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A B S T R A C T   

Reviews and meta-analyses have proved to be fundamental to establish neuroscientific theories on intelligence. 
The prediction of intelligence using invivo neuroimaging data and machine learning has become a widely 
accepted and replicated result. We present a systematic review of this growing area of research, based on studies 
that employ structural, functional, and/or diffusion MRI to predict intelligence in cognitively normal subjects 
using machine learning. We systematically assessed methodological and reporting quality using the PROBAST 
and TRIPOD in 37 studies. We observed that fMRI is the most employed modality, resting-state functional 
connectivity is the most studied predictor. A meta-analysis revealed a significant difference between the per-
formance obtained in the prediction of general and fluid intelligence from fMRI data, confirming that the quality 
of measurement moderates this association. Studies predicting general intelligence from Human Connectome 
Project fMRI averaged r = 0.42 (CI95% = [0.35,0.50]) while studies predicting fluid intelligence averaged r =
0.15 (CI95% = [0.13,0.17]). We identified virtues and pitfalls in the methods for the assessment of intelligence 
and machine learning. The lack of treatment of confounder variables and small sample sizes were two common 
occurrences in the literature which increased risk of bias. Reporting quality was fair across studies, although 
reporting of results and discussion could be vastly improved. We conclude that the current literature on the 
prediction of intelligence from neuroimaging data is reaching maturity. Performance has been reliably demon-
strated, although extending findings to new populations is imperative. Current results could be used by future 
works to foment new theories on the biological basis of intelligence differences.   

1. Introduction 

Intelligence is a broad construct comprising multiple components, 
which can be estimated with a range of well-established tests (Urbina, 
2011). Regardless of the instrument, scores in intelligence tests are 
positively correlated. G was postulated to be the “general factor” 
explaining this phenomenon by Spearman (1904), whose evidence “[...] 
can be said to be overwhelming" (Carroll, 1997). Albeit originally 
terming it “general intelligence”, Spearman later in his life adopted a 
critical view of the term and ceased to associate it with G (Spearman, 

1927). Henceforth, to avoid ambiguities in this review we will employ 
the widely used term “intelligence”. Even though G successfully captures 
the overall positive correlation (Spearman, 1904), there is controversy 
regarding its validity as a single, all-encompassing, measure of intelli-
gence. An alternative view posits that intelligence comprises multiple 
factors (Thurstone, 1938). Posteriorly, an integrated model for intelli-
gence called GF-GC was proposed by Cattell (Cattell, 1941; Cattell, 
1971). GF stands for fluid intelligence and is associated with inductive 
and deductive reasoning, covering non-verbal components; therefore, it 
does not depend on previously acquired knowledge and the influence of 
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culture. Concept formation and recognition, identification of complex 
relationships, understanding of implications, and making inferences are 
examples of tasks related to GF. On the other hand, GC, crystallized in-
telligence, comprises the knowledge acquired through life experience 
and education related to cultural experiences. Hence, crystallized ca-
pacities are demonstrated, for example, in tasks regarding the recogni-
tion of the meaning of words (Schelini, 2006). While the scientific 
construction of G is based on correlations between test scores, intelli-
gence quotient (IQ) is based on the sum of standardized scores of 
commonly used cognitive batteries, such as Wechsler scales with full 
scale IQ (FSIQ), verbal IQ (VIQ), and performance IQ (PIQ). FSIQ scores 
are excellent measures of G (Gignac & Bates, 2017) representing the 
general level of cognitive functioning. VIQ relates to verbal compre-
hension, acquired knowledge, language processing, verbal reasoning, 
attention, verbal learning, and memory. In sharp contrast, PIQ is con-
nected to perceptual organization, processing visual, planning ability, 
non-learning-verbal and thinking skills, and manipulating visual stimuli 
with speed. 

Studies show associations between brain and behavior measure-
ments. The first finding was the positive correlation between brain 
volume or intracranial volume and intelligence (Luders, Narr, Thomp-
son, & Toga, 2009; McDaniel, 2005). Other structural MRI (sMRI) cor-
relates of intelligence include fine-grained morphometry, such as 
callosal thickness (Luders et al., 2007), striatal volume (Grazioplene 
et al., 2015) and regional gray and white matter volumetry (Haier, Jung, 
Yeo, Head, & Alkire, 2005). Functional connectivity (FC), as measured 
by functional MRI (fMRI), has reliably been shown to correlate with G 
and IQ. This includes correlations between resting-state FC (RSFC) 
network organization and FSIQ (Pamplona, Santos Neto, Rosset, Rogers, 
& Salmon, 2015; Song et al., 2008) and regional global connectivity and 
GF (Cole, Yarkoni, Repovš, Anticevic, & Braver, 2012). The topography 
of task fMRI (T-fMRI) statistical maps have been found to correlate with 
intelligence as well (Choi et al., 2008; Graham et al., 2010). Correlates of 
intelligence extend beyond fMRI RSFC and task activations as well, to 
include measures such as amplitude of low frequency fluctuations 
(ALFF) and dynamic functional connectivity (dynFC). Using multimodal 
magnetic resonance imaging (MRI) Ritchie et al. (2015) demonstrates a 
plethora of correlates of G, including diffusion MRI (dMRI). For exten-
sive literature reviews, see Dizaji et al. (2021), Basten and Fiebach 
(2021). 

Previous reviews (Barbey, 2018; Jung & Haier, 2007) and meta- 
analyses (Basten, Hilger, & Fiebach, 2015; McDaniel, 2005; Pietsch-
nig, Penke, Wicherts, Zeiler, & Voracek, 2015) were fundamental in the 
development of theories of biological intelligence (for an overview on 
theories, see Euler & McKinney, 2021). At the time studies performing 
predictive analyses were scarcer than today. This type of analysis enjoys 
growing popularity in neuroimaging (Bzdok, 2017; Bzdok, Altman, & 
Krzywinski, 2018). Machine learning (ML)-based predictive analyses 
allow one to test a much more complex hypothesis space than univari-
ate, group-based testing. The multivariate nature of ML allows in-
teractions and commonalities between predictors to be taken into 
account. It also “tests” such hypotheses on the basis of individualized 
predictions, taking into account heterogeneity that is diluted in group- 
based analyses (Sui, Jiang, Bustillo, & Calhoun, 2020). Data-driven 
studies based on ML are fundamental to understand the degree that 
variability in brain phenotypes explain variability in intelligence. ML- 
based studies also address the question of generalizability patterns at 
the forefront. For these reasons, this type of study is widely used in the 
investigation of behavior, with cognition and, specifically, human in-
telligence as the most studied domains (Sui et al., 2020). 

While the literature of brain correlates on intelligence covers various 
techniques, such as sMRI, fMRI, dMRI, positron emission tomography 
(PET), electroencephalography (EEG), magnetoencephalography 
(MEG), predictive studies are limited in this regard. Availability is one of 
the main factors behind that choice, because ML benefits from large 
amounts of data (Cui & Gong, 2018). Small data samples have been 

identified as a source of optimistic bias in error-bars (Varoquaux, 2018), 
and leads to non-reproducible results. Increasing the amount of data 
available potentially leads to multifold increases in performance 
(Schulz, Bzdok, Haufe, Haynes, & Ritter, 2022). Large-scale open-data 
imaging cohorts are often centered on fMRI, with sMRI and dMRI 
providing complimentary information. For this reason, we opted to 
focus on fMRI, sMRI and dMRI, anticipating a small incidence of studies 
using other imaging modalities. 

A large number of studies on the prediction of intelligence was 
published in recent years. To the best of the authors’ knowledge, no 
systematic review on this application of ML to predict human intelli-
gence from brain imaging has been previously published. The purpose of 
this review is to identify existing literature, critically appraise reporting 
and methodology. We hope that our work will promote the establish-
ment of best practices and prospects for future research in this field of 
research. 

2. Methods 

This review was developed following Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines for trans-
parent reporting of systematic reviews (Moher et al., 2009). See 
Table B.4 for the PRISMA checklist. Choice of methods and search 
strategy are based on a protocol we developed and registered at Open 
Science Framework (Vieira et al., 2021). Post-hoc adaptations are 
mentioned below, when applicable. 

2.1. Eligibility criteria 

Eligibility criteria were peer-reviewed original articles written in 
English that performed individualized prediction of intelligence using at 
least one of fMRI, sMRI and dMRI in neurotypical human subjects using 
ML and include evaluation of generalizability, i.e. cross-validation, 
bootstrapping, or external validation. We adapted the preregistered 
protocol to include only studies published before 1st January 2021. 

2.2. Information sources 

We performed a systematized search in Scopus (scopus.com), dating 
to 29th March 2022. Additional documents were retrieved from a recent 
literature review (Dizaji et al., 2021), co-authored by B.H.V. and C.E.G. 
S., and another study (Fan, Jianpo, Qin, Hu, & Shen, 2020, Table 1) that 
provide a comparison between similar studies. 

2.3. Search strategy 

We retrieved all documents in Scopus that contained at least one of 
the following terms in their title, abstract, or keywords: “morphometry”, 
“cortical thickness”, “functional connectivity”, “MRI”, “fMRI”, “struc-
tural connectivity”, or “effective connectivity”. Simultaneously, the 
document should contain at least one of the following terms: “predict*”, 
“multivariate pattern analysis”, “bases”, “CPM”, “variability”, “mvpa”, 
or “machine learning”. The documents should also contain in their title 
one of the following terms: “intellig*”, “behavior*”, “cognitive ability” 
or “IQ”. This search was modified post-hoc from the preregistered one 
due to the erroneous omission of some terms. See Appendix A for the 
actual search string used. 

After removal of duplicates, all records had title and abstract 
screened. Records were discarded if we could identify disagreement 
with inclusion criteria, and kept otherwise. Remaining records were 
retained for full-text inspection. If in accordance with the inclusion 
criteria, these were retained as eligible for qualitative synthesis. 
Otherwise discarded with reasons, e.g., non-human subjects, no vali-
dation or other generalizability evaluation, did not predict intelligence, 
did not use neurotypical subjects. 
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Table 1 
General characteristics of documents retrieved using based on our data extraction form.  

Studies Number of subjects Input ML models Validation strategy Target 

Choi et al. 
(2008)b 

408 for FA, 225 for prediction 
from NRI/KAIST (training 
data: 116 sMRI and 61 fMRI; 
test data: 48); 

fMRI & sMRI 
Cortical thickness, T-fMRI 
activation in a fluid reasoning task, 
gray matter volume, sex 

Linear modeling (derived from 
separate structural and functional 
samples) 

Independent test sample G 

Yang et al. 
(2013)a,b 

78 from NRI sMRI 
Cortical thickness, surface area, 
sulcal depth, mean curvature 

PLSR LOOCV FSIQ 

Finn et al. (2015) 118 from HCP (Q2 release) fMRI 
RSFC under various preprocessing 
pipelines 

CPM LOOCV GF 

Wang, Wee, Suk, 
Tang, and Shen 
(2015)a,b 

164 from ABIDE sMRI 
Regional gray and white matter 
volume 

Multi-kernel KSVR following 
multiple feature selection 

Repeated (10×) 10-fold 
CV, with inner CV 
(unspecified) for 
parameter tuning 

IQ 

Park, Hong, Lee, 
and Park 
(2016) 

56 (non-ADHD-affected) from 
ADHD-200 

fMRI 
Degree values from 1 (out of 10 
RSN) obtained from group ICA (33 
ICs kept) 

Linear regression LOOCV FSIQ, VIQ and 
PIQ 

Ferguson, 
Anderson, and 
Spreng (2017)b 

830 from HCP (S900 release) 
(600 for training, 230 for 
testing) 

fMRI 
Scaled eigenvalues from spectral 
decomposition of concatenated RS- 
fMRI, products of eigenvalues 

LASSO Independent test sample GF 

Powell, Garcia, 
Yeh, Vettel, 
and Verstynen 
(2017)a 

841 from HCP dMRI 
Local Connectome Fingerprints and 
intracranial volume 

LASSO PCR 5-fold CV GF 

Noble, Spann, 
Tokoglu, and 
Shen (2017)a 

606 from HCP (S900 release) fMRI 
RSFC 

CPM LOOCV GF 

Greene, Gao, 
Scheinost, and 
Constable 
(2018)a 

515 from HCP; 571 from PNC fMRI 
RSFC and T-fMRI activation (7 tasks 
in HCP, 2 in PNC) 

CPM LOOCV (within samples) 
and between samples/ 
between conditions 
validation 

GF 

Dubois, Galdi, 
Han, Paul, and 
Adolphs 
(2018)a 

884 from HCP (S1200 release) fMRI 
RSFC under various preprocessing 
pipelines 

CPM & elastic net following 
univariate filtering 

LOFOCV (410 families) GF 

Dubois, Galdi, 
Paul, and 
Adolphs 
(2018)a,b 

884 for CV, 1181 for FA from 
HCP 

fMRI 
RSFC 

Elastic Net after univariate 
filtering 

LOFOCV G 

Li, Yang, Li, and 
Li (2018)a,b 

100 from HCP (Unrelated 
subjects) 

fMRI 
ALFF following voxelwise 
univariate filtering, seed-based FC 

L2SVR LOOCV GF 

Alnæs et al. 
(2018)b 

6487 for FA, 748 for prediction 
from PNC 

dMRI 
Linked ICA (LICA), from 8 maps of 
dMRI properties 

Shrinkage (Schafer and Strimmer) 
linear regression 

Repeated (1000×) 10-fold 
CV 

GF 

Cox, Ritchie, 
Fawns-Ritchie, 
Tucker-Drob, 
and Deary 
(2019)b 

27,100 for FA and 4768 for 
training, 2510 for testing with 
fractional anisotropy; 4707 for 
training, 2494 for testing with 
mean diffusion; cortical: 5246 
for training, 2589 for testing 
with cortical volume; 5253 for 
training, 2595 for testing with 
subcortical volume; from the 
UK Biobank 

sMRI & dMRI 
ROI white matter mean diffusivity 
and fractional anisotropy and gray 
matter cortical and subcortical 
volumes 

MIMIC Independent test sample 
(Manchester = training 
data, Newcastle = test 
data) 

G 

Yang et al. 
(2019)b 

68 from HCP-Q1 fMRI 
RS-fMRI temporal variances of 
temporal autocorrelations (sulci, 
gyri, undefined cortices) from four 
ROIs 

Linear regression LOOCV GF 

Zhang, Allen, 
Zhu, and 
Dunson (2019) 

1065 from HCP dMRI & fMRI 
Structural connectivity tensor 
(weighted according to 12 factors 
based on diffusion, endpoints and 
geometry); RSFC; local structural 
connectivity 

Linear regression (after tensor 
network PCA with k = 60) 

5-fold CV GF 

Gao, Greene, 
Constable, and 
Scheinost 
(2019)a 

515 from HCP; 571 from PNC fMRI 
RSFC and T-fMRI FC 

rCPM, GFC-ridge, cCPM, CPM, 
GFC-CPM 

Repeated (100×) 10-fold 
CV; External Validation 

GF 

Dadi et al. 
(2019)a 

443 from HCP (213 High IQ, 
230 Low IQ, based on terciles) 

fMRI 
RSFC 

K-Nearest Neighbors (K = 1, 
Euclidean distance metric), 

Repeated (100×) 
Stratified Holdout (75%) 

GF 

(continued on next page) 
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Table 1 (continued ) 

Studies Number of subjects Input ML models Validation strategy Target 

Gaussian Naïve Bayes, Random 
Forests, L1-SVC L1-LogReg, Ridge 
classification, L2-SVC, L2- 
LogReg, 10%-univariate ANOVA 
SVC 

Elliott et al. 
(2019) 

298 from HCP; 591 from 
DMHDS 

fMRI 
RSFC, GFC 

CPM LOOCV (within samples) 
and between samples 
validation 

Cognitive 
Ability 

Yoo, Rosenberg, 
Noble, and 
Scheinost 
(2019) 

316 unrelated subjects (out of 
563) from HCP (S1200 release) 

fMRI 
Bivariate and multivariate (distance 
correlation) RSFC 

CPM Repeated (5000×) 10-fold 
CV 

GF 

Li et al. (2019) 862 from BGSP, 953 from HCP fMRI 
RSFC 

KRR (correlation kernel) 20-fold nested family- 
aware CV, inner 20-fold 
CV for selection of 
parameters 

GF 

Kashyap et al. 
(2019)a 

803 from HCP fMRI 
RSFC with and without Common 
Orthogonal Basis Extraction (COBE) 

Elastic Net after univariate 
filtering 

20-fold nested CV, with 
inner CV for tuning 

GF 

Kong et al. 
(2019)a 

577 from HCP fMRI 
Dice overlap kernel of different 
parcellation algorithms (ICA back- 
projection algorithm, individual- 
specific parcellation algorithm of 
Gordon, parcellation algorithm of 
Wang, multi-session hierarchical 
Bayesian model (MS-HBM)) 

KRR (dice overlap kernel) Repeated (100×) 20-fold 
family-aware CV nested 
with inner tuning 20-fold 
CV 

GF 

Xiao, Stephen, 
Wilson, 
Calhoun, and 
Wang (2019)a,b 

224 from PNC (134 High IQ, 90 
Low IQ, based on Z-scores) 

fMRI 
RSFC and T-fMRI (emotion and 
fractal N-back) FC 

SVC, vectorized or with DM 
(diffusion map) or with ADM 
(alternating DM), under different 
kernels (log-Euclidean, Euclidean 
or Cholesky distance) 

Repeated (20×) 5-fold CV 
with nested inner tuning 
5-fold CV 

IQ 

Dryburgh, 
McKenna, and 
Rekik (2020)a,b 

226 from ABIDE-I fMRI 
RSFC 

CPM LOOCV FSIQ and VIQ 

Jiang et al. 
(2020)a,b 

326 from UESTC fMRI & sMRI 
RSFC, cortical thickness 
(vertexwise) 

CPM LOOCV FSIQ 

Hilger et al. 
(2020)a,b 

308 from NKI (Enhanced) sMRI 
Gray matter volume (voxel and 
regionwise) 

PCA-SVR & Atlas-SVR 10-fold CV (with nested 
inner 3-fold CV for 
parameter tuning) 
stratified for intelligence 

FSIQ 

Fan et al. (2020)a, 

b 
1050 from HCP fMRI 

dynFC 
Deep neural network (CNN- 
LSTM), SVR 

10-fold CV (no splitting 
runs from the same 
subject) 

GF and 
Crystalized 
Intelligence 

Sripada, 
Angstadt, 
Rutherford, 
Taxali, and 
Shedden 
(2020)a,b 

967 for T-fMRI, 903 for RS- 
fMRI from HCP (S1200 release) 

fMRI 
Brain Basis Set (BBS) modeling 
decomposition of task contrasts, 
RSFC 

Linear regression (75 
components/coefficients) 

10-fold family-aware CV General 
Cognitive 
Ability 
(computed for 
each fold) 

Wei, Jing, and Li 
(2020)a 

1003 (812 “recon2” used as 
discovery set; 191 “recon1” as 
validation set) from HCP 
(S1200 release) 

fMRI 
RSFC 

CPM, SVR, LASSO, and Ridge 
regression, after Bootstrapping 
Feature selection 

10-fold stratified CV & 
independent validation 
set 

GF 

He et al. (2020)a 953 from HCP (S1200 release); 
8868 from UK Biobank 

fMRI 
RSFC 

KRR, FNN, BrainNetCNN, GNN HCP: 20-fold family- 
aware CV nested with 
inner tuning; UK Biobank: 
Holdout (6868 training, 
1000 validation and 1000 
test) 

GF 

Jiang et al. 
(2020)a,b 

360 from UESTC; 200 from 
HCP (Q3 release); 120 from 
COBRE (60 HCs) 

fMRI 
RSFC 

LASSO LOOCV (with nested 10- 
fold CV for tuning) 

FSIQ and GF 

Wu, Li, and Jiang 
(2020) 

922 from HCP (S1200 release) 
(830 for training and 92 for 
test) 

fMRI 
T-fMRI activation in seven HCP 
tasks (emotion, gambling, 
language, motor, relational, social, 
and working memory) 

PLS Independent test sample GF and Fluid, 
Crystalized and 
Total Scores 

Lin, Baete, Wang, 
and Boada 
(2020)a 

143 (1 subject with missing 
data) from HCP (S900 release) 

dMRI & fMRI 
RSFC and structural connectivity 
(quantitative anisotropy, mean 
streamline length, and normalized 
number of streamlines) 

CPM LOOCV GF 

Li et al. (2020)a,b fMRI 
White matter RSFC 

CPM LOOCV and Repeated 
(100×) 20-fold CV for 

GF and PIQ 

(continued on next page) 
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2.4. Data collection process 

We originally planned to use the CHecklist for critical Appraisal and 
data extraction for systematic Reviews of prediction Modelling Studies 
(CHARMS) checklist (Moons et al., 2014), but ultimately it became clear 
that we needed a form tailored for our research question. We con-
structed our own data extraction form, borrowing from CHARMS. 

An online document was created and shared between authors B.H⋅V., 
K.F. and A.K.S. All three authors performed data extraction, including: 
(1) identification (title, year, source title, digital object identi (2) study 
population (dataset, number of subjects for psychometric assessment, 
number of subjects for prediction, age and sex characteristics of the 
sample), (3) methods (imaging modality, input features, number of 
features, ML models, validation strategy, performance metrics, a priori 
feature selection, construct, instrument, components of intelligence, 
scores, quality of cognitive assessment), (4) results (performance of in-
dividual methods/data combinations, best performance). 

Regarding the quality of intelligence measurement, retrieved items 
included, when applicable: number of subtests, number of dimensions, 
time duration of test application, test completeness. These are important 
to assess whether the test properly measures intelligence and is appli-
cable to the construct. 

We additionally retrieved citations among identified documents, to 
build a citation network. Due to differences in formats and unreliability 
of automatic searching, we opted to perform a manual search over all 
documents. For each studie identified, we searched for the names of first 
authors of every other document. For consistency, we opted to consider 
citations of pre-print versions (same authors and title) of identified 
documents. 

We used the Prediction model risk of bias assessment tool (PRO-
BAST) to assess risk of bias (RoB) and concerns regarding applicability in 
individual studies. This was a choice made post-hoc to the registration of 
the study. We originally planned to create an RoB assessment checklist 
for the reviewed studies, but after registration we became aware of 
PROBAST, which fulfilled this role, requiring minimal adaptations. This 
assessment was performed at the result-level. 

It is critical to ensure that reporting is transparent in order to ensure 
that findings can be replicated. We also used the Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis or Diag-
nosis (TRIPOD) (Collins, Reitsma, Altman, & Moons, 2015; Moons et al., 
2015) checklist assessment tool (Heus et al., 2019) to evaluate reporting 
quality. We used a modified version tailored for ML predictions (Wang 
et al., 2020), including three modified items, shown in Table D.5. 
Several items in TRIPOD were not adequate for our research question, 
and were removed from the questionnaire for our evaluation. A few 
items and subitems were deemed not applicable or not important to our 
review question, and their assessments do not appear in this review. 
Namely, 1.i, 1.iii, 2.iii, 2.iv, 2.xi, 3b, 4a, 4b, 5c, 6b, 7a.iv, 7b, 10a, 10b. 
iv, 10b.v, 10c, 10d.ii, 10e, 11, 13a, 13b.iii, 13b.iv, 13c.ii, 15a.ii, 15b, 16. 
iii, 17, and 20.i, 22.ii. Items 1 and 16.i were edited to allow NA entries, 
due to studies that had broader scopes than the one pertaining to this 

review’s question. Item 13b, pertaining to demographics, requires 
description of the actual data being used, and not from the original 
sample before exclusions. Items 13b and 14a, that should be assessed 
based on “Results” sections, were extended to “Methods” sections as 
well. We performed the TRIPOD assessment at the study-level and per-
formed across-studies summarization of reporting quality ratings. 

Authors G.S.P.P. and B.H.V. completed PROBAST and TRIPOD 
independently. To ensure both reviewers’ interpretations were aligned, 
calibration was performed twice, using one study from each checklist on 
each occasion. Interrater agreement was then computed based on the 
Kappa statistic, at the score-level, for the remaining documents, 
excluding the two used for calibration. 

The quality of measurement of intelligence is linked to validity and 
can interfere with results of each study. For example, Gignac and Bates 
(2017) demonstrated that the quality of measurement moderates the 
association between intelligence and brain volume. The guide for cate-
gorization of measurement quality by Gignac and Bates (2017) proposes 
four quality criteria: the number of tests, the number of group-level 
dimensions, testing time, and correlation with G. Authors K.F. and A. 
K.S. performed the assessment of measurement quality based on these 
criteria. “Number of tests” is categorized into 1, 1–2, 2–8, and 9+ which 
signal “poor”, “reasonable”, “good”, and “excellent” measures of G, 
respectively, in the absence of any other information. Therefore, a 
minimum of nine tests is needed to represent an excellent G. The 
“number of group-level dimensions” criterion is divided into 1, 1–2, 2–3, 
and 3+ test dimensions, leading to the respective classifications “poor”, 
“reasonable”, “good”, and “excellent” measures of G, in the absence of 
any other information. So, an excellent measure of G is expected to 
present at least three group-level dimensions, e.g., GF, GC, and pro-
cessing speed. “Testing times” of 3–9 min, 10–19 min, 20–39 min, and 
40+ minutes are respectively classified as possibly “poor”, “reasonable”, 
“good”, and “excellent” measures of G. The last criterion, “correlation 
with G", is the best indicator of measurement quality and takes prece-
dence over the others. However, this correlation is scarcely reported. 
Gignac and Bates (2017) recommends substituting the correlation with 
G with the three other criteria. 

The primary measure of prediction performance evaluation was 
chosen to be the Pearson correlation coefficient, R-squared and mean 
squared error (MSE). See Appendix C for a mathematical description of 
different performance measures. The Pearson correlation coefficient is 
the most used measure in the literature. It is scale- and location- 
invariant, which means that high values can be obtained with arbi-
trarily large errors. R-squared, when properly evaluated, is a less biased 
measure of explained variance than the correlation coefficient squared. 
However, it also suffers from its own biases that will be discussed below, 
requiring proper care regarding the variance of the sample. Ideally, MSE 
or mean absolute error (MAE) should be used when comparing different 
models applied to the same data (Poldrack, Huckins, & Varoquaux, 
2020). Regardless of the choice of the performance measure, compari-
sons between modeling approaches using different data can be ambig-
uous, since intrinsic variation can differ between datasets. 

Table 1 (continued ) 

Studies Number of subjects Input ML models Validation strategy Target 

326 for internal validation 
from SLIM, 53 for external 
validation from SXMU 

internal validation, 
LOOCV for external 
validation 

Xiao, Stephen, 
Wilson, 
Calhoun, and 
Wang (2020)a,b 

355 from PNC fMRI 
T-fMRI (emotion and fractal N- 
back) FC 

Single modality LASSO, MTL 
(Multi-Task Learning), M2TL 
(Manifold Regularized MTL), 
NM2TL (new M2TL). All follow 
univariate filtering 

Repeated (10×) 5-fold CV 
with nested inner tuning 
5-fold CV 

IQ 

Jiang et al. 
(2020)a,b 

463 from HCP (S500 release) fMRI 
RSFC and T-fMRI FC 

PLS Repeated (100×) 10-fold 
CV 

GF  

a Primarily about predictive modeling. 
b Primarily about intelligence. 
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2.5. Synthesis of results 

To determine the level of performance expected for each modality, 
we estimated a mixed-effects meta-analytic model using the package 
“metafor” in R 4.0.5 (Viechtbauer, 2010) using results that were rated 
with both low RoB and low concerns regarding applicability in PRO-
BAST. The number of samples was taken to be the total number of 
subjects used in the estimation of performance with pooled or unpooled 
means. We employed the Hunter-Schmidt estimator to deal with the 
sampling variance, which entails a homogeneity assumption. Different 
datasets and measurements of intelligence were treated as fixed effects. 
The same procedures were used for the R-squared, except that the 
Hunter-Schmidt estimator was not applied, since it pertains exclusively 
to correlation coefficients. Residual heterogeneity, i.e. the variability 
unaccounted for by the model and covariates, was measured by the I2 

statistic. 
Standard errors are seldom reported in the literature. Moreover, due 

to the nature of cross-validation (CV), where resulting models across 
folds are not independent, standard errors are underestimated (Varo-
quaux, 2018). 

Assessment of within-study selective reporting is unfeasible in our 
setting, due to the lack of pre-registrations. Due to computational re-
sources available today, the risk of selective reporting is real, leading to 
overfitting of the validation set. For an in-depth exposition, see Hosseini 
et al. (2020). 

The funnel-plot was used to qualitatively assess the risk of publica-
tion bias. 

Since one of the biggest bottlenecks for ML is sample size, we 
compared the number of training samples used with measured perfor-
mances across studies. Training set size is often not homogeneous within 
studies. For CV-based studies, including leave-one-family-out CV 
(LOFOCV), we chose to approximate it as N × (K − 1)/K, where N is the 
total amount of data available for training and K is the number of 
groupings, i.e. folds or families. The formula holds true for leave-one-out 
CV (LOOCV) as well. For Holdout-based studies, the actual number of 
training data is given by the studies. 

3. Results 

3.1. Search results and study characteristics 

Our search strategy identified 689 records in Scopus. Additionally, 
17 records were identified from Dizaji et al. (2021) and 7 in Fan et al. 
(2020). 74 records remained after removal of duplicates and screening. 
These were submitted to full-text eligibility analysis. 37 records were 
considered eligible for qualitative synthesis. See Fig. 1. The number of 
studies per year is shown in Fig. 2. General characteristics from each 
document obtained with our data extraction form are reported in 
Table 1. 

A co-citation network is shown in Fig. 3. Arrows point from the cited 
to the citing document. In total, 87 citations were identified. This 
network systematically demarks highly influential works in the sample. 
Finn et al. (2015) is cited by 23 studies, out of 26 studies that were 
published posteriorly to it. 

Regarding data sources, 25 (68%) studies used different releases of 
the Human Connectome Project (HCP). Among these, 19 (51%) studies 
use solely HCP data. 6 (16%) studies used the HCP together with other 
datasets, such as the Philadelphia Neurodevelopmental Cohort (PNC) 
data, the Dunedin Multidisciplinary Health and Development Study 
(DMHDS), Center for Biomedical Research Excellence (COBRE) and 
University of Electronic Science and Technology of China (UESTC), the 
UK Biobank, and Brain Genomics Superstruct Project (BGSP). Other 
sources of data included the Neuroscience Research Institute (NRI) (Choi 
et al., 2008; Yang et al., 2013), Korea Advanced Institute of Science and 
Technology (KAIST) (Choi et al., 2008), Autism Brain Imaging Data 
Exchange (ABIDE) (Dryburgh et al., 2020; Wang et al., 2015), UK 

Biobank (Cox et al., 2019), Nathan Kline Institute - Rockland Sample 
(NKI) (Hilger et al., 2020), UESTC (Jiang, Calhoun, Cui, et al., 2020), 
ADHD-200 (Park et al., 2016), and Southwest University Longitudinal 
Imaging Multimodal Brain Data Repository (SLIM) and Shanxi Medical 
University (SXMU) (Li et al., 2020). All sources of data provide images 
acquired with 3 T MRI scanners, with the exception of NRI, that only 
includes data 286 acquired with 1.5 T. See Fig. 4a. 

Regarding imaging modality, 27 (73%) studies only used fMRI data. 
sMRI was the only imaging modality in 3 (8%) studies. 2 (5%) study 
concerned only dMRI. Multimodality was also explored, with fMRI and 
sMRI in 2 (5%) studies, dMRI and fMRI in 2 (5%) studies, and sMRI and 

Fig. 1. Systematic review flow diagram. See PRISMA statement (Moher 
et al., 2009). 

Fig. 2. Year of publication of the 37 studies identified. An upward tendency is 
demonstrated, with 24 studies being published in 2019 and 2020 alone. 
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dMRI in 2 (5%) study. No study performed multimodal prediction based 
on fMRI, sMRI and dMRI simultaneously. Also, all studies used solely 
MRI data, i.e. no additional imaging such as PET, EEG or MEG is used. 
See Fig. 4b. 

We identified four constructs reported as outcomes. GF is an outcome 

in 24 (65%) studies, IQ in 10 (27%), PIQ and VIQ in 2 (5%) each, general 
intelligence, general cognitive ability or G appears in 4 (11%) studies, 
crystallized ability appears in 2 (5%) studies, and cognitive ability ap-
pears in 1 (3%) study. 2 (5%) studies reported results on GF and other 
NIH Toolbox for Assessment of Neurological and Behavioral Function 

Fig. 3. A citation network with 87 citations relating all 35 studies identified in Fig. 1. Colors are used to better differentiate studies and carry no meaning. Arrows are 
colored according to parent nodes and point from the cited work to the one citing it. 

Fig. 4. General characteristics of eligible studies. (a) shows 
the main sources of data identified in the sample. 25 (68%) 
studies employed different releases of the HCP, with 19 (51%) 
based solely on HCP data. (b) shows the use of different im-
aging modalities. Shown in blue, 32 studies were based on 
unimodal data: 27 (73%) used fMRI, 3 (8%) used sMRI and 2 
(5%) used dMRI exclusively. Shown in red, the remaining five 
studies employed multimodal data: 2 (5%) used fMRI and 
sMRI, 1 (3%) used sMRI and dMRI, 2 (5%) used dMRI and 
fMRI. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this 
article.)   
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(NIHTB) cognition scores (Fan et al., 2020; Wu et al., 2020), i.e. total, 
fluid and/or crystallized cognition scores. 1 (3%) study includes mea-
sures of both IQ and GF as outcomes (Jiang, Calhoun, Fan, et al., 2020). 

The most common reported instrument is the 24-item Raven’s Pro-
gressive Matrices (RPM), appearing in 25 (68%) studies. In all these 
studies, the RPM employed is the Penn Matrix Test (PMAT), from the 
University of Pennsylvania Computerized Neurocognitive Battery 
(PennCNB), which also appears in 18-item format in 3 (8%) studies 
(Alnæs et al., 2018; Gao et al., 2019; Greene et al., 2018). The 36-item 
Raven’s Advanced Progressive Matrices Set II appears in 1 (3%) study 
(Choi et al., 2008), as one test in the estimation of G. The Combined 
Raven’s Test (Chinese Revision), which combines aspects of Raven’s 
Colored Progressive Matrices and Raven’s Standard Progressive 
Matrices (RSPM), appears in 1 (3%) study (Li et al., 2020). All 25 (68%) 
studies that studied GF reported the usage of RPM. 4 (11%) of these 
studies also studied additional scores, either due to availability in spe-
cific datasets or as parallel measures. These are the Wechsler Adult In-
telligence Scale (WAIS) matrix reasoning test score, as a substitute for GF 
in the BGSP (Li et al., 2019), NIHTB fluid cognition scores (Fan et al., 
2020; Wu et al., 2020) and WAIS (Chinese Revision) PIQ (Li et al., 2020). 
RPM-like tests also appear in studies that derive analytical de-
compositions of test scores, such as G (Choi et al., 2008; Dubois, Galdi, 
Paul, & Adolphs, 2018; Sripada et al., 2020) and GF (Alnæs et al., 2018). 
See Table 2. 

We used qualitative cues in titles and abstracts to determine the 
overall scope of studies. 13 (35%) studies had prediction of intelligence 
as their primary objective. Other 11 (30%) studies were concerned 
primarily with predictive modeling, although not focused on intelli-
gence. 6 (16%) studies focused primarily on intelligence, but not pri-
marily on predictive modeling. The remaining 7 (19%) studies did not 
focus primarily on intelligence and primarily on predictive modeling, 
albeit including results on both. 

Out of the 31 (84%) studies employing fMRI, 25 (68%) explored FC. 
All but one of these include RSFC-based analyses, while 14 (38%) 
studied RSFC exclusively. In 22 (59%), the only fMRI data was resting- 
state fMRI (RS-fMRI). 9 (24%) studies used T-fMRI, with task FC and/or 
spatial topographies as inputs (Choi et al., 2008; Elliott et al., 2019; Gao 
et al., 2019; Greene et al., 2018; Jiang, Zuo, Ford, et al., 2020; Sripada 
et al., 2020; Wu et al., 2020; Xiao et al., 2019; Xiao et al., 2020). Choi 
et al. (2008) employed a fluid reasoning task. Greene et al. (2018), Wu 
et al. (2020), Sripada et al. (2020), Elliott et al. (2019), Gao et al. (2019), 
Jiang, Zuo, Ford, et al. (2020) employed seven tasks from the HCP 
Additionally, Greene et al. (2018), Gao et al. (2019), Xiao et al. (2019) 
used the working-memory and emotion identification tasks from the 
PNC, Xiao et al. (2020) used the working-memory task only from the 
PNC, and Elliott et al. (2019) employed the emotion processing, color 
Stroop, monetary incentive delay and episodic memory tasks from the 
DMHDS. 

Not counting intracranial volume, which is used both as a predictor 
and as a confounder in several studies, all 6 (16%) studies reporting 
usage of sMRI employ morphometric measurements as predictors. The 
small sample of dMRI-including studies included as predictors mean 
diffusivity and fractional anisotropy, structural connectivity, local con-
nectome fingerprints, structural connectivity tensors and local structural 
connectivity, and linked Independent Component Analysis (ICA) com-
ponents obtained across diffusion descriptor dimensions. 

Regression based on linear models was reported in 33 (89%) studies. 
Among these, 14 (38%) reported use of some form of penalized linear 
modeling. 12 (32%) reported using Connectome Predictive Modeling 
(CPM). 4 (11%) reported using Support Vector Regression. 6 (16%) re-
ported using linear regression, either on inputs or on extracted compo-
nents, e.g., Principal Components Regression. 3 (8%) reported using 
Partial Least Squares Regression. Regression based on nonlinear models 
was reported in 5 (14%) studies. These include polynomial Kernel SVR 
(Wang et al., 2015), correlation kernel ridge regression (KRR) (He et al., 
2020; Li et al., 2019), dice overlap KRR (Kong et al., 2019) and deep 

Table 2 
On the quality of the measurement of intelligence. This categorization follows a 
set of rules established in Gignac and Bates (2017).  

Studies Measurement Number 
of tests 

Dimensions Testing 
time 
(min) 

Rating 

Choi et al. 
(2008) 

G (principal 
component of 
36-item RPM 
and K-WAIS-R 
subtests) 

9+ 3+ 40+ 4 

Dubois, Galdi, 
Han, et al. 
(2018),  
Sripada 
et al. 
(2020) 

G (FA of 10 
tests in the 
NIHTB and 
PennCNB) 

9+ 3+ 40+ 4 

Cox et al. 
(2019) 

G (FA of 4 tests 
in the UK 
Biobank) 

2–8 3+ 20–39 3 

Yang et al. 
(2013) 

FSIQ (K-WAIS- 
R) 

9+ 3+ 40+ 4 

Jiang, 
Calhoun, 
Cui, et al. 
(2020),  
Jiang, 
Calhoun, 
Fan, et al., 
2020 

FSIQ (WAIS 
Chinese 
revision) 

9+ 3+ 40+ 4 

Wang et al. 
(2015) 

IQ (WISC-IV in 
ABIDE) 

9+ 3+ 40+ 4 

Xiao et al. 
(2019, 
2020) 

IQ (WRAT in 
PennCNB) 

9+ 3+ 40+ 4 

Park et al. 
(2016) 

FSIQ (WASI) 9+ 3+ 40+ 4 

Hilger et al. 
(2020) 

FSIQ (WASI in 
NKI) 

2–8 3+ 40+ 3 

Wang et al. 
(2015) 

IQ (WASI in 
ABIDE) 

2–8 3+ 40+ 3 

Dryburgh 
et al. 
(2020) 

IQ (Unclear) ? ? ? ? 

Alnæs et al. 
(2018) 

GF (Principal 
component of 
12 tests) 

9+ 3+ 40+ 4 

Ferguson 
et al. 
(2017), Fan 
et al. 
(2020),  
Gao et al. 
(2019),  
Yang et al. 
(2019),  
Jiang, 
Calhoun, 
Fan, et al. 
(2020),  
Greene 
et al. 
(2018), Li 
et al. (2019, 
2018),  
Kashyap 
et al. 
(2019), Yoo 
et al. 
(2019), He 
et al. 
(2020), Lin 
et al. 
(2020),  
Wei et al. 
(2020),  
Finn et al. 

GF (24-item 
RPM number 
of correct 
responses in 
HCP) 

1–2 1–2 3–19 2 

(continued on next page) 
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learning, based on convolutional neural networks (CNNs), graph neural 
networks and fully connected deep networks (He et al., 2020) or 
recurrent neural networks (RNNs) (Fan et al., 2020). 

In 35 (95%) studies, prediction of intelligence was implemented as 
regression, i.e. prediction of a continuous variable. 2 (5%) studies per-
formed classification, subdividing subjects into two groups, one with 
high and the other with low IQ. Dadi et al. (2019) reports using Support 
Vector Classification (SVC) and Penalized Logistic Regression, as linear 
models, and 1-Nearest Neighbor, Naïve Bayes and Random Forest, as 
non-linear models. Xiao et al. (2019) reports using SVC, with and 
without diffusion map and alternating diffusion map, using kernels 
based on log-Euclidean, Euclidean, and Cholesky distances. 

Regarding the level of spatial abstraction of input data, 31 (84%) 
studies presented inputs at the regional level, either intra-regional fea-
tures 7 (19%), e.g., regional cortical thickness estimates, or inter- 
regional features in 25 (68%), e.g., RSFC. Inter-voxel predictors 
appear in 2 (5%) studies (Powell et al., 2017; Zhang et al., 2019), e.g., 
local dMRI structural connectivity, which is measured between adjacent 
voxels. Intra-voxel predictors appear 5 (14%) studies (Hilger et al., 
2020; Jiang, Calhoun, Cui, et al., 2020; Kong et al., 2019; Li et al., 2018; 
Wu et al., 2020), e.g., seed-based FC or voxelwise morphometry, ALFF, 
or T-fMRI statistical maps, which measure properties pertaining to in-
dividual voxels. Global features appear in 2 (5%) studies, i.e. linked ICA 
components (Alnæs et al., 2018) and graph-theoretical degree from a 
resting-state network (Park et al., 2016). No study used raw or mini-
mally preprocessed imaging data directly as input to ML models. 

In total, discounting censored and unclear results, e.g., results pre-
sented only graphically, 269 sets of results are presented across 32 
studies, encompassing 12 performance metrics. These are Pearson cor-
relation coefficient, Spearman rank correlation coefficient, R-squared, 
square root of R-squared, MAE, MSE, root MSE (RMSE), normalized 
RMSE (NRMSE), normalized root mean squared deviations (nRMSD), 
percentage error, area under the ROC curve (AUC), and classification 
accuracy. See Appendix C for the mathematical definition of each. 

3.2. Risk of bias within-studies 

We could identify the tests used by all but one study by consulting the 
text, supplementary materials and citations offered. See Table 2. There 
was, however, little information about the measurement validity for the 
populations under study. 3 studies cited references deemed adequate 
(Ferguson et al., 2017; Wei et al., 2020; Yang et al., 2019), whereas 
partial references were cited in 2 studies (Hilger et al., 2020; Lin et al., 
2020). 

Regarding measurement quality, 9 measurements were rated as 
excellent, distributed across 12 (32%) studies. 7 measurements were 
rated as good, distributed across 6 (16%) studies. 10 measurements were 
rated as fair, distributed across 25 (68%) studies. 1 study has a 

Table 2 (continued ) 

Studies Measurement Number 
of tests 

Dimensions Testing 
time 
(min) 

Rating 

(2015),  
Dubois, 
Galdi, Han, 
et al. 
(2018),  
Zhang et al. 
(2019),  
Dadi et al. 
(2019),  
Kong et al. 
(2019), Wu 
et al. 
(2020),  
Powell 
et al. 
(2017),  
Noble et al. 
(2017),  
Jiang, Zuo, 
Ford, et al. 
(2020) 

He et al. 
(2020) 

GF (13-item 
test number of 
correct 
responses in 
the UK 
Biobank) 

1–2 1–2 2 ? 

Li et al. 
(2019) 

GF (WAIS - 
Matrix 
Reasoning test) 

1–2 1–2 ? 2 

Greene et al. 
(2018),  
Gao et al. 
(2019) 

GF (18-item 
RPM in PNC) 

1–2 1–2 3–19 2 

Greene et al. 
(2018),  
Gao et al. 
(2019) 

GF (24-item 
RPM in PNC) 

1–2 1–2 3–19 2 

Powell et al. 
(2017) 

GF (24-item 
RPM total 
skipped items 
in HCP) 

1–2 1–2 3–19 2 

Powell et al. 
(2017) 

GF (24-item 
RPM median 
reaction time 
for correct 
responses in 
HCP) 

1–2 1–2 3–19 2 

Li et al. 
(2020) 

GF (CRT 
Chinese 
revision) 

1–2 1–2 40+ 2 

Li et al. 
(2020) 

GF (WAIS 
Chinese 
revision PIQ) 

2–8 1–2 20–39 3 

Park et al. 
(2016) 

VIQ (WASI) 2–8 1–2 3–19 2 

Park et al. 
(2016) 

PIQ (WASI) 2–8 1–2 3–19 2 

Dryburgh 
et al. 
(2020) 

VIQ (Unclear) ? ? ? ? 

Wu et al. 
(2020) 

Total cognition 
score 
(composite 
score from the 
NIHTB) 

2–8 3+ 40+ 3 

Wu et al. 
(2020) 

Fluid cognition 
score 
(composite 
score from the 
NIHTB) 

2–8 3+ 40+ 3 

Wu et al. 
(2020), Fan 

Crystallized 
cognition score 
(composite 

2–8 3+ 40+ 3  

Table 2 (continued ) 

Studies Measurement Number 
of tests 

Dimensions Testing 
time 
(min) 

Rating 

et al. 
(2020) 

score from the 
NIHTB) 

Elliott et al. 
(2019) 

Cognitive 
ability (WAIS- 
IV in the 
DMHDS) 

9+ 3+ 40+ 4 

Elliott et al. 
(2019) 

Cognitive 
ability (24- 
item RPM in 
HCP) 

1–2 1–2 3–19 2 

1 = poor, 2 = fair, 3 = good, 4 = excellent, ? = unclear. FA = factor analysis; K- 
WAIS-R = Korean WAIS-R; WASI = Wechsler Abbreviated Scale of Intelligence; 
WISC-IV = Wechsler Intelligence Scale for Children - 4th edition; WRAT = Wide 
Range Achievement Test. 
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measurement of IQ which we could not identify, based on pre-processed 
ABIDE, which includes multiple instruments. 1 study has a measurement 
of GF based on the UK Biobank, whose rating is not clear. See Table 2 for 
detailed ratings. 

The PROBAST assessments of RoB and applicability are shown in 
Table 3. Fair interrater agreement was obtained in this analysis, esti-
mated with a Cohen’s Kappa equal to 0.353. In total, 8 (22%) studies 
were rated with low overall RoB and low concern regarding applica-
bility. This includes five development-only studies (Dubois, Galdi, Han, 
et al., 2018; Dubois, Galdi, Paul, & Adolphs, 2018; He et al., 2020; Li 
et al., 2019; Sripada et al., 2020), one development-validation study 
(Cox et al., 2019), and the validation portions of two development- 
validation studies (Elliott et al., 2019; Greene et al., 2018). These are 
eligible for quantitative synthesis, i.e. meta-analysis. Li et al. (2019) 
does not present prediction results in text format however, and thus was 
not used. Results pertaining to sMRI and dMRI encompass only the 4 
results in Cox et al. (2019), and thus these modalities were ineligible for 
quantitative synthesis, per our protocol. 87 results sets identified among 
the remaining 6 studies were suitable for quantitative synthesis: 3 in 
Dubois, Galdi, Paul, and Adolphs (2018), 8 in He et al. (2020), 16 in 
Sripada et al. (2020), 39 in Dubois, Galdi, Han, et al. (2018), 6 in Greene 
et al. (2018), and 15 in Elliott et al. (2019). All of these employed fMRI 
solely and reported either the Pearson Correlation Coefficient or R- 

squared, with the exception of Greene et al. (2018), which reported 
squared Spearman Rank Correlation. We opted to group this result with 
R-squared. 

3.3. Synthesis of results 

Forest plots with individual results are shown in Fig. 5. For the 
Correlation coefficient obtained from fMRI, both G and GF have ex-
pected correlations significantly different from zero, based on 66 results 
from 5 studies (Dubois, Galdi, Han, et al., 2018; Dubois, Galdi, Paul, & 
Adolphs, 2018; Elliott et al., 2019; He et al., 2020; Sripada et al., 2020). 
For G, the expected correlation was 0.42 (CI95% = [0.35, 0.50], p <
0.001) in the HCP. For GF, the expected correlation was 0.15 (CI95% =

[0.13, 0.17], p < 0.001) in the HCP. Both are significantly different (p <
0.001). A significant difference between the HCP and UK Biobank was 
found: studies score, on average, 0.086 (CI95% = [0.011, 0.16], p =
0.026) higher when using the latter. Residual heterogeneity was esti-
mated at I2 = 77:8% for this analysis. 

For R-squared, only G has expected R-squared significantly different 
from zero, based on 34 results from 6 studies (Dubois, Galdi, Han, et al., 
2018; Dubois, Galdi, Paul, & Adolphs, 2018; Elliott et al., 2019; Greene 
et al., 2018; He et al., 2020; Sripada et al., 2020). No significant dif-
ferences between HCP and PNC or between HCP and UK Biobank were 

Table 3 
PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias; D = Development; V = Validation. expresses low ROB/low concern regarding 
applicability; – expresses high ROB/high concern regarding applicability; and? expresses unclear ROB/unclear concern regarding applicability.  

Studies D/V ROB Applicability Overall 

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability 

Choi et al. (2008) D – – ? + – – – + – 
Yang et al. (2013) D – – – + – – – + – 
Finn et al. (2015) D – – – + – – – + – 
Wang et al. (2015) D ? – – + ? – ? + ? 
Park et al. (2016) D – – – + – – – + – 
Ferguson et al. (2017) D – – – ? – – – ? – 
Powell et al. (2017) D ? – – ? – – – ? – 
Noble et al. (2017) D – – – ? – – – ? – 
Greene et al. (2018) D – – – ? – – – ? – 
Greene et al. (2018) V – – – – – – – – – 
Dubois, Galdi, Han, et al. (2018) D – – – – – – – – – 
Dubois, Galdi, Paul, and Adolphs (2018) D – – – – – – – – – 
Li et al. (2018) D ? – – + – – – + – 
Alnæs et al. (2018) D – – – ? ? – – ? ? 
Cox et al. (2019) D – – – – – – – – – 
Cox et al. (2019) V – – – – – – – – – 
Yang et al. (2019) D ? – – + – – – + – 
Zhang et al. (2019) D ? – – + – – – + – 
Gao et al. (2019) D – – – + – – – + – 
Gao et al. (2019) V – – – ? – – – ? – 
Dadi et al. (2019) D ? – – + – – – + – 
Elliott et al. (2019) D – – – ? – – – ? – 
Elliott et al. (2019) V – – – – – – – – – 
Yoo et al. (2019) D – – – + – – – + – 
Li et al. (2019) D – – – – – – – – – 
Kashyap et al. (2019) D – – – + – – – + – 
Kong et al. (2019) D ? – – ? – – – ? – 
Xiao et al. (2019) D – – – ? – – – ? – 
Dryburgh et al. (2020) D – – ? + + – – + +

Jiang, Calhoun, Cui, et al. (2020) D – – – + ? – – + ? 
Hilger et al. (2020) D – – – + – – – + – 
Fan et al. (2020) D – – – ? – – – ? – 
Sripada et al. (2020) D – – – – – – – – – 
Wei et al. (2020) D – – – ? – – – ? – 
He et al. (2020) D – – – – – – – – – 
Jiang, Calhoun, Fan, et al. (2020) D – – – ? – – – ? – 
Jiang, Zuo, Ford, et al. (2020) V – – – ? – – – ? – 
Wu et al. (2020) D – – – + – – – + – 
Lin et al. (2020) D – – – + – – – + – 
Li et al. (2020) D ? – – ? – – – ? – 
Li et al. (2020) V ? – – ? – – – ? – 
Xiao et al. (2020) D – – – ? – – – ? – 
Jiang, Calhoun, Cui, et al. (2020) D – – – ? – – – ? –  
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Fig. 5. Forest plots for (a) the correlation coefficient and (b) the R-squared meta-analyses. The outcome, either G or GF, and the dataset, either HCP, PNC or the UK 
Biobank, were included as moderators. 
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found (ANOVA p = 0.717). For G, the estimated mean of R-squared was 
0.16 (CI95% = [0.13,0.18], p < 0.001), in a model without the dataset 
moderator. For GF, the estimated marginal mean of R-squared was 0.038 
(CI95% = [0.0074, 0.0685], p = 0.0165). Both are significantly different 
(mean difference 0.1175, CI95% = [0.078,0.16], p < 0.001). Residual 
heterogeneity was estimated at I2 = 59:3% for this analysis. See Ap-
pendix E for additional meta-regressions without low RoB results, where 
the impact of inclusion of results without low RoB lead to substantial 
differences. 

TRIPOD has items that apply only to either validation or develop-
ment of models. Here, all studies included development of models, while 
a few also included external validation. Good interrater agreement was 
obtained in this analysis, estimated with a Cohen’s Kappa equal to 0.6. 
We chose to represent results together in Fig. 6, with the caveat that a 
few items (10e, 12, 13c, 17, 19a) only apply to studies that include 
validation of models. 

The histogram of TRIPOD ratings is shown in Fig. 7. 

3.4. Risk of bias across-studies 

Funnel plots for both the analysis of correlation coefficients and R- 
squared are shown in Fig. 8. Both analyses present symmetrical funnel 
plots, which imply low risk of publication bias, but the range of standard 
errors is low, due to sample limitations, e.g. the lack of results with more 
subjects. Additional funnel plots, including results without low RoB are 
shown in Appendix F. 

3.5. Additional analyses 

We additionally analyzed the relationship between the expected ef-
fect size and training set size. Due to the small number of results per-
taining to R-squared, this analysis was performed only for the 
correlation coefficient. Fig. 9 shows the expected correlation coefficient 

between predicted values and true labels as a function of approximate 
training set size. This comparison is qualitative, and does not take into 
account confounders, but it is also expected that such procedures are 
more robust in larger sample sizes. Compare with Fig. 5a, which in-
cludes only studies with low RoB and low concerns regarding 
applicability. 

4. Discussion and conclusion 

Here, we systematically reviewed available studies on the applica-
tion of ML to the prediction of human intelligence using MRI data. Most 
of these studies were published very recently. See Fig. 2. Namely, two- 
thirds were published in 2019 and 2020. This attests the high and 
growing interest over this question in the literature. 

It is also very clear from Fig. 3 that some highly cited studies exert a 

Fig. 6. Overall results from the TRIPOD assessment of reporting quality. Bars represent average scores across studies. Items are nested into topics which are nested 
within sections, following the specification in TRIPOD. Sections and topics are shown, while items can be inspected in more detail in Table D.5 or Moons et al. (2015), 
Heus et al. (2019). Items 7a, 10b and 15a were adjusted following Wang et al. (2015). Table D.5 reflects these adjustments. 

Fig. 7. Distribution of TRIPOD overall ratings across 37 studies.  
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larger influence in the literature. Later works were highly influenced by 
these and, in a way, the current state of the literature reflects those 
earlier successes. A few studies do not cite other earlier studies in Fig. 3, 
likely because not every document focused exclusively on individualized 
prediction and/or intelligence. That should be taken into account when 
examining most results, especially TRIPOD ratings. See the TRIPOD 
checklist (Heus et al., 2019). 

In the case of T-fMRI, results are largely compatible across datasets, 
but not across tasks. Greene et al. (2018), Gao et al. (2019), Jiang, Zuo, 
Ford, et al. (2020) show that FC derived from tasks are stronger pre-
dictors of GF than RSFC. The gambling and the working-memory tasks 
demonstrate higher predictive power in all three studies. Wu et al. 
(2020), Sripada et al. (2020) also found that the working-memory task is 
highly discriminative of G, this time using statistical spatial maps. 

While some of the studies presented results on more than one MRI 
modality, only one study presented a model that learns from multimodal 
data. Jiang, Calhoun, Cui, et al. (2020) presented results on both ver-
texwise cortical thickness and region of interest (ROI)-based RSFC. They 
show that a model that uses both modalities at once attains significantly 
higher predictive accuracy for intelligence compared to single-modality 
models. Choi et al. (2008) “neurometric model” includes both cortical 
thickness and T-fMRI statistical maps as inputs, but each part of the 
model was learned in isolation. 

The HCP (Glasser et al., 2016; Van Essen et al., 2013) is the most 
employed dataset, appearing in 68% of the sample. Dating its first re-
leases back to 2013, it began being employed for the prediction of in-
telligence as early as 2015 (Finn et al., 2015). 

The majority, encompassing 76% of eligible studies, employed linear 
modeling for regression to some extent. Linear modeling is a strong 
baseline, also appearing in studies employing non-linear models. The 
most popular linear approaches include CPM and penalized linear 
models, each appearing in 36% and 42% of studies using linear models, 
respectively. CPM (Shen et al., 2017) is a very streamlined approach to 
predictive modeling. It is based on building linear models to predict 
outputs from aggregate measures of correlation between inputs and 
outputs, after thresholding based on significance. Features that are kept 
are then divided into positive-feature and negative-feature networks 
(Finn et al., 2015). Features in each network are summarized, e.g., 
summed or averaged, for each sample. Then, linear regression is used to 
predict outputs from these aggregate features, either separately or 
jointly for the positive-feature and negative-feature networks. After its 
introduction by Finn et al. (2015), albeit not yet named CPM, it became 

a staple of neuroimaging-based predictive modeling. Even though 
“connectome” appears in its name, the same principle can also be 
extended to other domains such as morphometry (Jiang, Calhoun, Cui, 
et al., 2020). Penalized linear modeling, on the other hand, does not 
aggregate features. Often, univariate filtering based on significance 
thresholding is used, akin to CPM. Then, however, remaining features 
are used as they are, without any additional transformation. The ratio-
nale for it is that penalization of coefficients can resolve commonalities 
and differences in features, and effectively attenuates overfitting. Also, 
aggregation by summing connectivity values amounts to weighting all 
features equally, which might be suboptimal. 

Non-linear regression modeling appears in only a few studies, 19% of 
the sample. This might be due to the intrinsic high dimensionality of 
neuroimaging data, particularly evident for fMRI. At such high dimen-
sionality, overfitting becomes a greater concern for more flexible 
models. The only non-linear model appearing more than once is KRR, a 
kernelized penalized linear regression. It is a very flexible approach 
given that a similarity measure between samples can be derived. Instead 
of using the base features in the model, features are expanded to higher 
(potentially infinite) dimensionalities. The kernel is the dot product 
between samples in this high dimensional space, which allows for effi-
cient computation of models, bypassing the need of explicitly computing 
features in the new basis. In the sample, the correlation and the Dice 
overlap kernels were used in different studies. Due to the implicit high 
dimensionality, penalization is used very often, such as the ridge pen-
alty, in the case of KRR. 

Across studies, prediction is usually performed in aggregate mea-
sures of the data. Abrol et al. (2021) systematically shows that deep 
neural networks when trained on raw data outperform classical linear 
and non-linear ML models in the prediction of age, gender and Mini 
Mental State Examination scores. They also show that embeddings ob-
tained from deep neural networks provide strong features for classical 
ML. This suggests that the choice of features in the literature has the 
potential of negatively biasing the performance of deep neural networks. 
Deep neural networks allow for using structured data, due to their 
inductive biases, present in architectures such as CNNs for image data or 
RNNs for sequence data. Only a few studies use deep neural networks for 
the prediction of intelligence using neuroimaging. He et al. (2020) 
modeled GF based on RSFC with three deep neural networks. Fan et al. 
(2020) modeled GF and GC based on dynFC with RNNs. Vieira, Dubois, 
Calhoun, and Salmon (2021, not in this review) implements prediction 
of G also with RNNs, but based on RS-fMRI time series. 

Fig. 8. Funnel plots for (a) the 66 results pertaining to the correlation coefficient and (b) the 34 results pertaining to R-squared meta-analyses.  
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4.1. Limitations across studies and recommendations 

We must first state that limitations found in the analyzed studies 
have to be examined under the light of the current review’s question, i.e. 
what current literature regarding the ML-based prediction of intelli-
gence using neuroimaging looks like. Many studies did not focus pri-
marily on the prediction of intelligence, even though they included such 
results. Studies proposing or benchmarking modeling choices, i.e. pre-
processing, ML, and imaging methods, will often include intelligence 
among their results. A common occurrence in these studies, that include 
several outcomes, is that they will not give results in text format. When 
results are shown only graphically, we decided to not use inferred 
numbers. Also, when assessing the TRIPOD checklist, we only scored 
items that were clearly within the scope of the document. For example, 
studies not primarily concerned with prediction were not penalized by 
not mentioning prediction in their title, i.e. item 1.ii in TRIPOD. 

4.1.1. On the measurement of intelligence and its quality 
For both correlation and R-squared results, G-based results are 

significantly higher than GF-based ones. This alludes to Gignac and Bates 
(2017), who showed that higher measurement quality moderates the 
observed correlation between intelligence and brain volume. In our 
assessment in Table 2, G derived from 10-tests in the NIHTB and 
PennCNB was rated as excellent, while GF or “cognitive ability” obtained 
from a single test was rated as fair. A few results on GF on He et al. (2020) 
employ the 2-min, 13-item test from the UK Biobank, which quality is 
unclear but would probably be rated as “poor” in Gignac and Bates 
(2017). Furthermore, Dubois, Galdi, Paul, and Adolphs (2018), Dubois, 
Galdi, Paul, & Adolphs, 2018 used the same predictor data based on RS- 
fMRI, but obtained very disparate results using the HCP. The authors 
reported r = 0.263 and R2 = 0.047, when predicting PMAT-based GF, 
versus r = 0.457 and R2 = 0.206, when predicting G based on the factor 
analysis of 10 tests in the PennCNB and NIHTB. 

It might be the case that performance would improve with better 
measurement of GF, although Bilker et al. (2012) shows high correla-
tions (> 0.9) between the original 60-item RSPM and abbreviated ver-
sions with as few as 9 items. For a comparison, the PMAT in the HCP is 
24-items long, and in the PNC it is either 18- or 24-items long, which 

Fig. 9. The expected correlation coefficient according to the approximate training size data employed across studies. With the exception of holdout-based studies, 
where the actual training set size is known, the approximate training size data was estimated as the total number of data available for training times by (K − 1)/K, 
where K is the number of groupings. Low risk of bias refers to studies that were rated with low RoB and low concern regarding applicability in Table 3. Modality 
refers to the imaging modality of each individual result. 
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should guarantee a very high correlation with the 60-item RSPM. No 
study employed the full 60-item computerized RSPM, which should take 
17 min to administer, on average (Williams & McCord, 2006). GF in the 
UK Biobank, on the other hand, is measured by a very brief verbal and 
numerical reasoning test tailored to that cohort, with no comparable 
reference test according to Fawns-Ritchie and Deary (2020). The time 
restriction adds a substantial working memory load to the test scores 
(Chuderski, 2015). It remains to be investigated if improvements to the 
test used in the UK Biobank would lead to measurable improvements in 
performance. 

The measurement of G and GF may incur risks of bias compromising 
proper estimation of intelligence. The use of a single-domain test, such 
as inductive reasoning in RPM, would evaluate an isolated skill and not 
measure adequately intelligence, which is by definition a set of different 
cognitive skills. Furthermore, a test that assesses different skills needs to 
cover more than one cognitive domain, e.g., verbal, visual or spatial, to 
obtain a complete measurement (Gignac & Bates, 2017). 

Another bias in interpreting results can occur due to the omission of 
information related to the measurement of intelligence. Studies must 
present a construct, e.g. intelligence, G, or GF, and the psychological test 
used to measure it, so that it is possible to verify whether the test is 
adequate to measure the function contained in the specific construct. 
However, a psychological test suitable for the construct is not neces-
sarily suitable for the population studied. It is essential to ensure tests 
are adequately validated for the population under study. 

Despite the solid empirical basis of the concepts of G, GF, and GC, 
there are still concerns regarding cognitive abilities associated with G 
(Kent, 2017). New research on the neuroimaging-based prediction of 
intelligence should bring more specifications when evaluating cognitive 
constructs, such as the psychological instrument, validity, and applica-
tion range. 

The current conceptualization of the intelligence construct does not 
encompass only GC or GF. It covers adaptability and problem-solving in 
real life, considering emotional intelligence factors, decision making 
(Stankov, 2017), and personality (Kent, 2017). The interaction of these 
cognitive processes in an integrated way configures a complex multi-
dimensional construct (McGrew, 2009). Due to this characteristic, it is 
recommended to use as many specifications as possible when perform-
ing the intelligence measurement. 

The best model for the development of psychological instruments in 
intelligence evaluation is the Cattell-Horn-Carroll (CHC), seen as the 
best psychometric evidence for human aptitudes (Abu-Hamour & Al- 
Hmouz, 2016; Hurks & Bakker, 2016; James, Jacobs, & Roodenburg, 
2015; Lecerf, Reverte, Coleaux, Favez, & Rossier, 2010; Wechsler & de 
Cassia Nakano, 2016). CHC theory consists of a hierarchical multidi-
mensional model with ten factors of cognitive functioning: Fluid intel-
ligence (Gf), Quantitative knowledge (Gq), Crystallized intelligence 
(Gc), Reading and writing (Grw), Short-term memory (Gsm), Visual 
processing (Gv), Auditory Processing (Ga), Long-term memory storage 
and retrieval ability (Glr), Processing Speed (Gs) and Decision speed 
(Gt). However, there is criticism over its weak explanatory capacity, its 
failure to make testable predictions, and its enmeshment to the 
Woodcock-Johnson battery (Wasserman, 2019). TheWoodcock-Johnson 
battery of tests (Woodcock, McGrew, & Mather, 2001) was designed to 
be more aligned to the CHC theory. However, there is evidence against 
this alignment and the lack of support for interpreting most of the scores 
suggested by its scoring system (Dombrowski, Beaujean, McGill, Benson, 
& Schneider, 2019). To date, no psychological test measures the broad 
cognitive abilities established in the CHC model which are contained in 
intelligence. For an adequate measurement, one should make use of 
instruments that are most related to the CHC theory, e.g., WAIS or 
Woodcock-Johnson Tests. 

4.1.2. The prevalence of gF 
The preponderance of GF has three probable causes: (1) early success, 

as reported in Finn et al. (2015), which is cited by 27 out of 33 possible 

studies, as can be seen in Fig. 3; (2) ease of estimation, since it is often 
taken to comprise the score of a single test; and (3) availability, which 
compounds with the last reason, since RPM scores are available from the 
HCP, UK Biobank, BGSP and PNC. 

The prevalence of GF presents some challenges regarding the validity 
of results. The RPM can be considered a good score to include for the 
estimation of G and GF. Current studies show that GF and G have a strong 
correlation and are often statistically indistinguishable (Caemmerer, 
Keith, & Reynolds, 2020). In isolation, however, according to the 
criteria published in Gignac and Bates (2017), the RPM would be 
considered at best a “fair” measure of G. Similarly, although it is 
correlated with GF, it does not appear to be remarkable in comparison 
with other tests that measure GFGignac (2015). These findings point to 
the necessity of investigating what the models are learning through the 
RPM, and how much of it is shared between G, GF and test specific 
variance. This would better clarify how much the prediction of RPM 
correlates with prediction of GF. 

Lohman and Lakin (2012) argue that GF consists of three compo-
nents: sequential reasoning, quantitative reasoning and inductive 
reasoning. The latter is the core of RPM. For this reason, Gignac (2015) 
argues that RPM can be considered an imperfect measure of GF. This is 
due to its narrower scope, consisting exclusively of figural type items. All 
studies that predicted GF employed the RPM to some extent. Most, 19 
out of 20, used solely the RPM, with the remaining one employing both 
the RPM and NIHTB’s fluid composite score. For this reason, their results 
necessitate further consideration. 

4.1.3. Modeling approaches 
Schulz et al. (2020, not in this review) show that non-linear models 

do not show performance advantages in the prediction of GF in large 
scale datasets. He et al. (2020), on the other hand, argues that a non- 
linear traditional machine learning model outperforms deep learning 
in the prediction of GF in large scale datasets. Abrol et al. (2021) argues 
that it might be that processed features, used in both works, discard task- 
specific information. Representation learning with deep learning could 
extract more informative features tailored for the task at hand from 
minimally processed data. We can conclude that ROI-level summariza-
tion favors traditional ML, and particularly linear models. On the other 
hand, less- or minimally-processed and structured data would favor non- 
linear approaches based on representation learning, as has been shown 
in Fan et al. (2020) and Vieira et al. (2021). 

Linear models are, in fact, more abundant than non-linear ones 
among the references reviewed. CPM, in its original formulation, aver-
aged features either positively- or negative-aligned with the target 
variable. Wei et al. (2020) mentions that this gives equal weighting to all 
selected features, which might be suboptimal for the task, and would 
then explain the lower performance of CPM compared to linear models 
that do not equally weight predictors (Dubois, Galdi, Han, et al., 2018; 
Gao et al., 2019; Wei et al., 2020). While the original CPM is more 
interpretable, among the reviewed articles more optimized choices have 
been demonstrated. 

4.1.4. The level of expected evidence 
The literature constructs a clear picture regarding the level of ex-

pected evidence: correlations between brain imaging data and intelli-
gence are substantial, albeit reliably low. It hovers around between 0.12 
and 0.25 in large sample-size studies based on the UK Biobank (Cox 
et al., 2019; He et al., 2020), shown in Fig. 9. According to our quan-
titative analysis, the confidence interval covers between 0.35 and 0.50 
for G and 0.13 and 0.17 for GF based on fMRI data only. A possible 
explanation for this is that, in fact, the current data only affords such a 
level of performance. This also means that unexplained components of 
intelligence could be potentially learned in other spatial and temporal 
resolutions and imaging contrast mechanisms. Another, more prob-
lematic hypothesis is that ML is capturing relationships with other be-
haviors and demographics that correlate with intelligence, but not 
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intelligence itself. This “shortcut learning" (Geirhos et al., 2020) is a 
major challenge for ML generalizability and interpretability. Possible 
shortcuts could include attention and arousal, but can go much deeper, 
to include substance abuse, malnutrition or socioeconomic status. Pop-
ulation modeling is one alternative to estimate how much brain data 
contributes to prediction of mental traits, i.e. Dadi et al. (2021, not in 
this review) demonstrates that, despite statistical significance, multi-
modal brain data contributes little to the prediction of GF compared with 
sociodemographics. 

4.1.5. Proper assessment of performance 
We noted a large diversity in the methods for the assessment of 

performance. Techniques such as LOOCV and CV are widely employed. 
Proper inner loops of validation are often reported for performance 
tuning. However, the excessive use of the same datasets for internal 
validation leads to the risk of overfitting across studies, where differ-
ences between performance is due to random chance and not systematic 
differences between modeling approaches. Assessment of performance 
in an independent sample is often favored in the ML literature for that 
reason. Several studies implemented external validation, often across 
datasets (Cox et al., 2019; Elliott et al., 2019; Gao et al., 2019; Greene 
et al., 2018; Jiang, Calhoun, Fan, et al., 2020; Li et al., 2020). Li et al. 
(2020) also implements validation across time, demonstrating the sta-
bility of predictions. The usage of proper validation strategies is 
fundamental to assess meaningful differences between models. 

On the choice of performance metrics, we see that Pearson correla-
tion coefficient and R-squared are the most common in the literature. 
This is due to their scale invariance and perceived ease of interpretation. 
Despite their popularity, both are prone to biases. The correlation co-
efficient represents the linear association between predictions and true 
outcomes. Its formulation does not involve actual residuals, so models 
with arbitrarily large errors can still achieve perfect unitary correlation. 
Since R-squared involves a ratio, the denominator that represents the 
variance of true values can arbitrarily reduce or augment it. In other 
words, too small (or too large) variance of intelligence in the sample can 
lead to small (or large) R-squared, even under the same model (Alex-
ander, Tropsha, & Winkler, 2015). This means that comparisons be-
tween studies, specially when their outcomes and/or populations differ, 
is at elevated risk of bias. A different choice of population incurs 
different characteristics of the outcome variance, possibly compro-
mising the comparison. Model comparison on the same data could be 
performed under a well-behaved metric, such as the MSE or MAE. 

4.1.6. Publication bias and selective reporting 
We detected censoring for studies with high ROB and small sample 

sizes, as can be seen in Fig. 9. Their variability and the frequency of 
negative results diminish with models trained on less than 300 subjects. 
This is a qualitative indicator of publication bias, but also of selective 
reporting, since most studies report comparisons with multiple models. 
This selective reporting can be a result of the issue described in Hosseini 
et al. (2020), where authors perform optimization of their models on the 
same data that performance is measured, leading to inflated perfor-
mance estimates due to overfitting to the test set and leakage. 

4.1.7. Lack of diversity of data samples 
The diversity of populations under study across studies is skewed 

towards a select group of countries. The 14 datasets identified can be 
grouped accordingly into United States (HCP, NKI, PNC, BGSP, COBRE), 
New Zealand (DMHDS), United Kingdom (UK Biobank), China (UESTC, 
SLIM, SXMU), South Korea (NRI, KAIST) and North America/Europe 
(ABIDE-I). Earlier releases of ABIDE were for the most part based on 
United States populations as well (New York University (NYU), Kennedy 
Krieger Institute, Stanford, Oregon Health & Science University, Uni-
versity of California, Los Angeles as in Wang et al. (2015)), and the only 
study using the ADHD-200 dataset employs solely NYU data. This lim-
itation stems from economic factors that affect countries differently. 

While some datasets sampled highly-educated young adult populations, 
several others are matched samples from the local general population, 
which diminishes risks of biases. The prediction of GF from the HCP, 
specially that assessed by the RPM, is very predominant in the literature. 
Albeit large datasets are often employed, the homogeneities across 
studies raise concerns regarding generalizability to other populations. 
Future works could perform validation analyses of trained models on 
new datasets, taking special care of differences in imaging acquisition 
and pre-processing. 

4.1.8. Neuroscientific value 
While earlier association works helped to foment new theories on 

intelligence, current ML-based works have not yet contributed sub-
stantially to this endeavor. This comes from the fact that the majority of 
the works do not try to extract explanatory value from the trained 
models. Few works test the leverage of different features and how these 
fit within or without theories such as Parieto Frontal Integration Theory 
(P-FIT), Network Neuroscience Theory (NNT) and the Multiple-Demand 
(MD) system (Duncan, 2010). Future works and possibly meta-analyses 
can solidify these findings, providing support for existing or new 
theories. 

Li et al. (2020) discuss their findings from white-matter RSFC in light 
of P-FIT. This includes the importance of FC from the superior longitu-
dinal fasciculus, which is central to P-FIT, but also other networks not 
included in the classical P-FIT. Dryburgh et al. (2020) concludes that 
many regions included in their modeling approaches, for both autism 
and neurotypical samples, coincide with P-FIT predictions. Hilger et al. 
(2020) concludes that the preference for frontal and parietal regions in 
their study aligns with P-FIT and MD. Sripada et al. (2020) highlight that 
a fronto-parietal network (FPN) and related executive regions are 
implicated in both P-FIT and MD. Jiang, Calhoun, Cui, et al. (2020) 
concludes that several regions included in their model, comprising 
(DMN), executive control network and a subcortical network, conform 
to P-FIT, with the exception of the cingulate, which they argue might be 
omitted due to heterogeneity in the sample. Cox et al. (2019) extensively 
discuss their results, including non-predictive ones, regarding P-FIT. 
Their work highlights that cortical and subcortical gray-matter volumes 
are more predictive of G than white-matter dMRI properties. Volumes of 
orbitofrontal, subcallosal, central, precentral, insular and precuneus had 
high associated effects over the prediction of G, but were not entirely 
encapsulated in classical P-FIT. Greene et al. (2018) concludes that the 
regions included in their model relating T-fMRI FC to GF are consistent 
with P-FIT. Dubois, Galdi, Han, et al. (2018) report that predictive RSFC 
edges are distributed across the cortex, but connections encompassed by 
the FPN, DMN, cingulo-opercular network and the visual network are 
highlighted in their analysis, which align with P-FIT. Yang et al. (2013) 
concludes that their results based on sMRI morphometrics highlights 
some of the regions implicated in P-FIT, with the exception of frontal 
regions, a divergence they attribute to using different methods in the 
assessment of brain-intelligence associations. Jiang, Calhoun, Fan, et al. 
(2020)Hilger et al. (2020)Li et al. (2020) cite the NNT, but none discuss 
their results in the context of this theory. 

Another concern lies in the fact that the current theories were mostly 
derived from univariate association studies. Omissions in the predictive 
models of features implicated in theories do not, necessarily, contradict 
said theories. These could be simply caused by the fact that models ac-
count for the correlation between predictors. ML-based studies are 
fundamental to update theories to conform to multivariate associations. 

4.1.9. Factors that increase risk of bias 
A common occurrence in the assessment of PROBAST was that 

studies did not take into account the optimistic bias of confounders 
received high RoB ratings for “Analysis” Table 3. A notorious 
confounder which should be taken into account is kinship, in datasets 
like the HCP (Dubois, Galdi, Paul, & Adolphs, 2018). This requires ad-
aptations, such as LOFOCV. Other, more pervasive ones, include 
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movement and brain volume, but also sex and age. Two common ap-
proaches in the literature are removing the effect of confounders using 
linear models and stratifying data in a way to minimize bias due to 
confounders, the latter a very common approach when dealing with 
family structure. While our work cannot determine optimal strategies 
for treatment of confounders, low RoB studies were expected to recog-
nize their effects and account for it in results. 

Another common factor leading to high RoB was small sample size. It 
is a well-known fact from the literature that ML-based studies suffer 
spurious correlation induced by small samples (Varoquaux, 2018). The 
few studies that report the standard error of the mean cross-validated 
performance also likely underestimate it (Varoquaux, 2018). Recog-
nizing the negative impact of small sample sizes, having fewer than 500 
subjects was considered as an indicator of possible RoB in the assessment 
of Table 3. 

4.1.10. Recommendations 
A number of recommendations can be made based on the limitations 

we identified: (1) evidence points to the fact that constructs with higher 
measurement quality are easier to predict, thus, it is desirable to have 
the highest measurement quality as possible; (2) confounders have to be 
carefully selected and controlled for. Confounders can inflate perfor-
mance estimates if not representative of the population (Rao et al., 
2017), and in the case of explainability, can lead to erroneous conclu-
sions, e.g., due to mutual causation. In general, age, sex and intracranial 
volume or other measures of head size have probable causal effects on 
both neuroimaging- and cognition-derived variables, making them 
candidates as confounders. Movement has a probable common cause to 
intelligence, making both correlated (Siegel et al., 2017). Its effect on 
images, however, is mostly non-neuronal (Li et al., 2019; Siegel et al., 
2017), where ML models could in principle learn that subjects that have 
less motion-related artifacts are likely to be more intelligent, which is a 
correct conclusion, but not of interest when one is searching for brain- 
based markers of intelligence. Therefore, the risk of “shortcut 
learning" makes it a potential candidate as a confounder. Years of edu-
cation, socioeconomic status and related variables have causal effects to 
intelligence, but improbable direct effects on brain-derived variables. 
This in turn makes both not candidates as confounders in the general 
population, especially if effects on health, particularly vascular and 
mental health, can be ruled out. Kinship is a potential confounder 
because both brain- and cognition-derived variables demonstrate a de-
gree of heritability. The model is evaluated as if it would be applied to 
new subjects not related to the ones in the training set. Also, under non- 
representative sampling, any variable has the potential to become a 
confounder. Chyzhyk, Varoquaux, Thirion, and Milham (2018) presents 
an overview of strategies to control confounders which can be explored 
by future studies, including a novel strategy based on anti mutual- 
information; (3) the use of scale- and location-invariant performance 
metrics, such as Pearson correlation or R-squared, while attractive for its 
purported interpretability, can lead to erroneous conclusions. Reporting 
of other metrics such as MSE is desirable, but due to normalization, 
standardization and possibly residualization of confounders comparison 
between models and datasets is not straightforward, and authors should 
be cognizant of those caveats; (4) proper use of CV and other procedures 
to estimate generalizability performance. This includes using stratifi-
cation when it makes sense, and also nested validation for selecting best 
hyperparameters/models, since the “best” combination can be due to 
random chance. This also includes being aware of possible sources of 
leakage; (5) studies could probe predictions made by theories, e.g P-FIT 
and NNT, and obtain neuroscientific insights from the ML models; (6) 
studies that explore data with structured temporal, e.g. time series or 
dynFC, and/or spatial, e.g. minimally processed sMRI, are likely to 
benefit from the use of deep learning. However, studies interested in 
ROI-level associations with intelligence will probably not benefit from 
deep learning models. 

Journals could adopt a guideline for self assessment of reporting 

quality and RoB by authors, e.g., in the format TRIPOD and PROBAST. 
Reviewers could then assess the adherence to the guidelines using 
checklists, in final stages of peer-review. It is not clear, however, how 
much guidelines actually help to improve quality (Zamanipoor Najafa-
badi et al., 2020). 

4.2. Limitations of the review 

Some possible limitations can be identified in our review 
methodology. 

4.2.1. Systematic searches and data retrieval 
Searching for manuscripts on predictive modeling on neuroimaging 

is particularly challenging. In the early literature, the term “predict” 
would often be used to refer to studies on correlations and associations. 
For this reason, we had to use a search strategy based on domain- 
knowledge. This choice, however, incurs the risk of selection bias due 
to missing documents. Since we successfully retrieved a reasonable 
number of documents, we believe that we minimized this risk and also 
obtained a representative sample. It is however expected that our se-
lection missed documents, but we believe that this number should be 
small. 

The large diversity of use of terms and also the fact that intelligence 
is not the main object of study in several studies makes systematic search 
more difficult, leading to omissions (for example Marc-Andre Schulz 
et al., 2020, Avery et al., 2019, Pervaiz, Vidaurre, Woolrich, & Smith, 
2020, not in this review). Narrowing down the search to full-articles 
misses other forms of publications, such as conference papers (for 
example Mihalik et al., 2019, not in this review). Lastly, the end date of 
the search will also lead to the omission of new articles (for example 
Vieira et al., 2021, Dadi et al., 2021, Dhamala, Jamison, Jaywant, 
Dennis, & Kuceyeski, 2021, Feilong, Guntupalli, & Haxby, 2021, Schulz 
et al., 2022, Cai et al., 2021, Frith et al., 2021, Sen & Parhi, 2021, not in 
this review). The authors were made aware of some of these references 
after the protocol registration, while others were noted by an anony-
mous review during peer-review. We offer this list in the hope it might 
be useful for future studies. 

The fact that most studies either did not focus solely on intelligence 
or were not primarily about individualized prediction makes data 
retrieval difficult. For this reason, in several instances constructs and 
instruments are not readily identified in searchable text. We thoroughly 
searched for information in actual figures and supplementary materials. 
We did not follow citations or other sources to infer this information, 
since the construct should ideally be stated by authors. 

Another source of variance is the fact that terminology is flexible. 
Studies will often use terms like cognitive ability or others with 
ambiguous meaning. For example, in Elliott et al. (2019) “cognitive 
ability” refers to both FSIQ and GF, while in Sripada et al. (2020) 
“general cognitive ability” names a measurement that is identified with 
G in other studies. Some works will refer to a G-like construct as general 
intelligence, others will refrain from using the term intelligence alto-
gether. We tried to disambiguate authors’ choices with the coherence of 
the review in mind. This is particularly evident in Table 2, where we 
tried to unify terminology. 

4.2.2. Use and adaptation of standardized tools 
We adopted the TRIPOD adherence assessment form (Heus et al., 

2019) to evaluate reporting quality. That benefits objectivity in this 
analysis. Measuring adherence to a specific reporting guideline has the 
disadvantage of potentially misrepresenting studies. This guideline is 
not enforced by journals, reviewers or the authors themselves in this 
research area. This form has been similarly applied to documents pub-
lished prior to TRIPOD (Zamanipoor Najafabadi et al., 2020). Due to the 
generality of TRIPOD items, we believe that the risk of bias is low 
regarding the assessment of reporting quality. Several studies achieved 
high ratings, as can be seen in Fig. 7. 
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We employed PROBAST to assess RoB and applicability. PROBAST is 
a tool designed primarily for studies in health and medicine, but its items 
are still very applicable to our review question. Another benefit is that 
the use of standardized tools minimizes biases when compared with an 
alternative created by authors. This was a post-hoc adaptation from the 
protocol in Vieira et al. (2021), but, with aforementioned justification, 
we also consider that the risk of inducing bias is low. 

We employed the PRISMA checklist as a reporting guideline. PRISMA 
was designed for studies that evaluate healthcare interventions, but 
most items can be applied to our review question. We believe that this 
choice offers no additional risk of bias for our review. 

The quality of measurement of intelligence was evaluated by the first 
three criteria of the essential guide for categorizing the quality of gen-
eral intelligence measurement (Gignac & Bates, 2017). Although the 
guide was proposed for G, we also used it to assess the quality of mea-
surement of GF. 

4.2.3. Lack of data for further inferences 
The number of studies using modalities other than fMRI with low 

RoB and low concerns regarding applicability was insufficient for 
quantitative analysis. For this reason, we only obtained meta-estimates 
of correlation and R-squared from fMRI. Fig. 9 seems to point towards an 
approximately unique ceiling in performance, but the small number of 
studies, especially truly multimodal ones, makes that inference 
inconclusive. 

4.3. Future work 

Future work could explore other imaging techniques, such as PET, 
EEG and MEG. These imaging techniques probe different functional 
aspects from fMRI. PET allows the study of slow metabolic dynamics in 
the brain and was fundamental for the definition of the P-FIT, being 
employed in the study of metabolic response differences under cogni-
tively demanding tasks (Jung & Haier, 2007). EEG and MEG, on the 
other hand, probe fast electrical cerebral dynamics, and their impor-
tance was also acknowledged in P-FIT, albeit neither was part of its 
experimental foundation. We are aware of at least one study that em-
ploys EEG to the prediction of GF (Hakim, Awh, Vogel, and Rosenberg, 
2021, not in this review). In addition to other imaging techniques, 
multimodality presents an avenue for future research. It is currently not 
possible to establish whether information learned from different mo-
dalities overlap due to the lack of large numbers of multimodal models. 
Studies employing two or more techniques or modalities at once can 
better disambiguate the predictive power exclusive to each. This type of 
study is, however, becoming more widespread. Jiang, Calhoun, Cui, 
et al. (2020) model anatomical and RSFC data jointly, Dhamala et al. 
(2021, not in this review) use dMRI structural connectivity and RSFC, 
and Dadi et al. (2021, not in this review) includes joint modeling based 
on RSFC, dMRI diffusion measurements, and sMRI global and regional 
volumes. 

Most works employ ROI-level features. Although this “summariza-
tion” makes ML more amenable, since it diminishes the dimensionality 
of data, this level of spatial abstraction can discard useful intra-regional 
information. Feilong et al. (2021, not in this review) systematically 
demonstrates that accounting for fine-grained, intra-ROI task and 
resting-state FC differences lead to improvements in the prediction of G 
and other intelligence measurements. Schulz et al. (2022, not in this 
review) shows that the performance ceiling for the prediction of GF from 
RS-fMRI-, dMRI- and sMRI-extracted predictors has not been reached yet 
on the largest dataset available today, with linear and non-linear models 
performing on par with each other. It can then be argued that the true 

level of association between brain-derived predictors and intelligence 
cannot be probed with the current paradigm with the available datasets 
at present. Future developments on data-efficient ML models that can 
robustly learn from minimally preprocessed data have the potential of 
resolving this abstraction and discovering relationships hidden by 
summarization. 

Other ML algorithmic developments can improve prediction accu-
racy and validity in the future. In particular, interpretable and 
explainable models can further corroborate, falsify and augment current 
theories on the biological bases of intelligence, which were, for the most 
part, developed based on coarse-grained spatial attributes of brain 
anatomy and function. 

Refinements of psychometric and neuroscientific theories of intelli-
gence will also lead to a demand for future work. Intelligence differences 
do not occur in isolation, being permeated by other human behaviors 
and environmental factors. The extended P-FIT (ExtPFIT) was formu-
lated in Gur et al. (2021), and its generalizability can be tested in a ML- 
based framework. Other neuroscientific theories and extensions will 
probably emerge in the future. 

Finally, larger scale datasets will diminish small sample-size biases in 
predictive models (Varoquaux, 2018). Jointly learning across different 
datasets and discarding confounding information efficiently can boost 
predictive accuracy. Future works can help answer if the patterns 
observed in current models generalize across different populations, 
socio-economic environments, languages and cultures. 

4.4. Conclusions 

Half of the identified studies include linear modeling to predict RPM- 
based GF from HCP fMRI. This fact attests the significance and reliability 
of fMRI-based prediction studies. It also alludes to possible new avenues 
of research that have been studied infrequently if at all. 

By pointing out salient results across studies and limitations, we hope 
that this work contributes to further developments in this area of 
research. While predictive modeling “best-practices” are abound, the 
literature currently lacks reporting guidelines, which could be fulfilled 
to ease literature search. Some gaps that can be filled by future studies 
include: extending and validating the current models in new pop-
ulations, developing models using other spatiotemporal resolutions, 
other modalities, and imaging techniques, and disambiguating the 
contribution of neuronal phenomena to the predictions. 
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Appendix A. SCOPUS search string 

We used the following query string for systematic search in SCOPUS: 

(TITLE-ABS-KEY (("cortical thickness" OR "functional connectivity" OR "structural connectivity" OR "effective connectivity" OR mri OR fmri OR 
morphometry) AND (predict* OR "multivariate pattern analysis" OR bases OR cpm OR variability OR mvpa OR "machine learning")) AND (TITLE 
(intell* OR behav* OR "cognitive ability" OR iq))) 

This query string was adapted from an initial search string, defined during preregistration: 

(TITLE-ABS-KEY (("cortical thickness" OR "functional connectivity" OR "structural connectivity" OR "effective connectivity" OR mri OR fmri OR 
morphometry) AND (prediction OR predict OR cpm OR "multivariate pattern analysis" OR bases OR variability OR mvpa)) AND (TITLE (intelli-
gence OR behavioral OR behavior OR "cognitive ability"))) 

Appendix B. PRISMA 2009 checklist  

Table B.4 
From: Moher et al. (2009).  

Section/topic # Checklist item Reported on 
page # 

Title 
Title 1 Identify the report as a systematic review, meta-analysis, or both. page 1  

Abstract 
Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 

participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of 
key findings; systematic review registration number. 

page 1  

Introduction 
Rationale 3 Describe the rationale for the review in the context of what is already known. page 2 
Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 

outcomes, and study design (PICOS). 
page 2  

Methods 
Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration 

information including registration number. 
page 2 

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, 
publication status) used as criteria for eligibility, giving rationale. 

page 2 

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional 
studies) in the search and date last searched. 

page 2 

Search 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. page 2 
Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in 

the meta-analysis). 
page 2 

Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for 
obtaining and confirming data from investigators. 

page 5 

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made. 

page 5 

Risk of bias in individual 
studies 

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the 
study or outcome level), and how this information is to be used in any data synthesis. 

page 5 

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). page 6 
Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) 

for each meta-analysis. 
page 6 

Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting 
within studies). 

page 6 

Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which 
were pre-specified. 

page 6  

Results 
Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each 

stage, ideally with a flow diagram. 
page 6 

Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide 
the citations. 

page 7 

Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). page 8 
Results of individual 

studies 
20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group 

(b) effect estimates and confidence intervals, ideally with a forest plot. 
page 10 

Synthesis of results 21 Present the main results of the review. If meta-analyses are done, include for each, confidence intervals and measures of 
consistency 

page 10 

Risk of bias across studies 22 Present results of any assessment of risk of bias across studies (see Item 15). page 11 
Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression see Item 16]). page 12  

Discussion 

(continued on next page) 
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Table B.4 (continued ) 

Section/topic # Checklist item Reported on 
page # 

Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key 
groups (e.g., healthcare providers, users, and policy makers). 

page 12 

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified 
research, reporting bias). 

page 13 

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research. page 18  

Funding 
Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the 

systematic review. 
page 18  

Appendix C. Prediction performance metrics 

Given a set of true labels y, and a set of predictions ŷ, several performance metrics can be defined. 

C.1. Continuous valued labels 

The Pearson correlation coefficient, defined as 

r(y, ŷ) =
∑N

i (ŷi − E[ŷ] )(yi − E[y] )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (ŷi − E[ŷ] )2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i (yi − E[y] )2

√ ,

is the most popular performance metric for regression of continuous valued labels. 
Other metrics include the MSE, 

MSE(y, ŷ) = E
[
(y − ŷ)2 ]

=

∑N
i (yi − ŷi)

2

N
,

the MAE, 

MAE(y, ŷ) = E[|y − ŷ|] =

∑N

i

⃒
⃒
⃒
⃒yi − ŷi

⃒
⃒
⃒
⃒

N
,

and Spearman rank correlation coefficient, 

ρ(y, ŷ) = r(R(y) ,R(ŷ) ),

defined in terms of Pearson’s, but based on ranks instead of values, as denoted by the rank function R(⋅). 
A few more metrics are linked to the MSE. These include the coefficient of determination, or squared deviance, R-squared, 

R2(y, ŷ) = 1 −
∑N

i (yi − ŷi)
2

∑N
i (yi − E[yi] )

2,

the RMSE, 

RMSE(y, ŷ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

MSE(y, ŷ)
√

,

the NRMSE, 

NRMSE(y, ŷ) =
RMSE(y, ŷ)

E[y]
,

the nRMSD, 

nRMSD(y, ŷ) =
RMSE(y, ŷ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (yi − E[y] )2
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − R2

√
,

and the mean percentage error (as used in Park et al., 2016), 

Percentage error(y, ŷ) =
∑N

i

⃒
⃒yi − ŷi

⃒
⃒
/

yi

N
.
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C.2. Binary valued labels 

In our sample, the only reported performance metric for binary valued labels yi ∈ {0,1} were the AUC and accuracy. 
AUC is defined mathematically as: 

AUROC(y, ŷ) =

∑N
i
∑N

j

(
yj − yi

)21̂yi>̂yj
∑N

i yi
∑N

i (1 − yi)
.

Notice that (yj − yi)2 ≡ 1 only when yi ∕= yj, being 0 otherwise. 
Likewise, accuracy is: 

Accuracy(y, ŷ) =

∑N
i 1̂yi=yi

N
.

Appendix D. Adjusted TRIPOD checklist  

Table D.5 
Adjusted TRIPOD checklist for reporting quality assessment.  

Section/topic Item Checklist item Page 

Title and abstract 
Title 1 Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be 

predicted.  
Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and 

conclusions.   

Introduction 
Background and 

objectives 
3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable 

prediction model, including references to existing models.  
3b Specify the objectives, including whether the study describes the development or validation of the model or both.   

Methods 
Source of data 4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and 

validation data sets, if applicable.  
4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.  

Participants 5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of 
centres.  

5b Describe eligibility criteria for participants.  
5c Give details of treatments received, if relevant.  

Outcome 6a Clearly define the outcome that is predicted by the prediction model, including how and when assessed.  
6b Report any actions to blind assessment of the outcome to be predicted.  

Predictors Adjusted 
7a 

Clearly define all predictors used in developing or validating the ML model, including how and when they were measured.  

7b Report any actions to blind assessment of predictors for the outcome and other predictors.  
Sample size 8 Explain how the study size was arrived at.  
Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any 

imputation method.  
Statistical analysis 

methods 
10a Describe how predictors were handled in the analyses.  
Adjusted 
10b 

Specify type of model, all model-building procedures (including any predictor selection, hyperparameter selection if needed), and 
method for internal validation.  

10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.  
Risk groups 11 Provide details on how risk groups were created, if done.   

Results 
Participants 13a Describe the flow of participants through the study, including the number of participants with and without the outcome and, if 

applicable, a summary of the follow-up time. A diagram may be helpful.  
13b Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of 

participants with missing data for predictors and outcome.  
Model development 14a Specify the number of participants and outcome events in each analysis.  

14b If done, report the unadjusted association between each candidate predictor and outcome.  
Model specification Adjusted 

15a 
Present the full prediction model to allow predictions for individuals (i.e. links to the final model online (coding of predictors, 
codeand final parameters/coefficients, and with the architecture described in full in the article)).  

15b Explain how to the use the prediction model.  
Model performance 16 Report performance measures (with CIs) for the prediction model.   

Discussion 
Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).  
Interpretation 19b Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant 

evidence.  
Implications 20 Discuss the potential clinical use of the model and implications for future research.  

(continued on next page) 
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Table D.5 (continued ) 

Section/topic Item Checklist item Page  

Other information 
Supplementary 

information 
21 Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.  

Funding 22 Give the source of funding and the role of the funders for the present study.   

Appendix E. Synthesis of additional meta-analytic results 

Forest plots using all identified results are depicted in Fig. E.10, for R-squared, and Fig. E.11, for the correlation coefficient. Contrast with the ones 
in Fig. 5. Imaging modalities with less than 10 results and datasets with less than 4 results were excluded from these analyses.

−0.1 0 0.1 0.2 0.3 0.4

Coefficient of determination

Gao et al.(2019).10
Gao et al.(2019).9
Gao et al.(2019).8
Gao et al.(2019).7
Gao et al.(2019).6
Gao et al.(2019).5
Gao et al.(2019).4
Gao et al.(2019).3
Gao et al.(2019).2
Gao et al.(2019).1
Elliott et al.(2019).4
Elliott et al.(2019).3
Elliott et al.(2019).2
Elliott et al.(2019).1
Greene et al.(2018).16
Greene et al.(2018).15
Greene et al.(2018).14
Greene et al.(2018).13
Greene et al.(2018).12
Greene et al.(2018).11
Greene et al.(2018).10
Greene et al.(2018).9
Greene et al.(2018).8
Greene et al.(2018).7
Greene et al.(2018).6
Greene et al.(2018).5
Greene et al.(2018).4
Greene et al.(2018).3
Greene et al.(2018).2
Greene et al.(2018).1
Dubois et al.(2018a).3
Dubois et al.(2018a).2
Dubois et al.(2018a).1
Sripada et al.(2020).16
Sripada et al.(2020).15
Sripada et al.(2020).14
Sripada et al.(2020).13
Sripada et al.(2020).12
Sripada et al.(2020).11
Sripada et al.(2020).10
Sripada et al.(2020).9
Sripada et al.(2020).8
Sripada et al.(2020).7
Sripada et al.(2020).6
Sripada et al.(2020).5
Sripada et al.(2020).4
Sripada et al.(2020).3
Sripada et al.(2020).2
Sripada et al.(2020).1
He et al.(2020).4
He et al.(2020).3
He et al.(2020).2
He et al.(2020).1
Dubois et al.(2018b).3
Dubois et al.(2018b).2
Dubois et al.(2018b).1

1.42%    0.07 [−0.01, 0.15]
1.42%    0.09 [ 0.00, 0.17]
1.42%    0.09 [ 0.01, 0.17]
1.42%    0.10 [ 0.02, 0.18]
1.42%    0.13 [ 0.05, 0.21]
1.28%    0.11 [ 0.03, 0.20]
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Fig. E.10. Forest plot for the R-squared meta-analysis. Outcome, either G, GF or GC, and dataset, either HCP, PNC or the UK Biobank, were included as moderators. 
All results were obtained using fMRI. 

In Fig. E.10, no significant effect of dataset, either one of HCP, PNC, or UK Biobank was found (ANOVA p = 0.80). The expected R-squared was 
estimated as 0.155 (CI95% = [0.131, 0.179], p < 0.001) for G and 0.065 (CI95% = [0.045, 0.084], p < 0.001) for GF, in a model without dataset 
moderators. The difference between G and GF was estimated at 0.09 (CI95% = [0.060, 0.121], p < 0.001). While the result for G is compatible with the 
one in Fig. 5, for GF results without low RoB lead to an inflation in expected R-squared. 

In Fig. E.11, significant effects were found for the outcome, dataset and imaging modality moderators (ANOVA p < 0.001 in all three cases). The 
expected correlation was estimated as 0.322 (CI95% = [0.2602, 0.3835], p < 0.001) for G in HCP. The expected correlation was estimated as 0.187 
(CI95% = [0.166, 0.208], p < 0.001) and 0.159 (CI95% = [0.086, 0.232], p < 0.001) for GF in HCP and the UK Biobank, respectively, where no 
difference between datasets was found (ANOVA p = 0.449). Fig. 5, on the other hand, estimated higher GF correlation in the UK Biobank and higher G 
correlation in the HCP. 

The inclusion of a RoB (High/Unclear vs Low) moderator led to significant differences in both analysis. 
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Fig. E.11. Forest plot for the correlation coefficient meta-analysis. Imaging modality, either fMRI, sMRI or dMRI, outcome, either G, GF or GC, and dataset, either 
ABIDE, ADHD-200, DMHDS, HCP, NKI, NRI, NRI/KAIST, PNC, SLIM, SXMU, UESTC or the UK Biobank, were included as moderators. 

Appendix F. Additional analysis of risk of bias across studies 

Funnel plots using all identified results are depicted in Fig. F.12, for the correlation coefficient, and Fig. F.13, for R-squared. Contrast with the ones 
in Fig. 8.

Fig. F.12. Funnel plot for the correlation coefficient meta-analysis. 223 results are depicted.  

Fig. F.13. Funnel plot for the R-squared meta-analysis. 58 results are depicted.  
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