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Abstract 
 
Occupational exposure to mycotoxins is supposedly very frequent, but it is rarely reported in the 

scientific literature. Several recent studies described occupational exposure to the aflatoxin B1 

(AFB1) mycotoxin in different occupational settings. Previously, exposure to other mycotoxins 

was shown in the animal husbandry and food processing sectors, confirming that occupational 

exposure cannot be negligible. 

However, no guidelines or standard methodologies are available for helping occupational 

hygienists to consider mycotoxin exposure  in their interventions. 

This paper reviews the literature on this problem and recommends some actions for the better 

management of this risk factor in occupational settings, especially where environmental 

conditions are favorable to fungal presence. 
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Introduction  

Workers in numerous sectors are exposed to organic dust originating from such diverse organic 

matter as soil, plants, animals, food, and fecal matter. This dust contains lots of different bacteria 

and fungi and their components such as endotoxins and glucans. Furthermore, some fungi can 

actively produce secondary metabolites called mycotoxins.  

Some mycotoxins can have serious human health effects when ingested, but their health effects 

following inhalation or dermal contact are insufficiently documented. Occupational assessments 

of biological risks in workplaces usually include the monitoring of bioaerosols in the air. This 
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measurement of airborne biological agents usually only includes an estimation of the 

concentration of cultivable bacteria and fungi and sometimes a measurement of endotoxin 

concentrations. Indeed, guidances and recommendations for occupational exposure limits exist 

mainly for these three contaminants. Although some researchers have started to measure 

biological substances with potential impact in human health, such as mycotoxins, in the 

workplace, the measurement has never been done routinely. 

The goals of this review are to take stock of the current knowledge about occupational exposure 

to mycotoxins and to discuss the important things to consider when performing an occupational 

risk assessment of activities that may result in exposure to mycotoxins. 

 

What is a mycotoxin? What are the most common? What are the fungi responsible for their 

production? 

Mycotoxins are fungi metabolites produced by specific fungal genera, primarily Aspergillus, 

Penicillium, Alternaria, Fusarium, and Claviceps (Bennet & Klich, 2003; Marin et al., 2013). 

Mycotoxin molecules are small and stable, with a low molecular mass. To date, over 300 

mycotoxins have been identified; more will surely be discovered in the near future. Only 30 of 

these mycotoxins have been subjected to research aimed at highlighting their toxic proprieties 

(Surai et al., 2008). A specific fungal species may produce several different mycotoxins due to 

the influence of various types of environmental stress (Halstensen, 2008). 

As reviewed in Halstensen (2008), mycotoxins can be present in the environment even in the 

absence of any visible fungi since they can resist adverse environmental factors such as high or 

low temperatures and can persist long after the death and disintegration of the fungal species 

responsible for their production. They are also difficult to eliminate or inactivate from the source 

even after being exposed to temperatures such as boiling or roasting processes (Peraica et al., 

1999). 
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Aflatoxin B1 (AFB1) is perhaps the most hazardous mycotoxin found in agricultural products since 

it is an hepatocarcinogen, inducing DNA adducts leading to genetic changes in target liver cells 

(Chen et al., 1997; Vineis and Xun, 2009). It has been found on  grains, peanuts, and other human 

and animal foodstuffs (Rocha et al., 2014).  

Aspergillus flavus and A. parasiticus are the most common species associated with aflatoxin 

contamination. However, recently, additional species of section Flavi (closely related species 

that cannot be clearly distinguished morphologically) have been reported to be responsible for 

aflatoxin production (Varga et al., 2015; Lamoth, 2016).  Contamination can occur naturally on 

crops or after incorrect storage and/or process conditions. The dust generated during  the 

handling of these products can also contain AFB1 (Brera et al., 2002). 

Besides aflatoxin, the other relevant groups of mycotoxins found in food are the following: 

ochratoxin A produced by both Aspergillus and Penicillium; sterigmatocystin produced by 

Aspergillus; trichothecenes (type A: HT-2 and T-2 toxin; type B: deoxynivalenol), zearalenone, 

fumonisins B1 and B2, and the emerging mycotoxins (fusaproliferin, moniliformin, beauvericin, 

and enniatins) produced mainly by Fusarium species; ergot alkaloids produced by Claviceps; and 

altenuene, alternariol, alternariol methyl ether, altertoxin, and tenuazonic acid produced by 

Alternaria species (Bottalico & Logrieco, 1998; Barkai-Golan & Paster 2008; Marin et al., 2013). 

Some of these toxigenic genera (Aspergillus and Penicillium) are commonly found in moisture-

damaged buildings (Viegas et al. 2015; Varga et al. 2017). 

Particular attention should be given to these mycotoxins since, currently, they are unregulated 

and were shown to occur frequently in agricultural products.The evidence of their incidence is 

rapidly increasing and gaps in toxicological knowledge have been identified for several 

compounds not allowing  a proper risk assessment (Gruber-Dorninger et al., 2017). 
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Routes of exposure 

Occupational routes of exposure to mycotoxins are inhalation and dermal contact.  

Most mycotoxins are not volatile. However, mycotoxins can be present in airborne dust 

(Flannigan, 1987; Brera et al., 2002) and in the fungal spores and fragments (Brasel et al. 2005; 

Huttunen & Korkalainen, 2017). Therefore, airborne dust, spores and hyphae fragments can act 

as carriers of mycotoxins to the lungs (Brasel et al. 2005; Huttunen & Korkalainen, 2017) and 

potentially, exposure in occupational settings occurs essentially via inhalation, particularly in the 

form of airborne dust (Lavicoli et al., 2002; Brera et al., 2002; Mayer et al., 2007; Mayer, 2015; 

Viegas et al., 2016).  

Moreover, dermal contact could also be a  frequent route of workplace exposure, especially 

where workers without protection have to handle contaminated materials such as food. This is 

particularly relevant in occupational settings where the use of short-sleeved clothes is possible 

or  when hands are in contact with solutions containing mycotoxins (Degen, 2008; Boonen et al., 

2012; Viegas et al., 2016). Moreover, dust particles containing mycotoxins can be deposited in 

the skin promoting dermal absorption. Additionally, work surfaces contaminated with dust 

particles can also be touched creating opportunities for further skin contact (Boonen et al., 

2012). 

 

Health effects   

Several factors influence the severity of the disease caused by mycotoxins exposure, namely the 

toxicity of the mycotoxin, the exposure route, the extent of exposure (duration and intensity), 

the age and nutritional status of the individual, and the potential synergistic effects with other 

chemicals, including other mycotoxins, to which the individual has been exposed (Peraica et al., 

1999).  
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Although  effects on human health are well known via the ingestion of contaminated food, very 

few studies have investigated the health effects of mycotoxins via inhalation or dermal contact. 

The symptoms and effects attributed to the inhalation of mycotoxins are mucous membrane 

irritation, skin rash, nausea, immune system suppression, acute or chronic liver damage, acute 

or chronic central nervous system damage, endocrine effects, and cancer (Olsen et al., 1988; 

Huttunen & Korkalainen, 2017). 

Regarding local effects, the nasal passage is a primary target for several inhaled toxicants 

(Harkema et al., 2006; Huttunen & Korkalainen, 2017); its epithelial lining is often the first tissue 

to be directly injured, for example, by the spores or mycotoxins of Stachybotrys chartarum 

(Huttunen & Korkalainen, 2017). Pestka et al. (2008) also suggested that the toxicity of 

trichothecenes might be a reason for many of the adverse effects of Stachybotrys chartarum.  

Concerning systemic effects, several mycotoxins have caused human health effects following 

exposure via inhalation. For instance, there is some evidence that inhalation of AFB1 can cause 

lung cancer (Dvorackova, 1976; Dvorackova & Pichova, 1986; Hayes et al., 1984; Olsen et al., 

1988). The mechanism behind its carcinogenicity in the lung is suggested to be oxidative DNA 

damage (Guindon-Kezis et al., 2014; Huttunen & Korkalainen, 2017). Inhalation of ochratoxin 

(OTA) has been linked to acute renal failure and respiratory distress in workers exposed to 

Aspergillus-producers of OTA in a granary (Di Paolo et al., 1994). OTA has been found in the 

sinonasal tissue and mucus of 22% of chronic rhinosinusitis patients, and in the urine of 83% of 

patients suffering from chronic fatigue syndrome (Brewer et al., 2013).  

Moreover, it is important to note that some studies have demonstrated that the inhalation of 

some mycotoxins can be more harmful than oral exposure due to the health effects that can be 

caused in the respiratory system (Creasia et al., 1990; Amuzie et al., 2008; Degen, 2011).  

Although there is no detailed information about cellular local concentration of the different 

mycotoxins in the skin, local skin effects can be expected. Apoptosis of epidermal cells and 
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development of skin tumours were already observed after dermal mycotoxin exposure (Joffe & 

Ungar, 1969; Rastogi et al., 2006; Boonen et al., 2012). Another aspect to consider is the the fact  

that mycotoxins can accumulate and persist in the skin cells (Baert & De Spiegeleer, 2011) and 

in this way not only the workers exposed continuosly but also the ones exposed sporadically 

have an increased risk for epidermal apoptosis, skin cancers and immune related diseases 

(Boonen et al., 2012).  

 

Occupational exposure to mycotoxins 

Evidence from air or surface metrology studies 

Dust containing mycotoxins is released during tasks involving high exposure to organic dust, such 

as storage work, loading, handling, or milling contaminated materials (grain, waste, and feed), 

and others such as caring for animals in animal husbandry settings. Animal feed processing 

plants are particularly risky for mycotoxin exposure since the authorized level of concentration 

in this type of food is ten times higher than it is for human food. As example, the maximum levels 

authorized  for deoxynivalenol in unprocessed maize is 1750 µg/kg while it is 750 µg/kg  in 

cereals intended for direct human consumption  (Pinotti et al., 2016). 

Specific environmental and ecological conditions - temperature, relative humidity, availability of 

nutrients and use of fungicides - can enhance or limit fungal growth and dissemination. In 2015, 

Mayer made an extensive review aiming to identify previously reported incidents of 

occupational mycotoxin exposure (Mayer, 2015 and 2016).  

 

 

Table 1 summarizes the results of measurements performed in specific workplaces. To the best 

of our knowledge, 15 studies reported occupational exposure to mycotoxins between 1981 and 

2017. The papers were dedicated to settings related to animal husbandry, farming, or food and 

feed processing. After 2000, the number of papers increased and the focus changed from 
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studying one mycotoxin at a time to studying several mycotoxins across the same sample. This 

was probably due to the development of analytical resources allowing the characterization of  

occupational exposure to several mycotoxins simultaneously. All the studies demonstrated the 

presence of mycotoxins in working environments and therefore the possibility for workers to be 

exposed to mycotoxins via inhalation or dermal contact. 

 

Evidence from biomonitoring studies 

One study, carried out in India, showed that aflatoxins were significantly more frequently 

detected in the serum of food-grain workers than in the urine of a control group suggesting an 

occupational exposure (Malik et al., 2014). In Egypt, concentrations of serum aflatoxin were 

significantly higher in workers exposed to wheat (millers and bakers) than in controls (Saad-

Hussein et al., 2014). In Portugal, AFB1 was detected in the serum of 50% of poultry workers, 

whereas it was absent from all the serum from controls (Viegas et al., 2016). On the other hand, 

a study in Germany using biomonitoring to assess exposure to certain mycotoxins in mill workers 

failed to reveal such exposure in urine spot samples (Föllmann et al., 2016). Indeed, no 

significant difference in biomarker levels was observed between mill workers and control group.  

A recent study using intact and damaged human skin in an in vitro Franz diffusion cell set-up 

showed that beauvericin and enniatins can penetrate the skin (Taevernier et al., 2016).  

Table 2 summarizes the results obtained in 15 studies which used biomonitoring to assess 

occupational exposure to mycotoxins; some of these studies also used environmental samples 

and are therefore already mentioned in Table 1. Similarly to the studies reported in Table 1, until 

2015, studies focused on one mycotoxin alone (aflatoxins and ochratoxins were the most 

studied); but some studies were subsequently able to report on several mycotoxins in the same 

biological sample, as analytical resources expanded. These papers (Föllmann et al., 2016; Ferri 

et al., 2017; Viegas et al., 2017b) again demonstrated that the most common exposure scenario 

is co-exposure to several mycotoxins. However—and this is one of the limitations of using 
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biomonitoring—it is impossible to conclude whether exposure results solely from the working 

environment or whether food intake is a also a contributing factor. Most of these studies 

(12/16), however, had included a control group, usually including workers from administrative 

companies in the same locality, which enabled to take into account the exposure by food intake 

and a better understanding of the role of working environments in the total burden of mycotoxin 

exposure (Viegas et al., 2013b). 

 

Exposure assessment – What to consider? 

Levels of exposure can vary greatly between different tasks within the same industry, and 

characterizing exposure implies performing measurements on each task separately to identify 

those most at risk. For example, in swine husbandry, Viegas et al. (2013b) suggested that feed 

was one of the contamination sources since AFB1 exposure was higher in workers performing 

animal feeding than in workers doing other type of tasks. In a waste management setting, where 

high exposure to AFB1 was also measured, waste was supposed to be the source of 

contamination (Viegas et al., 2014) and exposure remains stable over a working day since 

workplace conditions and tasks are the same during the entire work shift. 

Moreover, within the same task, levels of exposure could also vary over time depending on the 

quality of the materials and products handled. For example, in food processing plants, certain 

batches of products (foodstuffs) could be highly contaminated, whereas other batches were 

contaminant free. Therefore, the contamination of the material should be checked before 

handling and actions  taken to avoid or prevent exposure. As an example, contaminated material 

should be rejected or collective preventive measures reinforced or, as a last resort, personal 

protective equipment (respiratory protections, gloves and goggles) worn. Even if the mycotoxin 

concentration in a product or material is low, handling high amounts of it can cause an elevated 

airborne mycotoxin concentration in the workplace at a specific moment that then endures 

depending on how tasks develop (Mayer, 2015). For example, in France, measurements in food 
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industries (cereals, vegetables, and spices) showed no contamination of the products handled 

above regulatory limits. However, workers’ exposure via inhalation was high for all settings since 

the air measurements revealed significant levels of mycotoxins bound to dust particles (Jargot 

& Melin, 2013). Dry products or materials with high specific surface areas, like hay or plant fibers, 

tend to release large amounts of dust that act as the carrier for fungi and mycotoxins and 

increase the probability of inhalation. Similarly, the manual sorting or transport of contaminated 

products will contribute to an elevated release of contaminated dust and consequently to 

potentially high exposure to mycotoxins. Some tasks common to all food and agriculture 

processing plants, such as cleaning activities involving sweeping or dust removal using 

compressed air, are well known to be associated with high exposure to dust (Mayer, 2015). 

 Another very significant point to consider is that co-exposure to different mycotoxins is very 

likely to occur since the contamination of foodstuffs by several mycotoxins has frequently been 

demonstrated (Grenier & Oswald, 2011; Gerding et al., 2014; De Ruyck et al., 2015; Alassane-

Kpembi et al., 2017; Assunção et al., 2015). Synergistic or additive effects should therefore also 

be taken into account when performing a risk assessment, and measurements should look for 

several mycotoxins. It is also well known that the proximity of a worker’s head to the material 

handled increases exposure risk (Mayer, 2015; Viegas et al., 2016). Therefore, besides 

identifying the tasks generating high exposure, it is important to identify workers’ behaviors 

(such as not wearing protection equipment such as gloves or respiratory protection devices) or 

workplace specificities which might influence exposure. Personal sampling in the worker’s 

inhalation zone should always be preferred to stationary sampling since it is a better assessment 

of the true occupational exposure. 

 

Difficulties in interpreting exposure measurements 

'The absence of exposure limits makes it difficult to interpret exposure measurements.  

Currently it is not possible to determine acceptable workplace exposure concentrations of 
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mycotoxins to ensure workers' good health. Keeping exposure as low as possible should 

undoubtedly be an objective. Because these compounds are so infrequently monitored in 

occupational environments it is impossible to compare exposure levels between different 

workplaces and to have an idea of what constitutes a normal background concentration. This 

highlights the great importance of documenting exposures using standard methods of sampling 

and analysis. Currently, because it is possible to quantify airborne fungi more easily, this is often 

used as an indirect indicator of the presence of mycotoxins ( Halstensen et al., 2006 ). However, 

this approach lacks reliability since mycotoxins can be present in the environment long after 

fungi have been eliminated. Also, not all the fungi produce mycotoxins (Halstensen, 2008; 

Alborch et al., 2011). Finally, exposure to mycotoxins is frequently characterized by 

simultaneous exposure to several mycotoxins (see details in Tables 1 and 2). This co-occuring 

exposure to several mycotoxins is also the most common scenario In the food and feed sector, 

(Grenier & Oswald, 2011; De Ruyck et al., 2015; Alassane-Kpembi et al., 2017; Viegas et al., 2016; 

Assunção et al., 2015). This  aspect brings new challenges to occupational risk assessment.  

 

Measurement, methodology, and biomonitoring 

The French National Research and Safety Institute for the Prevention of Occupational Accidents 

and Diseases (INRS) has developed a validated method for measuring seven of the most 

frequently occurring mycotoxins in the workplace; it comes with a detailed sampling and 

analytical protocol (fiche MetroPol, INRS, 2016) and meets the criteria required for 

reproducibility and reliability. Air samples are collected on foam pads, using the CIP 10 personal 

aerosol sampler (http://www.bio-rad.com/en-ch/product/cip10-m-air-sampler) which has an 

inhalable health-related aerosol fraction selector. Samples are solvent extracted, cleaned using 

immunoaffinity columns, and analyzed using liquid chromatography with fluorescent detection 

(Jargot & Melin, 2013). This method allows the measurement of ochratoxin A, fumonisins and 

aflatoxins and zearalenone, in the dust extract to which they are normally bound. The method 

http://www.bio-rad.com/en-ch/product/cip10-m-air-sampler
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ensures that mycotoxin measurements using conventional analytical equipment is applicable to 

occupational assessment (Jargot & Melin, 2013).  

As an alternative or as a complement to air monitoring, biomonitoring is another way of 

assessing exposure to mycotoxins. Biomonitoring can include the detection, in easily accessible 

body fluids such as blood and urine, of the parent compound (mycotoxin) and its metabolites,  

(De Nijs et al., 2016). However, the use of biomonitoring implies the availability of information 

related with each mycotoxin toxicokinetics, metabolism, and bioavailability to be able to 

interpret correctly the results (Escrivá et al., 2017). 

Recent research using biomarkers (Gerding et al., 2014, 2015; Heyndrickx et al., 2014; Warth et 

al., 2013a,b) revealed a level of exposure to mycotoxins from food consumption which was 

above the widely accepted tolerable daily intake values (Assunção et al., 2015). It is important 

to note that data on background dietary exposure to mycotoxins is needed to determine the 

additional burden of respiratory and dermal exposure in the workplace (Degen, 2008). If this 

background data is unavailable, a control group of individuals from the general population 

should be included in order to exclude the possibility of exposure by diet (Degen, 2008). 

However, as mentioned above, the most common exposure scenario is simultaneous co-

exposure to several mycotoxins. This exposure is due to several factors, including the ability of 

some fungi to produce several mycotoxins simultaneously (Wallin et al., 2015). It is, therefore, 

extremely relevant, from an occupational health point of view, to be able to measure several 

mycotoxins in one sample, and the most recent research has indeed developed approaches 

using multi-mycotoxin biomonitoring (Warth et al., 2013a; Gerding et al., 2014; Solfrizzio et al., 

2014; Wallin et al., 2015; Osteresch et al., 2017). Additionally, approaches measuring several 

mycotoxins in the same sample from different environmental matrices allow to understand and 

recognize the true exposure scenario (Schenzel et al., 2012; Jargot & Melin, 2013; Van de Perre 
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et al., 2014; Mayer et al., 2016; Viegas et al., 2017b) and to perform a more accurate exposure 

and risk assessment.  

 

Conclusions 

Despite increasing numbers of recent published works on the subject, there remains much to be 

done to have mycotoxins recognized as real and common occupational risk factors in certain 

specific settings. It is therefore extremely important to properly characterize mycotoxin 

exposure (which mycotoxins, at which concentrations, for which duration) in the occupational 

settings where exposure is probable and to understand which factors can influence that 

exposure. Standardized methodologies (sampling and analysis) are needed to allow 

comparisons between different studies. Moreover, to date, there have been insufficient 

epidemiological studies to assess the acute and chronic health effects of occupational exposure 

and provide a clear picture of the health risks. This is particularly challenging since one 

mycotoxin can elicit more than one type of effect and these can occur at different exposure 

levels.  

These studies are also crucial to the future development and implementation of occupational 

exposure limits for each mycotoxin separately and for mixtures of different mycotoxins that 

produce the same health effect or share the same mode of action. 

Only once this has been accomplished will it be possible to ensure appropriate occupational 

health interventions: implementation of exposure monitoring programs, application of suitable 

preventive and protective measures, and implementation of an adequate health surveillance 

programs for workers who are potentially exposed. 

In the meantime, researchers should work together to select/develop an optimal sampling and 

analysis methodology and participate in large-scale, multi-center, epidemiological studies to 

obtain relevant data. Occupational hygienists must be aware of these risks and able to recognize 

critical situations; they should anticipate exposure by implementing preventive measures.  
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Table 1. Results of measurements performed in these specific workplaces. 

Reference Country Occupation
al Setting 

Investigated 
mycotoxin(s) 

Season Sampling 
details 

Method 

LOD-LOQ 

Matrix Main findings 

Autrup et al., 
1991* 

 

Denmark Animal feed 
production 

Aflatoxin B1 (AFB1) No data 
available 

Dust samples 
collected at 
selected sites in 
factories 

ELISA Dust samples 
(0.9 mg) 

Dust samples presented high levels at 
one site (8 ug/kg dust); companies’ 
efforts to reduce levels of AFB1 in raw 
materials and to encapsulate the work 
process will reduce exposure 
significantly  

Selim et al., 
1998 

United 
States 

Farms 
handling grain 

AFB1 No data 
available 

24 samples of 
airborne dust 
collected during 
animal feeding; 
14 samples from 
11 farms during 
bin cleaning; 14 
samples of settled 
dust, and 18 
samples of bulk 
corn. 

HPLC  

LOD=1 ng 

Airborne dust, 
settled dust, and 
samples of bulk 
corn 

Detection of AFB1 in airborne dust 
during harvesting, grain loading and 
unloading, bin cleaning, and animal 
feeding operations provided evidence 
that farmers could be exposed to 
potentially hazardous levels of AFB1 

 

Krysi´nska-
Traczyk et al., 
2001 

Poland Farms Moniliformin, 
deoxynivalenol 
(DON), nivalenol, and 
ochratoxin 

No data 
available 

10 farms where 
10 samples of 
stored wheat 
grain and 10 
samples of settled 
grain dust were 
collected 

TLC and 
HPTLC 

Different 
LOD-LOQ 
for each 
mycotoxin 

Stored wheat and 
settled dust 

The majority (70%) of wheat grain and 
settled dust samples presented 
notable quantities of fusarium toxins; 
ochratoxin was found in 60% of both 
kinds of samples 

Skaug et al., 
2001 

Norway Dairy farms Ochratoxin A (OTA)  Air samples 
collected with 
stationary 
samplers. 

HPLC 

LOD=1.5 pg 

Air samples and 
settled dust 

Exposure to OTA from inhalation of 
dust and conidia is possible and peak 
exposures can be considerable 



Brera et al., 
2002* 

Italy Warehouses 
for green 
coffee,  

black pepper, 
and cocoa 
beans 

Aflatoxins and OTA  44 airborne dust 
samples collected 
using stationary 
samplers: 18 by 
area (4 for green 
coffee, 4 for 

black pepper, 7 
for nutmeg, and 3 
for cocoa) and 26 
by personal 
sampling 

HPLC 

LODs (ng) 

AFB1 and 
AFB2 0.0025  

AFG1 and 
AFG2 0.0200  

 

OTA 0.0020 

 

Airborne dust 
samples 

A wide range of toxin amounts was 
found in personal and stationary 
samples, depending on the job and the 
distance from the raw materials 

Dust and mycotoxin amounts collected 
in the handling and processing areas 
were lower than those found for 
personal samples in the same areas 

Iavicoli et al., 
2002* 

Italy Factories 
processing 
coffee, cocoa 
beans, and 
spices 

OTA  44 airborne dust 
samples 

HPLC 

LOD=0.002 
ng 

Dust samples OTA represents a source of 
occupational risk, in addition to other 
mycotoxins potentially present in the 
workplace 

Nordby et al., 
2004 

Norway Grain farms Trichothecenes: 3-A –
DON, DON, nivalenol, 
T-2 toxin, HT-2 toxin, 
4,5-
diacetoxyscirpenol, 
1,5-
monoacetoxyscirpeno
l, Fusarenon-X  

No data 
available 

109 grain dust 
samples. 
Sampling done on 
different surfaces 

LOD from 
10–50 µ𝑔𝑔/
𝐾𝐾𝐾𝐾, 
depending 
of the 
mycotoxin 

Settled dust Results found were higher than 
previously reported; mainly DON, HT-2, 
and T-2 toxins were found; these were 
associated with local fungal forecast, 
cereal species, visible mold damage, 
and storage 

Halstensen et 
al., 2006 

Norway Grain farms Trichothecenes 

Mycotoxins 

No data 
available 

109 samples of 
newly settled 
grain dust 
released during 
threshing or 
storage work for 
1999 and 2000 
crops of spring 

GC-MS 

LOD=detecti
on limits 
(DL) were 
50–
100 μg/kg 
for T-2; 

Settled dust The dominant trichothecenes in settled 
grain dust were HT-2, DON, and T-2; no 
3-acetyl-DON or fusarenon-X were 
found; median amount of detected 
trichothecenes was 69 μg/kg (range 0–
6000 μg/kg); trichothecenes found in 
settled dust suggested that similar 
contamination could be expected in 
airborne dust 



wheat, oats, and 
barley 

50 μg/kg for 
nivalenol 
(NIV); 
40 μg/kg for 
fusarenon-
X; 30 μg/kg 
for HT-2; 
20 μg/kg for 
DON, 3-
acetyl-DON, 
and 

4,15 
diacetoxysci
rpenol 
(DAS); and 
10 μg/kg for 
monoacetox
yscirpenol 

(MAS). 

Tangni & 
Pussemier, 
2007 

Belgium Private 
farmers and 
cereal storage 
companies 

Ergosterol, 
citreoviridin 

citrinin, cyclopiazonic, 
DON, gliotoxin, 

helvolic acid, 
mycophenolic acid, 
nivalenol, ochratoxin, 
patulin (PT), penicillic 
acid, secalonic acid D, 
sterigmatocystin, 

zearalenol and 
zearalenone (ZEA) 

No data 
available 

184 settled grain 
dust samples 
from storage 
facilities 

HPLC-UV 

Different 
LOD-LOQ 
for each 
mycotoxin 

Settled dust was 
mixed before 
analysis to ensure 

homogeneity 

An assessment of worker exposure, 
using median values, indicated that 
mycotoxin uptake through dust 
inhalation may simultaneously 
contribute to 0.5%, 0.5%, 0.7%, and 
0.1% of the respective tolerable daily 
intake of OTA, PT, DON, and ZEA; multi-
contamination of grain dusts associates 
exposure to several mycotoxins 
simultaneously 



Mayer et al., 
2007 

Germany Grain 
elevators 

Ochratoxin A (OTA)  

DON 

Zearalenone (ZEA) 

2005 
harvest 
period, and 
continued 
until spring 
2006. 

35 settled 

grain dust 
samples collected 
from several 
locations in 13 
grain elevators 

HPLC (OTA, 
LOD 
0.01 ng/g), 
(DON, 

LOD 
15 ng/g), 
(ZEA, 
detection 
limit 
6 ng/g), 

Dust samples Nearly all settled dust samples 
contained OTA (96%), DON (100%), and 
ZEA (100%), with median 
concentrations of 0.4 ng/g, 416 ng/g, 
and 126 ng/g, respectively 

Mo et al.,  

2014* 

China Sugar 
production 
factory 

AFB1 No data 
available 

15 airborne dust 
samples collected 
from the bagasse 
house and presser 
workshop  

Air samples also 
collected with an 
air sampler at 
1.5 m height, with 
a 20 l/min flow 
rate 

ELISA 

5–
100 mg/kg 

Dust sample Dust samples with 6–11 µg/kg dust 
(7.93+1.49 µg/kg); AFB1 not detected 
in any air sample 

Lai et al.,  

2014* 

 

China Sugar and 
paper-making 
factory 

AFB1 Between 
October and 
March  

15 dust samples 
(0.9 mg) collected 
from the 
sugarcane 
bagasse 
warehouse and 
presser and paper 
production 

workshops  

ELISA Dust samples The concentration of AFB1 in dust 
samples collected from the sugarcane 
bagasse warehouse and the presser 
and paper production workshops, were 
7.2±1.30, 8.0±1.23, and 
8.6±1.82 μg/kg, respectively; the 
concentration of AFB1 in dust samples 
was not statistically significant in these 
sites (P=0.35); AFB1 was not detected in 
any of the rice samples 

Straumfors  

et al., 2014 

Norway Grain 
elevators and 

Seventy fungal 
metabolites were 
detected: 

Winter 2008 
(n=9 
samples), 

33 settled grain 
dust samples 
(1.5–15 g) 

LC-MS Settled dust The main mycotoxins found were from 
the Fusarium genus; particularly large 
quantities of DON, depsipeptides, 



compound 
feed mills 

trichothecenes, 
depsipeptides, ergot 
alkaloids, and other 
metabolites from 
Fusarium, Claviceps, 
Alternaria, 
Penicillium, 
Aspergillus, and other 
fungi  

Autumn 
2008 (n=15 
samples) 
and winter 
2009 (n=9 
samples). 

collected from 20 
grain elevators 
and compound 
feed mills 

aurofusarin, avenacein Y, and culmorin 
were found; all samples contained 
multiple mycotoxins, indicating a highly 
complex pattern of possible 
inhalational exposure 

Mayer et al., 
2016 

Different 
European
countries 
and New 

Zealand 

Onion sorting Aflatoxin G2, aflatoxin 
G1, aflatoxin B2, AFB1, 
agroclavine, 
beauvericin d, DON, 
DON-3-glucoside, 
deepoxy-
deoxynivalenol, 3-
acetyl-
deoxynivalenol, 
diacetoxyscirpenol 
dihydroergosin, 
Enniatin A, enniatin 
A1, enniatin B, 
enniatin B1, 
ergocornin, 
ergotamin, ergovalin, 
fumonisin B1, 
hydrolyzed fumonisin 
B1, fumonisin B2 
fusarenon X, HT-2 
toxin, moniliformin, 
monoacetoxyscirpeno
l, neosolaniol, 
nivalenol, ochratoxin 
α, OTA,  

ochratoxin B, patulin, 
T-2 toxin, verrucarin 

Not 
available 

12 representative 
samples of dry 
outer onion skins  

Liquid 
chromatogr
aphy with 
electrospray 
ionization 

and triple 
quadrupole 
mass 
spectrometr
y. 

Onions In 6 of the 12 samples, tests were 
positive for DON, fumonisin B1, and 
fumonisin B2 mycotoxins in 
quantitatively detectable amounts of 
3940 ng/g for fumonisin B1 and in the 
ranges of 126–587 ng/g for 
deoxynivalenol and 55–554 ng/g for 
fumonisin B2 



A, verrucarol, α-
zearalenol, β-
zearalenol, 
zearalenone, 
zearalenone-4-
glucoside, 
zearalenone-4-sulfate 

Niculita-Hirzel 
et al., 2016 

Grain 
industry 

Swiss DON, 3-ADON, 15-
ADON, nivalenol 
(NIV), and 
Zearalenone (ZEA) 

15 July and 9 
August 2010 

Aerosols collected 
during threshing 
of 78 winter 
wheat fields and 
unloading of 59 
grain lots in six 

grain terminals 

HPLC 

MS/MS 

Aerosols and grain 
dust 

Wheat harvesting generated on 
average 28, 20, and 1 ng/m3 of DON, 
NIV, and ZEA, respectively, and grain 
unloading generated 53, 46, and 
4 ng/m3; personal sampling revealed 
that working in a cab was an efficient 
protective measure; however, it was 
insufficient to avoid chronic exposure 
to multiple mycotoxins; the most 
exposed activity was cleaning, exposing 
workers to DON, NIV, and ZEN at 
concentrations as high as 65, 59, and 
3 ng/m3, respectively 

Ferri et al., 
2017* 

  

Italy Feed mill 
workers 

AFs (M1, G2, G1, B1, 
B2) and aflatoxicol 
(AFOH)  

March to 
April 2014 

Dust samples 
collected to 
assess possible 
individual 
exposure by 
inhalation 

Liquid 
chromatogr
aphy–mass 
spectrometr
y (LC-
MS/MS  

LOD was 
0.5 µg/kg 

for each 
aflatoxin. 
LOQ 
different for 
each 
mycotoxin 

Inhalable dust 
samples 
(environmental 
and individual 
exposure) 

Airborne filters showed levels of 
aflatoxins in several areas of both 
plants, whereas personal air-filter 
devices only showed aflatoxins in one 
plant; the area at the greatest risk of 
worker exposure was the unloading 
area in plant A (0.027 ng/m3) 



* Studies with biomonitoring data 

TLC – Thin-layer chromatography method; HPLC – High-performance liquid chromatography method; HPTLC – High-performance thin-layer chromatography method 

 

Table 2. Results from biomonitoring studies  

Reference Country Occupatio
nal setting 

Investigated 
mycotoxin(s) 

Season Sampling 
details 

Method 

LOD-LOQ 

Matrix Main findings 

Autrup et al., 
1991  

Denmark Animal feed 
production 

AFB1 (measured AFB1 
albumin adducts) 

No data 
available 

45 workers  ELISA 

LOD=5 pg 
AFB1/mg 
albumin 

Serum Findings suggest occupational exposure to 
AFB1; all the workers exposed to AFB1 were 
employed by company B, but with different 
job descriptions and different types of 
prescribed personal protection  

Brera et al., 
2002 

Italy Warehouses 
for green 
coffee, black 
pepper, and 
cocoa beans 

OTA No data 
available 

26 workers HPLC 

LOD=0.02ng
/ml 

LOQ=0.05ng
/ml 

 

Serum The range of OA levels in the serum of 
occupationally exposed workers examined 
was 0.94–3.28 ng/ml; results indicate that 
occupational exposure to OTA led to serum 
levels higher than those in unexposed 
subjects 

Iavicoli et al., 
2002 

Italy Three 
factories for 
coffee, cocoa 
beans, and 
spices 

OTA Not data 
available 

26 workers 
and 23 
controls 

HPLC 

 

Serum Results showed that, in cases where there 
was a lack of preventive measures applied in 
workplaces, occupational exposure could 
result in increased OA levels in serum; this 
suggests that both environmental and 
biological monitoring should be undertaken 
in workplaces where OA contaminated-
products are handled or processed 



Degen et al., 
2007  

Germany Grain 
handling 
companies 

OTA July 2005 and 
March 2006 

61 samples 
from a 
cohort of 
male 
workers  

HPLC 

LOD=0.05 n
g/ml 
plasma. 

Blood Data did not provide evidence for a 
significant inhalatory burden of OTA in grain 
workers; since deoxynivalenol and 
zearalenone were also detected in the dust 
samples in concentrations much higher than 
that of OTA, additional research should try 
to assess the potential relevance of 
inhalation exposure to these mycotoxins 

Oluwafemi  

et al., 2012 

Nigeria Feed mill Aflatoxins: B1, B2, G1, and 
G2 

Located in the 
tropical rain 
forest zone with 
high humidity 
and 
temperature 

28 workers 
and 30 
controls 

HPLC Blood The mean concentrations of AFB1, AFB2, 
AFG1, and AFG2 in the blood of feed mill 
workers varied from 73.4–189.2, 0.1–0.5, 
0.3–1.9, and <0.1–3.4 ng/ml, respectively; 
poorly ventilated mills resulted in higher 
blood AFB1 levels; AFB1 was not detected in 
control group 

Viegas et al., 
2013a 

Portugal Swine 
husbandry 

AFB1 (free AFB1 and 

AFB1 bound to albumin) 

Autumn  28 workers 
and 30 
controls 

ELISA 

LOD=1 ng/m
l 

Serum 21 workers (75%) showed detectable levels 
of AFB1 with values ranging from <1 ng/ml to 
8.94 ng/ml and with a mean value of 
1.91±1.68 ng/ml; in the control group, AFB1 
values were all below 1 ng/ml; data 
indicated that exposure to AFB1 occurs in 
swine barns and may be related to different 
causes and contamination sources 

Mo et al., 2014 China Sugar 
production 
factory 

AFB1 (measured AFB1 
albumin adducts) 

No data 
available 

120 
workers 
and 80 
controls 

ELISA Serum 

 

AFB1 albumin adducts positive in 67 workers 
(57.4%). Values ranging between 6.4–
212 pg/mg albumin adducts (mean value: 
51±4.62 pg/mg albumin). 

Lai et al., 2014 

 

China Sugar and 
paper-
making 
factory 

AFB1 Between 
October and 
March 

181 
workers 
and 203 
controls 

ELISA Serum The difference in the serum AFB1 albumin 
adduct levels of workers and controls was 
statistically significant; serum AFB1 albumin 
adducts were detected in 102 (56.35%) 
workshop employees, with values ranging 
from 8–212 pg/mg albumin (mean value 
38.51±44.80 pg/mg albumin); in contrast, 
only 12 (5.9%) controls had detectable levels 



of AFB1 albumin adducts, with values 
ranging from 8–26 pg/mg albumin (mean 
value 15.58±6.42 pg/mg albumin) 

Malik et al., 
2014 

 

India Food grain 
workers 

Aflatoxins Not data 
available 

46 workers 
and 44 
controls 

ELISA Serum Aflatoxins were detected in 32.6% of food-
grain workers and 9.1% of non-food grain 
workers; a significant difference was also 
found between the two groups in BAL 
culture for Aspergillus; about 47.8% of food-
grain workers and 11.4% of non-food-grain 
workers had chronic respiratory symptoms 

Saad-Hussein  

et al., 2014 

Egypt Wheat 
handlers, 
including 
millers and 
bakers 

AFB1 (AFB1 bound to 
albumin - AFB1 /Alb) 

 

Not data 
available 

190 wheat 

handlers: 
100 
flourmill 
workers 
and 90 
bakers; 
plus 64 
controls 

ELISA Serum AFB1/Alb was significantly higher among 
workers employed as bakers than in mill 
workers and controls; mill workers had 
higher levels of AFB1/Alb than controls; 
AFB1/Alb was significantly higher among 
hepatocellular carcinoma cases than in the 
other groups; AFB1/Alb was significantly 
correlated with the duration of exposure in 
bakers 

Viegas et al., 
2015 

Portugal Waste 
managemen
t 

AFB1 (free AFB1 and 

AFB1 bound to albumin) 

Spring and 
summer 

41 workers 
and 30 
controls 

ELISA 

LOD=1 ng/m
l 

Serum All the workers showed detectable levels of 
AFB1 with values ranging from 2.5–
25.9 ng/ml and with a median value of 9.9 ± 
5.4 ng/ml; in the control group, AFB1 values 
were all below 1 ng/ml; results from this 
work suggest that exposure to AFB1 occurs 
in waste management settings and may be 
related with the high contamination of 
waste being handled 

Viegas et al., 
2016 

Portugal Poultry 
slaughterhou
se 

AFB1 (free AFB1 and 

AFB1 bound to albumin) 

Winter 30 workers 
and 30 
controls 

ELISA 

LOD=1 ng/m
l 

Serum 14 workers (47.0%) showed detectable 
levels of AFB1 with values from 1.06–
4.03 ng/ml and a mean value of 1.73 ng/ml; 
in the control group, AFB1 values were all 
below 1 ng/ml; exposure to AFB1 occurs in 
slaughterhouse settings and skin also seems 



to be an important exposure route in some 
workplaces 

Folman et al., 
2016 

Germany Three grain 
mill workers 

DON, ZEN, OTA, and 
citrinine (CIT, (DON-1), α- 
and β-zearalenol (α-and 
β-ZEL), ochratoxin alpha 
(OTα), and 
dihydrocitrinone (DH-
CIT). 

No data 
available 

Samples 
provided 

by 12 male 
and 5 
female 
workers. 
Control 
group 
comprised 
12 workers 

HPLC-LC 
(OTA and 
OTα) 

- LC-MS/MS 
(CIT 

and its 
metabolite 
HO-CIT) 

- LC-MS 

(DON and 
its 
metabolite 
DOM-1) 

LOD and 
LOQ 
different for 
each 
mycotoxin 

Spot urine 
samples 

Citrinin, DON, OTA, and ZEN were detected 
in nearly all urine samples from mill workers 
and controls; mycotoxin biomarker levels in 
urine from mill workers and controls were 
not significantly different 

Saad-Hussein  

et al., 2014 

Egypt Wheat 
handlers, 
including 
millers and 
bakers 

AFB1 No data 
available 

90 bakers, 
100 flour 
milling 
workers, 
and 100 
controls 
with no 
exposure 
to flour 

ELISA Serum Serum AFB1-Alb adduct was significantly 
higher in bakers than in milling workers; AST 
and ALT liver enzymes were significantly 
higher in milling workers and bakers than in 
controls (p < 0.05, p < 0.0001), respectively; 
exposure duration was significantly 
correlated with serum AFB1 in bakers; 
moreover, there was significant correlation 
between serum AFB1 and both ALT and AST 
levels in bakers 



Ferri et al.,  

2017 

 

Italy Feed mill 
workers 

AFs (M1, G2, G1, B1, B2) 
and aflatoxicol (AFOH)  

March to April 
2014 

29 exposed 
workers 
and 30 
controls 

HPLC-FLD 

LOD=0.025 
ng/mL for 
AFB1, AFG1, 
AFM1 and 
AFOH and 
0.006 ng/mL 
for AFB2 and 
AFG2) 

Serum and 
urine 

No quantifiable presence of free aflatoxins 
was found in serum samples; quantifiable 
levels of AFB1, AFB2, AFG1, AFG2, and AFM1 
were found in urine; none of the samples 
was positive for AFOH; findings revealed the 
presence of higher AFs concentrations in 
exposed workers than in non-exposed 
controls, although these differences are to 
be considered consistent with random 
fluctuations 

Viegas et al., 
2017c 

Portugal Waste 
managemen
t 

Beauvericin, citrinin, 
enniatin A/A1/B/B1, 
fumonisin B1, 
zearalanone, α /β-
zearalenol, 
dihydrocitrinone 
deoxynivalenol, 10 
hydroxyochratoxin A, 
ochratoxin A, ochratoxin 
α, T 2 toxin, HT 2 toxin 
zearalenone, altenuene, 
alternariol, alternariol-
mono-methylether, 2’R 
ochratoxin A, 
deoxynivalenol-3-
glucuronic acid and HT-2-
4-glucuronic acid. 

Spring and 
summer 

41 workers HPLC-
MS/MS 

Serum 

 

In addition to the AFB1 reported in Viegas et 
al., 2014, enniatin B (EnB) and ochratoxin A 
(OTA) were quantified, as was 2’R 
ochratoxin A (2’R OTA); besides confirming 
co-exposure to several mycotoxins, results 
probably indicated different exposure 
routes for the mycotoxins reported 

 

 

 
 


