably in the friction ridge community, 

this paper recognizes a distinction between the two that will be maintained throughout. “Suitability” refers to 
the decision that is reached at the end of the Analysis phase—is the unknown mark suitable for some particular 
purpose, most often comparison. “Sufficiency” refers to the decision that is reached at the end of the Evaluation 
phase—is there sufficient information present in two impressions to support a particular source conclusion. 
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al. 2014, 2015; Pacheco et al. 2014; Neumann et al. 2013; Langenburg 2012), to interpretation 
of distortion (Neumann et al. 2013; Maceo 2009), to comparison conclusion (Ulery et al. 2011, 
2012; Ulery et al. 2014, 2017, 2015; Pacheco et al. 2014; Neumann et al. 2013), examiners have 
displayed variability with their peers and even with themselves, when presented more than 
once with the same evidence. 
 
Although black box studies (focused on the decision outputs without eliciting the reasons or 
features used to make them) are invaluable for illuminating this variability, they are unable to 
explain why it exists or suggest ways to reduce it. White box studies, on the other hand, allow 
researchers to understand the reasoning that goes into the decision-making process by asking 
participants to record the observations they made as they were going through the decision-
making process. 
 
Here, too, there are challenges. Although participants can be asked what they considered 
during their decision-making, there is evidence in the cognitive psychology literature (Nisbett 
and Wilson 1977) to suggest that people tend not to be aware enough of their higher-order 
processes to report on them accurately. In other words, when problem-solving or decision-
making, people are likely to give very high confidence answers when asked “how did you reach 
this decision?” or “why did you think this was of value?” but those answers are also likely to be 
poorly reflective of the actual stimuli that were used to reach their decisions. Not only are 
humans generally poor at knowing what went into their decision-making, but they are similarly 
poor at recognizing that they are poor at it. 
 
Despite these challenges, white box studies can help to illuminate some small part of the 
decision-making rationale, and the data thus obtained can be tested for their predictive value. 
If examiners are asked both what information they considered in reaching their decision and 
what that decision was, we can then test to see how well the information that was claimed to 
be diagnostic actually predicted the decisions that were made. 
 
This paper reports on the first part of a research study that will attempt to link elicited 
information by experts and their analysis decisions. First, we asked participants to record the 
observations they relied upon in making a series of suitability decisions, then we looked for 
both consistency between examiners on those decisions, and relationships between the 
observations made and the decisions reached. 
 
Minutiae count in suitability determinations 
 
Within the literature, there is a strong claim that minutiae count is the driving factor behind 
suitability determinations. In fact, multiple studies (Ulery et al. 2013; Ulery et al. 2014; 
Langenburg 2012) have observed a so-called “operational tipping point” of 7 or 8 minutiae at 
which, on average, examiners feel comfortable finding value at the analysis phase, or declaring 
an identification at the evaluation phase. 
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However, although minutiae count is undoubtedly an important variable, it doesn’t tell the 
whole story. If minutiae count were all that mattered in determining suitability or sufficiency, 
we would expect to see a sharp threshold at the “magical” number. Everything below 7 
minutiae would be declared of no value, then suddenly, everything above 7 minutiae would be 
declared of value. But that’s not what the data show. There is always a gradual accumulation of 
“of value” calls as the number of minutiae observed increases. 
 
Similarly, there are far too many outliers in the data to support a minutiae-count-only model of 
suitability. For instance, in one of the studies from the FBI/Noblis series (Ulery et al. 2013), 
marks in which participants annotated as many as 12 minutiae were declared of no value, 
whereas marks with as few as 0 minutiae annotated were accepted as of value for Identification 
and marks with up to 27 minutiae annotated were declared as of value for exclusion only. In 
another study, Neumann et al. (Neumann et al. 2012) demonstrated that highly discriminating 
configurations of 3 minutiae could provide a strength of evidence equal to or exceeding 
configurations of 12 very common minutiae. 
 
Although it is not the intent of this paper to dispute the importance of minutiae count in 
reaching a suitability determination, we posit that there are other factors that must also 
influence this decision and help to tip the balance, particularly in ambiguous cases. But which 
factors are they, and how much influence do they have? Does everyone rely on the same 
factors consistently enough that they can be used to predict people’s suitability decisions? 
 
The four scales of suitability 
 
When latent print examiners speak about suitability, or value, they tend to confine themselves 
to a single binary decision—an unknown mark is either of value, or no value. Some get slightly 
more granular and draw a trinary distinction between no value, of value for identification (VID), 
and of value for exclusion only (VEO). This last example is often referred to as the Approach 
I/Approach II distinction, as described by the Scientific Working Group on Friction Ridge 
Analysis Study and Technology (SWGFAST) (Scientific Working Group on Friction Ridge Analysis 
Study and Technology (SWGFAST) 2013). This paper however introduces the idea that multiple 
distinct suitability determinations can be made for a single unknown mark, and thus presents 
four scales of suitability: Value, Complexity, AFIS quality, and Difficulty. We will describe each 
one in turn below. In our study, we will explore experts’ decisions in the context of these four 
scales while recognizing that they are correlated. 
 
We acknowledge that in introducing new scales, and new decision options on familiar scales, 
we introduce some risk that variability between examiners will be increased due to a lack of 
familiarity with the new options. However, we feel that this risk is outweighed by the potential 
improvements to operational quality that the new options may support. By encouraging 
examiners to make deliberate and nuanced decisions about the suitability of a mark, we hope 
that both variability and the risk of error will be reduced. Additionally, there is previous 
evidence in the literature (Ulery et al. 2013; Neumann et al. 2013) that examiners do not fully 
comprehend or consistently apply the current suitability scales. Thus, the introduction of new 
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scales, which have been fully described in the instructions for the study, should not materially 
increase the risk of variability caused by lack of familiarity. 
 
The two new scales that are being introduced are the Complexity scale and the Difficulty scale. 
The familiar Value scale and AFIS scale have had additional conclusion options added to their 
traditional ranges. 
 
Value  
 
The value scale considers whether the unknown mark should be used in a comparison, and if 
so, how strong a conclusion it has the potential to reach. The five categories that are provided 
on the value scale are: 
 

• No value 
• Some probative or investigative value, but insufficient for an identification or exclusion 
• Value for exclusion only 
• Value for identification only 
• Value for both identification and exclusion 

 
The categories in this scale indicate two things that differ from more traditional value scales. 
First, there are marks that simply do not contain enough information to reach a categorical 
source conclusion such as identification or exclusion, but which can still be compared and may 
yield some information that could aid an investigation or may provide some (albeit weaker) 
probative value in favor of one proposition* or the other. These marks are represented by the 
second category listed above and are the ones that may end up with comparison conclusions 
such as “cannot exclude” or “insufficient detail in agreement to identify” in some agencies. 
 
Second, a mark that can be used for an identification is not inherently better than one that can 
be used for an exclusion. Because identifications and exclusions require different kinds of 
information, it is both possible to have a mark that can be excluded but not identified, or to 
have a mark that can be identified but not excluded. For example, a mark showing a fully 
blurred arch pattern will allow an exclusion (of all other general pattern but arches), but the 
quality of the ridge pattern may not be sufficient for an identification. Conversely, a small mark 
of the tip of a finger with excellent legibility and numerous minutiae will be retained for 
identification purposes but may not be excluded by an expert fearing that the corresponding 
area of the print may simply not be recorded on the available exemplars. Thus, these two 
situations have been separated from those marks that are suitable to both identify and exclude. 
 
 
 

 
* The propositions referred to are commonly called the prosecutor’s proposition (i.e. the defendant left the mark) 

and the defense proposition (i.e. some unknown person left the mark). The observed evidence must lend 
support to one or the other or be entirely inconclusive. 
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Complexity 
 
The complexity scale considers the chance that two examiners will disagree about the 
suitability, sufficiency, or interpretation of features and distortion in the mark. The complexity 
scale aims to predict the marks that are prone to causing disagreements, which will in turn 
influence the quality assurance (QA) measures that will be appropriate for the mark. As marks 
become more complex, agency policy may dictate that they be subject to additional 
documentation requirements, additional verifications, blind verifications, or other quality 
measures. On the other hand, marks of very high quality (“of value, non-complex; self-evident”) 
may enjoy policies requiring reduced documentation and review. The four categories that are 
provided on the complexity scale are: 
 

• No value 
• Of value, complex 
• Of value, non-complex; requiring documentation 
• Of value, non-complex; self-evident 

 
The category “of value, non-complex; requiring documentation” is intended to represent the 
bulk of marks encountered in casework—those that are neither complex, nor exceptionally 
clear. The notion that was presented to study participants is that these marks should require 
some minimum, standard level of documentation to support conclusions, but not the enhanced 
documentation that would be required of a complex mark. Thus, there are two levels of non-
complex marks; those that require “standard” documentation, and those that warrant reduced 
documentation because they are self-evident. 
 
AFIS Quality 
 
The AFIS scale considers whether a mark should be entered into an AFIS, and if so, whether 
additional QA measures are warranted. In large databases, the chances of a coincidental match 
can be much greater than in comparisons to a single or a few known subjects. Some attributes 
of a mark, such as low minutiae count, low specificity minutiae groupings, or areas requiring a 
high degree of interpretation, can increase this risk. Thus, examiners should adjust their 
decision thresholds for making an identification to an exemplar located through an AFIS search 
and should likewise consider the threshold for AFIS entry separately from that which is used for 
a manual 1:1 comparison (Dror and Mnookin 2010). Although some agencies and AFIS vendors 
impose a minimum minutiae count threshold for AFIS entry, there is value to considering 
overall what characteristics of an impression make it more, or less, appropriate for AFIS entry 
and which increase the risk of a coincidental match. Additional QA measures to mitigate this 
risk can include measures such as: additional or blind verifications; using poor marks to 
generate investigative leads, but not to identify; or requiring that additional minutiae not 
entered in AFIS be found in agreement between mark and print before an identification may be 
declared. The additional category in this scale (AFIS quality, with additional QA measures) is 
intended to identify those marks that have sufficient information to enter into an AFIS but 
should nonetheless be viewed with caution and subjected to additional QA safeguards due to 
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their perceived increased risk of a coincidental match. The three categories that are provided 
on the AFIS scale are: 
 

• Not AFIS quality 
• AFIS quality, with additional QA measures 
• AFIS quality 

 
Difficulty 
 
The difficulty scale considers the difficulty level of the mark for research, training, testing, and 
testimony purposes more than for casework/comparison applications. If marks could be 
consistently categorized by difficulty, these categorizations could be used to design proficiency 
tests at known, stratified difficulty levels and to design progressively more challenging training 
curricula. They could also be used in research to ensure that there is consistency across 
research projects such that the results obtained by different researchers could be compared 
(e.g., if two studies claimed to have tested examiners using “difficult” images, there would be 
agreement in the community about what that means and that the images were, in fact, 
difficult). Finally, this information could be used in testimony to inform the fact-finder of the 
difficulty of the images in the case as well as the relative proficiency level of the examiner (e.g., 
“the mark in this case was of medium difficulty, but I have successfully completed proficiency 
tests at a high difficulty level”). The 3 categories that are provided on the difficulty scale are: 
 

• Low 
• Medium 
• High 

 
Difficulty refers to the anticipated difficulty in comparing the mark to appropriate exemplars. 
For example, a “low” difficulty mark should require little or no interpretation and should 
present a straightforward comparison with a clear exemplar. On the other hand, a “high” 
difficulty mark will likely have clarity or distortion issues, small area, few reliable minutiae, few 
distinctive minutiae, or other factors that make it more challenging to search, compare, and 
reach supportable decisions about. Difficulty does not refer to the difficulty of reaching a 
suitability decision (for instance, a very poor mark might be rated as “high” difficulty because it 
would be nearly impossible to compare, but the suitability decision is easy to make—the mark 
is no value). 
 
Although the Complexity and Difficulty scales may frequently align, their intended applications 
are quite different (quality assurance guidance versus standardization of research, training, and 
testing levels) and there will be cases where the same mark may not fall into the most 
analogous categories on both scales (for instance, a “low” difficulty mark may fall into either 
the “non-complex, documentation required” or “non-complex, self-evident” complexity 
categories depending on whether its low difficulty rating is due to the extremely high clarity 
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that tends to move marks into the “non-complex, self-evident” category on the Complexity 
scale. 
 
Methods 
 
Selection of marks 
 
Marks were obtained from casework at a large, metropolitan police laboratory. The marks 
came from cases that were past the statute of limitations and would not be used in any criminal 
proceedings. All were on lift cards and were used with permission of the police agency. The 
primary author selected the lift cards for inclusion in a research database to represent a wide 
range of quality and quantity and to include a large number of impressions with interesting 
interpretative issues or minutiae configurations. 1,633 impressions were selected and scanned 
as .tiff documents at 1,000 ppi using an Epson Perfection 2200 flatbed scanner. Palm 
impressions were removed, and the pool was selected down to 1,259 impressions.  
 
Marks used in the study were selected from that pool of 1,259 impressions. These were 
selected pseudo-randomly to produce a study pool of 100 images. The constraints put upon the 
draw were that the quality proportions should be 60:30:10 of low-, medium-, and high-quality, 
according to scores from running all impressions through ULW software (Hicklin et al. 2013). 
The pool of 100 was manually verified to ensure it included a wide range of characteristics of 
interest. Once the 100 images had been selected, pseudo-random draws of 30 were drawn to 
create each user set according to the same quality constraints as the overall pool. 
 
The complete set of marks that were selected for use in the study can be viewed at: 
https://doi.org/10.5281/zenodo.3716428.  
 
Participant recruitment 
 
Participants for the study were recruited via multiple methods. Emails were sent out to 
professional email lists as well as directly to professional contacts of the primary author. 
Additionally, the primary author announced the study and invited participation during several 
presentations given at professional educational meetings. 
 
Any latent print examiner signed off for independent casework was eligible to participate, 
either from the USA or abroad. All study materials were reviewed by RTI International’s 
Institutional Review Board, and informed consent was completed by all participants prior to 
being granted study access. Participants’ confidentiality was guaranteed to the extent allowable 
by law and no compensation was provided. Thus, participants were voluntary and self-selected. 
A demographic and agency policy survey was also completed online prior to beginning the 
study (Figure 3.1 - 1). 
 
Data were collected during an approximately 4-month period in 2017. A total of 186 users 
enrolled in the study, of whom 116 completed at least one trial. 105 participants completed all 
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30 trials assigned to them. At the completion of the data collection period, all completed trials 
(n = 3,241) were exported into R (R Development Core Team 2017) for data analysis. Each of 
the 100 study images was analyzed by between 26 and 41 examiners.  
 
Data collection using PiAnoS 
 
Data collection was done using PiAnoS, a web-based user interface platform developed by the 
University of Lausanne that allows users to view a mark on the screen, annotate it, and answer 
questions prompted by the system. A custom modified version of PiAnoS (release 4.2.2 
b5eb0fcc) was created with tools and questions tailored to the needs of the research. The user 
manual for the study version of PiAnoS included instructions for completion of the study and 
descriptions of all tools and can be found at: https://doi.org/10.5281/zenodo.3716427.  
 
Participants were asked to annotate the information they considered when reaching a 
suitability decision, and only that information. They were not asked to annotate everything they 
could see because this was not a vision test, but an attempt to understand what information 
was important to examiners when considering decisions about suitability. For example, if a 
mark was very clear and contained 50+ minutiae, but the examiner had determined that the 
mark was suitable for identification after marking only 15 minutiae, they were asked to stop 
annotating minutiae at that point. Likewise, if they noted third level details such as pores, but 
did not consider those in making their decision, they were instructed not to annotate the pores 
specifically. 
 
In order to fully annotate the features that could be considered, several new tools were 
incorporated into this version of PiAnoS. Two new tools allowed participants to group minutiae 
together: the Target Group tool (Figure 3.1-2) and the Combined Groups tool (Figure 3.1 - 3). 
These tools were intended to capture the extra weight that an examiner might put on a cluster 
of minutiae that stood out to them as being unusual, or distinctive. In both cases, minutiae that 
had already been annotated could be grouped together. Use of the Target Group tool indicated 
a cluster of minutiae that the examiner would use during their initial search for the mark 
against a print, or collection of prints. Use of the Combined Groups tool indicated a cluster of 
minutiae that the examiner felt was unusual, distinctive, or stood out in some way. Using this 
tool was a way of communicating to the researchers that the examiner would put extra weight 
on this cluster, if they were to locate it in a print. 
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Figure 3.1 - 1 Participant responses to demographic and agency policy questions. 
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The Incipient Ridges tool and Pores tool (Figure 
3.1 - 4) allowed participants to separately 
annotate incipient ridges or pores, if they felt 
they would assign extra weight to incipient 
ridges in making their suitability determinations. 
 
No tools for image enhancement, such as 
contrast adjustments or the ability to invert light 
and dark ridges, were included. Although many 
examiners use these tools regularly in their 
casework and many expressed some frustration 
at their exclusion, these tools would introduce 
unwanted additional variables into the research. 
The research was not designed to test peoples’ 
ability at using enhancement tools, but to test 
what information they saw that contributed to 
their suitability decisions.  
 
 
 

 
 
Thus, it was critical that all 
examiners viewing the same image 
(leaving aside the constrains of 
screens and their calibration) were 
seeing the same stimuli. If one 
examiner did more enhancement 
than another,  
they might clarify additional 
features, which might then 
influence their suitability decisions. 
 

 
Figure 3.1 - 2 The Target Group tool in PiAnoS. 
This tool was used to indicate a cluster of 
minutiae that would form the participants’ initial 
search image. This tool could only be used once 
per image. The glowing pink minutiae in the 
image are those that have been selected as a 
target group in this example. 

 
Figure 3.1 - 3 The Combined Groups tool in PiAnoS. This tool 
was used to indicate a cluster of minutiae that was unusual in 
the participants’ opinion, and would be given additional weight 
if found in a candidate exemplar. This tool could be used as 
many times as the participant wished to form different 
combined groups. The glowing blue minutiae in the image are 
those that have been combined into a group in this example. 
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In addition to annotating features, participants were 
asked a series of questions about their observations 
regarding the clarity, distortion, pattern type, and 
level 3 detail of each mark.  
 
Examiners tend not to have a consistent language or 
training to describe levels of clarity, distortion 
factors, or level 3 detail. In fact, previous research 
(Neumann et al. 2013; Anthonioz et al. 2008) has 
shown that examiners are not consistent in their 
interpretations of the types of distortion they see, 
or in what they label as level 3 details. In order to 
avoid this problem, and because we were less 
interested in what examiners called the things they 
saw than we were in how much those observations 
impacted their decisions, we refrained from asking 
them to catalog distortion or level 3 details they saw 
and instead confined ourselves to asking about how 
their observations affected their analysis of the 
mark. 
 

 
We did not ask if the clarity of each impression was high or low, but instead asked whether it 
made the examiner more inclined to keep, or to discard, the mark (Figure 3.1 - 5). We were 
careful to clarify with the examiners that their desire to keep the mark didn’t necessarily have 
to align with their decision to keep the mark—every examiner has had to keep marks in their 
career that they wish they didn’t! 
 

The only question asked 
about distortion was 
whether the distortion 
observed (if any) was 
low, medium, or high, 
and we defined these in 
terms of how much of 
the mark required extra 
interpretation due to the 
distortion (Figure 3.1 - 6). 

 
For level 3 details, we only asked whether any level 3 details were seen and given weight in the 
suitability decision (Figure 3.1 - 7). Again, we did not ask what kind of level 3 details they were, 
but only whether they mattered in the decision. If level 3 details were noted, but did not factor 
into the suitability decision, there was a response option to cover this. 
 

Figure 3.1 - 4 The Incipient Ridges tool and 
Pores tool in PiAnoS. The Incipient Ridges 
tool produced thin, blue lines and could be 
used to annotate incipient ridges or small 
dots that the participant used in forming a 
suitability decision. The Pores tool produced 
small, green dots and could be used to 
annotate pores that the participant used in 
forming a suitability decision. 

 

Figure 3.1 - 5 The clarity question asked during the analysis of each impression 
to gauge how the clarity of the impression impacted the participants’ suitability 
decisions. 
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Figure 3.1 - 6 The distortion question asked during the analysis of each impression to gauge how the distortion in the impression 
impacted the participants’ suitability decisions. 

 
 
Finally, participants were asked to 
indicate the pattern type, or types, that 
they believed the mark could be, and to 
rank them in order from most to least 
likely, if more than one type was judged 
possible (Figure 3.1 - 8). They were also 
asked if there was anything distinctive 
about the shape of the pattern that 
would make it stand out from other 
marks of the same pattern type. 
 
 
 
Figure 3.1 - 8 The pattern type selection questions. Participants were asked to select any pattern types they thought the 
impression could be, to rank them if more than one was considered possible, and to note whether anything about the shape of 
the pattern was distinctive. 

 
 
Once these questions had been answered, participants were required to make a suitability 
determination along each of the four scales described above (Figure 3.1 - 9). 
 
Prior to beginning the study, each participant completed 2 practice trials in order to try out the 
new tools and become familiar with the new questions and scales. Feedback was provided 
anonymously to each user prior to granting them access to the full study. This allowed a chance 
to clear up any confusion about the tools and terminology prior to collecting the study data. 
 

Figure 3.1 - 7 The Level 3 Details question asked during the 
analysis of each impression to gauge whether the 
participant relied on Level 3 Details in reaching their 
suitability decisions. 
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Figure 3.1 - 9 The suitability decisions question. Each of the four tabs shown was selected in turn, and a suitability decision was 
entered for each of the four scales. Here, the expanded options for the value scale are shown. As soon as a radio button was 
selected, help text appeared on the right of the screen to remind the participant of what that selection meant. 

 
 
 
Statistical analysis 
 
Statistical analysis of the results was carried out in R (version 3.5.3) (R Core Team 2018) coupled 
with RStudio Version 1.2.5033 (RStudio Team 2015) using the following packages: tidyverse 
(Wickham et al. 2019) for data wrangling and graphics, caret for machine learning (ML) and 
computing associated error statistics (Kuhn 2020, https://CRAN.R-project.org/package=caret) 
and vip for variable importance (Greenwell et al. 2019, https://CRAN.R-
project.org/package=vip). Note that caret will call for the required packages for each ML model 
used. 
 
Machine learning was used in the same way as in a previous white box study on fingerprints 
carried out by Neumann et al. (Neumann et al. 2013). In the present study, we tested a set of 
ML classifiers that could act as rational proxies for human decision-making. The most accurate 
ML model will allow us to find a set of reasonable predictors for the decisions made by the 
study participants based on their annotations. We used all survey variables from the 
participants and all variables from the annotations they made as input variables to the 
classifiers. The predicted output is the conclusion reached by the examiner for each scale. We 
selected the best performing classifier based on its accuracy. We then computed the 
importance of the predictors against the individual decisions made by the participants. That 
ranking allowed us to identify predictor variables that have the most impact on the decisions 
reached. 
 
The retained classifiers ranged from simple tree model (CART), to K-Nearest 
Neighbors (KNN), Random Forest (RF), Neural Networks (NN), boosted trees (C5.0), and Support 
Vector Machines (SVM). The entire dataset was used for the machine learning. To avoid 
overfitting, cross-validation using 10 folds and repeated 5 times was systematically used for 
each classifier. 
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Results and Discussion 
 
Consistency of variable selection on four scales 
 
We explored the data to identify trends in which variables best captured the information used 
to reach conclusions along each scale. Beginning with an assumption that minutiae count was 
the most important factor for predicting all suitability decisions, we ordered the data by 
minutiae count and plotted the conclusions that were rendered along each scale. Figure 3.1 - 10 
and Figure 3.1 - 12 show that minutiae count was a good predictor of the value decision but did 
not perform as well on the complexity decision. This is intuitive, because when considering 
complexity, we would expect examiners to be thinking about more than just minutiae count, 
such as the distortion or clarity of the image. Minutiae count was a similarly poor predictor of 
decisions on the AFIS and Difficulty scales where, likewise, one would expect other factors to 
more heavily influence decisions. 
 
Figure 3.1 - 10 Suitability decisions rendered along the value scale. The data are ordered according to the number of minutiae 
annotated. Note that because different participants annotated different numbers of minutiae on the same image, these data do 
not reflect agreement on any particular image, but rather, what value decision individual examiners made on any image when 
they annotated the number of minutiae noted on the x-axis. 

 
 
Interestingly, in contrast to earlier findings (Ulery et al. 2013; Ulery et al. 2014; Langenburg 
2012) these data do not initially support the 7-to-8 minutiae operational tipping point for value. 
Figure 3.1 - 10 shows that around 7 or 8 minutiae only about 25 to 50 percent of value 
decisions are either “Value for Both” or “VID Only”. It is not until the 9 minutiae mark that 
these two categories combined are exclusively over 50%, and not until 11 minutiae or higher 
that they are exclusively over 75%. Additionally, since the instructions for this study explicitly 
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asked participants to only annotate the minutiae they used to make their decisions, not all 
minutiae they saw, these data may more closely reflect decision thresholds. 
 
However, Figure 3.1 - 11 presents the same data, but excluding minutiae marked as “uncertain” 
by the examiners. We can see that when using only confident minutiae, the “tipping point” 
does fall back to an approximately 8-minutiae threshold. It is unclear how these results align 
with previously-reported data, since the other studies did not draw a distinction between 
certain and uncertain minutiae in their analyses and thus their thresholds may also move upon 
closer analysis. 
 
Figure 3.1 - 11 Suitability decisions rendered along the value scale excluding minutiae marked using uncertain minutiae marker 
types. The data are ordered according to the number of confident minutiae annotated. 

 
 
We then considered combinations of variables that may explain complexity decisions better 
than minutiae count did. Figure 3.1 - 13 shows the effect of perception of distortion on 
complexity decisions. When there is high distortion, even high minutiae count can rarely 
overcome it to reach a decision of non-complex. However, with low or no distortion, very few 
images are considered complex unless minutiae count is very low. This same effect was more 
weakly seen with the perception of clarity (Figure 3.1 - 14), suggesting that distortion plays a 
bigger role than clarity in overcoming minutiae count for complexity decisions. 
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Figure 3.1 - 12 Suitability decisions rendered along the complexity scale. The data are ordered according to the average number 
of minutiae annotated. 

 
 
Figure 3.1 - 13 Suitability decisions rendered along the complexity scale. The data have been separated according to the 
participants’ responses to the distortion question to see how the distortion perceived in the image may have affected complexity 
decisions. The data are ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 
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Figure 3.1 - 14 Suitability decisions rendered along the complexity scale. The data have been separated according to the 
participants’ responses to the clarity question to see how the perceived clarity of the image may have affected complexity 
decisions. The data are ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 

 
 
We then considered combinations of variables that may explain complexity decisions better 
than minutiae count did. Figure 3.1 - 13 shows the effect of perception of distortion on 
complexity decisions. When there is high distortion, even high minutiae count can rarely 
overcome it to reach a decision of non-complex. However, with low or no distortion, very few 
images are considered complex unless minutiae count is very low. This same effect was more 
weakly seen with the perception of clarity (Figure 3.1 - 14), suggesting that distortion plays a 
bigger role than clarity in overcoming minutiae count for complexity decisions. 
 
The AFIS and Difficulty scales showed a very similar pattern of distortion and clarity’s effects on 
overcoming minutiae count. Figure 3.1 - 15 and Figure 3.1 - 16 illustrate the effects of distortion 
and clarity on the AFIS scale, and Figure 3.1 - 17 and Figure 3.1 - 18 illustrate their effect on the 
Difficulty scale. It can be seen in Figure 3.1 - 15 and Figure 3.1 - 16 that on the AFIS scale, 
distortion once again seems to have a greater impact on decisions than clarity does, although 
both distortion and clarity’s effects are somewhat more pronounced on the AFIS scale than 
they were on the Complexity scale. Figure 3.1 - 17 and Figure 3.1 - 18 show that the same 
pattern (of distortion having a greater impact than clarity) still holds, but that on the Difficulty 
scale distortion appeared to almost completely drive the decision. 
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Figure 3.1 - 15 Suitability decisions rendered along the AFIS scale. The data have been separated according to the participants’ 
responses to the distortion question to see how the distortion perceived in the image may have affected AFIS decisions. The data 
are ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 

 
 
Figure 3.1 - 16 Suitability decisions rendered along the AFIS scale. The data have been separated according to the participants’ 
responses to the clarity question to see how the perceived clarity of the image may have affected AFIS decisions. The data are 
ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 
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Figure 3.1 - 17 Suitability decisions rendered along the difficulty scale. The data have been separated according to the 
participants’ responses to the distortion question to see how the distortion perceived in the image may have affected difficulty 
decisions. The data are ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 

 
 
Figure 3.1 - 18 Suitability decisions rendered along the difficulty scale. The data have been separated according to the 
participants’ responses to the clarity question to see how the perceived clarity of the image may have affected difficulty 
decisions. The data are ordered according to the number of minutiae annotated and binned in groups of 5 minutiae. 
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Figure 3.1 - 19 and Figure 3.1 - 20 show how well the variables Distortion and Clarity together 
predict conclusions on the complexity and value scales*. Note that each data point represents 
the average response of all users who viewed a single image. The error bars represent the 
standard error of the mean observed on each exercise. Figure 3.1 - 19 illustrates that, with one 
exception (indicated by the arrow), distortion and clarity behave as expected in relation to 
complexity decisions; high distortion, low clarity images tend to be called no value whereas low 
distortion, high clarity images tend to be called non-complex and self-evident and the transition 
between the two extreme categories is smooth. The outlier (Figure 3.1 - 21), is an image in 
which there is low distortion and medium clarity, but very few minutiae and no anchors, which 
may explain why the consensus response for this image was No Value. 
 
Figure 3.1 - 19 Suitability decisions rendered along the complexity scale for all 100 study images. Each dot represents one image 
and is placed at the average value for clarity and distortion responses among the participants who viewed that image. The 
arrow indicates a single outlier of low distortion and average clarity that was nonetheless determined by consensus to be no 
value. 

 
 
In contrast, Figure 3.1 - 20 illustrates that distortion and clarity don’t predict the value decision 
nearly as well. Although the same outlier exists for the same reasons, note how much messier 
the color progression of the conclusion responses is, compared to Figure 3.1 - 19. Value 
determinations are not following a tidy progression based upon distortion and clarity. Thus, it 
would seem that value was, in fact, better predicted by minutiae count (Figure 3.1 - 10), 
whereas complexity was better predicted by distortion and clarity. 

 
* The variables Distortion and Clarity were recorded as ordered factors. For data analysis, they were converted to 

numerical values on a continuous scale between 0 and 1 using ridits (Bross 1958) to empirically determine the 
weighted space between each value on the scale. 
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Figure 3.1 - 20 Suitability decisions rendered along the value scale for all 100 study images. Each dot represents one image and 
is placed at the average value for clarity and distortion responses among the participants who viewed that image. 

 
 
Figure 3.1 - 21 Image 32 in the study. This is the image indicated by the arrow in Figure 3.1 - 19. While this image has low 
distortion and average clarity, there were few minutiae present and no core or anchors. Some of the participants’ comments 
indicate their reasoning in selecting NV for this mark: “not enough 2nd level detail for an ID, not enough 1st or 2nd level detail for 
exclusion”, “Latent contains insufficient minutiae and wouldn’t be effectively searched due to ambiguity of location on fingertip. 
There is the potential that another individual may share same features due to lack of rarity in ridge events. No reliable target 
group. No value decision more heavily based on the lack of ridge events, not clarity.” 
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However, there is more to unpack from Figure 3.1 - 19 and Figure 3.1 - 20. Although the overall 
trends indicated in Figure 3.1 - 19 fall in line nicely with what would be expected, the variability 
represented in these data is quite high. The vertical and horizontal bars around each data point 
represent the standard errors of each mean (or an estimate of how far some respondents stray 
from the population mean for each image) taking into account the number of participants who 
viewed each image. The placement of each dot represents the average response from all users 
who viewed the image. 
 
This means that although consensus observations may be reliable predictors of consensus 
decision outcomes, for each image there will be examiners who disagree with that consensus, 
in some cases quite strongly. In order to capture the consensus response, the opinions of 
individual examiners at the extremes will be lost in models based upon average examiner 
observations. Because of this, any models based upon these data will be unable to please all 
the examiners all the time; there will always be cases where the examiner disagrees with a 
consensus-based model in the same way there would always be cases where an individual 
examiner disagrees with a consensus of other examiners. It is up to the practitioner community 
to decide whether they are willing to trade sensitivity (or the ability of some examiners to make 
correct decisions on more marginal data) for reliability (or security in knowing that decisions 
are defensible and a consensus of experts is likely to accept them). 
 
Because there is no ground truth available for suitability decisions, we have chosen in this 
research to consider the majority vote to be the “ground truth” along each of the four scales for 
each mark. It should be understood that we could just as easily have chosen to always take the 
lowest opinion, or the highest, but this would skew the data toward or away from risk levels 
that the majority would not share. 
 
To identify the variables for each scale upon which examiners most relied to reach their 
suitability decisions and to test the impact (if any) of demographic and agency policy factors, 
we used machine learning algorithms to find the most important variables that predicted a 
participant’s own suitability decisions using their own annotations. In other words, this analysis 
did not consider the consensus ground truth suitability determination for each mark, but only 
which variables most impacted a participant’s own decisions. In all, 36 variables were tested. 
 
Figure 3.1 - 22 shows the accuracy of the ML models tested for the four scales. Overall, random 
forest is the best performing across the scales. Random Forest offers a robust model-based 
assessment of the ranked importance of variables. Variable importance is shown for each scale 
in Figure 3.1 - 23 for the 10 highest impact variables.  
 
Overall, and across all four scales, the variables that consistently performed the best in 
predicting suitability decisions were: total number of minutiae marked, number of confident 
minutiae marked (as opposed to uncertain minutiae marked), the clarity of the image, the level 
of distortion in the image, whether the pattern type could be determined with confidence, and 
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the selectivity of the minutiae*. Weight of level 3 features, annotation of incipient ridges, pores, 
or target groups, and demographic factors including gender, years of experience, certification 
status, educational level, and agency approach type had no influence on suitability decisions for 
any of the four scales. 
 
Figure 3.1 - 22 Comparison of the accuracy of the ML models tested for each of the four scales. The intervals around each dot 
give the 95% confidence interval based on the 5 repeats carried out. 

 
 
 
 
 
 

 
* Selectivity of the minutiae is represented in the variables of importance as “minselectivity,” which is a measure of 

the perceived selectivity across the entire impression. It takes into account the ratio of confident total minutiae, 
the number of highly distinctive combined minutiae groups noted, and whether a target group was noted. These 
last two variables, although important parts of the minselectivity variable, did not prove to be highly diagnostic 
on their own. 
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Figure 3.1 - 23 Comparison of the relative importance of the variables* for each of the four scales. The 10 highest impact 
variables are shown ordered by importance. The model chosen for all four scales is Random Forest (RF). 

 
 
Consistency of suitability decisions 
 
As was previously noted, examiners can differ in their suitability determinations. However, it 
has often been posited that although examiners may vary on ambiguous images, they are going 
to be unanimous on suitability decisions at the extreme ends of the spectrum (i.e. on very clear, 
or very degraded images). However, our data do not provide evidence for this. Although there 
are some images where there is unanimity in the “Value for Both” determination, there are 
many images where the responses are nearly equal across all 5 choices, and further, there is 
not a single case in which there is unanimity for a no value (“NV”) decision (some examples are 
shown in Figure 3.1 - 24). This suggests that although examiners may agree on what a high-
quality mark looks like, they do not agree on what a low-quality image looks like. 
 

 
* The odd appearance of some of the variables (e.g., “distortion.L,” “distortion.C”, etc) is an artifact of the machine 

learning software. These are dummy variables with their root (e.g., “distortion”) being the true root variable. For 
variables with multiple possible responses (distortion has 4), each of the possible responses represents a sub-
category that can be present, or not. When several of these dummy variables appear in the Variables of 
Importance figure (such as distortion does in this figure), it indicates that the root variable (distortion) is globally 
important. 
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Figure 3.1 - 24 The value decisions from all participants who viewed the image for four select images from the study. These 
graphs represent some of the range of variability in value decisions. Panel (A) shows the results for Image 40 – an image for 
which the “Value for Both” decision was unanimous (see Figure 3.1 - 25). Panel (B) shows the results for Image 77 – an image for 
which there was a strong consensus that the image was “NV,” yet there were also many participants who did not agree (see 
Figure 3.1 - 26). Panels (C) and (D) show two examples of the results for images where the votes for the five possible value 
determinations were nearly evenly split. The images corresponding to panels (C) and (D) are presented as Figure 3.1 - 27 and 
Figure 3.1 - 28. 
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Figure 3.1 - 25 This is Image 40 from the study. It is one of 3 images in 
the study for which there was 100% agreement from all participants 
who viewed it at the top end of both the value and complexity scales. 
That is, every participant who viewed this image selected “Value for 
Both” on the value scale and “Non-Complex, Self-Evident” on the 
complexity scale. 
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At the high end of the value scale, there were 17 images (out of 100) in which the “Value for 
Both” decision was unanimous and 13 in which only one person disagreed. However, in 7 out of 
8 situations where only one participant chose VID (all others chose Value for Both), that 
participant was User_144. These data support that, with the exception of one participant who 
seemed to favor the use of the VID category, participants are fairly consistent at determining 
when a mark is of very high value (for example, Figure 3.1 - 25). 
 
However, this does not mean that if many people agree that an impression is of Value for Both, 
then nearly all people will agree. In 18 of the 100 images in the study, 20 or more participants 
agreed upon Value for Both, yet more than 3 participants disagreed (Figure 3.1 - 30 shows one 
of these cases). In fact, in 13 of those 18 cases (72%), at least one person thought the same 
image was no value. 
 

Consensus seemed to be even more difficult to 
reach at the low end of the value scale. As 
previously noted, there was not a single image 
for which there was a unanimous “NV” 
decision. Even when there was strong 
agreement on NV (defined as at least 20 votes 
for “NV”), there were always between 5 and 15 
participants who disagreed with the NV 
designation and in every case, there was at 
least one vote for “Value for Both” (one 
example is given in Figure 3.1 - 26). 
An interesting observed phenomenon was 
some participants’ inconsistency in rendering a 
NV decision on the same image. In the PiAnoS 
interface, participants were asked to first 
annotate the image, then answer questions 
about clarity, distortion, etc. and finally to 
render their suitability decisions along the four 
scales. The four scales question was a single 
question with four tabs (see Figure 3.1 - 9)—
one tab for each scale. Thus, once the 
participant was finished with their annotations 
and got to the suitability questions, they would 
select their conclusion for the value scale, click 
the next tab to enter their conclusion for the 
complexity scale, and so on. For most 
participants, it should have been a matter of 
seconds between when they made their 
selections on the Value tab and the Complexity 
tab. 

Figure 3.1 - 26 This is Image 77 from the study. It is 
one of 7 images in the study for which there was a 
strong consensus (over 20 votes) for “NV” on the 
value scale, yet in every case at least 5 people 
disagreed with that assessment. The votes for this 
particular image were: NV (26); Investigative Value 
(4); VEO (6); VID only (2); Value for Both (3). 
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Yet, it was observed that in 41/100 images, at least one person changed their mind about 
whether the image was NV or not between the Value scale and the Complexity scale (e.g., 
selected “NV” on the Value scale, then selected “Of value, complex” on the Complexity scale 
moments later). This was the same person, viewing the same image, rendering two different 
decisions moments apart. It is true that the Value scale and the Complexity scale were different 
so an argument could be made that people set their personal NV thresholds differently on the 
two scales. However, the definition of NV that was provided to participants was exactly the 
same for both scales* and help text was provided at each decision point as a reminder. We 
could argue that, if something is not of value, it’s not of value independent of whether one is 
considering its complexity or only its value. Our participants didn’t respond following that 
expected logic. Unfortunately, the collected data do not illuminate the reason for this observed 
discrepancy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interestingly, among the 41 images where someone changed their NV determination between 
the Value and Complexity scales, most of the time between 1 and 4 people changed their 
minds. The highest affected image recorded 7 individuals changing their minds (an example is 

 
* The definition that was provided for No value on both the Value and Complexity scales was “The mark does not 

contain sufficient information to proceed with a comparison.” 

Figure 3.1 - 28 This is Image 51 from the study. It is an 
example of an image that had nearly even votes 
across the value categories. The votes for this 
particular image were: NV (10); Investigative Value 
(4); VEO (7); VID only (2); Value for Both (12). 

 
 

Figure 3.1 - 27 This is Image 99 from the study. It is another 
example of an image that had nearly even votes across the 
value categories. The votes for this particular image were: 
NV (9); Investigative Value (5); VEO (9); VID only (2); Value 
for Both (10). 
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Figure 3.1 - 29). Overall, 47 individual participants changed their NV determination between the 
Value and Complexity scales on at least one image; most did this on 1, 2, or 3 images 
throughout the study, but one user each changed their mind on 4, 5, and 6 images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 - 30 This is Image 87 from the study. It is one 
of the 18 images in the study for which there was a 
strong consensus (over 20 votes) for “Value for Both” 
on the value scale, yet still a high number of people 
who disagreed with that assessment. The votes for this 
image were: NV (4); VEO (4); Value for Both (23). 

 
 

Figure 3.1 - 29 This is Image 100 from the study. It is the 
image for which the highest number of people (7) 
changed their mind regarding the NV decision between 
the value scale and the complexity scale. 

 

 
 



 3-30 

 
Certainty of minutiae selection 
 
Tools were provided for 
participants to not only annotate 
the minutiae they took into 
consideration in making their 
suitability determinations, but also 
to indicate the type of minutia and 
their certainty about the minutia 
type. The 4 minutiae marker types 
(Figure 3.1 - 31) were: ridge 
ending, bifurcation, “type 
uncertain” and “uncertain minutia” 
(used when the participant was 
not confident that a particular 
minutia was actually present).  
 
Overall, the 2 uncertain minutia markers (triangle and diamond) were seldom used. The mean 
number of uncertain minutiae annotated per image ranged from 1 to 5, whereas the mean 
number of certain minutiae annotated per image ranged from 1 to 25. The mean total number 
of minutiae annotated per image ranged from 4 to 26. The percentage of uncertain minutiae 
annotated per image ranged from 5 percent to 69 percent. 
 
Despite the low usage of uncertain minutia marker types, there were many minutiae annotated 
with certain minutia markers that nonetheless lacked consensus on minutia type. In other 
words, many minutiae were annotated confidently as ridge endings by some participants 
whereas the same minutiae were annotated confidently as bifurcations by other participants. In 
many cases, these “votes” were very uneven, with the vast majority of participants choosing 1 
minutia type whereas only a few chose the other. However, for many annotated minutiae, the 
votes were nearly even. 
 
If approximately half of the experts viewing a particular minutia state that it is clearly a ridge 
ending, and approximately half of the experts viewing the same minutia state that it is clearly a 
bifurcation, there is de facto connective ambiguity (as defined by Stoney and Thornton (Stoney 
and Thornton 1986)) to the minutia. It does not necessarily follow that these ambiguities only 
occur in low quality marks, or in degraded local areas within otherwise clear marks. In many 
cases, there was a nearly even split of votes even in clear areas of high-quality images. 
 
Figure 3.1 - 32 illustrates a minutia that was annotated in almost equal numbers as a certain 
ridge ending or a certain bifurcation. Only one participant marked it as an uncertain type. This 
image is a clear impression and was tied in the rankings as the image with the lowest 
percentage of uncertain minutiae annotated, at 5%. The consensus response on clarity for this 
image was “adds weight to my desire to keep the mark” and the consensus response on 

Figure 3.1 - 31 These are the four minutiae marker types that were 
available to participants to annotate minutiae. The first two, 
bifurcation and ridge ending, are “certain” marker types where the 
participant is indicating that they are sure the minutia is of the type 
selected. The second two, type uncertain and uncertain minutiae, 
are “uncertain” marker types where the participant is unsure of the 
type of the minutia, or uncertain whether the minutia is even 
present, respectively. 

 



 3-31 

distortion was “Low Distortion.” Although the overall clarity of the mark is high and even the 
local clarity of the noted minutia is high, there is nonetheless connective ambiguity around that 
minutia. It seems from multiple examples such as this one that when the area of the mark is 
clear, participants tend to express a high level of confidence in minutia type, even if there is 
connective ambiguity and a lack of consensus. 
 
Figure 3.1 - 32 This is Image 61 from the study. The highlighted minutia is an example of a minutia in a clear local area that 
nonetheless suffers from connective ambiguity, as evidenced by the nearly even vote for ridge endings versus bifurcations. The 
text bubble shows the number of each minutia marker type that was used to annotate this minutia. 

 

 
At the other end of the spectrum, Figure 3.1 - 33 illustrates the impression in the study that had 
the highest percentage of uncertain minutiae annotated, at 69%. The consensus response on 
clarity for this image was “adds weight to my desire to discard the mark” and the consensus 
response on distortion was “High Distortion.” In this figure, we draw the reader’s attention to 
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two different minutiae that both represent the full range of possible minutia marker types. 
Participants who viewed this image appropriately used far more uncertain minutia types than 
they did on clearer images. Yet, with an image as highly degraded as this one, it could be argued 
that none of the minutiae should be marked with certainty as to its type. 
 
Figure 3.1 - 33 This is Image 57 from the study. The two highlighted minutiae are examples of minutiae for which all four minutia 
marker types were used for a very degraded image. The text bubbles show the number of each minutia marker type that were 
used to annotate each minutia. 
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The lack of consensus on many minutiae annotations that were made with certainty indicates 
two things. First, there are no clear definitions to guide examiners on when a minutia is a ridge 
ending versus when it is a bifurcation. Second, it is highly probable that the uncertain minutia 
markers are being under-utilized. There is a debate needed regarding whether the minutia type 
actually matters for the comparison process to be completed reliably. We do not enter into this 
debate here. We do note that depending on the education and training of examiners, a 
different emphasis may be put on minutiae type. For instance, AFIS operators are often 
instructed to disregard the type of minutiae as it is not relevant in the encoding used by the 
systems. However, if practitioners cannot come to a consensus on what types of minutiae they 
are observing, we recommend that until clear definitions exist and are followed, distinct 
minutia types should not be recorded. 
 
Use of new scale categorizations 
 
Three new suitability scales (Complexity, AFIS, and Difficulty) were introduced in this research 
and participants were asked to make judgements on each. In addition, 3 new determinations* 
for use on the Value scale and one new determination* on the AFIS scale were introduced. 
Although there were specific reasons each of these new determinations were included in the 
research, it was uncertain whether they would be embraced and used by the participants in the 
study, or whether they would be summarily ignored. 
 
Investigative or Probative Value only 
 
The suitability determination “Some probative or investigative value, but insufficient for an 
identification or exclusion” was selected by at least one participant in 59 out of 100 images in 
the study. In 50 of the 59 images in which it was selected, more than one participant selected 
this option. The highest usage for this option was 9 participants selecting it for the same image. 
74 unique participants selected this option at least once, and 49 of those used it more than 
once. The highest usage by a single participant was 10 times. 
 
Value for Identification only 
 
The suitability determination “Value for Identification only” was selected by at least one 
participant in 69 out of 100 images in the study. In 41 of the 69 images in which it was selected, 
more than one participant selected this option. The highest usage for this option was 13 
participants selecting it for the same image. 48 unique participants selected this option at least 
once, and 31 of those used it more than once. The highest usage by a single participant was 18 
times. 
 
 

 
* These were: (1) Some probative or investigative value, but insufficient for an identification or exclusion; (2) Value 

for Identification only: and (3) Value for both Identification and Exclusion. 
* AFIS quality with additional QA measures 
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Value for both Identification and Exclusion 
 
The term Value for Both was technically new, but since it had been separated from “Value for 
Exclusion only” and “Value for Identification only,” it was essentially equivalent to the “value 
for comparison” or “value for identification” terms currently in use in most laboratories. That is 
to say, it represents the standard, or common, usage of the term “of value.” Because of this, 
this determination was very commonly used and specific numbers on its usage are not 
included. 
 
AFIS Quality with QA 
 
The AFIS scale determination “AFIS quality with additional QA measures” was selected by at 
least one participant in 85 out of 100 images in the study. In 79 of the 85 images in which it was 
selected, more than one participant selected this option. The highest usage for this option was 
20 participants selecting it for the same image. 106 unique participants selected this option at 
least once, and 99 of those used it more than once. The highest usage by a single participant 
was 16 times. 
 
Although these categories were new and unfamiliar to the participants, it seems that all were 
used more than sporadically. Shifts in thinking can take time as can new ways of expressing 
conclusions, but it does appear that there is value to thinking about suitability determinations 
as more than just binary, to designating marks upfront that should not be used to support 
categorical conclusions, and to considering whether it would be prudent to institute additional 
QA measures to guard against error for marginal AFIS impressions. It is encouraging that 
participants were willing to try out these new categories and we recommend examiners begin 
to incorporate these categories into their everyday casework as a way to think deliberately 
about risk and identify those marks that should be treated more cautiously. Further research in 
this area should investigate whether the use of these categories leads to a decrease in error 
rates in comparison decisions. 
 
Conclusion 
 
Research was undertaken to try to understand the variables that latent print examiners most 
consider when making suitability decisions and the extent of the variability observed between 
examiners when it comes to these decisions. The notion of “suitability” was also expanded, and 
a total of four scales of suitability (value, complexity, AFIS, and difficulty) were explored, along 
with several new conclusions that could be reached along each scale. 
 
Examiners were found to be variable in the features they relied upon, their perceptions of 
amount of clarity and distortion, and their ultimate decisions regarding suitability. Consensus 
observations were fairly good predictors of consensus decisions; however, the variation in the 
data suggested that individual examiners would not agree with the consensus opinion in many 
cases. Although variability will unavoidably be present to some extent in human endeavors that 
rely upon subjective assessment of visual cues, the discipline should nonetheless make efforts 
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to reduce this variability to the extent possible because differences in opinion over the 
suitability of a mark for comparison or AFIS could have real-world consequences to the criminal 
justice system. In addition, a reduction in variability around the complexity decision would 
allow for the logical application of common-sense QA procedures to reduce the chances of 
error. 
 
Minutiae count was the strongest driver of value decisions, whereas clarity and distortion 
together better explained decisions on the other scales.  Overall, the variables that were most 
consistently relied upon to reach suitability decisions along all four scales were: total number of 
minutiae marked, number of confident minutiae marked (as opposed to uncertain minutiae 
marked), the clarity of the image, the level of distortion in the image, whether the pattern type 
could be determined with confidence, and the selectivity of the minutiae. 
 
Although examiners tended to agree on which images were very high quality, there was no 
consensus on no value images. Also, if an image was not extremely high quality, it was likely 
that many examiners would assign it to the highest value category, whereas many other 
examiners would disagree. Many images had nearly equal votes across all value categories. 
 
Examiners tended to express strong confidence in minutia type, even when there was 
connective ambiguity. More degraded images resulted in a higher use of uncertain minutia 
markers, but certain minutia marker types were still used. 
 
The new suitability categories that were introduced along the four scales of suitability were 
chosen often by participants in this study. There appears to be value in expanding the notion of 
“suitability” of latent marks and considering different uses for which a mark may be useful as 
well as considering more granular conclusion options that may suggest additional quality 
assurance measures. 
 
In light of our findings, we make the following recommendations: 
 

(1) Laboratories should consider adopting the 3 scales of Value, Complexity, and AFIS as 
ways of thinking about the suitability decision and should develop criteria for assigning 
marks to the categories in each; 

(2) Researchers and Laboratories should consider the use of a standardized Difficulty scale 
to assist in uniformity between research projects, training, testing, and testimony. The 
thresholds for this scale will ideally need to be agreed upon by stakeholders prior to 
implementation in order to be useful across agencies and research groups; 

(3) Quality managers should implement QA policies that reflect the position of marks along 
the Complexity scale, requiring enhanced documentation for complex marks and 
allowing reduced documentation on those that are so high quality as to be self-evident; 

(4) Laboratory management should encourage the adoption of an “AFIS quality with 
additional QA measures” category to flag those marks that are suitable for entry into 
AFIS but should be subject to additional QA measures due to risk factors. This category 
should be implemented with specific criteria to define its thresholds; 
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(5) Examiners should not use specific minutiae marker types unless and until specific 
criteria are developed to define each because the current practice lends a misleading 
veneer of certainty to what is often an arbitrary decision; and 

(6) Examiners should document the features and observations they relied upon to reach 
their suitability decision(s) because it is known that these decisions can vary widely and 
without a way to substantiate why a particular decision was reached, it is opaque and 
arbitrary. 

 
Many of these suggestions will be easiest to implement once criteria are established for the 
thresholds of different categories, ideally based upon modeling of the consensus of experts. A 
project to provide proof-of-concept for such a model has been undertaken by this research 
group and the results of that work are presented in Chapter 4. 
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3.2 Additional insights and commentary on the white box study 

This section first provides additional insight and explanation of the rationale behind the 
experimental design (i.e. why we asked the questions we asked), then goes on to examine 
additional images of interest that were not included in the article and provide the full 
conclusion results for each of the four scales (in the article, these were only summarized and a 
few examples given). 

3.2.1 Evaluating suitability and the Sufficiency Triangle 

In designing the white box experiment, choices had to be made regarding what information 
would be collected through the PiAnoS interface to capture the information examiners use in 
forming their suitability decisions. The guiding principles behind these choices were outlined 
above in Section 1.2 under “the assigning weight task.” In order to assign weight to a feature, 
an examiner ought to be considering both how distinctive the feature is, and how confident 
they are in the feature’s existence and type. 
 
Although suitability is often thought of as 
predominantly related to quantity—i.e. is 
there enough information in the mark for 
it to be suitable—we propose that 
suitability is supported by three pieces of 
information: quantity, rarity, and 
reliability. We call this the “sufficiency 
triangle” (Figure 10) both because it deals 
with how much total weight is sufficient to 
reach a decision, and because it supports 
the concept of sufficiency generally (that 
is, both at the analysis (suitability) and 
evaluation (sufficiency) stages).  
For a mark to be suitable, a specific 
number of minutiae is truly not sufficient 
justification, unless we are talking about 
numbers in excess of 30 or 40 minutiae. In addition to quantity, examiners should be 
considering both whether the features are distinctive (rarity), and whether they are confident 
in those features (reliability) as part of their weighting process. We already know that a few 
highly distinctive features can carry more evidential weight than several very common features. 
However, we also need to consider our confidence that those features are what we believe 
them to be. One cannot put heavy weight on a feature for being rare if it turns out the feature 
was actually not the rare feature they thought, but a common one, or even worse, if the 
feature is not actually present. Reliability is intrinsically linked to the clarity of the mark. 
 
Thus, the sufficiency triangle can be thought of as having an ideal total area. If the triangle 
skews toward one of the three apexes, and away from one or more of the others, but the total 

Figure 10 The sufficiency triangle. There must be a 
sufficient total area between quantity, rarity, and 
reliability in the features contained in an impression to 
support a suitability determination. 
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area remains over the ideal threshold, the mark is still suitable. However, if any (or all) of the 
three apexes are so little represented that the total area of the triangle falls below the 
threshold, the mark is not suitable (Figure 11). 
 
We tried to capture both the notions of distinctiveness and confidence for minutiae and 
pattern type. For minutiae, we approached this in two ways. First, we provided 4 different 
minutia marker types—two certain (ridge ending and bifurcation) and two uncertain (type 
unknown and uncertain minutia). These allowed us to capture the confidence level of the 
examiner of the type of minutiae and whether the examiner was even confident that the 
minutiae was actually there (uncertain minutia). Then, we provided the new grouping tool that 
allowed examiners to group together clusters of minutiae that they found to be particularly 
distinctive and would give extra weight. This addressed the distinctiveness question by allowing 
us to count the number of minutiae clusters examiners chose to group. 
 
Figure 11 The sufficiency triangle. Triangles (A) and (B) have the same area. Although Triangle (B) has roughly equal quantity, 
rarity, and reliability whereas Triangle (A) has lower rarity and reliability, but high quantity, both meet the threshold for 
suitability. In contrast, Triangle (C) has roughly equal quantity, rarity, and reliability, but not enough of any of them for the mark 
to be suitable (hence its smaller total area). 

 
 
For pattern type, we asked examiners to select all the pattern types they believed the mark 
could possibly be. The number of patterns chosen (Pcount) gave us an indication of their 
confidence in the pattern type. We also asked a separate Y/N question about the shape of the 
pattern and whether they found anything to be distinctive about it that would make it stand 
out from other patterns of the same classification. This allowed us to capture the perceived 
distinctiveness of the pattern. 
 
For finer detail, like pores and incipient ridges, we combined the notions of distinctiveness and 
confidence into the single concept of weight. Because these fine details often do not reproduce 
reliably, because examiners have very different approaches on whether or not they rely on 
these types of detail at all, and because examiners are not consistent in their interpretations of 
whether incipient ridges and pores are Level 3 Detail or not, we took two approaches to 
capturing this information, and its importance to examiners. 
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First, we provided them with specific tools for marking both incipient ridges and pores, but we 
asked them not to annotate these features unless they factored into their analysis decision. For 
example, if they were like me, I don’t compare pores so they don’t make much difference to me 
in the suitability decision, other than as a general indicator of clarity. I would not mark pores. 
But some examiners would compare pores and get excited when they see them—they would 
be welcome to annotate the pores. Thus, rather than measuring whether examiners noticed the 
pores and incipient ridges, we were instead measuring the degree to which they cared about 
them. This was captured by the total number of each feature they annotated on each mark. 
 
Second, we asked a general question about whether Level 3 Detail was noted, and relied upon, 
in reaching the suitability decisions. We asked this question without defining Level 3 Detail and 
left it to the examiner to determine whether the features they observed qualified. This gave us 
another indication of the extent to which Level 3 Detail (however defined) was important to 
examiners in reaching their suitability determinations. 
 
Although the sufficiency triangle is presented here as a conceptual description of the thought 
process examiners should be going through to assign weight to features in a mark, and to the 
mark overall, it could be developed by future research into a usable model. As noted above, we 
collected data on quantity, rarity, and reliability of minutiae and pattern type. However, for 
things like level 3 detail, we combined rarity and reliability into a single concept of weight 
(which makes these data impossible to map onto the triangle). If numerical measures of 
perceived rarity and reliability were captured separately, in addition to quantity, for all data 
types, sufficiency triangles could be built for each mark as a visual representation of suitability. 
 
As it turned out (refer to Section 3.1), the only variable measuring distinctiveness and 
confidence that really contributed to predicting examiners’ suitability decisions was the variable 
Minutiae Selectivity (MinSelect—more on this variable in Chapter 4). MinSelect was a variable 
that we created in order to synthesize the annotations we received into a measure of the 
weight given to the minutiae in a given mark overall. MinSelect took the proportion of certain 
(ridge ending or bifurcation) minutiae marker types to the total minutiae marked to estimate 
the examiners’ confidence in their selected features overall. It then added a weighted factor for 
whether or not a target group was annotated and the number of combined groups annotated, 
to estimate the distinctiveness of the selected features according to the examiner. 
 
From these results, it appears that minutiae (their quantity, distinctiveness, and reliability) were 
the main driving factor in decision-making. Although participants were provided with tools to 
annotate other kinds of information and were encouraged to do so, the predominant 
annotations we received were those relating to minutiae. This is not unexpected, considering 
that examiners tend to be accustomed to working in a minutiae-focused way, in which other 
features are considered, but the main focus is typically on minutiae. 
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3.2.2 Interesting case examples that highlight examiner variability 

The article reproduced in Section 3.1 provides some examples of specific cases in the study that 
illuminate the lack of examiner consensus on particular value decisions and cases that illustrate 
people’s inconsistent or incoherent choice of minutiae marker types. This section presents 
some additional examples that did not make it into the article but either illustrate additional 
specific areas of examiner inconsistency or have comments or annotations that prompt 
additional discussion. 
 

The first case involves img060 (Figure 12), a small 
delta area with few clearly discernible minutiae 
despite its relative clarity and few 
orientation/location cues. Thirty-seven participants 
viewed this mark, and their conclusions are 
summarized in Table 5. 
 
Eleven of the 37 participants who viewed this mark 
left written comments and 5 of those specifically 
commented on the dangers of pattern force areas, 
and deltas in particular, as being at high risk of 
repetition of features. An additional 4 mentioned 
that the minutiae present in this image were not 
particularly distinctive (a more indirect reference to 
the possibility of repetition).  
 

Table 5 Examiner suitability decisions for img060 across the four scales of suitability. Abbreviation Key: NV – no value; IV – 
Investigative Value; VEO – Value for exclusion only; VIDO – Value for ID only; VB – Value for both ID and exclusion; C – Complex; 
NC:DOC – Non-Complex, Document; NC:SE – Non-Complex, Self-Evident; NAQ – Not AFIS quality; AQ w/QA – AFIS quality with 
quality assurance measures; AQ – AFIS quality; H – High; M – Medium; L – Low. 

Scale Value Complexity AFIS Difficulty 
Concl. NV IV VEO VIDO VB NV C NC:Doc NC:SE NAQ AQ w/ QA AQ H M L 
Votes 14 3 7 3 10 15 10 10 2 25 8 4 16 11 10 

 
 
It is encouraging that so many of the participants took the trouble to note the dangers of 
pattern force areas and to apparently take them into account in their decision-making 
processes. Less encouraging is the fact that people who made these observations still reached 
different value decisions. Of the five participants who specifically noted the challenges of 
pattern force areas, 2 decided this mark was no value, 1 assigned it investigative value, and 2 
determined it was of value for both identification and exclusion. Their comments, conclusions, 
and minutiae counts are summarized in Table 6.  
 
 
 
 

Figure 12 img060, a mark presented in the 
white box study that generated 
commentary on the dangers of pattern 
force areas. This mark previously appeared 
in the thesis as Figure 4(A). 

 



 3-41 

Table 6 Conclusions, minutiae counts, and written comments from the 5 participants who noted the challenges that could be 
posed by pattern force areas upon viewing img060. 

Username Conclusion Minutiae Count Comment 
User_024 NV 8 Impression is a tri-radius area. Whereas there are several 

minutiae, there is insufficient minutiae outside the delta area. 
Delta areas can have ‘similar’ formations. 

User_148 NV 8 This mark is in a pattern force area. This makes the mark’s 
features not unique. 

User_034 Invest. Value 8 Forced areas, such as deltas, often have minutiae that could be 
valid, and could not. Caution when using only deltas. 

User_111 Value for 
Both 

15 unique ridge arrangements at center of delta. unable to 
anatomically orient. would consider sufficient for comparison – 
caution required if considering identification decision during 
evaluation due to pattern forced area and limited amount of 
information present 

User_114 Value for 
Both 

11 Complexity is due not to clarity, but to the limited amount of 
information present and the fact that the latent is in the delta 
area, where you are more likely to see similarities between 
knowns. 

 
The fact that these 5 participants all had such similar comments yet chose 3 different 
conclusions (2 of which are diametrically opposed) highlights that there is still a need for clear 
criteria for the value decision. However, it is worth noting that the 2 participants who decided 
on Value for Both found more minutiae than the other 3, suggesting that total minutiae count is 
still a highly influential driver in this decision (although for User_114, 7 of the 11 annotated 
minutiae were uncertain). 
 
The next case we will review involves img066 (Figure 13), a very messy mark with distortion, lateral pressure, tonal reversal, and 
one very small, very clear area with two dots. This image makes an interesting case study because it is such an awful mark 
generally, but the clear information it has is very valuable, if present in a compared print. To see how participants reacted to this 
mark,  

Table 7 summarizes the conclusions of the 28 participants who viewed it. 
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The minutiae count for this mark 
ranged from 1 to 27, whereas the 
minutiae count for those who gave 
a value decision of NV ranged from 
1 to 8 and those who gave a value 
decision of Value for Both ranged 
from 6 to 27. Only 6 participants 
left written notes, and 3 of these 
mentioned the 2 dots at the 
bottom of the impression. The 
decisions of those 3 participants 
were Investigative Value (5 
minutiae annotated), VEO (4), and 
Value for Both (12). Once again, 
although there are interesting 
things going on in this mark and 
participants are taking note of 
them, the ultimate decision 
appears to be driven largely by 
perceived number of minutiae 
suggesting that although 
distinctiveness is valued by 
examiners, it does not trump 
minutiae count in their minds. 
 
 

 

Table 7 Examiner suitability decisions for img066 across the four scales of suitability. 

Scale Value Complexity AFIS Difficulty 
Concl. NV IV VEO VIDO VB NV C NC:Doc NC:SE NAQ AQ w/ QA AQ H M L 
Votes 12 4 4 2 6 13 13 2 0 21 6 1 21 7 0 

 
Finally, we will examine img068 (Figure 14), a tip with few discernible minutiae, but a distinctive 
group near the top and a possible dot at about the 11 o’clock position. 28 participants viewed 
this mark and minutiae counts ranged from 5 to 13. However, only 3 participants annotated 
fewer than 8 minutiae, making this mark fairly stable in terms of minutiae count. Table 8 
summarizes the conclusions of the 28 participants who viewed img068. 
 
With minutiae counts fairly stable, decision-making on this mark appears to have been largely 
driven by clarity and distortion. Most people rated the distortion of this mark as “medium,” but 
the 5 who rated it as “high” all reached value determinations in the bottom 2 categories. 
Furthermore, all 5 participants who reached a NV value decision chose “clarity increases my 
desire to discard the mark” as their clarity assessment. Although clarity assessments were 

Figure 13 img066, a mark presented in the white box study that 
provokes thought about the weight that can be assigned to highly 
distinctive features in a small area of clarity. 
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mixed in the higher value categories, there was a marked increase in “clarity increases my 
desire to keep the mark” assessments. 
 
Interestingly, despite the 
distinctive cluster at the top of 
the mark and the possible dot 
at 11 o’clock, these didn’t seem 
to resonate strongly with 
participants, at least according 
to their annotations. Five 
participants annotated the dot 
(3 VIDO, 2 VB) and an additional 
1 mentioned it in their written 
notes. Every participant marked 
all or part of the cluster in the 
tip, but there was no 
discernible relationship 
between value decision and 
whether the cluster was 
annotated using the grouping 
tool, so this cluster did not 
appear to be driving the value 
decision, other than insofar as it 
contributed to the overall 
minutiae count and was located 
in a clear portion of the image. 
 
One thing that was mentioned by participants on this image was Level 3 Detail in the form of 
ridge shapes and pores. Eight participants marked pores in this image, with 5 of them marking 
more than 10 and 2 marking 30 or more. Six participants left written notes on this image and 3 
of them mentioned pores specifically whereas 2 mentioned L3D or ridge shapes. Interestingly, 
one participant selected NV and made the comment, “Despite the number of minutiae [8 
annotated by this participant] and the presence of L3D, I would not keep this mark. There are 
plenty of pores visible [30], but I don’t find them helpful for identification. This is the type of 
mark that false positives are made of.” 
 
Table 8 Examiner suitability decisions for img068 across the four scales of suitability. 

Scale Value Complexity AFIS Difficulty 
Concl. NV IV VEO VIDO VB NV C NC:Doc NC:SE NAQ AQ w/ QA AQ H M L 
Votes 5 4 2 7 10 5 11 12 0 17 4 7 9 15 4 

 
Together, these additional examples illustrate how participants behave when confronted with 
particular types of limited-information marks. In cases with a wide range of perceived minutiae 
counts, participant decisions seemed to be largely driven by the minutiae count. When the 

Figure 14 img068, a mark presented in the white box study that had a 
fairly stable minutiae count and owed more to clarity and distortion for 
decision-making. Like img066, it presents a small number of highly 
distinctive minutiae. 
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minutiae count was more stable, clarity and distortion assessments seemed to have a greater 
influence. Some participants are aware of both dangers (pattern force areas) and high-value 
features (dots) and were thinking about fine details such as ridge shapes; however, these did 
not seem to drive the decision for most of the participants—at least to the extent that they 
faithfully recorded their thought processes and annotated the features upon which they relied. 
 
It is clear that although minutiae count is a major driving factor in value determinations, 
examiners are noticing and considering a wide range of other information. It is likely that these 
other factors come into play when decisions are near a threshold, but we were unable to 
demonstrate this through the machine learning, which relied on average responses and thus 
lost the nuances of individual observations. 
 
It is further clear that until and unless specific criteria are developed to (1) guide examiners in 
what information to weigh heavily during analysis and (2) specify an objective level of clarity at 
which a minutia “counts,” we will continue to see wide variability in both what information is 
considered/weighted and in ultimate suitability determinations. 

3.2.3 Summary of all responses along the four scales 

The white box article reproduced in Section 3.1 presented examples (Figure 3.1 - 24) in the 
section titled “Consistency of suitability decisions” of the range of decisions examiners made for 
some of the marks in order to illustrate the levels of consensus at the high and low ends of the 
spectra. 
 
In this section, we present the full conclusion data for each of the four scales, showing 
histograms of all the responses received for each of the 100 images in the study along each of 
the four scales. These are presented in Figure 15 through Figure 18 and a glance at their overall 
shape gives an overview of the level of agreement and disagreement between examiners. In 
these figures, it is easy to observe that there is rarely consensus on decisions, except at the high 
ends of the scales, and that there is frequently almost even distribution between opinions. 
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Figure 15 Responses received for all 100 images along the value scale. 
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Figure 16 Responses received for all 100 images along the complexity scale. 
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Figure 17 Responses received for all 100 images along the AFIS scale. 
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Figure 18 Responses received for all 100 images along the difficulty scale. 
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3.3 Chapter 3 summary 

Chapter 3 presented a published white box article that explored a four-scale conceptualization 
of suitability and the information that examiners rely upon to support decisions along each of 
those four scales (Value, Complexity, AFIS, and Difficulty) and dove deeper into the philosophy 
of suitability and the rationale behind many of the choices made in the experimental design for 
the white box study. 
 
Examiners are variable at every key decision point in the friction ridge comparison process, 
including the selection of features and the ultimate suitability decision. We sought to link 
examiner annotations of the information upon which they relied to their own analysis decisions 
on each of the four scales to determine the most predictive information. (These four scales 
were previously described in detail in Sections 2.2 And 3.1). 
 
Data were collected from 116 friction ridge examiners who were each assigned sets of 30 mark 
images from a pool of 100, resulting in 3,241 completed trials. Participants were requested to 
annotate only the information they used to reach their conclusions and to answer questions 
about their perceptions of clarity, distortion, pattern type, and level 3 detail in the marks. 
 
As found in previous literature, minutiae count was the best overall predictor of decisions on 
the Value scale, whereas distortion and clarity together were better predictors of decisions on 
the Complexity, AFIS, and Difficulty scales. The most diagnostic variables for predicting 
decisions were: total number of minutiae, total number of confident minutiae, clarity, 
distortion, number of possible pattern types, and minutiae selectivity, a measure that 
incorporated both the ratio of confident minutiae to total minutiae annotated and counts of 
target groups and distinctive minutiae clusters. 
 
The concept of the Sufficiency Triangle was introduced. The Sufficiency Triangle is a visual way 
of representing that 3 factors must be considered to support a decision of suitability or 
sufficiency: quantity of information, rarity of that information, and reliability of that 
information. Although one or more of these factors may be lower or higher than the others for 
any given mark, the total perceived contribution of all 3 factors must result in a triangle with a 
large area in order for a mark to be considered suitable. 
 
The experimental design of the white box study captured information on quantity, rarity, and 
reliability of minutiae and pattern type directly, and of other types of observable features (such 
as creases, scars, or level 3 detail) more indirectly. The strong performance of the minutiae 
selectivity variable as a predictor of decisions (a variable that took into account all three factors 
of quantity, rarity, and reliability) supports that all three are important. It also supports that 
minutiae (their quantity, rarity, and reliability together – not just their quantity alone) are the 
most influential driver of suitability decisions. 
 
Image examples presented in the chapter illustrate that in addition to minutiae, participants did 
consider other types of information when reaching their suitability decisions, but that these 
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factors were not as influential as minutiae, except in cases where the minutiae count was fairly 
stable between examiners, in which cases other factors seemed to have more influence. 
 
A review of the overall levels of agreement between examiners on all four scales revealed that 
there was generally good agreement on high quality images, but not on low- or mid-quality 
images, and that there were many images where decisions were nearly evenly split across all 
possible categories, demonstrating that stringent decision criteria are needed to reduce 
variability between examiners. 
 
Minutiae marker types were often used with certainty, even in areas of low clarity or when 
there was clear connective ambiguity. Additionally, different minutiae marker types were 
frequently used for the same minutiae by different examiners, both with high confidence, 
illustrating that the assignment of minutiae type (ridge ending versus bifurcation) is largely 
arbitrary and should not be presented as a decision that has been made with confidence until 
very clear criteria are in place for each type. 
 
Two new suitability scales (Complexity and Difficulty) and several new conclusions along all four 
scales were introduced. Usage of these new conclusions was good across examiners and 
indicates that examiners found them useful and their adoption in operational casework should 
be considered. 
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4 Predicting consensus suitability decisions 

The data collected in Chapter 3 were further analyzed to develop a predictive model that could 
categorize marks along each of the four suitability scales, based upon a few key observations 
from the examiner and some automated measures. Chapter 4 describes the process of 
developing, optimizing, and validating this model. In the second paper concerning this research, 
“Predicting suitability of finger marks using machine learning techniques and examiner 
annotations,” we present the work that was done to create this model. Section 4.1 presents the 
manuscript of that paper, published in Forensic Science International, here with figure and table 
captions prefixed with “4.1 –“ to integrate with this dissertation. Note that footnotes have been 
re-named to simple asterisks. Figures may appear in different locations in the manuscript due 
to journal formatting. 
 
For length and to appeal broadly to the friction ridge examiner community, the process of 
model development, optimization, and validation was summarized in the article, but some 
additional discussion of why particular research design choices were made was omitted. 
Section 4.2 of this chapter goes a little further behind the scenes of this process. 
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4.1 Predicting suitability of finger marks using machine learning techniques and 

examiner annotations 

 
Predicting suitability of finger marks using machine learning techniques and examiner 
annotations 
 
Heidi Eldridge, MSca, b, Marco DeDonno, MScb, Christophe Champod, PhDb 

aRTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709 USA 
 
bSchool of Criminal Justice, Faculty of Law Criminal Justice and Public Administration. University 
of Lausanne, 1015 Dorigny, Switzerland 
 
Abstract 
 
Previous research has established the variability of examiners in reaching suitability 
determinations for friction ridge comparisons. Attempts to create predictive models to assist in 
this determination have been made, but have been largely confined to fully automated 
processes that focus on suitability for AFIS entry. This work develops, optimizes, and validates a 
hybrid predictive model that utilizes both examiner-observed variables and automated 
measures of quality and rarity to arrive at suitability classifications along four scales that have 
been proposed in our previous research: Value, Complexity, AFIS, and Difficulty. We show that 
a model based only on automatically extracted quality or selectivity measures does not perform 
as well as when used in conjunction with a limited set of user inputs. The model is then based 
on a limited set of input from the users while taking advantage of automatic measures with a 
view to limit the user encoding effort while maintaining accuracy. The developed model is able 
to make predictions at up to 83.13% accuracy when using full study data and maintains similar 
levels of accuracy in an external validation study. The model achieved accuracy at a similar level 
to that of examiners asked to make the same suitability determinations across all scales. The 
model can easily be introduced into an operational laboratory with very little additional 
operational burden to provide guidance on suitability, complexity, AFIS, and quality assurance 
decisions; to assist in designing testing and training exercises of progressive difficulty; to 
describe the difficulty of a mark in testimony; and to provide a consensus-based opinion in 
laboratories where a second opinion is desired but the laboratory lacks sufficient personnel to 
form a consensus panel. 
 
 
 
Keywords 
 
latent prints, friction ridge, value determination, identification 
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Introduction 

Latent print examiner variability in the suitability* decision has been well-documented (Ulery et 
al. 2011, 2012; Ulery et al. 2013; Ulery et al. 2014, 2015, 2016; Langenburg 2012; Neumann et 
al. 2013; Pacheco et al. 2014; Eldridge et al. 2020). 

Inter- and intra-examiner variability have been observed, both in the selection of features used 
to support the decision and in the ultimate determination regarding suitability. Practically 
speaking, these differences in opinion necessarily lead to an uneven application of justice-the 
same mark may be compared, or not, depending on which examiner evaluates the mark and 
even on which day the evaluation occurs.  

The decision of whether or not to compare a particular mark could have a grave impact on a 
case, whether by failing to compare a mark that could have either implicated the accused or 
implicated a different party, potentially exculpating the accused; or by performing a 
comparison on an unreliable mark that could lead to a false identification or exclusion. 

Beyond the decision of whether or not to compare a given mark, we have argued (Eldridge et 
al. 2020) that the notion of “suitability” is actually multi-faceted, as a mark can be more or less 
suitable for a variety of applications, and we have proposed four scales of suitability: Value, 
Complexity, AFIS, and Difficulty. Each of these scales provides information that may be useful to 
the forensic laboratory, researcher, or criminal justice system by providing guidance on when to 
compare a mark, enter it into AFIS, or apply enhanced or reduced Quality Assurance (QA) 
measures; or to use in the design of training materials, proficiency tests, and research samples 
of known difficulty; or to present information on difficulty level to a fact-finder in court. In that 
previous work, we also have described the variability of examiners in the decisions they reach 
along these four suitability scales and measured how well their annotated observations predict 
their own individual suitability decisions. 

In this paper, we describe the second part of this study, in which we develop and validate a 
model using examiner observations in combination with automated measures of quality and 
rarity to predict the consensus suitability response along each of the four scales. 

This model requires the examiner to enter only an image of the mark and three key 
observations (number of minutiae, and a global assessment of both clarity and distortion), then 
provides guidance on the suitability of the mark according to what a consensus of experts 
would likely support. 

 
 
 

 
* Although the terms “suitability” and “sufficiency” are often used interchangeably in the friction ridge community, 

this paper recognizes a distinction between the two that will be maintained throughout. “Suitability” refers to 
the decision that is reached at the end of the Analysis phase-whether the unknown mark is suitable for some 
particular purpose, most often comparison. “Sufficiency” refers to the decision that is reached at the end of the 
Evaluation phase-whether there is sufficient information present in two impressions to support a particular 
source conclusion. 
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Study Description and Methods 

The data used in this study were obtained in our previous work and the methods used to obtain 
them are fully described in our previous publication (Eldridge et al. 2020). However, we offer 
here a brief summary of the methods used to obtain the data. 100 study marks were selected 
to represent a range of quality from a pool of 1,259 casework images. 116 latent print 
examiners completed 3,241 trials in which they completed analysis of these 100 images 
following specific instructions we provided and resulting in suitability decisions along the four 
scales referenced above. Participants were requested to annotate only the information they 
considered in forming their suitability determinations, not all the information they could 
discern. Participants were provided with tools to annotate minutiae type and location, pores, 
and incipient ridges; indicate confidence in their minutiae markings; and select target groups 
and other highly distinctive minutiae groupings. They were further asked questions about 
possible pattern types, and asked to assess the level 3 detail, clarity, and distortion present in 
each mark. Finally, they completed a survey that collected demographic information and 
information on their policies and practices. All these responses, annotations, and suitability 
decisions made up the dataset used for the model development described in this article. 

This study was completed in two parts: Model Development and Optimization and External 
Validation. In the first part, the best variables to predict consensus decisions and the best 
performing machine learning algorithm (MLA) were selected. The selected MLA was then 
optimized by first testing its performance on the consensus data set of participants who agreed 
with consensus ground truth to get an idea of the model’s best possible performance then 
testing it again using the full data set of all participants to see how the model could be expected 
to perform in a more real-world situation where not all examiners are likely to agree with the 
consensus. In the second part of the study, the model was externally validated using a newly 
recruited set of examiners and a mix of new and old images to test for generalizability of the 
results. 
 
Model Development and Optimization 

Machine learning and subsequent statistical analysis were carried out in R version 3.6.3 RC 
(2020-02-21 r77847) (R Core Team 2018) coupled with RStudio Version 1.2.5033 (RStudio Team 
2015) using the following packages: tidyverse (Wickham et al. 2019) for data wrangling, caret 
for machine learning, computing confusion matrices and associated error statistics (Kuhn 2020, 
https://CRAN.R-project.org/package=caret). caret was also used to investigate variable 
importance and to reduce their number by adopting recursive feature elimination (RFE) (Kuhn 
and Johnson 2013). 

To develop the predictive model, we determined both which MLA would provide the best 
performance and also which predictors were most diagnostic in predicting the consensus 
ground truth decisions.* There are many MLAs available for these kinds of analyses and each 

 
* Because there is no objectively true answer for the question of whether a mark is suitable for a particular use, we 

used a majority voting system to assign the “ground truth” expectation for each of the 100 study marks along 
each of the 4 scales. 
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has strengths and weaknesses, with some being more or less computationally expensive and 
some being more or less opaque in terms of interpretability. To select the best MLA for our 
needs, we evaluated the performance of a suite of commonly used MLAs. 

We considered Classification and Regression Trees (CART), Random Forest (RF), K-nearest 
neighbors (KNN), Neural Networks (NN), Average Neural Networks (AvNN), Gradient Boosting 
Machine (GBM), C5.0, Support Vector Machine (SVM), Principal Components Analysis Nearest 
Neighbor (PCANN), multinomial regression (MULTINOM), and XGBoost Linear (XGB). The 
associated R packages giving access to these classifiers were all loaded when required through 
caret (Kuhn 2020, https://CRAN.R-project.org/package=caret). 

All MLAs have been trained adopting a leave-one-out validation scheme. 

When needed we will present the performance of the models using ROC curves taking 
advantage of the MultiROC package (Wei and Wang 2018) based on (Van Asch 2013). The 
MutliROC analysis allows construction of ROC curves for classification problems with more than 
2 outcomes. 

We trained the potential MLAs using only the data from users who agreed with the consensus 
ground truth decision for any given mark/scale combination. This was done because the model 
could not be expected to learn how to accurately predict an outcome based on annotations 
made by people who did not agree with that outcome. For each mark/scale combination (e.g., 
image 88 on the Complexity scale), the predictor responses of the concurring participants were 
averaged to create a single dataset of the consensus observations that could be used to predict 
the consensus decisions. These were referred to as “average user data.” In our model 
development strategy, we wanted to train a model based on the predictors obtained from an 
ideal user who would make decisions along with the majority vote (our ground truth by proxy) 
and assessed each predictor in line with the average among all examiners considered. 

At this stage we selected the MLA based on its accuracy. Then, we selected the best set of 
predictors that were most diagnostic to take into Step Two. This was done by recursive feature 
elimination (RFE), using model accuracy as the deciding metric. 

In Step Two, we tested different combinations of variables using the average user data to test 
the best-case scenario of how that model could be expected to perform using data where every 
user agreed with the consensus. The combinations of variables are all based on sets of 
predictors selected after RFE, but included different scenarios such as only automatically-
computed predictors (such as quality metrics); or only user-input predictors, from minimal 
input to full input of all predictors considered; or combinations of the two. Step Two allowed us 
to assess the potential loss in terms of accuracy when adopting a less computer intensive or 
less user intensive approach in the establishment of the predictors. 

Finally, in Step Three, we tested the same combinations of variables with the selected MLA 
using all individual user data to represent a more messy, real-world scenario and used these 
results to select the variable set that would be used in the final model due to its optimized 
performance using variables that were operationally feasible. 
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For this step, average user data was no longer used. The actual user variables from each user 
who agreed with the consensus ground truth was used along with the user input variables from 
all the users who did not agree with the consensus ground truth. It was expected that the 
model performance would be noticeably lower once noisier data were included compared to 
the ideal benchmark point set following Step Two. 

Step One – Model Selection 
The average user data for all user variables were run in all tested MLAs using 10-fold cross-
validation with 50 repeats. This allowed us to directly compare the performance of multiple 
MLAs on the data while minimizing the risk of overfitting. 

Each potential MLA was tested on each of the four scales using six different variable set 
combinations, resulting in 24 total assessments of the suite of potential MLAs. Each of these 
variable sets represents a different scenario for model use. One set considers all available 
predictors, whereas the others make some operational choices between variable sets. One 
question this research was designed to address was whether a human examiner brought any 
value to the analysis of marks for suitability, or whether it would be better to use a fully 
automated process. This step tested that question by evaluating variable sets that were fully 
human, fully automated, and some combinations of the two. The combinations of variable sets 
that were tested were: User, User/LO, User/UQM, UQM/LO, LO, and ALL (User/UQM/LO). LO is 
a term used to refer to a process that is completely automated, without any user input, a.k.a 
“lights out”. Table 4.1 - 1 summarizes the variable sets that were tested. 

 
Table 4.1 - 1 Description of the variable sets 

 

After selecting an MLA, we used RFE analysis to determine which predictor variables achieved 
the highest possible model accuracy with the fewest number of variables by considering the 
variables of highest importance for each combination of scale and variable set then 
determining which were the most diagnostic overall. This was desirable because one goal of the 
model is to save analysis time for examiners by requiring them to enter only a few key 
observations in order to receive guidance, rather than having to do an exhaustive analysis of all 
information present. 
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User variables that were tested for their predictive value included number of minutiae 
annotated, their type, and the confidence associated with them; the number of target groups 
annotated and the minutiae that made them up; the number of distinctive minutiae clusters 
annotated; users’ assessment of level 3 detail, clarity, and distortion; users’ assessment of 
pattern type; and annotations of the presence of creases, scars, incipient ridges, or pores. In 
addition to user variables related to each impression, we also tested a number of user 
demographic variables to see whether they influenced examiners’ suitability determinations. 

LO variables considered as predictors included automated measures of quality, clarity, and 
good ridge flow from LQMetrics (Hicklin et al. 2013); fa, which is a variable calculated based 
upon the AFIS matching score;* and ESLR, which is an Estimated Score-Based Likelihood Ratio 
based upon the mark alone that predicts how strong a match could be made if an appropriate 
same source exemplar was provided (Stoney et al. 2020). 

UQM variables considered as predictors included the total number of minutiae marked by the 
examiner, the numbers of minutiae marked by the examiners in areas of different quality, and 
fa and ESLR based only upon the minutiae entered by the examiner. 

Step Two – Ideal Performance Testing 
Once the MLA (it turned out to be Random Forest) and predictor variables that provided the 
best overall solution were selected, we optimized the model using a multiple step process. In 
the first step (Step Two), we took the 12 selected predictor variables and combined them into 
variable sets, listed in Table 4.1 - 2. As in Step One, these represented variables from the users 
only, fully automated variables, and combinations of the two. These variable sets were then 
tested in 21 different combinations and the performance of each combination was compared to 
the others to measure any significant differences in their accuracy. A Random Forest (RF) cross-
validation model was used with 2,000 trees, 100 repeats, and 10 folds. 
 

Table 4.1 - 2 Description of the variable sets retained after RFE. 

 
 

* The fa variable is calculated as follows, with s being the AFIS score for the transaction: 

𝑓𝑎 =
𝑠 − 1500
500 − 1 
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The 12 predictive variables that were selected (represented in variable sets User 1, FA_ESLR, 
and LFIQ in Table 4.1 - 2) were chosen after Step One to give the best compromise across all 
four scales between accuracy of classification and number of variables. Our aim was to reduce 
the number of user variables to the extent possible to minimize the amount of time examiners 
needed to spend on annotations, particularly those that did not have a significant impact on the 
accuracy of the classifier. 

Minutiae selectivity was measured by the variable “minselectivity”. This was a variable that we 
created in order to synthesize the annotations we received in the white box study into a 
measure of the weight given to the minutiae in a given mark overall. It took the proportion of 
certain (ridge ending or bifurcation) minutiae marker types to the total minutiae marked to 
estimate the examiners’ confidence in their selected features overall. It then added a weighted 
factor for whether or not a target group was annotated and the number of combined groups 
annotated, to estimate the distinctiveness of the selected features according to the examiner. 

Each combination of variable sets was evaluated for its ability in terms of accuracy to predict 
the consensus ground truth using the chosen MLA and the average user data. 

This gave an estimate of both which combination of limited variables provided the highest 
predictive accuracy and of how well the final model might be able to perform under idealized 
circumstances-that is, when users of the model agreed with the consensus ground truth. The 
results of this step represent the situation where we have superusers (those who always agree 
with the consensus determination), unlimited access to computing resources, and variables 
that have been selected while maintaining accuracy. We refer to this situation as Optimal. We 
also explore how the accuracy of the model would vary when less rich sets of predictors are 
used with a view to reducing the computing burden or the burden put on the examiners’ 
annotations. We refer to this situation as Operational. The operational solution is then a 
compromise between computing resources (to obtain the quality measures), the required user 
input, and the accuracy obtained by the model. 

Step Three – Model Optimization in realistic applications 
Each of the 21 variable set combinations tested in Step Two was again tested along each of the 
four suitability scales in 3 different ways: how well each potential model predicted ground truth 
outcomes based on the inputs of each user per image, how well each predicted ground truth 
outcomes based on the inputs of each user per user, and how well each potential model 
performed compared to how well the examiners performed at choosing the consensus ground 
truth response. Accuracy of the models was measured using a leave-one-out cross-validation 
over the 100 images. 

The performance of each potential model at predicting ground truth per user was selected as 
the basis for choosing a final model because this is the situation that most closely resembles 
the real world-if an examiner in a laboratory was looking to the model to assist them in making 
decisions on a case, what they care about is how well the model will work for them as an 
individual user, not how well it works on a particular case. 



 4-9 

These per user data were examined to determine the best performing variable set combination 
under two circumstances: Optimal and Operational. The Optimal performance reflects how well 
the model could be expected to perform in the real world, where data is messy, but assuming 
unlimited resources of computational power and time. The Operational performance reflects 
how well the model could be expected to perform in the real world, but limiting the variables 
available to those that can be incorporated into the model without huge computational or 
development costs. The best Operational model is the one that was ultimately selected and 
taken forward to the final step for external validation. 

External Validation 

Once the model was optimized, we performed a final experiment to validate it externally. 
Although the model predicts the consensus suitability decisions for the 100 images used and 
the examiners involved in the study, and although we did use a cross-validation scheme to 
ensure we did not overfit the model to the data, we still wanted to verify that its performance 
was generalizable to new images and new examiners who were using the model directly, as 
opposed to analyzing data that had been selected down to only the model variables. 
 
To do this, we created a new version of PiAnoS that had limited functionality to only allow the 
three most predictive user variables to be recorded. Examiners were recruited to participate, 
and 51 images were randomly selected for the study. To compare the model’s performance 
with new examiners on new images against its performance with new examiners on images 
from the original study, we re-used 20 images from the original study and incorporated 31 new 
images. This design helped to ensure that any difference observed in model performance from 
the optimization phase was a true difference and not a consequence of using images that had 
not been used in the model’s development. 
 
The study participants were a self-selected convenience sample of latent print examiners who 
had previously participated in one or more of the Principal Investigator’s (PI) studies, or who 
had previously expressed interest in doing so. They were solicited via an email list and 
responded to a confidential liaison to enroll, who assigned them an anonymous username. All 
participants completed informed consent, which had been reviewed and approved by RTI 
International’s Institutional Review Board, prior to beginning participation. 
 
Participants were alternately assigned to one of two groups as they enrolled-a ground truth 
defining control group (GT) and an experimental group (Exp). Because not all enrolled 
participants completed the trials, we ended up with different numbers of completions in each 
of the two groups. 39 examiners completed all trials in the GT group, and 43 in the Exp group. 
 
The two groups had slightly different workflows. Each group was presented with all 51 images, 
one at a time. The GT group was asked to mark the minutiae they would use to reach a 
suitability decision, then answer two questions to describe their perception of the level of 
clarity and distortion present in the impression. They were then asked to provide a suitability 
decision on each of the four scales as described in our previous study (Eldridge et al. 2020). 
Once the four suitability decisions had been rendered, the model combined the entered data 
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with the three most predictive automated assessments of quality and rarity (which had been 
pre-calculated for each image) to return the model’s prediction of the consensus response for 
each of the four scales. Participants were then asked whether or not they agreed with the 
model’s assessment, and if not, were required to enter a reason why they did not agree in a 
free text box. The Exp group followed the same workflow with the exception that they did not 
enter initial suitability determinations but moved straight from minutiae marking and 
answering the clarity and distortion questions to receiving the model’s predictions and 
commenting on them. 
 
The GT group was asked to provide their four suitability determinations because there are 31 
new images presented in this experiment that were not used during the original study. Thus, 
those images did not yet have a ground truth by consensus designation established. We needed 
the opinions of these examiners to define the suitability ground truth for each of the four scales 
so it could be used during data analysis to evaluate the performance of the model. These 
decisions were recorded prior to the GT participants receiving the model’s predictions so that 
the participants would not be influenced in their decisions by knowing what the model 
predicted. 
 
Resampling simulations from the acquired data were used on each of the four scales to 
determine how many participants were needed in the GT group to ensure with a high likelihood 
that the consensus ground truth would be “accurate” in the sense that even in a worst-case 
scenario (i.e. the votes for the different possible conclusions were nearly even), the consensus 
decision for this group would be the “correct” decision. With 20 examiners in the GT group 
(which we nearly doubled), all four scales were expected to achieve over 90% accuracy. 
 
Results and Discussion 
 
Model Development and Optimization 
Model development and optimization was accomplished in three broad steps. In the first, an 
MLA was selected and the best predictor variables were identified. In the second, the selected 
MLA was tested using only the user data from users who agreed with the consensus ground 
truth (average user data) under several combinations of variables to see which combinations 
had the best predictive accuracy under idealized conditions. Finally, the selected MLA was 
tested using the same variable combinations but user data from all the users to see how the 
model was likely to perform under more real-world conditions with noisy data and the final 
model, incorporating operationally affordable variables, was selected for external validation. 
 
Step One – Model Selection 

A suite of 11 MLAs was trained on each of the four suitability scales using six different 
combinations of variable sets (see Table 4.1 - 1). This resulted in 24 full sets of results, 
summarized in Figure 4.1 -1 to Figure 4.1 -4. Because each of the four scales was intended to 
measure different things, it was not expected that the same MLA would necessarily exhibit the 
best performance under each of the 24 combinations of predictors and scale. Nonetheless, as 
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Figure 4.1 -1 to Figure 4.1 -4 show, the performance of RF is the most consistently at or near 
the top across all four scales and nearly all variable set combinations. SVM, XGB, and GBM also 
performed well overall, but they were less consistently in the top 3 and are also more 
computationally expensive and opaque. 

 
The LO variable set was always by far the worst performer, thus model selection decisions were 
not made based on LO results. We decided to select Random Forest (RF) as the model of choice 
for its achieved accuracy and known robustness. Even when RF is not the top performer for a 
particular scale/variable set combination, its performance is always very close to that of the top 
performer. In cases where RF was well below the top three performers (such as the UQM_LO 
variable set on the AFIS scale), the spread between top performer and RF was only the matter 
of a couple percentage points of accuracy. Thus, RF was selected to be the most flexible 
solution capable of producing good results across all four scales. 
 
Another possible solution to selecting an MLA would have been to select the best performing 
MLA for each of the four scales individually, and had there been great differences in 
performance, this would have been done. However, it was decided that there was no great loss 
in accuracy and operational gain in simplicity in adopting RF as the MLA of choice for all four 
scales. 
 
Figure 4.1 - 1 shows that, for the Value scale, many MLAs achieved 100% accuracy at predicting 
consensus value decisions. During previous machine learning work on these data (Eldridge et al. 
2020), it became apparent that the MLAs could not well handle a five-option Value scale. This 
was because, although some examiners embraced the use of the three middle conclusion 
options, they were not used often enough for the consensus opinion to be one of these middle 
options in very many cases. The Value scale consensus ground truth results for the 100 images 
in the study are shown in Table 4.1 - 3. With so few examples of what a ground truth 
Investigative Value only, Value for Exclusion Only, or Value for ID Only impression should look 
like, the MLAs did not have enough information on which to accurately predict these outcomes. 
Thus, the decision was made to remove these four cases from the Value scale only and collapse 
the predictive options to Value or No Value. Once this was done, the prediction became a 
relatively easy task for the MLAs. 
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Figure 4.1 - 1 Value scale: Accuracy achieved by each MLA with indications of the 95% confidence interval. 

 
 

Figure 4.1 - 2 Difficulty scale: Accuracy achieved by each MLA with indications of the 95% confidence interval. 
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Figure 4.1 - 3 Complexity scale: Accuracy achieved by each MLA with indications of the 95% confidence interval. 

 

 
Figure 4.1 - 4 AFIS scale: Accuracy achieved by each MLA with indications of the 95% confidence interval. 
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Once RF had been chosen as the MLA, it was necessary to select the predictors that best 
contributed to the accuracy of the model. We used RFE analysis to select a limited set of 
predictors while maintaining accuracy. One output of the RFE process is a ranked list of the 
variables of importance. Figure 4.1 - 5 to Figure 4.1 - 8 present the top variables of importance 
for each variable set on each of the four scales with an indication of the achieved accuracy and 
the number of predictors (n_Preds) retained after RFE. 
 

Table 4.1 - 3 Consensus value decisions on the Value scale for each of the 100 study images. 

 

 
 
 
 

Figure 4.1 - 5 Value scale: Variable importance from the most impacting (100%) to the least impacting for each set of variables. 
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Figure 4.1 - 6 Difficulty scale: Variable importance from the most impacting (100%) to the least impacting for each set of 
variables. 
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Figure 4.1 - 7 Complexity scale: Variable importance from the most impacting (100%) to the least impacting for each set of variables. 
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Figure 4.1 - 8 AFIS scale: Variable importance from the most impacting (100%) to the least impacting for each set of variables. The 
LO panel is blank because there was only 1 predictor used, thus it was at an importance of 100. 
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Table 4.1 - 4 Selected predictors 

 
 
 
Step Two – Ideal Performance Testing 

Once RF had been chosen as the MLA that would be used in the model and the list of potential 
predictors had been narrowed down (Step One), we set out to see how well the model could 
perform under ideal circumstances considering two different conditions: Optimal and 
Operational. When considering the Optimal condition, we assumed that we had unlimited 
resources of time and computation. Hence we could afford asking a lot of input from the 
examiners and deploy elaborated ML models. 
 
When considering the Operational condition, we tried to maintain accuracy while removing 
variables that would be difficult to include in an operational model due to cost constraints 
involved in developing the software support to use these variables, or due to the computational 
load required to run the model with their inclusion. The fully optimized Operational model will 
represent something that could actually be deployed in working laboratories and is expected to 
suffer some trade-offs in accuracy for its ease and practicality of use. In both cases (Optimal 
and Operational), we continued to use the average user data, thus representing the best-case 
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scenario for how these models could perform considering these two conditions. Because we 
were still using average user data at this stage, no decisions were made about what variables 
would be used in the final model; this step aimed to assess the theoretical limits of accuracy on 
the model’s best day and which variables seemed to best support that performance. 
 
Figure 4.1 - 9 summarizes the performance of each variable set from the combinations in Table 
4.1 - 2 on each of the four scales. 
 

Figure 4.1 - 9 Accuracy of the RF models trained on the average user data of the “superusers” who agreed with the ground truth. 
Accuracy is shown for each scale and for each selection of variables. 
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data. Recall that the user data being used at this stage was the average user data of the 
“superusers” who agreed with the ground truth. These averaged and ideal data gave the model 
the best possible scenario for making a binary decision on Value, which became an easy task. 
The LO model did not have this advantage. There was no average data, there was only the 
single observation obtained from the automatic application of the algorithms. Thus, the LO 
model was operating at a distinct disadvantage. 
 
Because all of the variable sets in the Value quadrant of the plot except LO performed equally, 
their order is irrelevant. However, for the other 3 scales, we can see trends in which variable 
sets tended to be the top accurate performers. For all 3 scales, variable sets that included 
USER1 or USER 3 tended to outperform those that included USER2 or USER4. Variable sets that 
included FA_ESLR and LFIQ were also frequently (but not always) better performers, 
particularly for the Complexity scale. Thus, if we were to consider optimal performance, the 
best overall performer for all but the AFIS scale would be USER3_FA_ESLR_LFIQ (Mean 
Accuracy for Value: 1; Difficulty: 95.41%; Complexity: 88.60%; AFIS: 85.82%). Even on the AFIS 
scale, this one’s performance was less than 3 percentage points below USER1_LO (Mean 
Accuracy for AFIS: 88.49%), the top performer on that scale. 
 
Any choice will be a balance between performance, user input and computational cost of the 
quality metrics. For example, fa, ESLR, and lfiq1 when used outside of the LO variable set are all 
calculated based upon the number of minutiae entered by the user. Software development 
could be done to create a dynamic interface that could wait for the user input, send it through 
the quality metrics, and receive a live response, but that development comes at a cost in terms 
of IT architecture and computing time. When disregarding any variable sets that include 
FA_ESLR or LFIQ, the top performing variable set across the 3 scales becomes difficult to call 
between USER1_LO and USER3. Both include the variable minselectivity, which turned out to be 
a powerfully diagnostic predictor. As was previously noted, minselectivity was a calculated 
variable that took into account the ratio of confident total minutiae, the number of highly 
diagnostic combined minutiae groups noted, and whether a target group was noted. This gave 
an overall measure of the perceived selectivity of the mark. Including such a variable in a user 
interface would require examiners to distinguish their types of minutiae and groups. As for the 
quality metric variables, such manual input will come at a cost here in terms of manpower. 
 
Another finding supported by these data is that the notion of a hybrid model is a powerful one. 
Most of the top-performing variable set combinations included both one of the USER sets 
(incorporating participant input) and one of the automated variable sets (either LO or some 
combination of FA_ESLR and LFIQ, which are automated metrics relying on number of 
participant-selected minutiae). LO by itself performed extremely poorly and USER sets alone in 
general performed worse than when they were combined with at least one of the automated 
measures. This means two things: first that there is strong evidence that the human examiner 
still brings value to the suitability decision. These data do not support that a lights-out only 
assessment of suitability is superior to one made with human input for any of the 4 scales. The 
other is that human decision-making can be aided by automated measures. 
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After removing all variable set combinations that include FA_ESLR or LFIQ and any that include 
USER1 or USER3, the best performing model out of those remaining across the 3 non-Value 
scales becomes USER2_LO (Mean Accuracy for Value: 1; Difficulty: 93.32%; Complexity: 86.91%; 
AFIS: 86.69%). 
 
Table 4.1 - 5 summarizes the performance of the best Optimal model and the best Operational 
model and shows that there is very little difference between the two. In fact, these data show 
that, when using the averaged data of only users who agreed with ground truth, both models 
perform quite well at predicting the consensus ground truth decision. This is encouraging 
because it suggests that (1) annotations and automated quality metrics working together can 
be used to predict consensus decisions; (2) consensus annotations made by examiners are a 
good basis for supporting suitability decisions; and (3) in theory, and under idealized 
circumstances, these hybrid examiner/automated models provide efficient guidance that can 
aid examiners, particularly in small laboratories where insufficient co-workers are available to 
form consensus panels and the model may serve as a proxy for the consensus. 
 

Table 4.1 - 5 Mean accuracy obtained for the Optimal and the Operational model for the superuser. 

 
 
Finally remember that at this stage the above contrasting measures of accuracy are based on 
our ideal superuser input. We would like to wait to make a decision regarding which predictors 
to retain until we have tested the performance of all sets of variables on individual users (Step 
Three). It may well be that the above observed trends become insignificant when we use the 
models accounting for all the examiners’ data instead of only our superusers. 
 
Step Three – Model Optimization in realistic applications 

Although the accuracy of the model for the best-case scenario was generally quite high, 
demonstrating that the theoretical backbone of the exercise is sound, there is often a 
difference between the best-case and how things work in the real world. Additionally, the 
results of Step 2 took into account the performance of the model in predicting ground truth for 
each image, but we are really more interested in its ability to predict ground truth based on the 
annotations of a particular user. 
 
Thus, we re-tested the RF models from step 2, this time using all the data in the study, meaning 
all user inputs from users who did not agree with the consensus ground truth as well as the all 
user inputs (not just averaged consensus inputs) from users who did agree with the consensus 
ground truth. We have adopted a leave-one-out validation scheme in the sense that the models 
were trained on 99 cases and tested on the remaining case with all its associated users. When 
all cases have been tested, we can then compute the accuracy for each user (aggregated across 
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all of the completed trials by the user) against the declared ground truth established previously 
by the majority. 
 
The models’ performance per user, not per image, are shown in Figure 4.1 - 10. It gives the 
accuracy per user for the variable set combinations named on the x-axis used in the RF models 
to predict the suitability decision for each scale. Each data point used to construct the boxplot 
represents a single user. 
 

Figure 4.1 - 10 Accuracy of the predictions based on user individual data for each scale and for each selection of variables. 
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In Figure 4.1 - 10, each scale is presented separately and the variable set combinations are 
ordered according to an overall mean performance score across all 4 scales, with the best 
overall performing being the furthest to the right. 

The dark line in the middle of each boxplot represents the median of the data which makes this 
type of data presentation more robust to outliers. For example, the lone dot at the bottom of 
the “USER1_FA_ESLR_LFIQ” boxplot on the Complexity scale represents a user whose 
annotations did not at all well assist in predicting the consensus ground truth. 

Viewing these data, it is easy to see that the model using the USER1_ALL variable set performs 
best overall. However, the performance of the model has deteriorated after adding in all the 
messy, real-world user data, as expected. The median accuracy values for the USER1_ALL model 
on each of the four scales are: AFIS-72.87%; Complexity-62.07%; Difficulty-68.41%; and Value-
85.71%. This represents the Optimal model for predicting ground truth using examiner 
annotations when resources are unlimited. 

However, as noted under Step 2, the USER1 variable is quite demanding on the user input due 
to the inclusion of the minselectivity variable. The next best performing model overall-
USER4_LO-does not include the minselectivity variable, or any other variables that would 
require quality metrics computed based on user input. The effect of choosing a simpler model is 
very limited on the overall accuracy. The median accuracy values for this model on each of the 
four scales are: AFIS-73.33%; Complexity-60.36%; Difficulty-66.67%; and Value-86.21%. Thus, 
this model has been selected to be taken forward to external validation. 

The comparison between the median performance of the two models is shown in Table 4.1 - 6 
(Table 6). These data suggest that the chosen Operational model can be used in the real world, 
without much loss in accuracy compared to the Optimal model. 

Table 4.1 - 6 Median accuracy obtained for the Optimal and the Operational model for the individual users. 

Once the final model had been selected, we compared its performance to the performance of 
users (with their individual responses) in selecting the consensus ground truth to see which 
was more accurate. The results of these comparisons are shown in Figure 4.1 - 11. 
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Figure 4.1 - 11 Accuracy of the predictions of the RF model compared to the individual responses given by the users. 

 

It can be seen that overall, the performance of the model was on par with the performance of 
the examiners, although examiners did slightly outperform the model on the value scale. These 
data provide evidence that a model that incorporates both examiner and automated 
observations can be used to assist examiners, both by streamlining the analysis process and by 
providing consensus guidance along 4 scales of suitability, without a loss of accuracy. 
 
The results presented up to this point have all been based upon the prediction accuracy of the 
models based upon a decision threshold (50%) based on prior probabilities of each response 
defined by the training set. For example, for the binary value/no value decision, if the 
probability of a set of data leading to a GT conclusion of “Of value” was greater than 50%, the 
model would predict “Of value”. However, this does not present a complete picture. Many 
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laboratories may not treat the prior probability of calling a given mark no value or of value 
based on these prior probabilities. For various operational, societal, fiscal, or political reasons, 
laboratories may wish to adjust the threshold of when they call a mark no value versus of value. 
For example, a very high throughput laboratory that sees many low-penalty crimes and has a 
huge backlog may put a priority on getting cases out the door and may only want the very best 
marks to be called “Of value” whereas they are happy to “miss” many marks that other 
laboratories might be willing to compare. Such a laboratory might wish to set a very high 
threshold for the value decision, such that a probability of 70 or 80 percent is required to reach 
an “Of value” prediction. For this reason, it is desirable to consider how the models perform 
across all possible probability thresholds between 0 and 1. For this purpose, a Receiver 
Operating Characteristic (ROC) curve is a superior evaluation tool. ROC curves evaluate the 
performance of a classifier by plotting the trade-off between sensitivity (True Positive Rate) and 
1-specificity (False Positive Rate). The dashed diagonal line represents a baseline where the two 
are equal, thus, the closer to the line that a curve lies, the less accurate it is. The higher the 
curve is toward the upper-lefthand corner, the higher its accuracy. However, ROC curves are 
generally used for binary classifiers and 3 of our scales are not binary. Thus, we have used a 
MultiROC analysis (Wei and Wang 2018) to present the performance of the models against one 
another. Figure 4.1 - 12 to Figure 4.1 - 15 present the results of this analysis. 
 
 

Figure 4.1 - 12 MultiROC curves associated with the Value scale. 
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Figure 4.1 - 13 MultiROC curves associated with the Difficulty scale. 

 
 

Figure 4.1 - 14 MultiROC curves associated with the Complexity scale. 
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Figure 4.1 - 15 MultiROC curves associated with the AFIS scale. 

 
 
Note that if we were to evaluate all 21 variable set combinations on the same ROC curve, it 
would be quite difficult to read. Thus, we have elected to compare only the top 2 performers, 
the worst performer, and our selected model (USER4_LO) for each scale. This allows us to 
evaluate how the USER4_LO model performs compared to the range of performance for each 
scale. In some cases there may be more or fewer than exactly 4 models represented if 
USER4_LO was one of the 2 best performers (or the worst one), or if there was a tie in the best- 
or worst-performer categories. Each model is presented along with its Area Under Curve (AUC), 
which is a measurement of the total performance of the model; generally speaking, a higher 
AUC indicates a more accurate model, although this may not be true for every probability 
threshold. Some models may perform better or worse than others at specific points along the 
curve. 
 
The MultiROC output depicted in Figure 4.1 - 12 to Figure 4.1 - 15 breaks the performance of 
the models out along the different classifiers being evaluated in the top row of each plot. Thus, 
we can separately see the performance of the models at predicting each classification. For 
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example, on the difficulty plot, we can see that all the models are better at predicting “High” 
and “Low” difficulty conclusions than they are at making accurate “Medium” difficulty 
determinations. This mirrors the behavior of human examiners, who are also better at making 
accurate decisions at the extremes. 
 
In the second row of each plot, there are “Macro” and “Micro” curves presented. These are a 
way of measuring the aggregate performance of each model across all of the possible 
classifications. Because some classes are often larger than others (for example, in our data, the 
category “AQ with QA” has fewer examples than the other AFIS quality categories), there is a 
danger of the larger categories dominating the smaller categories when averaging of the model 
performance is done across categories. Therefore, macroaveraging and microaveraging weight 
the averages differently such that the effectiveness of large classes is best represented in 
microaveraging and the effectiveness of small classes is best represented in macroaveraging 
(see (Van Asch 2013) for a more in-depth discussion of micro- and macroaveraging). 
 
We can see that the selected model, USER4_LO, generally performed quite well compared to 
the other models. USER4_LO had the highest AUC for both the Value and AFIS scales (0.921 and 
0.868, respectively). Although it did not have the highest values for the Difficulty or Complexity 
scales, neither were its AUCs the lowest, and they generally compared favorably (0.824 versus 
0.849 on the Difficulty scale and 0.836 versus 0.851 on the Complexity scale). 
 
Ultimately, based upon the described evaluations of the performance of the potential models 
and upon the operational constraints limiting our choice of variables, the USER4_LO model was 
selected as the final model to take forward to external validation testing. The variables present 
in the USER4_LO model are: total_minutiae, clarity, distortion, LO_fa, LO_ESLR, LO_lfiq1, and 
LO_nbmin. 
 
As was noted in Step 2 (using limited, idealized data), these Step 3 results using the full data 
from all the users still support that a hybrid model incorporating both automated quality metric 
data and expert-input data provides the best performance. Although the performance of the 
model in Step 3 was, as expected, much lower than the performance of the best models in Step 
2, comparison of its effectiveness to that of human examiners making the same determinations 
showed that the model can be expected to perform about as well as the human examiner, 
making it a viable tool for both reducing the time spent on analysis of marks and for providing 
nuanced guidance along four scales, especially when consensus guidance is desirable and 
otherwise unavailable. 
 
External Validation 

Once USER4_LO was selected as the final model, we conducted one additional data-collection 
to test it externally using a mix of old and new images and using a fresh recruitment of 
participants (which may or may not have included some of the same participants as the original 
study, as they were all anonymous). Because we selected the model by down-selecting from all 
the data we initially gathered to only the variables that proved to be most diagnostic, the 
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structure of the follow-up study was fundamentally different from that of the original study 
from the perspective of a user. Because they were being asked to provide different input than 
in the original study, this might change the way they approached the analysis, which could in 
turn affect the performance of the model. 

Additionally, we wanted to see whether the model performed equally well on brand-new 
images that were not used in the training of the model and whether it was equally able to 
predict consensus ground truth decisions when different users were using it. Finally, we wanted 
to get a sense of the usefulness of the tool-that is, whether the examiners usually agreed with 
the predictions of the model or whether they found it to be something that would hinder them 
by usually being “wrong” in their eyes. If they disagreed, we wanted to understand why the 
model had failed-was it a flaw in the model, a difference in opinion that was unavoidable, a 
difference in how thresholds or definitions were applied, or a failure of the participant to follow 
the study instructions? 

Model performance against ground truth 

We measured the performance of the model at predicting ground truth in three ways: (1) how the 
model performed with these follow-up data overall compared to how it performed in Step 3 
using the original images only (Table 4.1 - 7); (2) how it performed on the original images (in its 
final form and with a new set of participants) compared to how it performed on new images it 
had never used before (Table 4.1 - 8); and (3) how it performed across all follow-up images 
compared to how well users performed at making conclusions that matched the consensus 
ground truth (Table 4.1 - 9). 
 
Table 4.1 - 7 shows that there was no drastic difference between the mean performance of the 
model in Step 3 (development) and its performance using the follow-up validation data. These 
findings support that, globally at least, the model is robust to new images and new users. 
 

Table 4.1 - 7 Mean accuracy obtained for the chosen model on respectively the test data and on the validation data. 

 
 
Table 4.1 - 8 shows that there was virtually no difference in mean accuracy rates between 
images from the original study and new images for the Value and Complexity scales. There was, 
however, a notable difference in accuracy between the two image sets on the AFIS and 
Difficulty scales. It is not clear why these two scales have been impacted by the new images 
whereas the Value and Complexity scales were not. It should be noted that the drop in accuracy 
on new images for the Difficulty scale was small when comparing it to the mean accuracy of the 
same scale in Step 3 (66.31% down to 63.14%). However, the drop in accuracy for the AFIS scale 
is larger (77.77% down to 71.83%). 
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Table 4.1 - 8 Mean accuracy obtained for the chosen model on respectively the images used already during the model 
development and new images used only for the validation. 

 
 

Table 4.1 - 9 Mean accuracy obtained for the chosen model versus the mean accuracy obtained by the users when their 
responses were compared to the majority vote considered as ground truth (GT). 

 
 
In reviewing the instances in which the prediction of the model did not match the ground truth 
designation on the AFIS scale, it is not apparent why the new images proved more difficult to 
categorize. The number of disagreements per image ranged from 0 to 82 (out of 82 total 
participants), with 6 images that had more than 40 disagreements being responsible for 
approximately 57% of the disagreement on the AFIS scale. Ground truth was AQ with QA for 4 
of these images and AQ for 2. The predicted responses were mixed. In all 6 cases, the location 
of the core was discernible, although the images were all degraded to some degree. It may well 
be a simple artifact of the random sample selection that the new images happened to be 
slightly more difficult to classify for AFIS use. 
 
Table 4.1 - 9 shows that the model’s and the users’ performance were quite close on all four 
scales. Users slightly outperformed the model on all except the AFIS scale. The superior 
performance of the model on the AFIS scale may be explained by the fact that several users left 
text notes stating that they don’t usually make AFIS determinations in their laboratories. This 
lack of experience from some users may have impacted the overall average performance of the 
group. 
 
Model performance against examiner opinions 

We also took three measurements of the level of overall agreement between examiners and 
the model (i.e. what percentage of the time did the examiner agree with the prediction of the 
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model): (1) the overall level of agreement across all users; (2) the level of overall agreement of 
users from the GT group; and (3) the level of overall agreement of users from the Exp group. 
These are summarized in Table 4.1 - 10. 
 

Table 4.1 - 10 Overall agreement of respectively all users, GT users, and Exp users. 

 
 
The reason we took the levels of agreement of the GT group and the Exp group separately was 
because we wanted to guard against a biasing effect of seeing the model prediction. Recall that 
in the GT group, the participants had to form and enter their own opinions on each of the four 
scales before they saw the model predictions. In the Exp group, participants went straight to 
the model prediction and were asked whether they agreed with it. We were concerned that the 
Exp group might be influenced by the model prediction and be more likely to simply agree with 
it. However, we also wanted to see whether the Exp group would be amenable to the 
suggestion of the model, or whether they would frequently be annoyed by the model and want 
to argue with it. 
 
As Table 4.1 - 10 demonstrates, first of all, the overall level of agreement with the model was 
very high. Regardless of their group, examiners could accept the determination of the model 
most of the time. However, there was a small effect of seeing the model prediction before 
forming their own opinion. This effect was particularly pronounced on the Complexity and 
Difficulty scales, where the Exp users were much more likely to agree with the model than the 
GT users were to have blindly selected the same conclusion as the model. This effect was not 
seen on the Value scale, where agreement was consistently very high. 
 
We also wanted to see whether there were any particular conclusions on each scale that 
fostered greater or less agreement than the scale as a whole. Table 4.1 - 11 presents the 
agreement rates of all participants for each scale, broken down by the conclusions within those 
scales. 
 
Although agreement rates stay above 80% across all conclusions, there is a trend in all but the 
Difficulty scale that the highest-level of the scale shows the greatest agreement. This is in line 
with our observations in (Eldridge et al. 2020) that the only time examiners agreed with one 
another was at the high ends of the scales. It appears that agreement with the model follows 
the same trend. 
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Table 4.1 - 11 User agreement rate for each scale per conclusion. 

 
 
Many of the written notes where disagreement occurred on the Value scale centered around 
the notion of Value for Exclusion Only (VEO). In many cases in which the model predicted NV, 
the notes from the participant indicated that they would consider the mark to be VEO. 
Although the model in this follow-up study did not distinguish between VID and VEO, lumping 
them all into a single “Of value” category, it would appear that in some cases, it was setting the 
threshold for “Of value” too high and missing out on some marks that could be considered VEO. 
This confusion is likely due to the split in the field between examiners who consider VEO to be 
of value, and those who consider it to not be of value giving more attention to VID marks 
instead. Because ground truth was established by a majority of votes, this disparity could have 
caused some VEO marks to be classified as NV and some to be classified as “Of value” 
depending on the makeup of voters who saw each image during the initial study. These 
fluctuations may have impacted the machine learning as marks that might be considered VEO 
were not consistently classified into either NV or Of value for the algorithm to learn from. 
 
On the Complexity scale, the disagreements largely fell into two categories: disagreements 
about whether a mark was NV or Complex, and disagreements about whether a non-complex 
mark required standard documentation or not. The first group of comments largely mirrored 
the Value scale in that many people were commenting that marks predicted by the model to be 
NV were VEO. 
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Although there were some instances in which 
the “Non-Complex, Documentation 
Required” predicted marks were thought to 
be Complex by examiners, the second group 
of comments was dominated by marks that 
were predicted as “Non-Complex, 
Documentation Required” but the examiner 
didn’t think the documentation was 
warranted. In some of these cases, the 
examiners argued that they felt the clarity 
was sufficient that the mark belonged in the 
highest category. However, many of the 
comments seemed to reflect either an 
unwillingness to document marks at all that 
were not complex, or a failure to understand 
the intent of this category. There were 
several comments stating that the mark 
should not require “additional 
documentation” even though the description 
for this category stated that it was only 
requiring “standard documentation” as 
required by laboratory protocols. Only the Complex category required “additional” 
documentation. For example, one examiner even explicitly stated, “I feel that no additional 
documentation is needed other than what I wrote in the case notes”. Of course, the definition 
of this category was that the mark should have the normal documentation that would be 
included in the case notes (as opposed to reduced documentation for the top category, or 
additional documentation for the Complex marks). There were some images where a large 
number of people agreed that the image was very high quality and belonged in the Self-evident 
category, where the model predicted differently. One such example is image076, which is 
presented in Figure 4.1 - 16. 
 
Of some note is that there were only 36 instances (out of 624 total disagreements with the 
model about complexity) in which the model predicted “Non-Complex, Self-Evident” and the 
examiner disagreed. In nearly all of these cases, the examiner noted some small distortion that 
they believed should be documented. 
 
On the AFIS scale, 76.1% of the disagreements occurred when the model predicted NAQ. In 
most of these cases, the examiners commented either something to the effect of “the mark is 
borderline, but I’d give it a shot” or stated that they thought it could be entered with additional 
QA measures. Only 18 (of 477 disagreements on the AFIS scale) disagreements occurred when 
the model predicted AQ with QA. Of the disagreements with the model’s AQ predictions, most 
come from examiners who urged slightly more caution with the particular mark, recommending 
that additional QA measures be in place. A few comments stated they would not search the 

Figure 4.1 - 16 Image076 declared to be Self-evident 
by majority but misclassified by the model. 
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mark at all, whereas some specified that their agency’s minutiae threshold was not met, or that 
the mark was a tip, which they would not search. One limitation of this study was that 
information on the presence or absence of a core was not captured, which may have had an 
influence on AFIS decisions. 
 
Finally, for the Difficulty scale, there was not a clearly discernible pattern for the written 
comments. Many were one category away from the prediction in either direction (Low and High 
predictions were called Medium, Medium predictions were called Low or High) but there were 
also a good number of High predictions where the examiner felt the mark should be Low 
difficulty. Interestingly, on this scale, there were a few cases where the examiner seemed to 
have gotten confused and marked that they disagreed with the model, yet their notes matched 
the model prediction. 
 
Overall, the results of the validation have shown that the model has promise. Its mean accuracy 
has been comparable to the accuracy of users in every category and user agreement with the 
model’s predictions was uniformly above 80% and frequently above 90%. The design of the 
model leverages both automated, data-driven assessments and a very quick, streamlined 
examiner input interface to produce results that are quick, transparent, and provide a 
consensus-based recommendation. Examiners, particularly in small laboratories, could 
implement this model into casework in order to save time on in-depth analysis, while being 
able to explain in court that the results were based on both their own expert observations and 
reproducible automated measures and that they represent what a consensus of experts would 
be likely to conclude. In addition, the nuanced guidance provided by having four scales of 
suitability has the flexibility to assist examiners in a variety of situations. 
 
One weakness of the model is that no information on the presence of cores and deltas was 
captured from the examiners during the white box study. This may skew the results on the AFIS 
scale and may partially explain the relatively low accuracy of the model on this scale, because 
impressions such as tips may have been predicted to score high on the AFIS scale based upon 
their clarity and number of minutiae whereas human examiners may have reached an NAQ 
decision based upon not having a clear indication of core location. Similarly, it is unclear how 
the lack of a core or delta may have influenced human examiners in making their decisions on 
the other scales, but this did not enter into the model’s calculus at all. 
 
Another limitation of the model was the necessity to change the Value scale from the 5-
conclusion scale that was used in the white box study to the simple binary “Of value-No Value” 
scale that was ultimately used to build the model. This was necessary because people’s 
unfamiliarity with the new conclusions resulted in them not being the “consensus ground 
truth” option often enough to be effective in machine learning; thus the model could not 
effectively predict these outcomes without sufficient samples on which to train. The result of 
this is that we lost a great deal of nuance in the Value decision that we might otherwise have 
explored and we may have also lost some accuracy in the model because there developed a 
disparity between how human examiners and the model treated VEO marks. This disparity is 
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reflected in the latent print examiner community, where there is a split between those who 
consider VEO marks to be of value and those who do not. 
 
Conclusion 

The purpose of this research was to leverage observations made by examiners that were used 
to support suitability decisions and automatically derived quality measures to develop a model 
that can be used to predict suitability. We quickly realized predicting value based only on 
automatic measures (in a sort of light-out mode) was not performing well and the addition of 
user input increased accuracy. Data from a white box study (Eldridge et al. 2020) that collected 
examiner observations were then combined with variables from automated quality metrics 
using machine learning algorithms to develop a model capable of predicting consensus 
suitability decisions along four scales: Value, Complexity, AFIS, and Difficulty. 

The best-performing model was selected as the one that best balanced meeting operational 
constraints and reducing the number of user-input variables to save on analysis time with 
maintaining the highest achievable accuracy. This means that the model will allow examiners to 
reach a suitability decision very quickly, without having to perform a full analysis, yet will 
predict decisions with which the majority of expert examiners would agree. This would reduce 
the burden on latent print examiners in terms of time spent on analysis, allowing them to focus 
their efforts more on complex impressions. After optimization, the final model included both 
observations from expert examiners and variables taken from automated measures. This 
supports that the human examiner and automated measures both bring value to the suitability 
decision and furthermore that both can work together successfully. There is no argument based 
on these data for removing the human examiner entirely and relying solely upon automated 
measures for making suitability determinations. 

The proposed model is accurate in making these predictions at up to 83.13% accuracy when 
using the full study data (as opposed to only that of examiners who agreed with the consensus) 
and this accuracy held steady at 83.50% on the Value scale when using new users and new 
images for validation. The model did not perform as well on the other three scales; however, 
the accuracy of the models was always on par with that of users making the same predictions. 

Agreement between human examiners and the predictions of the model was generally high 
during the external validation study, ranging from 85.08-91.15% overall across the four scales, 
indicating that human experts generally would accept the prediction of the model on each of 
the four scales. 

We have demonstrated that the hybrid examiner/automated metric model can predict with 
reasonable accuracy the consensus conclusions for suitability along four scales. This means that 
the model could be implemented successfully in operational laboratories to help streamline the 
analysis process, to assist in decision-making when a second opinion is sought (particularly in 
smaller laboratories that don’t have access to sufficient experts to form consensus panels), and 
to provide guidance in varied applications, such as when to apply additional or reduced QA 
measures; how to rate the difficulty of marks for training, testing, and research; and to serve as 
an aid in testimony to describe the difficulty of the mark. Additionally, laboratories could adjust 
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the probability thresholds of the model to better reflect their own priorities and operational 
constraints in how high they would like to set the threshold for declaring a mark of value, AFIS 
quality, or complex. 

Beyond its usefulness for guidance in reaching suitability determinations for manual 
comparison, this model could also be incorporated into existing AFIS systems to assist with the 
AFIS suitability decision. Finally, because the model essentially predicts what the consensus 
opinion would be regarding the suitability of a mark, it can be used to support the decisions of 
individual examiners. If an examiner is challenged on why they reached a particular suitability 
decision, and they have used this model and found it to agree with their decision, they can 
claim that, within the accuracy of the model, their decision is likely to comport with that of the 
majority of experts. The model provides the examiner with a virtual consensus panel to which 
they may refer. 
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4.2 Additional discussion on model development, optimization, and performance 

This section provides additional insight and explanation of choices that were made and 
challenges that were encountered and resolved during the development and optimization of 
the model as well as discussion on the outputs of the model. These details were too in-depth 
for the peer-reviewed journal manuscript but are useful in understanding the evolution of the 
model and the learning that occurred. 

4.2.1 Using ridits to average categorical responses 

Early on in the analysis of the data associated with this project, we encountered the problem of 
what to do when we wanted to average categorical responses—such as participants’ responses 
to the clarity question, which had 3 possible responses, or their conclusions on each of the 4 
suitability scales, which ranged from 3 to 5 possible responses. How could we state what the 
average clarity conclusion or AFIS determination was without numbers that could be used to 
make calculations? 
 
We briefly considered converting the ordered factors of the possible responses into a Likert-
type scale whereby the bottom response was assigned 1, the next response 2, and so on, but 
this assumed that the categories were evenly spaced in weight, or importance, which was not 
an assumption we believed would hold, particularly for categories such as the Value scale 
where the 5 stops were No value, Some probative or investigative value, VEO, VIDO, and Value 
for Both. It was likely that there was less distance between Value for Both and VIDO, for 
example, than there was between others of the categories. 
 
We found in the literature a possible solution, known as a ridit (Bross 1958). A ridit is a means 
of mathematically transforming an ordinal response to a numerical value based upon the 
distribution of a reference data set (in our case, the entire collected responses of the 
participants). Rather than presuming an equal distance between each category, the ridits assign 
a proportion to each category based upon its underlying distribution. These numerical 
transformations can then replace the categorical responses and be used in all standard 
statistical calculations as well as for ranking. 
 
The process for calculating a ridit, taken from Bross, takes 4 steps to arrive at and represents 
the proportion of votes in all the categories below the one being evaluated plus ½ the 
proportion of the votes in that category. Essentially, it is a process by which weight is assigned 
to each of the categories relative to the overall distribution of the data. We built these 4 steps 
into a function in R and used that function to transform all our categorical data into ridits, 
which we then used to calculate mean values and standard deviations for those categories. The 
mean values were then mapped back onto categorical labels based upon where the mean value 
fell between the ridit-weighted categories to arrive at a consensus response for each ordinal 
variable. 
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Although conceptually, the use of ridits to determine consensus responses to ordinal variables 
seemed to be the way to go, they introduced some challenges in implementation and were 
eventually abandoned. The largest problem caused by the ridits was that we discovered later in 
the model development that the process of creating mathematical averages of ordinal data and 
mapping those averages back onto ordinal labels resulted, in some instances, in selecting a 
“consensus response” that nobody actually chose! This became important when we started 
omitting data from individuals who did not agree with the consensus ground truth, because 
there were instances in which NOBODY agreed with the consensus ground truth, which was not 
only philosophically problematic (how can it be the consensus if nobody chose it?), but also 
resulted in entire images being left out of the data analysis. 
 
Once we made the decision not to use ridits, we re-assigned ground truth to all ordinal 
variables using a simple majority-voting scheme. This also had some disadvantages, as because 
there was no weighting to the categories, there could be situations in which the votes were 
very evenly spread across categories, yet the category that had just one more vote would be 
assigned as “ground truth,” which might not fairly represent the breadth of participant 
opinions. Nonetheless, once this process was completed, we did spot-check the accuracy of the 
models in predicting the ridit responses versus predicting the majority-voted responses and 
found that they were comparable. 
 
One other challenge with the majority-voting approach to assigning ground truth was the 
question of ties. In re-assigning the scale decision labels, there were ties for the most-voted 
conclusion 3 times on the Value scale, 4 times on the Complexity scale, 2 times on the AFIS 
scale, and 1 time on the Difficulty scale. These ties had to be resolved manually. It was done by 
looking both at the overall shape of the data (to which side did the majority of the dissenters 
from the two tied categories lie?) and looking at the image of the impression itself and selecting 
the category that seemed to encapsulate the opinions of more of the participants. 
 
A similar process was done later with the determination of “average user data” wherein we had 
to determine what the consensus ordinal response was for each predictor variable from among 
the participants who agreed with the consensus ground truth per image/scale combination. 
These determinations were made for ties by again looking at the tails of the distributions and 
taking as consensus the one that was closer to the larger tail. 
 

4.2.2 Unrealistically high performance and the genesis of the average user data 

Early in the machine learning process, we were using all of the data collected in the white box 
portion of the study and randomly splitting it into a training set and a testing set. However, 
these runs using the automated variables only (using user-selected minutiae) were resulting in 
unrealistically high model accuracy—around 95% on all four scales! This didn’t seem feasible 
and we were concerned about over-fitting of the model, so we began to look for reasons for 
this unexpected result. 
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We realized that the problem was stemming from the way the training and testing sets were 
being divided. Although we had 100 distinct images, each image had data from multiple users 
but the same image always had the same ground truth, regardless of which user’s data were 
being considered. When the training and testing sets were being randomly defined, the same 
image would often end up in BOTH sets, albeit with different associated user data. This means 
that when the model was being tested on the testing set, it was seeing many (if not all) of the 
same images it had learned on in the training set, just with different user data to use as 
predictors. To make matters worse, because we were using the automated suite of variables, 
these did not change from user to user; only the variables predicated on the number of 
minutiae selected by the user were changing from case to case. This explained the unusually 
high performance of the model, and also alerted us that the training and testing sets needed to 
be formed differently. 
 
Our first solution was a random selection of one user per image. In this scenario, we would 
randomly select the participant data from just one user for each of the 100 images, resulting in 
a data set of 100 images, each having a single user’s data associated with it. One of these 
images would be left out as the test set and the other 99 would be used as the training set, 
hence adopting a leave one out cross validation approach (LOOCV). This would be done 
iteratively until all 100 images had had a turn being the one left out. This approach would use 
only one set of 100 cases (out of more than 3,000 data sets collected), which was not 
effectively exploiting the bulk of the data we had collected to use in training the model, even 
with us repeating the process of random selection and LOOCV machine learning several times 
to ensure the model was stable. 
 
We also realized that by randomly selecting a single user to train the model on, not only were 
we throwing away a lot of usable training data, but we might randomly select a user who did 
not agree with the consensus ground truth for that case. It seemed nonsensical to train a model 
on the variables that led to a conclusion when the person who provided those variables did not 
provide the sought-after conclusion. Thus, the decision was made to first identify all users who 
did not agree with the consensus ground truth decision for each image/scale combination and 
remove their data from the training set entirely. This left us with a set of “super-users” who 
always agreed with the consensus conclusions. Thus, we could train the model to predict 
ground truth based on the observations of examiners who agreed with that ground truth. 
 
However, because we were still only selecting the data from a single user who agreed with 
ground truth for each training iteration, we were still failing to use a lot of agreeing data to 
train the model. To rectify this, we decided to use all the data from the super-users who agreed 
with ground truth to train the model. We achieved this by taking their average responses for 
each predictor variable to be the single case that was used for training. Thus, we created the 
“average user data” set referred to in the Section 4.1 article. This both allowed us to take full 
advantage of all the super-user data available to us, and created a pseudo-data set that was 
distinct from the full data set from all these users and the non-agreeing users, allowing us a 
separate testing set that could be used later. Additionally, at this point we changed from LOOCV 
to a k-fold cross-validation for the machine learning. 
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4.2.3 The Value scale: five bins or two? 

During the white box study (Chapter 3), we noticed that the Value scale data were strongly 
grouped in the NV and Value for Both bins. This was unsurprising as the community still largely 
thinks of value as a binary decision and even VEO, though more familiar, is not in common 
usage. At the time of the white box data analysis, it seemed encouraging that the three middle 
options on the Value scale were being used as much as they were—supporting the idea that 
these categories could be useful and one day might see widespread acceptance. 
 
However, when we got to the machine learning portion of the research, the relative lack of use 
in the middle three categories became problematic. Although many participants utilized these 
categories, they did not do so frequently enough, or consistently enough on the same images, 
for them to very often be the consensus value decision for many images. In fact, it turned out 
that only 4 images of the 100 ended up being assigned a consensus ground truth decision that 
was not NV or Value for Both, and 3 of those 4 were in cases where ground truth was set 
manually, due to the need to break a tie! 
 
This caused difficulties in the machine learning process. None of the models was very efficient 
at predicting these 3 intermediate categories, which is unsurprising considering they had no 
data from which to learn what a mark in one of these categories should look like. Thus, we had 
to make the decision to reduce the Value scale down to the only 2 categories we had data to 
support: NV and Value for Both. 
 
Another potential challenge present in these Value data was that our distribution of responses 
was uneven. After removing the three middle categories, we had 96 images remaining with 
consensus responses of 17 for NV (17.7%) and 79 for VB (82.3%). When data are unbalanced 
like this, there is a risk in machine learning of the predictions being skewed toward the larger 
category simply because the algorithm sees more of it. For instance, imagine we were 
predicting whether someone was a professional basketball player based on their height and 
weight, but the training sample included only 3 basketball players with 20 non-basketball 
players. If we further imagined that there was overlap in the data such that some non-
basketball players’ height and weight fell within the ranges of basketball players, the MLA 
looking at these data would see more non-basketball players than basketball players in the 
ranges occupied by basketball players and could reasonably always predict a person was not a 
basketball player and be correct most of the time, according to the training data. 
 
This phenomenon is known as having a rare event in your sample and is typically attributed to a 
data set in which one response happens less than 15% of the time. Because our consensus NV 
response occurred 17.7% of the time in our data, it is not quite considered a rare event, but we 
should nonetheless be cognizant that this imbalance could have affected the machine learning. 
In order to mitigate this effect, one could use the R function SMOTE (Synthetic Minority Over-
sampling Technique)(Chawla et al. 2002), which synthesizes new minority class instances 
between the actual data of the minority class to better balance the data for machine learning. 
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We did not use this function in our data analysis, but the performance of the model may have 
been slightly improved by its use. 
 
The need to reduce the Value scale to two categories is unfortunate for the thesis, because one 
of the aims of the research was to introduce these new stops on the scale (VIDO and 
Investigative or Probative value only) and use them as a way to advocate for policy changes. 
That is, it was hoped that we could demonstrate that there were marks that could be identified 
at the analysis stage as insufficient for a categorical conclusion, but comparable, that would be 
used only to generate investigative leads but would be blocked by policy from being used for 
the categorical conclusions. We also hoped to highlight the distinction between marks that 
were of value for ID but not exclusion from those that were of value for exclusion but not ID. 
 
Although the white box use of these categories to some degree provides hope that they could 
be adopted one day, we found that it was premature to try to include them in modeling at this 
time. It appears that first, we must persuade the community of the usefulness of these 
categories and get them used to using them. Only after that is accomplished could we re-visit 
this categorization task with new images and examiners and hope to successfully build a model 
to predict these conclusions. 

4.2.4 The importance of minutiae selectivity for suitability decisions 

One major question raised by this research was whether other factors besides minutiae count 
factored into the suitability decision in a meaningful way. We argued in Chapter 3 that minutiae 
count cannot be the only determining factor, or we would see sharp thresholds at the “magical 
number” of 7 or 8. However, when minutiae count alone is not enough to tip the balance, what 
is the next most important factor that is considered? We posited that clarity must be a factor, 
but also that the perceived selectivity of the features must carry weight in the mind of the 
examiner. If a cluster of features is perceived to be highly distinctive, an examiner will give it 
more weight than features that are not, and that may be enough to tip the balance for a mark 
that is on the borderline of a decision threshold. 
 
We collected data on the minutiae that were annotated, whether or not a target group was 
selected, and how many “distinctive clusters” of minutiae were annotated by our participants. 
However, although each of these data points gave some local information, we wanted a 
measure of the overall perceived selectivity of the mark. Thus, we created the variable 
“minselectivity,” which was described in Section 4.1 and took into account the ratio of 
confident total minutiae, the number of highly diagnostic combined minutiae groups noted, 
and whether a target group was noted. This served to combine selectivity and clarity by 
accounting for both distinctive features and whether the examiner had confidence that they 
were truly present as observed. 
 
When the machine learning was undertaken, it became immediately apparent that this 
minselectivity variable was highly diagnostic. As described in Section 4.1, it was near the top of 
the variables of importance in nearly every model we ran in which it was included, often vying 
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with total_minutiae for the top spot. This provided strong evidence that the distinctiveness of 
the features in an impression and the clarity surrounding those features are both highly 
diagnostic pieces of information that weigh very heavily in examiners’ decision-making for all 
four scales, and may in fact be the key predictors of suitability decisions when minutiae count 
alone is not enough to make the decision clear. 
 
Although it is unfortunate that this variable could not be tested in the validation study due to 
operational constraints, the fact that we have demonstrated its importance to the decision-
making process is a significant contribution to our understanding of suitability. Additionally, the 
automated variable ESLR, which is also a measure of the rarity of the features in the mark, has 
been included in the validation study and the final model. 

4.2.5 Significance of differences in model performance 

In the manuscript presented in Section 4.1, we discuss the relative performance of different 
variable sets using the RF model under both idealized (Step 2 with “superuser” average user 
data) and real-world (Step 3 with “messy” data from all users) conditions. We summarize these 
data and demonstrate that there is little practical difference in the performance of these 
models, providing mean accuracy summaries (Step 2) and boxplots (Step 3) to compare them. 
 
However, we also produced comparative plots for Step 2 in which differences in accuracy for 
each combination of variable sets were calculated, along with an evaluation of the significance 
of those differences. These plots were not included in the submitted manuscript due to space 
and readability, but an example of one (the Difficulty scale) is included here as Figure 19. In the 
plot, the difference in accuracy between each pair of models being compared is shown with 
error bars around it. The thin, grey vertical line at 0.0 indicates that there is no difference in the 
performance of the two compared models. If the blue dot with its error bars are far enough 
away from the grey line to not be touching it, that indicates a significant difference in 
performance between the two compared models. 
 
Most pairwise comparisons of models do not show a significant difference in performance, with 
the exception of the LO models, which consistently performed poorly and are addressed in the 
manuscript in Section 4.1. Even for the pairings where there is a significant difference in 
performance, that difference is generally not far into the realm of significance. It was partially 
based upon these four plots that we made our claim in the manuscript that the performance of 
the models based on different variable sets (with the exception of LO) was all approximately 
equal. 
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Figure 19 Accuracy of models and pairwise comparison for the Difficulty scale. 
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4.2.6 Assessment of images along four scales 

As was noted in Chapter 2, the idea behind the development of this utility tool was to break the 
suitability decision into four separate assessments because a single image could occupy 
different bins on each such that looking at suitability as four different scales could provide more 
nuanced information than just considering a value/no value decision. After developing and 
optimizing the model, we were in a better position to examine how this might look when 
applied to real-world images by working examiners. 
 
We reviewed the model prediction results for the images used in the validation study and 
selected a few to illustrate the range of decisions across the four scales. Because the decisions 
of the model are based upon user inputs, there is no single “model prediction result” for each 
image; the results will vary per user. Thus, to get a single model result for each image, we 
utilized a majority voting scheme across the model predictions that were returned for each 
image, based upon the inputs of all the users who saw each image. 
 
Naturally, there were impressions that scored in the top category across all four scales. For 
example, for img203 the model predicted “Of value; Non-Complex, Self-Evident; AQ; Low 
Difficulty” (Figure 20). For images like this, the four scales provide no additional information. 
Yet in a situation like this, one could argue that no model is needed at all because the high 
quality of the impression is so obvious. There are, however, impressions like img221 (Figure 21) 
for which the model predicted “Of value; Non-Complex, Document; AQ; Low Difficulty”. For this 
image, the impression was still predicted to fall into the highest categories on three of the 
scales, yet fell down a category in the fourth. Looking at the two impressions together, it is clear 
that there is a large difference in their overall quality and quantity of information. Yet, with a 
simple value/no value determination, that would not be evident.  
 
At the other end of the spectrum were the images that were of very poor quality. For the most 
part, such as with img008 and img009 (Figure 22 and Figure 23), the model predicted the 
lowest classification across all four scales. However, there were images, such as img032 (Figure 
24), for which the model predicted a higher category on one of the scales. In this case, img032 
has very little information, yet is relatively clear, which likely accounts for it being ranked as 
“Medium Difficulty” although it is still predicted not to be of value or AFIS quality 
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Figure 20 An impression at the high end of the 
suitability spectrum. The model predicted the 
categories for this image would be “Of value; Non-
Complex, Self-Evident; AQ; Low Difficulty” as the 
majority predictions across all input from users who 
viewed the image in the validation study. 

 Figure 21 An impression not quite as high on the suitability 
spectrum. The model still predicted this impression to be “Of 
value; AQ; Low Difficulty” but for complexity, predicted its 
category to be “Non-Complex, Document” as the majority 
prediction across all input from users who viewed the image 
in the validation study. 

 

 

 
 
 

Figure 22 img008, a low-suitability 
impression that was predicted by the 
model to be in the lowest category 
across all four scales (No value; No 
value; NAQ; High Difficulty). 

Figure 23 img009, a low-
suitability impression that was 
predicted by the model to be in 
the lowest category across all 
four scales (No value; No value; 
NAQ; High Difficulty). 

Figure 24 img032, a low-suitability 
impression with higher clarity that was 
predicted by the model to be in the lowest 
category across three scales (No value; No 
value; NAQ), but was also predicted to be 
categorized as Medium Difficulty. 
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Figure 25 shows img007, another low-
suitability impression that was predicted by 
the model to be NAQ and High Difficulty as 
with the impressions shown in Figure 22 and 
Figure 23. However, the model predicted 
img007 would be categorized as “Of value; 
Value, Complex” on the value and complexity 
scales. This illustrates well that marks that are 
more suitable for one application or another 
can “split” the scales, going lower on one 
scale and higher on another, which supports 
that a single suitability determination does 
not provide enough nuance on which to base 
full decision-making. 

Toward the middle of the suitability scales, 
Figure 26 and Figure 27 present another pair 
of images for which the four-scale suitability 
model is able to distinguish between nuances 
on one scale that would be lost with a simple, 
binary suitability determination. 
 
 Img218 (Figure 26) was predicted by the model to be categorized as “Of value; Value, Complex; 
NAQ; High Difficulty” whereas img216 (Figure 27) was predicted by the model to be categorized 
as “Of value; Non-complex, Document; NAQ; High Difficulty.” Although it can be seen that the 
difference in quality between the two images is noticeable, the broadness of the categories on 
the value, AFIS, and difficulty scales allows the two images to be categorized the same, while 
one is judged as complex and the other as non-complex, but requiring documentation. 
 
Use of the model in the validation study has demonstrated both that it is capable of making 
distinctions along single scales that would be lost using a binary decision model with only one 
dimension, and that there is value in doing so. In other words, examples have been shown of 
impression pairs that exhibit discernible differences in quantity and quality and that those 
differences have led to different utilities along one of the four scales that should be highlighted 
to enhance decision-making for examiners. 
 
 
 
 
 
 
 
 

Figure 25 img007, a low-suitability impression that, 
despite predictions of NAQ and High Difficulty, is still 
predicted to be of value, albeit complex. 
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4.3 Chapter 4 summary 

Chapter 4 presented a submitted article for publication that described the development, 
optimization, and validation of a model to predict consensus suitability decisions on each of the 
four previously described scales. Chapter 4 also dove deeper into the rationale behind many of 
the choices made during model development, including describing many challenges that were 
faced during development that informed those choices. Finally, Chapter 4 discussed the 
nuances provided by the four scales, which allow one to differentiate between marks of 
different qualities that may be more or less useful on one of the scales than the others. 
 
The predictive model was developed in two stages: Model Development and Optimization, and 
External Validation. Stage One was comprised of three steps: Model Selection, Ideal 
Performance Testing, and Model Optimization in Realistic Applications. 
 
In Step One (Model Selection), a wide range of potential MLA solutions were tested using all 
the variables available. These included automated variables and user input variables, both from 
observations of the impressions and responses to demographic and policy questions. MLAs 
were tested in different combinations of user input variables, automated variables, and both 
types of variables combined. RF was chosen as the MLA that would be optimized and used for 
the model. From the full range of possible predictor variables, those that showed the highest 
variable importance for predicting in RF were retained for optimization in Steps Two and Three. 
 
In Step Two (Ideal Performance Testing), the RF model was evaluated with different 
combinations of user, automated, and combined predictor variables from those that were 

Figure 26 img218, an impression that was predicted by the 
model to be in the lowest category across three scales (No 
value; NAQ; High Difficulty), but was also predicted to be 
categorized as “Of value, Complex”. 

 Figure 27 img216, an impression that was 
similarly predicted by the model to be in the 
lowest category for the value, AFIS, and difficulty 
scales, yet was predicted to be categorized as 
“Non-Complex; Document” on the complexity 
scale. 
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retained from Step One. In Step Two, the average user data were used, which was made up of 
averaged responses from all the “super-users” who agreed with ground truth. This represented 
a best-case scenario for accuracy of the model and gave us an idea of its potential for accuracy. 
 
In Step Three (Model Optimization in Realistic Applications), the RF model was once again 
evaluated with different combinations of user, automated, and combined predictor variables 
from those that were retained from Step One. This time, all data from all users were included in 
the modeling, not only data from “super-users”, and no averaging of responses was done. This 
represented a more messy, real-world scenario where not every user will agree with the ground 
truth. In Step Three, we identified a set of variables that performed best under “Optimal” 
conditions, meaning that we put no constraints on the amount of user input or computational 
resources required, and a second set of variables that performed best under “Operational” 
conditions, where we tried to minimize the user in put necessary to achieve the highest 
accuracy and also tried to keep computational resources realistic. 
 
Under these conditions, we found that the best-performing Operational model used the 
variable set “User4_LO,” which included the user-input variables total number of minutiae 
marked, distortion, and clarity and the automated variables total number of minutiae, fa, ESLR, 
and lfiq (all using auto-extracted minutiae) . This model achieved median predictive accuracy 
levels for the four scales of: AFIS-73.33%; Complexity-60.36%; Difficulty-66.67%; and Value-
86.21%. These results were comparable to the accuracy of users in making suitability 
determinations that matched the consensus response. 
 
These results support both that a model can be developed and optimized that is comparable to 
the performance of human examiners, and that a hybrid model that uses limited user input 
supplemented by limited automated measures is superior to either automated measures or 
user input alone. 
 
For Stage Two, we performed an external validation study using new users and a mix of new 
and old images to test the generalizability of the optimized model. In the validation study, users 
input only the three user variables (total number of minutiae, and distortion and clarity 
assessments) and these were combined with the pre-calculated automated measures necessary 
for the model to arrive at predicted consensus outcomes. Participants were then asked 
whether they agreed with the prediction of the model on each of the four scales. Agreement 
between participants and the model was generally high, supporting both that the model is 
doing a good job at predicting the consensus opinion and that friction ridge examiners are likely 
to accept the conclusions of the model in their daily practice. 
 
Real world applications and benefits of the model were discussed, including that the limited 
user input required can save time spent in analysis, that the ability to predict a consensus 
response can be useful for laboratories too small to form consensus panels, and that the 
additional nuances provided by the four scales can support good QA policies and practices. 
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Section 4.2 discussed choices that were made during the development of the model, such as 
the inclusion, and then discarding, of ridits to average categorical responses; the use of the 
average user data; and the reduction of the Value scale from 5 categories to 2 and the 
ramifications of that decision. It also discussed the importance of minutiae selectivity in 
decision-making and examined more closely the comparative performance of all the considered 
models before the final model was selected. 
 
Finally, example images were provided that illustrated the nuance given by the use of the four 
scales of suitability. Impressions that have visibly different quality and quantity, but which 
would fall into the same category in a binary (value/no-value) scale were separated into 
different categories, depending upon which scale was being considered. These examples 
support that there is utility in using the four-scale model to consider different dimensions of 
the suitability of a mark. 
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5 Limitations, Potential Impact, Recommendations, and Future 
Research 

5.1 Limitations 

The research undertaken during this project spanned a period of more than 8 years from 
concept to publication. During this period, changes in practices in the friction ridge community, 
changes in the features available in the PiAnoS software, and new insights gained from initial 
data explorations incrementally but continually changed the course of the project. With the 
benefit of hindsight, there are choices that could have been made differently. There are also 
some limitations of the study that are simply the nature of the beast and could not have been 
changed under any circumstances. In this section, we briefly discuss some of the limitations of 
this work. 

5.1.1 Ground truth is neither known, nor objective 

One limitation that cannot be overcome is that there is no true ground truth for the suitability 
decision, in any of its facets. Because suitability is, essentially, a subjective determination, we 
had to develop a means of assigning the expected outcome of each decision that we could use 
as the standard against which to measure the performance of our candidate models. We 
elected to use the majority-voted response as “consensus ground truth.” That decision has 
advantages and disadvantages. 
 
Of course, the advantage was that for each decision, we had a conclusion that most examiners 
would agree with to use as guidance. The flipside is that often, many examiners would not. The 
biggest disadvantage of using consensus responses in the development of the model is that we 
lost a lot of nuance in examiners’ observations. When a mark sat at or near the threshold of a 
decision, the individual observations of examiners could be illuminating in understanding what 
specific factors helped to push them one way or another (for example, the image presented in 
Figure 13 in Section 3.2.2 makes one wonder whether the 2 highly distinctive dots near the 
bottom of the image could outweigh the lower overall quality and quantity of minutiae). 
Because we were averaging examiner observations for the purposes of the modeling, these 
nuanced tradeoffs were lost. 
 
Exacerbating this challenge is the fact that not all examiners are equally skilled. By using a 
majority vote approach, the opinions of all examiners were given equal weight. However, it is 
quite possible that some examiners were uniformly poor performers and the model may have 
been improved by their exclusion from the training data. We could have used an assessment 
process to identify the most trustworthy examiners to include in the voting process, while 
excluding the least trustworthy examiners. This could have been achieved by reviewing the 
annotations and responses of each participant and looking for poor documentation habits, 
incoherent responses in light of the annotations made, or written notes that revealed poor 
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practices or logic. However, this process would have been extremely labor-intensive and in 
addition may have resulted in a detrimentally reduced set of data for training. 
 
Additionally, there were challenges in the modelling that were caused by the majority-voting 
approach to assigning consensus ground truth, such as the fact that there is disparity in the 
community around how to treat VEO marks (as NV or of value) which could push these marks 
one way or another based on the luck of the draw of which examiners happened to view them. 
Another challenge this caused was the fact that some of the original 5 bins proposed for the 
Value scale were never the consensus decision, and thus could not be modeled at all. Finally, 
the AFIS scale results, at least in the external validation study, may have been skewed by the 
opinions of examiners who noted that they did not regularly perform AFIS work in their job 
duties. 

5.1.2 Garbage in/Garbage out 

A related limitation of the study that is the nature of the beast and could not be mitigated is the 
principle of garbage in/garbage out. One of the reasons this study was undertaken was as an 
attempt to reduce the variability between examiners during the analysis phase. However, that 
very variability limited the usefulness of the resulting model. Machine learning is only as good 
as the data it is provided on which to learn. Because the participants in the study were so 
variable in both their observations and their suitability determinations, there were limits to 
how well the model could learn to predict their decisions based upon their observations. The 
fact that it predicts as well as it does is astonishing on some level. 

5.1.3 Comparison outcomes are not known 

This study was focused exclusively on the suitability determination and did not consider 
comparison outcomes at all. Although the scope of the project was large enough without 
comparison entering into it, it is a limitation of the study that we were not able to correlate 
performance of the model with comparison outcomes. It would have been beneficial (and 
would make for a good follow-up study) to take marks with known ground truth pairs, use the 
model to determine their suitability, and then subject examiners to comparisons to see, for 
example, whether the marks designated as “complex” or “investigative or probative value 
only,” were more likely to lead to erroneous comparison conclusions. 

5.1.4 The four suitability scales are new, and unfamiliar 

One of the goals of this research was to introduce the idea of four different scales of suitability 
and also to introduce some new categories within scales that were already familiar. We have 
done this and the data support that these new categories were utilized and may have value to 
the community. However, there was a risk that by their very novelty, they may be used 
inconsistently because they were unfamiliar to examiners and represented a large cognitive 
load in keeping new definitions in mind and applying them as they performed an otherwise-
familiar task. Some text comments received from participants or inconsistencies in their 
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responses indicated that this may, in fact, have been a problem for some. It was clear that 
some examiners did not fully understand the definitions or intent of the newer categories. 
 
Balanced against this is the fact that multiple previous research studies have shown that 
examiners are not consistent in their application of the value decision anyway—thus, the effect 
of introducing new categories to this decision may have been negligible and, we hope, the 
benefits offered by these categories outweigh the learning curve necessary for their use. 

5.1.5 Observation of the cores and deltas was not made 

During the initial experimental design phase of this project, the decision was made not to ask 
participants to record whether they observed cores or deltas in the impressions. The reasoning 
at the time was that we were already asking them whether they could discern the pattern type, 
which was the main reason you would need core and delta information, so this question was 
unnecessary and we were asking participants to annotate so much information, that we did not 
want to overburden them with additional questions that did not add materially to the project. 
 
In retrospect, the project would have been strengthened by collecting these data. First, they 
would have allowed us to know whether participants were confident of the orientation of the 
mark (as would an additional question specifically targeting orientation knowledge). Second, we 
failed to account for the importance of the core in AFIS decisions. The model sometimes 
struggled to predict AFIS decisions, calling a mark of AFIS quality when it had high clarity and 
number of minutiae whereas many examiners would call the same mark NAQ because it was 
missing the core. Because the model did not have information about the presence of a core and 
its importance to AFIS decisions to learn on, it was unable to correctly classify in these 
situations. 

5.1.6 Technological challenges to real-world implementation 

Finally, there are technological challenges that limit the implementation and optimization of 
the model for use in operational laboratories. Because the model draws on several sources of 
information, these have had to be amalgamated across multiple machines for each of the study 
images. There is not currently a single standalone version of the model into which a user could 
simply upload an image and get a real-time response. A platform to combine all the parts of the 
model into a single user interface that could be utilized in working laboratories could 
theoretically be built, but at a cost of time and money that is beyond the scope of this project. 
 
Similarly, because the development of the model took place over several iterations of the 
development of PiAnoS, some of the early features, such as the ability to annotate target 
groups and highly distinctive minutiae clusters, were lost. This negated our ability to include the 
minselectivity variable into the final model. Although the performance of the model is not 
much worse without this variable, minselectivity did prove to be a variable of high importance 
and it would have been better to include it in the final model. 
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5.2 Potential impact to policy and practice 

The development of a utility tool for the suitability decision can impact friction ridge policy and 
practice in a number of ways. This section will outline the five main areas of benefit considered 
by this study, delineating the challenges each faces and how this tool could be used to foster 
improvement. 

5.2.1 Research 

Since the release of the NRC Report in 2009 (Edwards 2009) and the PCAST report in 2016 
(President’s Council of Advisors on Science & Technology 2016), the one thing that fingerprint 
examiners and critics alike seem to agree upon is the need for more research. These reports 
demanded answers to a variety of questions related to fingerprint comparison science, 
including questions regarding error rate, standards, proficiency, bias, and others. Researchers 
are developing experiments that will provide the data to answer these questions and, 
hopefully, will strengthen the foundation upon which friction ridge comparison science rests. 

 
Most, if not all, of these research projects will hinge upon test subjects (typically examiners in 
the field, but sometimes also novices) examining some number of known and unknown 
impressions and reaching some conclusions about them under a variety of circumstances. The 
difficulty scale of this tool could be used to evaluate potential study marks prior to their being 
included in research test sets. This would lead to the ability to more directly and meaningfully 
compare the results of studies from different researchers. The use of the utility tool could 
provide consistency from researcher to researcher on what constitutes a “difficult” mark. The 
other scales could likewise be used to give researchers uniform expectations of which marks in 
their study are likely to be classified as VEO, VID, no value, AFIS quality, complex, etc. Thus, if a 
researcher were to say for example, that their study included 10 low, 10 medium, and 10 high 
difficulty marks, there would be a common understanding within the field of what this means. 
 
Most often today, research focuses on the number of same source or different sources trials 
without any discussion at all around the difficulty of the impressions (see, e.g. (Tangen et al. 
2011), which compares the performance of experts and novices, yet makes no statement about 
the difficulty of the images used; the sole figure presenting example images from the study 
(their Fig. 1) shows three quite easy comparisons), or simply a label such as “difficult” without 
an accompanying definition of why a particular mark might be categorized this way. 

5.2.2 Proficiency Testing and Training 

Similar to research, proficiency testing and training exercises would benefit from the 
application of a utility tool to their test samples. There is ample research in the literature on the 
cognitive psychology behind learning to support that people learn best when training samples 
start off easy and become progressively more challenging to promote learning from errors 
(Metcalfe 2017). The use of a tool to judge the difficulty of the images being used in training 



 5-5 

would allow the creation of increasingly difficult training samples to optimize the training 
progression. 
 
Companies such as CTS sell proficiency tests to laboratories throughout the United States. One 
of the criticisms of these tests is that they are too easy (Max et al. 2019; Koertner and Swofford 
2018) and indeed, the head of CTS has gone on public record at the National Commission on 
Forensic Science (NCFS) stating that the tests are crafted to be easy because that’s what the 
customer demands (National Commission on Forensic Science (NCFS) 2016). However, these 
test results are often invoked in court as proof of an examiner’s continued competence and 
expertise. 

 
There is currently no stated standard of how many low, medium, or high difficulty marks are 
given on commercially available proficiency tests. Without this information, it is unclear what 
level of proficiency is being tested. For the results of these tests to be meaningful, proficiency 
test companies should be employing a standard metric when designing their tests to ensure 
that each year, a pre-determined number of marks from each category of difficulty is given to 
test-takers. Only by doing this can there be certainty that the test was of sufficient difficulty 
each year to warrant a claim of “proficiency” by its successful completion. Again, the difficulty 
scale of the utility tool developed by this research could provide a uniform way to make these 
assessments when constructing tests. 

 
In addition, an improvement to current test designs would be to design tests of differing 
difficulty, or to award proficiency at differing levels, based upon the level of difficulty of the 
marks that were successfully completed on the test. This would serve a number of useful 
functions. 
 
First, it could change the entire culture around the notion of “passing” a proficiency test. Rather 
than having a test that was pass/fail with a stigma assigned to any examiner who failed, it 
would be expected that most examiners would fail at some point—the purpose of the 
proficiency test would be to identify that breaking point. Rather than saying they passed the 
test, examiners would be able to state what level of proficiency they had attained—that is, 
what the examiner’s accuracy was at each difficulty level. This approach to proficiency testing 
would be in line with recommendations by the National Commission on Forensic Science (NCFS) 
that the discipline should be testing their examiners and systems to identify the limits of their 
abilities, not just to see if they possess the minimum required level of competence (Bell et al. 
2018). 
 
Second, it would give both managers and juries a clearer idea of the skill level of individual 
examiners. For managers, this information could be used to identify examiners who would 
benefit from additional training, or to select the most skilled examiners for particularly difficult 
or high-profile cases. For jurors, it could give a sense of how concerned they need be about the 
likelihood of an error made in this particular case, by this particular examiner, rather than trying 
to extrapolate from some general error rate for the field, a challenge that has been explored by 
Dror (2020). This brings us to our next point. 



 5-6 

5.2.3 Testimony 

As previously noted, currently all identifications are treated as equivalent in value and 
certainty. However, it has been shown that more errors occur in the comparison of marks that 
are of marginal quality (Langenburg 2012). Furthermore, not all examiners possess equal skill in 
comparing complex marks. Therefore, it may be helpful to factfinders to be given information 
regarding both the level of difficulty of the specific mark in a given case, and the level of skill of 
the examiner testifying to it. 

 
The utility tool can be useful on both counts. First, by applying it to any mark on which one is 
going to testify, the examiner can provide the factfinder with information regarding the 
difficulty of the mark and whether or not it was considered complex. The examiner may give an 
idea of how much concern or care is warranted in the interpretation of the results, based upon 
the quality of the mark. This may aid the factfinder in determining how much weight to 
attribute to the evidence. In the case of a poor quality mark, the examiner may be able to 
demonstrate why he reached his conclusion sufficiently to allay any concerns the factfinder 
may have had—but by presenting the quality information, they will at least know that they 
ought to have had concerns to begin with. Second, if annual proficiency tests have been 
designed to test examiners at differing levels of difficulty, as suggested above, the examiner can 
reassure the factfinder of her accuracy rate on proficiency test samples at the requisite 
difficulty level to be competent to have examined the mark at issue in a particular case. 
 
This application of the tool is in line with the suggestions of Mnookin (2010) that testimony 
might be offered in conjunction with proficiency test results. She calls for the development of a 
metric for use in designing proficiency tests. She specifically recommends that this metric of 
difficulty be validated and be applied to proficiency tests in such a way that the level of 
proficiency of an examiner may be ascertained and compared to the level of difficulty of the 
prints being presented in a particular case. 
 
Under the prevalent two-decision model of friction ridge conclusions (Identification v. 
Exclusion), testifying to one’s conclusion has been relatively straightforward, if somewhat 
lacking in transparency. However, with the emergence of more nuanced decision-making, 
friction ridge examiners will need to re-think the way they present their findings to a jury (Cole 
2011, 2014; Carter et al. 2020). 
 
With increased documentation, it will be easier to recall and report the thought processes that 
went into a conclusion, as well as to increase transparency about the process. However, it is 
unknown what effect this information will have on a jury. Will it help to clarify matters for 
them, or only serve to confuse them? Furthermore, is the same level of detail in testimony 
necessary for all marks, or can an abbreviated explanation suffice in cases where the mark is of 
high quality? The utility tool can once again aid in establishing thresholds. At low difficulty or 
complexity levels, abbreviated explanations may be more appropriate. 
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With the recent push for greater transparency in testimony and greater modesty in conclusions, 
it seems desirable to present the jury with as much information as possible regarding how 
conclusions were arrived at, how strong the evidence is, and to give conclusions that do not 
overstate the significance of the evidence. However, research is needed to establish 
appropriate language to achieve these goals without simply bogging the jury down with 
unneeded and confusing technical information.  As Lennard puts it (2013): 
 

“We justifiably strive for scientifically defensible means of presenting our 
evidence, but we arguably need an approach that better meets the needs 
of the court, including the jury, the judge, and the other legal 
practitioners involved in the process.” 

 
In other words, just because greater technical accuracy satisfies good scientific principle, it 
doesn’t necessarily follow that it makes the information more understandable to a jury. We 
must remember that explaining our findings to the jury in a manner that aids them to 
understand is the ultimate goal of testimony, and that most of them are not scientists 
themselves (Eldridge 2012, 2019). 
 
As it is currently unknown if information regarding quality scores, weight attributed to rarity, 
discipline error rates, significance of findings, and even explanations of the limitations of those 
findings will tend to enlighten or confuse the jury, further research in this area is clearly needed 
(Eldridge 2019; Langenburg 2012; Garrett et al. 2020). Recent research has however 
demonstrated that jurors appropriately adjust the weight given to fingerprint testimony 
according to hearing how well the examiner in the case has performed on proficiency tests 
(Mitchell and Garrett 2019). Happily, previous research on juror perceptions (Holmgren and 
Fordham 2011) tends to show that jurors appreciate experts’ attempts at humility, admitting 
errors, and appearing human, which seems to indicate that the inclusion of greater 
transparency and more modest claims would be welcomed and would not lead jurors to lose 
faith in the experts’ expertise, as some practitioners have feared. 

5.2.4 Quality Assurance (QA) 

Many laboratories are striving to improve their quality assurance measures and documentation, 
in order to provide additional safeguards against errors. One example would be to require 
additional documentation or review of complex marks. However, it is difficult to write policy 
that is predicated on terminology that has not been defined—how does one require under 
written policy that an additional verification be done on all complex marks, for example, when 
the agency has not defined what constitutes “complex”? On the other hand, marks of very high 
quality could be subjected to fewer QA policies, which could save laboratories time that could 
be better allocated to more difficult marks. The complexity scale of this utility tool is capable of 
categorizing marks as complex. It also separates non-complex marks into two categories to 
distinguish between those that should require a standard level of documentation, and those 
that are so superior in quality that reduced documentation can be supported. 
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Additionally, the utility tool could be used to review decisions made by examiners as continuing 
performance review and to test the sensitivity and risk appetite of employees. It can also assist 
during disputes between examiners as will be outlined in Section 5.2.5.  

5.2.5 Providing a Consensus 

The development and output of the utility tool was discussed in much greater detail in Chapter 
4, but it is important to note here that the tool works by predicting the consensus response of a 
group of examiners, not an individual response. In other words, individual examiners may 
disagree with the model in many individual cases; however, the model will generally 
successfully predict what the consensus of a group of experts would be for a given mark along 
the four scales. This information can be useful in several ways. 
 

5.2.5.1 Guidance 

The tool can be used to provide guidance in borderline cases, or cases where there is 
disagreement between examiners. If an examiner reaches a suitability decision and finds that 
the tool did not agree with them, it is an indication that a panel of experts would likely not 
agree with them either, which is a red flag that they should reconsider their initial decision. The 
model is not always “right,” so examiners should not use disagreement as an indication that 
they should change their initial decision—only that it may be worth further consideration. 
 
Furthermore, if two examiners have a disagreement about the suitability of a mark for a 
particular use (value, AFIS entry, or whether it is complex), the model could be used as a ‘tie-
breaker’ in the sense that whichever examiner it agrees with is likely to be the examiner a 
consulted panel of experts would also agree with. 
 

5.2.5.2 Small Laboratories 

Many laboratories in the United States struggle with disagreements because they have only one 
to three examiners, so there is often nobody else available to ask when there is a difference of 
opinion. Although larger laboratories can set up consensus panels to help settle disputes, small 
laboratories do not have this luxury. For these laboratories, the tool can function as a virtual 
consensus panel, providing a consensus response when there are not other examiners available 
to consult. 
 

5.2.5.3 Utility Functions 

Finally, the utility tool could be adjusted to meet specific agency preferences according to their 
utility functions. As noted by Biedermann et al. (2008), agencies and even particular examiners 
will have different priorities for threshold-setting based upon the makeup of their predominant 
workflow and their risk appetite. For example, agencies that do high volume crimes and only 
search through AFIS may set a higher threshold for value or AFIS quality than agencies that deal 
with a large number of homicides. Agencies or examiners who have recently had high-profile 
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errors exposed might become very conservative and pull back their value and complexity 
thresholds to reduce the number of challenging marks they compare and increase the number 
of comparisons that will be subject to additional QA measures. The Dutch experts discussed by 
Langenburg (2012) put a high premium on consistency and set very stringent criteria for 
minutiae selection, with the result that fewer marks may be considered of value in comparison 
to other laboratory systems. And the “eagle eye” examiner in many laboratories may be willing 
to compare marks that most of their colleagues would consider complex or not of value at all. 
 
Because the performance of the model is based upon a default probability threshold of how 
likely we want it to be that the observed data predict a particular consensus ground truth 
classification, this threshold can be adjusted to reflect how loose or tight an agency wants the 
predictions to be. For instance, if an agency wanted to minimize risk of making an error, they 
could set the tool to only predict “Of value” when the probability of the data leading to an “Of 
value” prediction surpasses some very high threshold, such as 80% or more, with the 
understanding that they are allowing many marks to go uncompared that could potentially 
have been identified. Of course, the overall accuracy of the model will change as the thresholds 
for classification change. The range of these values can be well-represented by ROC curves, 
which were presented in the paper reproduced in Section 4.1. 

5.3 Recommendations for policy and practice 

The results of this study support several recommendations for changes to policy and practice to 
reduce variability in analysis decisions and improve friction ridge analysis generally. These 
recommendations are outlined briefly below. 

5.3.1 Do not annotate with minutiae type-specific markers 

As noted in Section 3.1, our results showed that examiners are not consistent or cohesive in 
their use of minutiae marker types. Markers of high-confidence type were used in areas of poor 
quality. The same minutia was often marked by some examiners as a ridge ending and others as 
a bifurcation (at high confidence), even in areas of high clarity and the “votes” for each were 
often very close to evenly split. Examiners frequently used markers of high confidence type for 
clear cases of connective ambiguity. These results support that there is really no justification for 
designating a particular minutia as either a ridge ending or a bifurcation. It is clear that, in most 
cases, the examiner can’t tell one from the other with certainty and therefore the designation is 
arbitrary. Until and unless criteria are created that clearly specify when a minutia is a ridge 
ending versus when it is a bifurcation, and examiners are trained to those criteria, we 
recommend that specific minutiae type markers not be used as they imply a level of certainty 
that cannot be supported. 
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5.3.2 Develop consensus-based standards for suitability decisions 

The high degree of variability in suitability decisions demonstrated in Section 3.1 makes it clear 
that the decision is currently far too subjective and standards are needed to guide examiners in 
these decisions. There are three main points where high levels of variability can be introduced: 
deciding what features “count” toward the decision; deciding how much weight those features 
should get toward the decision; and deciding how much total information is needed to reach 
the various decision thresholds. 
 
Ideally, all three of these points should be resolved through research to determine standards 
and thresholds that minimize both variability and risk of error. However, this research is tricky 
to do and it may be some time before evidence-based guidance is available. In the meantime, 
these decisions still need to be made and should be consensus-based, whether at the agency 
level, or by guidance bodies such as OSAC. There need to be written and standardized 
definitions for what level of clarity is necessary for a feature within that local area to “count” 
toward suitability, for how heavily to weigh different types of features, and for how much 
information is needed to cross each threshold. This is the only way that variability can be 
reduced and suitability determinations can be reliable rather than subject to the whim and style 
of the individual examiner. 

5.3.3 Document analysis, including confidence level 

The best way to support the suitability decision, and to allow others to review the factors that 
went into that decision, providing transparency, is to document the analysis of the mark. Using 
the model will already involve documenting the minutiae relied upon as well as the overall 
clarity and distortion assessments for the mark. If the recommendation made in Section 5.3.2 is 
followed and standardized criteria are set around definitions of features, weights, and 
thresholds, documentation will be the only way to review work and ensure these criteria have 
been met. 
 
Additionally, the confidence the examiner has in the minutiae selected should be documented. 
Since the weight assigned to features should be dependent partially upon their clarity, or the 
confidence the examiner has in them, this confidence should be documented. First, this will 
provide support for the examiner’s decision. Second, it holds the examiner accountable to their 
initial confidence in the feature. If, for example, the examiner marks a minutia at high 
confidence, then begins comparison to a print, fails to find that minutia, and decides to 
discount it and make an ID anyway, that should raise a red flag to reviewers. Examiners should 
not be discounting features during comparison that they were highly confident in during 
analysis. But without documentation of the confidence level at analysis, this would be 
impossible to detect. Conversely, if a minutia is initially marked with low confidence but is not 
found, or its position or type are changed, during comparison, this should be met with 
tolerance by a reviewer, knowing that the examiner was not confident of the feature in the first 
place. 
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5.3.4 Use the model as a second—or first—opinion 

The performance of the model developed in this research has shown that it does a good job of 
predicting the consensus opinion of expert examiners along all four scales of suitability. In all 
cases, it performed approximately as well as examiners did on average. In addition, examiners 
in the external validation study had a very high rate of agreement with the conclusions of the 
model. 
 
Taken together, these two findings indicate that the model’s guidance can be taken as an 
indication of the suitability determination that most expert examiners would agree with as a 
consensus. This means that if an examiner reaches a determination that does not comport with 
the guidance offered by the model, this should serve to them as a warning that a majority of 
experts would likely not agree with their decision and they may need to re-evaluate that 
decision more closely. In fact, the model could replace a verifier in the analysis phase. An 
examiner could form their own analysis opinion, then use the model as a check, to provide a 
warning when an examiner is about to render a decision that should be more closely examined, 
or conversely, to reassure an examiner that the majority of experts would agree with them if 
they are not entirely confident in their own decision but it comports with the prediction of the 
model. The model could be used in this way to determine when the intervention of another 
examiner is needed; if the examiner and the model agree, no further action is needed, but if 
they disagree, the opinion of a second expert will be sought (Montani et al. 2019). 
 
This could even be taken a step further. Not only does the model tend to reach the same 
decision as a consensus of experts, but it does so more quickly than a single examiner 
completing a full analysis on their own. Thus, we can foresee a workflow in which the examiner 
uses the model first to reach their suitability decisions (keeping in mind that the examiner has 
to enter 3 inputs based upon their own observations, so they will be engaged in the analysis 
process and will form their own opinion in so-doing) and only completes a full analysis if they 
do not agree with the judgment of the model, in which case they must justify why their 
judgment is superior by documenting specific information they used to reach their decision, to 
which the model did not have access (Montani et al. 2019). This scheme utilizes distributed 
cognition (Dror and Mnookin 2010) to share the load between examiner and automation; the 
examiner would see and recognize features, while the model would make decisions based on 
the input information. This would result in savings of both analysis time and cognitive load 
while reducing variability in ultimate decisions.  
 

5.3.5 Use the new categories proposed by this research 

A number of new decision categories were introduced by this research across several scales. 
These included Investigative or Probative Value Only, VIDO, AQ with QA, Non-Complex with 
standard documentation, and Non-Complex, Self-Evident (reduced QA/Documentation 
requirements). Each of these categories was included for a specific purpose that either 
encouraged a new way of thinking about suitability, or suggested QA policies to accompany it. 
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Although some of the Value scale categories were rarely or never chosen as the consensus 
response, all newly-introduced categories were nevertheless chosen with encouraging 
regularity by most of the participants, as detailed in Section 3.1. We recommend that 
laboratories consider adopting the use of these new scales and categories to expand the way 
examiners think about suitability and to support QA policies. In particular, we recommend the 
adoption and expansion of the AFIS and Complexity scales. 
 
The new category on the AFIS scale, AQ with QA, was very frequently chosen by participants in 
both the original and external validation studies and was supported by many written comments 
from participants stating that they believed particular impressions were suitable for AFIS entry, 
but should have additional QA measures applied to them due to observed risk factors. Some of 
the comments even specifically repeated recommendations of the author, such as additional 
documentation or using additional minutiae that had not been entered into AFIS to effect an ID. 
It seems that there is a practical use for this category and that the community is ready to 
embrace it. 
 
The two new categories on the Complexity scale both dealt with marks that were not 
complex—that is, the Non-Complex with standard documentation and Non-Complex, Self-
Evident. From participants’ behavior and written comments, it is clear that the distinction 
between these two categories was not 100% clear to them. This confusion likely stems from the 
fact that documentation practices currently vary so widely between laboratories that for some 
participants, any documentation felt like an extreme measure whereas for others, so much 
documentation is routinely done that they could not conceive of doing more. For these 
categories to be effective, laboratories will first need to adopt a policy that standardizes the 
expected amount of documentation for a run-of-the-mill mark. From that point, they can then 
require additional documentation for complex marks and reduced documentation for the self-
evident marks. Making this change should reduce errors, increase transparency, and focus the 
laboratory’s limited time and effort where it belongs—more on complex marks, somewhat on 
mid-range marks, and very little on the highest quality marks. 

5.3.6 Separate the notions of suitability for manual comparison versus AFIS entry 

In many laboratories, there is a philosophy that if a mark can be compared, it can be entered 
into AFIS. And as we have seen, much of the research focused on quality metrics and the 
suitability decision has focused on AFIS, either equating the two, or ignoring the needs of 
manual comparison. Yet, we have seen throughout this work that the AFIS and manual 
comparison suitability decisions are not the same. Marks that are suitable for manual 
comparison may not be suitable for AFIS entry. And the criteria for AFIS search may be different 
than those for manual comparison (e.g. wanting a core for AFIS, higher minutiae thresholds, 
etc). In addition, AFIS thresholds may be affected by factors such as the size of the AFIS 
database (a mark that may be sufficient for searching in a small database may be too risky in a 
large one), or the AFIS vendor an agency uses (some matchers are “better” than others and 
thus may carry a reduced or heightened risk of coincidental match). These variables were not 
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directly considered in this research but may nonetheless have an impact on individual agency or 
examiner AFIS decision thresholds. 
 
Thus, we recognize that these are two fundamentally separate decisions that should be treated 
as such, even if the results often coincide. Laboratories should consider establishing separate 
thresholds for AFIS entry than those they use for a suitability decision for manual comparison 
and may even wish to consider establishing separate AFIS thresholds for different situations. 

5.4 Future Research and Development 

The research presented in this thesis has provided a foundation to understanding the most 
diagnostic data considered by examiners in making suitability decisions and has provided a 
proof-of-concept that a hybrid examiner-automation model can be used to predict suitability 
decisions along four scales, which it has introduced, with an accuracy level commensurate with 
examiner abilities. Further work could be done to improve and expand upon this concept and 
to make it implementable in operational forensic laboratories. 
 
First, the model could be improved as noted in Section 5.2 with the inclusion of core and delta 
information, with the inclusion of the tools needed to calculate the minselectivity variable, and 
by being built into a single, standalone system into which examiners could upload their 
casework images and receive real-time model predictions. 
 
Second, the predictions produced by this model could be combined with other user input and 
used to develop specific thresholds and criteria to classify marks according their level of 
suitability. These criteria could then be tested on images with known ground truth against AFIS 
search ranks and other existing quality metrics to measure their improvement in ability to 
reliably classify impressions, particularly in the “grey area” where it is less clear whether or not 
the mark should be considered of value. This next step of the research is already underway. 
 
Finally, images with known ground truth pairs could be evaluated by the model, then given to 
examiners for comparison. Comparison outcomes could be compared to the suitability 
decisions predicted by the model to evaluate whether the model correctly classified marks that 
were at higher risk of erroneous comparison conclusions (e.g. complex, or no value, marks). 
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6 Conclusion 

The friction ridge comparison discipline is subject to variability at key decision points 
throughout the process. This variability has been observed both between and within examiners 
and in the analysis, comparison, and evaluation phases of an examination. This research was 
undertaken to closely examine the suitability decision—what suitability decisions can be made, 
what information do experts use to support these decisions, can the decisions of experts be 
predicted, and is there a way to reduce the variability in their decisions? 
 
We proposed considering the suitability decision not as a single, binary decision—value versus 
no value—but as four separate dimensions of the utility of a mark for various purposes. These 
dimensions were represented as four proposed suitability scales: Value, Complexity, AFIS, and 
Difficulty. Each of these scales considers a different use to which a single impression could be 
put. 
 
The Value scale considers whether or not a mark should be taken forward to a comparison. It 
was originally conceived as having five possible categories (but unfortunately had to be 
collapsed to a binary value/no value choice during machine learning): 
 

• No Value (the mark will not be used any further) 
• Investigative or Probative Value (the mark is not suitable for reaching an identification 

or exclusion, but could potentially provide an investigative lead or other probative 
information) 

• VEO (the mark could be used to exclude, but not to identify) 
• VIDO (the mark could be used to identify, but not to exclude) 
• Value for Both (the mark is suitable for both identifications and exclusions to 

appropriate exemplars) 
 
The Complexity scale considers whether a mark, once determined to be suitable for 
comparison, is complex or not. This decision could be used to drive QA policies, such as 
requiring additional documentation and review for complex marks, but allowing abbreviated 
documentation and review for very high quality marks. 
 
The AFIS scale considers whether a mark is suitable for entry and search in an AFIS. 
Furthermore, the scale considers whether a mark that will be searched in an AFIS has 
characteristics that put it at higher risk of a coincidental match and should therefore be 
subjected to additional QA measures. 
 
Finally, the Difficulty scale considers the overall difficulty anticipated in comparing a mark and 
can be used for building research, training, and testing at consistent and stratified difficulty 
levels. It can also be used for testimony purposes as a way of describing the difficulty level of a 
mark being presented in court. 
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To explore these four scales, we first undertook a white box study to better understand the 
information experts use to make their suitability decisions and to observe how they reacted to 
the introduction of new scales and conclusions when thinking about suitability. Volunteer 
experts were provided with fingermarks from casework and asked to annotate only the 
information they used to reach their suitability decisions, then they were asked to render those 
decisions on each of the four suitability scales.  
 
Examiners were found to be variable in the features they relied upon, their perceptions of 
amount of clarity and distortion, and their ultimate decisions regarding suitability. Consensus 
observations were fairly good predictors of consensus decisions; however, the variation in the 
data suggested that individual examiners would not agree with the consensus opinion in many 
cases. Although variability will unavoidably be present to some extent in human endeavors that 
rely upon subjective assessment of visual cues, the discipline should nonetheless make efforts 
to reduce this variability to the extent possible because differences in opinion over the 
suitability of a mark for comparison or AFIS could have real-world consequences to the criminal 
justice system. 
 
Minutiae count was the strongest driver of value decisions, whereas clarity and distortion 
together better explained decisions on the other scales.  Overall, the variables that were most 
consistently relied upon to reach suitability decisions along all four scales were: total number of 
minutiae marked, number of confident minutiae marked (as opposed to uncertain minutiae 
marked), the clarity of the image, the level of distortion in the image, whether the pattern type 
could be determined with confidence, and the selectivity of the minutiae. 
 
Although examiners tended to agree on which images were very high quality, there was no 
consensus on no value images. Also, if an image was not extremely high quality, it was likely 
that many examiners would assign it to the highest value category, whereas many other 
examiners would disagree. Many images had nearly equal votes across all value categories. 
 
Examiners tended to express strong confidence in minutia type, even when there was 
connective ambiguity. More degraded images resulted in a higher use of uncertain minutia 
markers, but certain minutia marker types were still used. Thus, examiners should not use 
specific minutiae marker types unless and until specific criteria are developed to define each 
because the current practice lends a misleading veneer of certainty to what is often an arbitrary 
decision. 
 
Furthermore, examiners should document the features and observations they relied upon to 
reach their suitability decision(s) because it is known that these decisions can vary widely. 
Without a way to substantiate why a particular decision was reached, the decision appears 
opaque and arbitrary. 
 
The new suitability categories that were introduced along the four scales of suitability were 
chosen often by participants in this study. There appears to be value in expanding the notion of 
“suitability” of latent marks and considering different uses for which a mark may be useful as 
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well as considering more granular conclusion options that may suggest additional quality 
assurance measures. 
 
Next, we undertook to develop, optimize, and validate a predictive model using the data from 
the white box study to predict the consensus response on each of the suitability scales using 
only a few key inputs. A main question of this research was whether a model informed by user 
inputs alone, a fully automated model, or some combination of the two, would provide the 
highest accuracy predictions, thus answering the question of whether a human examiner 
should be involved in suitability decisions, or whether they should be fully automated. 
 
Our results showed that, although only a few key data inputs were required, models that 
utilized both user input and automated measures exhibited superior predictive accuracy on all 
four scales to models that relied on only one or the other. Further, our external validation study 
showed stable predictive accuracy values with new images and new users, supporting the 
generalizability of the model, and also showed high levels of agreement with the model from 
participants, supporting the likelihood of the model being accepted for use within operational 
laboratories. 
 
In Step One of the model development, 11 MLAs were tested on each of the four scales with 6 
variables each, for a total of 24 sets of results. From these initial data, RF was selected as the 
MLA to use for all subsequent modelling and RFE was used to narrow the potential predictors 
to 12. 
 
In Step Two, average user data from “super-users” who always agreed with the consensus 
ground truth decision were used to train and test the RF model with different combinations of 
variables to determine the best-case scenario of how the model could perform with idealized 
data. The best operational set of variables using the average user data resulted in the following 
mean accuracies for prediction: Value—100%; Complexity—86.91%; AFIS—86.69%; Difficulty—
93.32%. 
 
In Step Three, all user data were used, including data from users who did not agree with ground 
truth and without averaging any of the data. The same combinations of variables were tested 
as in Step Two. The best operational set of variables under these more real-world conditions 
yielded the following mean accuracies for prediction: Value—83.13%; Complexity—59.91%; 
AFIS—77.77%; Difficulty—66.31%. Additionally, these values were compared to the accuracy of 
individual users in reaching decisions that matched the consensus ground truth, with similar 
results. MultiROC curves were used to test the performance of the selected model against 
other models at all probability thresholds and the selected, operationally-realistic model 
performed favorably. 
 
Finally, an external validation study was performed to test the generalizability of these results 
on new images and new users. The performance of the model was evaluated in four ways. First, 
we considered the overall mean predictive accuracy of the model during optimization (Step 
Three) against its overall mean predictive accuracy during the validation study. The results for 



 6-4 

Step Three are given above. The results for the validation study were: Value—83.50%; 
Complexity—57.82%; AFIS—76.52%; Difficulty—66.36%, showing good stability in overall 
predictive accuracy for the external validation. 
 
The second measure of performance for the final model in the validation study was comparing 
the mean predictive accuracy of the model on images that were used in the initial development 
of the model versus images that were new to the validation study. This was done to ensure 
against a sampling effect from the original images. These results were (old images followed by 
new images): Value—82.99% versus 83.33%; Complexity—57.32% v. 58.14%; AFIS—83.78% v. 
71.83%; Difficulty—71.34% v. 63.14%, showing that accuracy was very stable for the Value and 
Complexity scales, but dropped off somewhat on the AFIS and Difficulty scales. 
 
The third measure of performance for the final model in the validation study was comparing 
the overall mean predictive value of the model (given above) to the overall mean accuracy of 
the participants in reaching a conclusion that matched the consensus ground truth. The 
accuracy values of the users were: Value—85.07%; Complexity—62.09%; AFIS—74.81%; 
Difficulty—69.33%, which shows that even though the model was not always predicting at a 
very high accuracy, its performance was always comparable to the performance of users 
making decisions on their own. 
 
The last measure of the performance of the final model was agreement with users. We wanted 
to know whether LPEs would generally accept the judgement of the model. This was examined 
in three ways: the overall level of agreement for all data in the validation study, the level of 
agreement with data from the GT user group, and the level of agreement with the data from 
the Exp user group. Participants in the validation study were alternately assigned to one of two 
groups as they signed up—GT and Exp. The GT group declared their decisions on each of the 
four scales prior to seeing the predictions of the model and being asked whether they agreed 
with them, whereas the Exp group was shown the model’s predictions and asked whether they 
agreed with them without committing to their own decisions first. This was done both to 
establish consensus ground truth decisions for the new images, and to see whether there was a 
biasing effect of seeing the model’s decision before the examiner had to form one of their own. 
Across all three measurements, agreement with the model was consistently high. With the 
exception of the GT users on the Difficulty scale, which showed only 69.33% agreement, all 
other scale and user combinations showed agreement ranging between 81.55% and 94.98%, 
indicating that there is a high likelihood that examiners would accept the predictions of the 
model on all four scales. 
 
The results of our investigations have demonstrated both that there is utility in thinking about 
the suitability decision in terms of four separate scales, and also that the predictive model we 
have built is capable of predicting the consensus response on each of the four scales. The 
findings of this research lead us to a vision of future policy and practice as respects friction 
ridge suitability. 
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It is clear from our results that both human examiner and automated algorithm have a role to 
play in determining suitability, but what should be the division of labor? Who should “win” if 
there is a disagreement? And what, exactly, should we consider when we think about the 
“suitability” of a mark? 
 
 It is our belief that the suitability scale should be broken into four scales as proposed by this 
research, and that those scales should be used to drive policy. Suitability is not a single 
determination of value or no value; we have shown that there is value to considering a mark’s 
suitability for AFIS entry as well as its complexity. Furthermore, there are multiple QA and 
policy decisions that can be made along different scales that can result in better efficiency in 
workflow, a reduction in variability, and an increase in accuracy. 
 
Currently, guidance organizations such as OSAC are advocating for an increased number of 
possible comparison conclusions, including new categories of Support for Same Source and 
Support for Different Sources that indicate evidence that is leaning in one direction, but has not 
crossed a threshold for an identification or exclusion. However, nobody has previously 
discussed adjusting the Value scale to mirror this structure. If there are pairs of impressions 
that do not contain sufficient information to conclude an identification, it stands to reason that 
there are similarly single impressions that one could designate as insufficient to support an 
identification prior to even seeing the exemplar. Although the modeling portion of this research 
was unfortunately unable to fully explore a way to predict these conclusions, the white box 
portion of the research did show good use of new conclusions along the Value scale that would 
indicate just those sort of marks. If the friction ridge community were to begin incorporating 
these different Value scale conclusions and become used to them, much more research could 
be done in this area to result in much more nuanced Value determinations. 
 
The Complexity scale is a necessary addition to operational workflows in order to identify those 
marks that should be subject to additional, or reduced, QA measures, such as documentation 
and review. Many friction ridge units are badly backlogged, yet mistakes can happen when 
people are rushing. There is a strong body of literature calling for additional caution on complex 
marks, but complexity has not been defined. By using the Complexity scale of this model, 
resources could be diverted to the marks that need the most caution and oversight (complex 
marks), while expending fewer resources on what is essentially “busy work” on high-quality, 
self-evident marks. We envision the incorporation of a Complexity scale into laboratory policy 
such that marks designated as “complex” will require documentation of all information located 
and being relied upon in a mark; those designated as “non-complex, requiring documentation” 
will require documentation only of the information required to meet the agency’s suitability 
criteria policy; and those designated as “non-complex, self-evident” will require only 
documentation of the features relied upon to reach that complexity determination. We would 
further recommend that complex marks require blind verification, whereas the other two 
categories could enjoy standard, open verification. 
 
Many agencies currently judge AFIS quality separately from value; they just haven’t necessarily 
conceived of it as a different type of suitability decision. We do not foresee any resistance to 
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the adoption of the AFIS scale from these agencies. However, some believe that any mark that 
is suitable for manual comparison is also suitable for AFIS. We hope that those agencies will 
consider that some marks may be suitable on the Value scale, but not be AFIS quality. For one 
thing, the notion of “AFIS quality” may vary according to the size of the reference database, or 
the quality of the particular AFIS vendor’s matching algorithms. Thus, individual determinations 
of AFIS quality could rely on very different criteria than those used to determine value. 
 
Furthermore, we believe the addition of the category “AFIS Quality with QA measures” is 
critical in light of the increased likelihood of coincidental matches in a search in a large AFIS. 
This category was favorably received by the participants in our study and we believe its use 
could greatly reduce AFIS errors by flagging marks that can be entered but pose a higher risk. 
Recommended additional QA measures for these marks include additional verification, blind 
verification, or requiring additional features not used in the AFIS search to be found between 
the two impressions before an identification may be declared. 
 
Finally, we advocate for the use of the Difficulty scale in research, training, testing, and 
testimony. If the same tool were used to define the difficulty level of a mark, the results of 
research studies could be more directly compared to see whether performance was similar on 
marks of similar difficulty. Training programs could be created that were progressively more 
difficult. Testimony could be offered about the difficulty of marks about which an expert was 
testifying. And perhaps most impactful, proficiency tests could be designed with test samples at 
different difficulty levels. This could result in a paradigm shift in how proficiency tests are 
seen—rather than being a test of (very) minimal competence that every working examiner is 
expected to pass, they could test the level of proficiency an examiner possesses. The 
expectation could be, not that every examiner gets every comparison correct, but that the test 
identifies the level of proficiency at which an examiner is operating. This would allow for 
targeted training in areas where the examiner was weaker, and for managers to know who 
their strongest examiners are. There would not be a stigma around passing or failing the test, 
but rather a continual push for improvement, to be able to successfully complete more and 
more of the challenging test samples. 
 
The challenge in deciding whether and how to implement a model such as the one we have 
developed lies in determining where the thresholds should lie for each category. In this 
research, we have predicted decisions based upon a consensus response taken at a 50% 
probability threshold—that is, if there is a greater than 50% probability that the consensus will 
vote for a particular category, that category will be chosen by the model. However, this 
threshold was chosen arbitrarily and another one might better represent the priorities of an 
agency or individual examiner. Biederman et al. (2008) have described how the threshold for a 
forensic decision may differ between examiners and agencies based upon their specific 
priorities, desires, experiences, or cost/benefit analyses. However, in our data collection, 
decisions were collected agnostically to all of these considerations. We did not present any 
scenario or framework to our participants within which to make their decisions, nor did we 
invoke any particular set of costs, benefits, or values. We simply showed images and asked 
participants to make assessments. Because each examiner will have their own values and their 
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own agency priorities and policies, we believe that judgments based upon these can vary 
widely. In future research, it would be very interesting to explore how these assessments might 
change when particular values were imposed upon the participants while making their 
decisions. Nonetheless, this model is flexible in that the probability thresholds for decisions can 
be adjusted to suit any particular set of priorities. Because of this, we recommend that 
thresholds be set according to agency preference, thus removing the individual opinions and 
values of the examiner from the equation. 
 
This brings us to our next point, which is: who decides—the model, or the examiner? How and 
when shall the model be used? Change is slow to come. We understand that. Given this reality, 
it is likely that were the model to be adopted, it would initially be used to support the decisions 
of the examiner. It could serve as a red-flag warning to an examiner if the model and the 
examiner did not agree; the examiner would know that they should re-visit their conclusion 
because it is likely a majority of examiners would not agree with it, and we would certainly 
advocate that in this situation, the examiner must justify why they believe their judgment to be 
superior to that of the model (which, we acknowledge, does not always get it right). 
 
However, two things we have repeated throughout this dissertation bear on this argument: (1) 
examiners tend to be highly variable; and (2) the best-performing model incorporates both 
human and automated input. Because of these two points, we foresee a future in which the 
model is used first and is deferred to. In order to use the model, the examiner must view the 
mark and make 3 key inputs regarding their observations (number of minutiae, and clarity and 
distortion assessments). This means that the examiner has already performed a mini-analysis 
and has some feeling (whether made explicit at this point or not) about the mark. It also means 
that their input has, to some extent, been considered and incorporated by the model. By using 
the model first, we can reduce variability by taking the more standardized opinion. If the 
examiner strenuously objects to the conclusion(s) of the model, they can overrule it by 
documenting why they disagree, and what information, specifically, that they had access to and 
the model did not, they feel supports their decision. 
 
This process would greatly streamline the analysis process. The mini-analysis done by the 
examiner in using the model would be much quicker than performing a full analysis on every 
mark and, in most cases, a full analysis would not be necessary. The judgment of the model 
could be taken as the suitability decision. If the examiner disagreed with the model, then a full 
analysis would be triggered for that mark. Similarly, verification of analysis decisions could 
reasonably be skipped under the argument that the decision has been “verified” by the 
agreement of the examiner and the virtual consensus panel represented by the model. 
 
We see these points as the main arguments for adoption of the model—it reduces time spent in 
analysis and verification of analysis; it provides a built-in virtual consensus panel; it reduces 
variability in suitability decisions; and it expands the way suitability is conceived in ways that 
can drive agency policy for the improvement of efficiency and outcomes. 
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7 Appendix A – Terminology  

Although a consistent terminology is generally a cornerstone of any professional, scientific, or 
academic domain, it is unfortunately true that the latent print discipline suffers from a lack of 
standardized terminology. Although the discipline generally agrees on a number of terms in a 
broad sense, closer inspection, or indeed, even conversation, will reveal that these familiar 
terms are often used differently, to great confusion. Additionally, there are some terms that are 
used interchangeably by some whereas they are separated by nuance of meaning for others. 
Finally, there are some terms that are well-known to many members of the profession, yet still 
new and puzzling to others. Thus, this appendix will describe how some of the terms 
throughout this work are used, particularly those that are close to one another in nature and 
may require some disambiguation. Note that we have grouped these terms to have those that 
are most closely related together and they are not necessarily presented in alphabetical order. 
When multiple terms are used to describe the same concept, we have selected a single term 
that will be used throughout the thesis. 
 
Mark and Print — Within the US, impressions found at crime scenes, or made by chance, are 
typically referred to as “latents” whereas impressions taken deliberately from known sources 
are typically referred to as “knowns,” “exemplars,” or “inked prints.” This work will follow the 
non-US convention of referring to unknown impressions as “marks” and will largely follow the 
same convention of referring to known impressions as “prints” although they will occasionally 
be referred to as “exemplars” as well. 
  
Suitability and Sufficiency — Within the latent print community, these two terms are often 
used interchangeably. However, in this work, a distinction will be made between the two that is 
recognized by some practitioners and not by others. “Suitability” refers to the decision that is 
made at the end of the analysis phase and answers the question, “is there enough reliable 
information observed in this mark to continue using it in some way, e.g. for comparison or AFIS 
entry.” “Sufficiency” refers to the decision that is made at the end of the evaluation phase and 
answers the question, “is there enough reliable information observed between two impressions 
to draw and support a conclusion regarding whether or not they originated from the same 
source.” 
  
Suitability and Value — Although “suitability” refers to the decision made at the end of the 
analysis phase, it is also often used interchangeably with the word “value” to describe a 
decision to take a mark forward to the next step in the comparison process. In this work, a 
distinction will be drawn between these two terms.  This research examines the suitability 
decision in detail and proposes separating it into 4 distinct scales, one of which is the Value 
scale. Thus, the term “value” in this work will be limited only to the decision about whether a 
mark is of value or not in the context of the Value scale, whereas the term “suitability” will be 
used broadly to encompass any decision made on any of the four scales, or the four scales 
taken as a whole. 
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Information, Information-gathering — When we refer to “information” in this thesis, we are 
referring to any observed data within a mark that may be used to form and support a suitability 
decision. This may include minutiae presence and type, pattern type, presence of level 3 detail, 
clarity assessment, distortion assessment, distinctive clusters, creases, scars, or any other 
factors that are typically considered during analysis of a mark. 
 
Information-gathering refers to the main function of the analysis phase, which is to observe and 
interpret the information present in the mark in order to reach a determination about whether 
it is suitable for a given purpose and will proceed further in the friction ridge comparison 
process. 
 
Confidence, Reliability, and Reproducibility — These three concepts are closely related and the 
second two inform the first. As an examiner is gathering information from a mark, they will 
note various features upon which they may intend to rely during an eventual comparison. For 
each feature considered, they should evaluate their confidence in the feature – that is, how 
certain they are that the feature is actually present and also how certain they are that the 
feature is what they think it is (for example, a feature may appear to be a ridge ending when in 
fact it is a bifurcation on the source skin). 
 
To determine their confidence level in a given feature, an examiner may estimate its reliability 
and reproducibility. Reproducibility in this context refers to how likely the examiner perceives it 
to be that the feature would be similarly recorded in other impressions of the same source skin. 
Reliability in this context refers to the degree to which the examiner trusts in the information 
they are observing – can it be relied upon? Reliability and confidence are very nearly 
synonymous, except that the perceived reliability of a feature is what gives the examiner 
confidence that it is present and being interpreted correctly. Areas of an impression that have 
high distortion or low clarity have low reliability and thus an examiner should have low 
confidence in any features in that area. 
 
Tolerance — Tolerance can be thought of as how much “wiggle room” an examiner is willing to 
allow in the interpretation of a feature, and it is based upon the clarity of the local area 
surrounding that feature (and tied closely to the notion of reliability). If a feature is located in a 
low clarity area, its reliability is low and thus the examiner should be willing to accept more 
variability in its appearance if seeing it in another impression. Conversely, in a high-quality area, 
the feature has high reliability and very little variation in its appearance should be tolerated in 
other impressions from the same source. If the appearance of a feature is found to be “out of 
tolerance” during a comparison, the examiner should conclude that the features in the two 
impressions being compared are not the same and thus the two impressions likely did not 
originate from the same source. The concept of tolerance is inversely related to that of weight – 
a feature that has low reliability and thus is given a high tolerance should be awarded very little 
weight toward decision-making. 
 
Weight — Weight is an estimate of how much a given feature counts toward a decision. 
Features that are high in clarity or rarity should be assigned more weight than those with low 
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clarity or rarity because it would take fewer of them to reach and support a decision. If a 
decision is thought of as a scale that tips in one direction for an “of value” decision and the 
other direction for a “no value” decision, for example, a feature that had a lot of weight would 
be a large pebble on one side of the scale, whereas a feature that had little weight would be a 
small pebble. The determination of weight is often a tradeoff between clarity and rarity 
because, for example, a rare feature in a low clarity area should not be given much weight – 
although it would be worth a lot if it were truly there, the examiner cannot be confident that it 
is really there. 
 
Risk — In the context of this research, risk is an assessment the examiner makes (whether 
implicitly or explicitly) of how likely it is that they will reach a negative outcome if they choose 
to rely on a particular piece of information observed in an impression. They will weigh the risk 
of these negative outcomes against the potential benefits of using the features when deciding 
whether or not to use the feature, and how much weight to give it. For example, if a highly 
distinctive feature, such as a trifurcation, was noted in a distorted, low-clarity area, the 
examiner would have to weigh the benefit of being able to use this valuable feature (which 
could lead to a correct ID – a very desirable outcome) against the risk of negative outcomes if 
the feature turned out not to be what it first appeared.  
 
Negative Outcome — A negative outcome is a consequence of a wrong decision that the 
examiner would like to avoid. This can range in scope from making a suitability decision with 
which others would not agree (negative outcome) due to misinterpreting features to making an 
erroneous identification (negative outcome) due to misinterpreting features or trying to 
compare a mark that should not have been designated as suitable in the first place. In a more 
macro sense, negative outcomes can also be the consequences to the examiner or agency of 
these smaller negative outcomes, such as risk of reprimand, re-training, loss of public 
confidence, or lawsuits. 
 
Complex, Complexity — An “of value” mark may occur anywhere along a continuum of quality 
from barely of value to extremely high clarity and quantity. A mark’s position along this 
continuum can be referred to as its “complexity” with marks at the low end of the continuum 
being designated as “complex” (as opposed to “non-complex”). Although one can consider 
either the complexity of a mark on its own, or the complexity of a comparison when taking into 
account how the mark and the print being compared to it relate to one another, this work will 
focus on complexity of the mark alone, because that is what is considered during the analysis 
phase. 
 
Complexity as used in this research refers to the chance that two examiners will disagree about 
the suitability, sufficiency, or interpretation of features and distortion in the mark. The more 
complex a mark, the more likely it is considered that a second examiner may not agree with the 
first on one or more of these aspects. There is currently no set threshold or list of criteria for 
what makes a mark complex (although SWGFAST does provide for a complexity zone in their 
sufficiency graph) and this decision will vary from examiner to examiner. 
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VEO/VIDO/VID/VB — The latent print community is already familiar with the labels “VEO” 
(value for exclusion only) and “VID” (value for identification), which have been used in previous 
research and referenced in SWGFAST documents (Scientific Working Group on Friction Ridge 
Analysis Study and Technology (SWGFAST) 2011). However, with the expanded Value scale 
proposed by this work, additional labels are needed to describe the new options on the scale. 
Thus, two new terms have been introduced. 
 
“VIDO” stands for “value for identification only” and is the mirror image of VEO; rather than 
describing a mark that could be excluded but not identified, VIDO describes a mark that could 
identified, but not excluded. This is in contrast to the existing VID, which refers to a mark that 
could be identified and may or may not be excludable. 
 
“VB” stands for “value for both,” which refers to a mark that the examiner believes could be 
both identified or excluded, depending on the print to which it is being compared. 
 
Categorical Conclusion — Although technically, any decision that falls into a category is a 
categorical conclusion, in this work, we are using the term specifically to refer to a decision at 
one of the two extreme ends of the comparison conclusion scale—that is, Identification or 
Exclusion. “Categorical” will be used in the dictionary sense of “absolute.”  Less-than-absolute 
conclusions, such as “inconclusive,” “support for same source,” or “cannot exclude” would not 
be considered categorical conclusions by this definition. 
 
Ground Truth and Consensus Ground Truth — Ground truth refers to a situation in which it is 
absolutely known what the correct and truthful conclusion should be. In latent print research, 
this is usually referring to a case where the researcher knows what the source of a mark was, 
typically because the donor of the mark was observed while creating it.  
 
In the present research, we are focused on suitability decisions. In this case, there is really no 
such thing as ground truth because there is currently no objectively right or wrong answer 
about what a mark can and should be used for. Thus, we have taken the majority voted opinion 
of our participants as a proxy for ground truth so that we have an expected outcome for each 
decision against which the machine learning algorithms can be taught. This majority-voted 
expected response will be referred to as “consensus ground truth.” 
 
Utility Tool and Utility — Utility is a word that means “the state of being useful or beneficial.” 
In the context of latent print analysis, utility would refer to the usefulness of a mark for a 
particular purpose. In most cases, this would be synonymous with “value”—that is, a mark has 
utility if it can be compared to reach a conclusion about source. 
 
However, since this research is breaking the suitability decision apart into four scales with more 
than binary decisions on each, there are multiple ways and degrees to which a mark may have 
utility. The model being developed by this research is referred to as a “utility tool” throughout 
the work because the model will function as a practical tool to measure the utility of a mark 
along each of the four scales. This is related to, but not to be confused with, the notion of a 
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Utility Function as introduced by Biedermann et al. (2008), which refers to a specific calculus to 
determine the utility of a range of potential forensic decisions. Of course, utility functions can 
be incorporated into this utility tool to set thresholds that meet the operational needs and 
priorities of a particular laboratory or examiner, a concept that is discussed in Chapters 2 and 4 
of this thesis. 
 
Objective Data In contrast to subjective data, which are collected by asking examiners their 
opinions on what they observe, we are using “objective data” to denote data that are collected 
using automated measures, such as quality scores or expected score-based likelihood ratios 
(ESLR’s) generated by computer algorithms or modeling. 
 
Brute force search — A brute force search refers to a friction ridge comparison in which there 
are no location and orientation clues available, or those clues are ambiguous or unreliable. 
When there is a reliable anchor present, an examiner may proceed with confidence to the 
correct corresponding area in the provided prints to conduct their comparison and if there are 
not corresponding features, they may exclude with confidence. When these clues are absent or 
unreliable, the comparison must be done painstakingly, ridge-by-ridge, and checking 
orientation in 360 degrees. This is time-consuming, exhausting, and at the end of it, the 
examiner still may not feel safe excluding unless they are positive that they have received 
exemplars that clearly recorded every bit of available friction ridge skin. This inelegant, time-
consuming ridge-by-ridge comparison is what is meant by brute force search. 
 
Distinctive Clusters and Target Groups — These two terms are closely related, yet distinct. A 
target group is a cluster of minutiae or other features that an examiner would use for their 
initial search in a print. Ideally, a target group should be distinctive and should be located near 
an anchor, but any minutia(e) could technically be used to form a search image. Thus, a good 
target group typically will be a distinctive cluster. However, if there is not much to choose from, 
a target group may not be that distinctive at all. It could be as simple as a ridge ending two 
ridges away from the core. 
 
In contrast, a distinctive cluster is just that – a group of minutiae that are near one another and 
that together, are highly distinctive. These are minutiae clusters that catch the examiner’s 
attention, that they are excited to look for, or that they would give extra weight to if found 
because they are unusual in some way. Not every distinctive cluster makes a good target group 
because they may be in areas of the mark that are more difficult to search. 
  
Anchor — An anchor refers to any stable feature of an impression that helps an examiner to 
know where they should focus their search. Most typically, anchors are cores or deltas, but they 
can also be primary creases, some secondary creases, scars, or any other occasional features 
that record reliably and provide location and orientation information. 
 
Pattern force area — A pattern force area is a region of a friction ridge impression where two 
ridge systems are converging, forcing many ridges to end or merge. These typically occur 
around deltas and the outflow of loops in distal phalanx impressions. Pattern force areas are 
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characterized by a high number of ridge endings and closing bifurcations and present an 
increased risk of coincidental match with a non-mated source because the fact that all marks 
converge in these areas means there are more likely to be repeated features there between 
individuals. 
 
Orientation clues — Orientation clues are characteristics of an impression that assist the 
examiner to know which way a mark should be distally oriented (i.e. which way is up). Common 
orientation clues include patterns, cores, creases, and ridge flow. 
 
Location clues — Location clues are characteristics of an impression that assist the examiner to 
know or infer the anatomical area from which an impression originated, such as from a finger 
or from a particular region of a palm. Patterns, creases, cores, deltas, and scars can all provide 
location clues, as can general ridge flow in many cases (particularly in palms and joints). 
Anything that provides enough anatomical information to narrow a search can be a location 
clue, for example a delta that cannot be oriented, because it still narrows the search to delta 
areas. 
 
Level 1 Detail — Level 1 detail refers to the overall flow of the friction ridges (or other 
information, e.g. creases) in an impression. Most commonly, it is taken to mean the pattern 
type of a fingerprint (such as arch, loop, or whorl), but it encompasses any macro flow that can 
assist to locate (see location clues) or orient (see orientation clues) an impression. 
 
Level 2 Detail — Level 2 detail refers to the ridge paths (or the paths of other information, such 
as creases or scars) observable in an impression. Typically, this includes ridge endings, 
bifurcations, and dots, or compound features made up of more than one of these minutiae 
(e.g., a ridge ending and a bifurcation in close proximity form a hook). 
 
Level 3 Detail — Level 3 detail is commonly said to refer to ridge shapes. More specifically, it 
refers to any fine detail about the ridge or about a ridge feature. Examiners do not always agree 
about what information falls under the umbrella of Level 3 detail, but it is commonly accepted 
to include features such as pores and ridge edge shapes. Level 3 detail may also include 
characteristics such as ridge thickness or the angles at which bifurcations open. These are very 
small details that give a feature, or even a section of a ridge, a distinct “personality” that could 
be used to differentiate it from other, similar-looking, features or ridge sections. 
 
Level 3 detail can be very powerful information because it is so very discriminating. However, it 
can also be very dangerous to rely upon because the detail is so fine. This detail is often not 
highly reproducible, meaning that it may not always record, or may not always record in the 
same way. Thus, examiners should use extreme caution in assigning too much weight to Level 3 
detail, particularly when it is located in an area of low clarity where a high degree of 
interpretation is required. 
 
Pattern type — A type of Level 1 detail, pattern type refers to the overall flow of a system of 
ridges, when they adhere to certain pre-defined criteria. The 3 main pattern types are the arch, 
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loop, and whorl, and these are defined according to which side of the finger the ridge system 
enters and leaves on, the shape of its flow within the pattern area, and the number of deltas 
present. Patterns can also be found within certain areas of the palmar and plantar surfaces, and 
less commonly, in the medial and proximal phalanges. Pattern types are further sub-divided 
into sub-classification types and can be used in classification systems to narrow a search. 
 
Manual comparison —This term refers to a comparison between two friction ridge images that 
is done by a human examiner, usually between a scene (unknown) mark and an exemplar 
(known) print. It is in contrast to automated AFIS searches. This term is used to draw a 
distinction between quality metric models that are designed to assess the quality of a mark for 
the purpose of entering it into an AFIS and those that are assessing quality of a mark for the 
purpose of being compared by a human examiner. 
 
OSAC —The Organization of Scientific Area Committees. This organization, formed through a 
joint effort of the National Institute of Standards and Technology (NIST) and the National 
Institute of Justice (NIJ), gathers subject matter experts and stakeholders to identify needs and 
draft consensus-based standards for the forensic science community. The OSAC is broken into 
numerous sub-committees, each of which is dedicated to a specific forensic science discipline. 
Standards and Best Practice Guidelines for the friction ridge discipline are handled by the 
Friction Ridge Subcommittee (FRS). 
 
Blind verification vs. Open verification — Verification is the independent review of the friction 
ridge examination(s)n in a case to see whether a second, qualified examiner reaches the same 
conclusion reached by the first examiner, and whether that conclusion is sufficiently supported. 
In blind verification, the verifier does this work entirely independently, without knowledge of 
the conclusion reached by the first examiner and without access to their notations (until after 
the verifier’s decision has been reached and documented). In some cases, the blind verifier 
does not even know the identity of the first examiner. By contrast, in open verification, the 
verifier reviews the notes and conclusions of the first examiner before deciding whether they 
agree with the decision of the first examiner. 
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