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ABSTRACT The skin microenvironment at the site of infection plays a role in the
early events that determine protective T helper 1/type 1 immune responses during
cutaneous leishmaniasis (CL) infection. During CL in nonhealing BALB/c mice, early
interleukin-4 (IL-4) can instruct dendritic cells for protective Th1 immunity. Addition-
ally, keratinocytes, which are the principal cell type in the skin epidermis, have been
shown to secrete IL-4 early after Leishmania major infection. Here, we investigated
whether IL-4/IL-13 signaling via the common IL-4 receptor alpha chain (IL-4R�) on
keratinocytes contributes to susceptibility during experimental CL. To address this,
keratinocyte-specific IL-4R�-deficient (KRT14cre IL-4R��/lox) mice on a BALB/c genetic
background were generated by gene targeting and site-specific recombination (Cre/loxP)
under the control of the keratinocyte-specific krt14 locus. Following high-dose infection
with L. major IL-81 and LV39 promastigotes subcutaneously in the footpad, footpad
swelling, parasite burden, IFN-�/IL-4/IL-13 cytokine production, and type 1 and type 2
antibody responses were similar between KRT14cre IL-4R��/lox and littermate control IL-
4R��/lox BALB/c mice. An intradermal infection with low-dose L. major IL-81 and LV39
promastigotes in the ear showed results in infected KRT14cre IL-4R��/lox BALB/c mice
similar to those of littermate control IL-4R��/lox BALB/c mice, with the exception of a
significant decrease observed in parasite burden only at the site of LV39 infection in the
ear. Collectively, our results show that autocrine and paracrine signaling of IL-4/IL-13
through the IL-4R� chain on keratinocytes does not influence the establishment of a
nonhealing Th2 immune response in BALB/c mice during L. major infection.
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Murine studies in leishmaniasis provide a well-established model to investigate the
T helper (Th) Th1/Th2 paradigm observed during Leishmania major infection.

While a polarized Th1 immune response is associated with host protective immunity to
L. major infection, a polarized Th2 immune response is affiliated with susceptibility
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to the disease (1–3). Th1 immunity during L. major infection is characterized by
classical activation of macrophages via the cytokines interferon gamma (IFN-�) and
interleukin-12 (IL-12), while Th2 immunity is characterized by alternative activation of
macrophages via the production of various cytokines, including IL-13, IL-5, and, pri-
marily, IL-4, which signals via the IL-4 receptor alpha chain (IL-4R�). Previous studies
have demonstrated that a resistant phenotype was observed in C57BL/6 mice (healer
strain) infected with L. major, while BALB/c mice (nonhealer strain) were susceptible to
cutaneous leishmaniasis (CL) (2, 4–7). While the general understanding is that IL-4
induces a Th2 response detrimental to CL, there have been studies demonstrating that
the early production of IL-4 at the site of infection in BALB/c mice drives a beneficial Th1
response under the instruction of dendritic cells (DCs) (8, 9). This phenomenon is
further supported by the fact that both BALB/c and C57BL/6 mouse strains secrete IL-4
early after L. major infection, which is sustained in susceptible but transient in resistant
mice (10). The skin, which serves as an immune organ (11), is the primary site of
infection during cutaneous leishmaniasis (1). During a blood feed, the female phle-
botomine sandfly deposits L. major promastigotes into the skin. The promastigote
parasites must pass through this skin barrier and its components to establish an
infection. The epidermal layer of the skin is composed primarily of keratinocytes, which
produce factors such as cytokines, among others (12). Thus, keratinocytes could provide
early signals at the site of L. major infection to initiate distinct immune effector
responses. Indeed, infection with L. major IL-81 promastigotes has been shown to
induce keratinocytes to rapidly secrete IL-12, IL-1�, and IL-4 in C57BL/6 mice. This
suggests that keratinocytes provide the source of early IL-4 that may instruct DCs to
drive the host beneficial Th1/type 1 response (13). As keratinocytes express surface IL-4
receptor, these cells are capable of both autocrine and paracrine stimulation (14, 15).
We recently demonstrated that C57BL/6 mice deficient for IL-4R�-responsive keratin-
ocytes were able to develop a protective Th1/type 1 effector response to L. major LV39
infection (16). However, considering that the impact of IL-4-mediated DC instruction
was most pronounced in the susceptible BALB/c background in response to more
virulent and less virulent strains of parasites, the role of early IL-4 signaling on
keratinocytes needs to be investigated on a nonhealer BALB/c genetic background
during cutaneous leishmaniasis to fully elucidate effector immune responses in re-
sponse to infection with more virulent and less virulent L. major strains. Here, we
extended our recent study by generating keratinocyte-specific IL-4R�-deficient mice on
a BALB/c genetic background (KRT14cre IL-4R��/lox mice) to analyze disease progres-
sion and host immune responses following infection with the L. major strain IL-81 (a
highly virulent strain) as well as LV39 (less virulent strain). We successfully showed that
the IL-4R� signal on keratinocytes from KRT14cre IL-4R��/lox BALB/c mice was absent,
in contrast to the results for wild-type BALB/c mice. We found that during experimental
cutaneous leishmaniasis, KRT14cre IL-4R��/lox BALB/c mice were more susceptible to
infection, similar to littermate control IL-4R��/lox BALB/c mice, following subcutaneous
(s.c.) infection in the footpad or intradermal (i.d.) infection in the ear. Furthermore,
footpad swelling, parasite loads, IFN-�/IL-4/IL-13 production, and type 1 and type 2
antibodies were similar between both groups. Despite a significant decrease in parasite
burden seen at the site of infection after i.d. inoculation of L. major LV39, KRT14cre

IL-4R��/lox mice on the BALB/c genetic background still developed a nonhealing
response. Taking our results together, we revealed that deletion of IL-4R� signaling on
keratinocytes does not influence susceptibility of genetically susceptible BALB/c mice
to CL.

RESULTS
Genotypic and functional characterization of KRT14cre IL-4R��/lox BALB/c mice.

Genetically modified BALB/c mice expressing Cre-recombinase under the control of the
keratinocyte cell-specific locus krt14 (Jackson Laboratory) were intercrossed with IL-
4R��/� BALB/c mice (17) and IL-4R�lox/lox BALB/c mice (18) to generate KRT14cre

IL-4R��/lox mice (Fig. 1A). This breeding strategy avoids possible non-Mendelian Cre
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FIG 1 Characterization of KRT14cre IL-4R��/lox BALB/c mice. (A) Mouse breeding strategy. Transgenic BALB/c mice expressing cre-recombinase under the control
of the KRT14 promoter were intercrossed with IL-4R��/� BALB/c mice and IL-4R�lox/lox BALB/c mice to generate KRT14cre IL-4R��/lox mice. (B) Genotyping by
PCR analysis of tail DNA from KRT14cre IL-4R��/lox, IL-4R��/lox, IL-4R��/�, IL-4R��/�, and IL-4R�lox/lox mice and a negative water control is shown. The yielded

(Continued on next page)
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activities during early embryogenesis by reducing the substrate (lox), resulting in
increased Cre efficiency (19, 20). KRT14cre IL-4R��/lox BALB/c mice were identified by
PCR genotyping (Fig. 1B), as indicated by the presence of the 494-bp Cre band, 450-bp
LoxP band, and both the deleted and wild-type IL-4R� allele. Analysis of IL-4R� cell
surface expression on isolated ear keratinocytes (CD45� CD49� K14�) by flow cytom-
etry demonstrated efficient IL-4R� depletion on KRT14cre IL-4R��/lox keratinocytes,
which was apparent by the shift of IL-4R� expression and geometric mean fluorescence
intensity (GMFI) compared to that of wild-type BALB/c keratinocytes (Fig. 1C). As
expected, KRT14cre IL-4R��/lox mice were confirmed to have a regular cell surface
expression of IL-4R� on CD4� T cells, CD19� B cells, MHCIIhi CD11chi dendritic cells, and
MHCIIhi CD11c� CD11bhi macrophages in the cervical lymph node after L. major
infection (Fig. 1D). The expression of Desmocollin-1 (Dsc-1), a marker gene for keratin-
ocytes, can correlate with normal epidermal differentiation and development of kera-
tinocytes (21). Additionally, the presence of IL-4 has been shown to downregulate the
expression of Dsc-1 (22, 23). We therefore examined whether keratinocyte function
would be altered due to loss of IL-4R� on keratinocytes by measuring Dsc-1 expression
and treating with recombinant IL-4. IL-4 stimulation reduced mRNA expression of Dsc-1
in wild-type BALB/c but not keratinocytes isolated from KRT14cre IL-4R��/lox or IL-
4R��/� mice, confirming functionally unresponsive IL-4R� signaling in KRT14cre IL-
4R��/lox keratinocytes (Fig. 1E). These data provide evidence of efficient deletion of
IL-4R� on keratinocytes from KRT14cre IL-4R��/lox BALB/c mice while showing intact
IL-4R� surface expression on other lymph node cells and demonstrating no effect on
keratinocyte functionality.

KRT14cre IL-4R��/lox BALB/c mice remain susceptible to L. major infection, similar
to littermate control IL-4R��/lox BALB/c mice, during experimental cutaneous leish-
maniasis in the footpad. To determine whether IL-4R� signaling on keratinocytes at the
site of infection contributes to nonhealing disease during CL, KRT14cre IL-4R��/lox

BALB/c mice and appropriate controls (IL-4R��/lox BALB/c, IL-4R��/� BALB/c, and
C57BL/6 mice) were infected s.c. in the left hind footpad with stationary-phase pro-
mastigotes, either with 2 � 105 of the highly virulent L. major IL-81 strain (Fig. 2A) or
with a dose of 2 � 106 of the less virulent L. major LV39 strain (Fig. 2B). Importantly,
during both L. major IL-81 and L. major LV39 infections, KRT14cre IL-4R��/lox BALB/c
mice developed progressive footpad swelling, similar to littermate control IL-4R��/lox

BALB/c mice, and exhibited similarly high parasite loads in the infected footpads and
draining popliteal lymph nodes and dissemination to the spleen (Fig. 2). Global
IL-4R��/� BALB/c mice, which are generally resistant to L. major infection, had signif-
icantly less footpad swelling than littermate control IL-4R��/lox BALB/c mice during
infection with either strain (Fig. 2A). After infection with L. major IL-81, parasite loads of
global IL-4R��/� BALB/c mice in the footpad, popliteal lymph node, and spleen
appeared to be significantly lower than the loads in littermate control IL-4R��/lox

BALB/c mice (Fig. 2A). Upon infection with L. major LV39, the parasite loads in the
popliteal lymph nodes of global IL-4R��/� BALB/c mice appeared to be significantly
higher than those of the littermate control IL-4R��/lox BALB/c mice, which has been
observed previously (24), while parasite loads in the spleen were significantly lower, as
anticipated (Fig. 2B). As expected, genetically resistant C57BL/6 mice controlled the
development of lesions during acute infection with L. major IL-81 and LV39 (Fig. 2A and
B), correlating with low parasite loads in footpads, draining popliteal lymph nodes, and
spleens. Together, these results suggest that deletion of the IL-4R� chain on keratin-

FIG 1 Legend (Continued)
PCR products are indicated in base pairs. (C) Flow cytometry was performed to show IL-4R� expression on ear keratinocytes isolated from naive mice.
Keratinocytes were gated as CD45� CD49� K14�. (D) Flow cytometry was performed to show IL-4R� expression on nonkeratinocyte lymph node cells following
L. major infection, staining for Th cells (CD3� CD4�), B cells (CD19� B220�), dendritic cells (CD11c� MHCII�), and macrophages (CD11b� MHCII�). (E) Dsc-1
mRNA expression in keratinocytes. Primary keratinocytes were isolated from tails of adult BALB/c, KRT14cre IL-4R��/lox, and IL-4R��/� mice. Keratinocytes were
left unstimulated (�) or stimulated (�) for 24 h with 20 ng/ml of recombinant IL-4. Cells were isolated and Dsc-1 mRNA expression was assessed via qRT-PCR.
Values were normalized to hprt levels (n � 3 in each group; representative of two individual experiments shown). Statistical analysis for the mRNA expression
of Dsc-1 in keratinocytes was performed using a one-way analysis of variance (ANOVA), with Sidaks’s multiple-comparison test. **, P � 0.01.
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ocytes in BALB/c mice does not affect L. major disease progression when parasites are
subcutaneously injected into the footpad.

Absence of IL-4R� on keratinocytes in BALB/c mice has no functional effect on
cellular and humoral immune responses during L. major IL-81 infection in the
footpad. BALB/c mice are genetically susceptible to L. major infection and develop a
detrimental type 2 immune response (2, 25). We therefore evaluated the cellular and
humoral immune response in KRT14cre IL-4R��/lox BALB/c mice during L. major IL-81

FIG 2 KRT14cre IL-4R��/lox BALB/c mice are as susceptible to L. major as littermate control mice following footpad infection.
Mice were infected subcutaneously in the left hind footpad (FP) with stationary-phase L. major promastigotes at either 2 �
105 IL-81 (A) or 2 � 106 LV39 (B) (n � 5 to 7 mice per group). The change in footpad swelling (in mm) was measured at
weekly intervals. Parasite burden was determined at week 6 for panel A and week 8 for panel B by limiting dilution of
homogenized footpads, single-cell suspensions of the draining popliteal lymph nodes (pLN), and homogenized spleens
(SP). A representative of two individual experiments is shown with mean values � SEM. Statistical analysis was performed
with comparisons to the control IL-4R��/lox littermate mouse group as significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001;
****, P � 0.0001), using a two-way ANOVA with Bonferroni posttests for change in swelling data and one-way ANOVA with
Dunnett’s multiple-comparison test for parasite load data.
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infection to determine whether these mice elicited a polarized Th2 immune response.
At 6 weeks postinfection, the frequencies of immune cell populations infiltrating the
popliteal draining lymph nodes were similar between KRT14cre IL-4R��/lox BALB/c and
the littermate control IL-4R��/lox BALB/c mice, as determined by flow cytometry and
cell surface staining (Fig. 3A and B). C57BL/6 mice at week 6 presented lower percent-
ages of the CD3� CD4� Th cells, possibly due to disease control at this stage, and
higher CD19� B lymphocytes and macrophages than susceptible littermate control
IL-4R��/lox BALB/c mice (Fig. 3A and B). Collectively, these results suggest that the
immune cell repertoire in the popliteal lymph node developed independently of
IL-4R�-responsive keratinocytes during L. major infection in KRT14cre IL-4R��/lox BALB/c
mice.

To investigate the impact of IL-4R� deficiency on keratinocytes in cytokine produc-
tion by CD4� Th cells during L. major IL-81 infection, single lymph node cell suspen-
sions were restimulated with phorbol myristate acetate (PMA)-ionomycin-monensin
and stained for intracellular cytokine production by flow cytometry (Fig. 3C). KRT14cre

IL-4R��/lox BALB/c mice showed frequencies of IFN-�/IL-4/IL-13 cytokines produced by
CD4� Th cells similar to those of littermate control IL-4R��/lox BALB/c mice (Fig. 3C). As

FIG 3 KRT14cre IL-4R��/lox BALB/c mice develop an immune response similar to that of littermate control mice following L. major IL-81 infection in the footpad.
At 6 weeks after L. major IL-81 infection, mice were sacrificed and popliteal draining lymph nodes (pLN) retrieved. Single-cell suspensions obtained from the
lymph nodes were surface stained for the following populations: CD4 (CD3� CD4�) T cells, CD8 (CD3� CD8�) T cells, and B cells (CD19� B220�) (A) and DC
(dendritic cells) (CD11chi MHCIIhi) and MF (macrophages) (CD11bhi CD11c� MHCIIhi) (B). (C) Lymph node cells were stimulated with PMA-ionomycin-monensin,
followed by staining for intracellular cytokine production. (D to F) Cells were restimulated with anti-CD3 and soluble leishmanial antigen (SLA) for 72 h, after
which cytokine production was measured with ELISA for (D) IFN-�, (E) IL-4 and (F) IL-13. (G) L. major-specific type 1 (IgG2a) and (H and I) type 2 antibodies (IgG1
and total IgE) were measured in sera from 6-week infected mice by ELISA. Data are representative of two experiments with mean values � SEM (n � 3 to 5
mice per group). Statistical analysis was performed with comparisons to the control IL-4R��/lox littermate mouse group as significant (*, P � 0.05; **, P � 0.01;
***, P � 0.001; ****, P � 0.0001), using 2-way ANOVA with Dunnett’s multiple-comparison test (A to F), two-way ANOVA with Bonferroni posttests (G and H)
and Mann-Whitney (nonparametric, unpaired t) test (I).
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previously reported (9), resistant C57BL/6 mice had higher production of IFN-� (al-
though not significant) and significantly lower production of IL-13 by CD4� Th cells
than the littermate control IL-4R��/lox BALB/c mice (Fig. 3C) following IL-81 infection in
the footpad. Total popliteal lymph node cells were also restimulated with soluble
leishmanial antigen (SLA) or mitogenic anti-CD3 to detect overall cytokine production
by the immune cell repertoire (Fig. 3D to F). Similar levels of production of IFN-� (Fig.
3D), IL-4 (Fig. 3E), and IL-13 (Fig. 3F) were observed in KRT14cre IL-4R��/lox BALB/c and
littermate control IL-4R��/lox BALB/c mice. In contrast, C57BL/6 mice showed signifi-
cantly lower production of IFN-� and drastically lower quantities of Th2 cytokines
IL-4/IL-13 than littermate control IL-4R��/lox BALB/c mice when lymph node cells were
stimulated with anti-CD3 (Fig. 3D to F), as previously observed (26). Together, these
results suggest that IL-4R�-responsive keratinocytes do not play a decisive role in
driving a polarized Th2 response during L. major infection in BALB/c mice in the
footpad.

The quantification of cytokine production after ex vivo stimulation may not provide
a true indication of the type 1 and type 2 or Th1 and Th2 responses in vivo (25). As it
is known that IL-4 promotes isotype switching to IgG1 and IgE and that IgG2a levels
correlate with the activity of IFN-� in vivo (27), we measured antigen-specific type 1
(IgG2a) and type 2 (IgG1 and total IgE) antibody titers in the mouse sera by enzyme-
linked immunosorbent assay (ELISA) 6 weeks postinfection with L. major IL-81. KRT14cre

IL-4R��/lox BALB/c and littermate control IL-4R��/lox BALB/c mice had comparable
levels of IgG2a, IgG1, and total IgE during L. major IL-81 infection (Fig. 3G to I).
Collectively, the data suggest that systemic antibody responses in KRT14cre IL-4R��/lox

BALB/c mice were unaffected by the deletion of the IL-4R� signaling receptor on
keratinocytes during subcutaneous infection with L. major IL-81 in the footpad.

Intradermal inoculation of L. major parasites in the ear does not radically alter
the outcome of disease in KRT14cre IL-4R��/lox BALB/c mice. While s.c. injection of

L. major in the footpad is widely used, recent studies have suggested that i.d. injection
of a lower dose of parasites into the ear provides a more physiological mode of
infection, as it mimics some of the events that occur during parasite inoculation by the
sandfly (28, 29). Hence, we investigated whether a change in the site of infection and
parasite dose would alter the phenotype and immune response of the KRT14cre

IL-4R��/lox BALB/c mice. Mice were i.d. infected into the left ear with a low dose of
1 � 104 stationary-phase L. major IL-81 or L. major LV39 promastigotes. Ear lesion
diameter was measured to monitor disease progression during the infection, and
immune responses were evaluated at 8 weeks postinfection. Ear lesion diameter and
the parasite load in the ear, cervical lymph node, and spleen of KRT14cre IL-4R��/lox

BALB/c mice during L. major IL-81 infection were high, similar to those of littermate
control IL-4R��/lox BALB/c mice (Fig. 4A). Global IL-4R��/� BALB/c mice had signifi-
cantly smaller lesion diameters and lower parasite loads in the ear than littermate
control IL-4R��/lox BALB/c mice after infection with L. major IL-81 (Fig. 4A). As previ-
ously reported (30), C57BL/6 mice had significantly smaller lesion diameters and
associated reduced parasite load in the ear, cervical lymph node, and spleen compared
to littermate control IL-4R��/lox BALB/c mice after L. major IL-81 infection (Fig. 4A).
Infection with L. major LV39 resulted in similar ear lesion diameters and cervical lymph
node parasite loads between KRT14cre IL-4R��/lox BALB/c and littermate control IL-
4R��/lox BALB/c mice, with the surprising exception of significantly reduced parasite
loads in the ear (Fig. 4B). Both global IL-4R��/� BALB/c and C57BL/6 mouse groups had
significantly smaller lesion diameters in the ears and significantly lower parasite loads
in the ear than littermate control IL-4R��/lox BALB/c mice after L. major LV39 infection
(Fig. 4B). In contrast to L. major IL-81 infection, L. major LV39 infection did not result in
dissemination to the spleen, as demonstrated by the absence of parasites in the spleen
in all mouse groups. This could be explained by the higher virulence of the former
parasite (9) and the i.d. route of infection. Collectively, the data indicate that despite a
change in the site/route of infection and the dose of parasites, KRT14cre IL-4R��/lox
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BALB/c mice remain susceptible to L. major and remain unaffected by the abrogated
IL-4R� signaling on keratinocytes.

Early IL-4 production in the ear appears unaffected by loss of signaling of
IL-4R� on keratinocytes. The early source of IL-4 can contribute to susceptibility to L.
major infection (13). Thus, we measured IL-4 expression directly in the skin of L.
major-infected mice. Here, mice were infected with L. major LV39 in the ear dermis, and
at 2 weeks postinfection the ears were retrieved and processed for the detection of
IFN-�, IL-4, and IL-13 at mRNA and protein levels (Fig. 5A to C). IFN-�, IL-4, and IL-13
were found to be undetectable at the mRNA level, as measured by quantitative PCR
(qPCR) (data not shown). Detection of IFN-�, IL-4, and IL-13 by ELISA showed no

FIG 4 Cutaneous leishmaniasis is unaffected by the absence of IL-4R� signaling on keratinocytes on a BALB/c
genetic background following low-dose L. major infection in the ear dermis. Mice were infected intradermally in
the left ear with 1 � 104 promastigotes of L. major IL-81 (A) or L. major LV39 (B) (n � 5 to 7 mice per group). The
change in ear lesion diameter (mm) was measured at weekly intervals. Parasite burden was determined at week
8, by limiting dilution of homogenized ear cells, single-cell suspensions of the draining cervical lymph nodes (cLN),
and homogenized spleens (SP). A representative of two individual experiments is shown with mean values � SEM.
Statistical analysis was performed with comparisons to the control IL-4R��/lox littermate mouse group as significant
(*, P � 0.05; ***, P � 0.001), using a two-way ANOVA with Bonferroni posttests for change in ear lesion data and
one-way ANOVA with Dunnett’s multiple-comparison test for parasite load data.

Govender et al. Infection and Immunity

December 2018 Volume 86 Issue 12 e00710-18 iai.asm.org 8

https://iai.asm.org


significant differences between control IL-4R��/lox BALB/c littermates and KRT14cre

IL-4R��/lox BALB/c mice in the L. major LV39-infected ears (Fig. 5A to C). However, IFN-�
and IL-4 levels in the ears were significantly decreased in C57BL/6 mice compared to
those in littermate control IL-4R��/lox BALB/c mice (Fig. 5A and B). Additionally, at week
1 postinfection, IL-4 was not detectable at the mRNA or protein level in the ears of
KRT14cre IL-4R��/lox BALB/c mice infected with L. major LV39 (data not shown). While
IL-4 was not detectable at the time analyzed, this finding suggests that it is produced
locally or at very low doses that are not detectable. Additionally, IL-4 was reported to

FIG 5 Similar immune responses between KRT14cre IL-4R��/lox BALB/c and littermate control IL-4R��/lox mice infected with L. major LV39 in the ear dermis.
(A to C) Early cytokine expression in the ears of mice infected with L. major LV39 at 2 weeks postinfection, with ELISA for IFN-� (A), IL-4 (B), and IL-13 (C).
At 8 weeks postinfection, mice were sacrificed and cervical draining lymph nodes (cLN) retrieved. Single-cell suspensions obtained from the lymph nodes
were extracellularly stained for CD4 (CD3�CD4�) T cells, CD8 (CD3�CD8�) T cells, and B cells (CD19�B220�) (D), DC (dendritic cells) (CD11chi MHCIIhi) and
MF (macrophages) (CD11bhi CD11c� MHCIIhi) (E), and stimulated with PMA-ionomycin-monensin, followed by staining for intracellular cytokine production
(F). Cells were restimulated with anti-CD3 and SLA for 72 h, after which cytokine production was measured by ELISA for IFN-� (G), IL-4 (H), and IL-13 (I).
(J) L. major-specific type 1 (IgG2a) and (K and L) type 2 antibodies (IgG1 and total IgE) were measured by ELISA of sera from mice infected for 6 weeks.
Data are representative of two experiments (n � 3 to 5 mice per group). Statistical analysis was performed with comparisons to the control IL-4R��/lox

littermate mouse group as significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.001), using 2-way ANOVA with Dunnett’s multiple-comparison
test (A to I), two-way ANOVA with Bonferroni posttests (J and K), and Mann-Whitney test (nonparametric, unpaired t test) (L).
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be produced at an earlier time and produced at low quantities at this earlier time point
(13).

Cellular and humoral immune responses of KRT14cre IL-4R��/lox BALB/c mice
remain unaffected by the deletion of IL-4R� on keratinocytes following L. major
infection into the ear. Following infection with L. major LV39 for 8 weeks, cell
populations infiltrating the draining cervical lymph nodes were similar between
KRT14cre IL-4R��/lox BALB/c and littermate control IL-4R��/lox BALB/c mice (Fig. 5D and
E). CD4� T helper cytokine production by intracellular staining of cervical lymph node
cells (Fig. 5F) and total cell cytokine production by lymph node restimulation (Fig. 5G
to I) demonstrated similar levels of IFN-�, IL-4, and IL-13 between KRT14cre IL-4R��/lox

BALB/c and littermate control IL-4R��/lox BALB/c mice. C57BL/6 mice exhibited height-
ened CD8� T cell production in lymph nodes (Fig. 5D) and reduced IFN-�, IL-4, and IL-13
production (Fig. 5F to I) compared to IL-4R��/lox BALB/c mice. No differences in type 1
and type 2 antibody titers were observed in the sera of KRT14cre IL-4R��/lox BALB/c
mice compared to littermate control IL-4R��/lox BALB/c mice (Fig. 5J to L).

L. major IL-81 infection of KRT14cre IL-4R��/lox BALB/c mice illustrated similar
frequencies of cervical lymph node cell populations (Fig. 6A and B), cytokine production
(Fig. 6C to F), and antibody titers (Fig. 6G to I) compared to levels for littermate control
IL-4R��/lox BALB/c mice. C57BL/6 mice infected with L. major IL-81 had significantly
lower CD4� T helper infiltration (Fig. 6A), significantly reduced CD4� T cell-produced
IFN-� and IL-13 (Fig. 6C), and significantly reduced total cell IFN-� (Fig. 6D) compared
to levels for the littermate control IL-4R��/lox BALB/c mice.

Together, these findings highlight that during intradermal infection in the ear,
IL-4R� signaling on keratinocytes in BALB/c mice does not affect protective immune
responses, as determined by cellular responses, cytokine production, and type 1 and
type 2 antibody titers.

DISCUSSION

Previous studies have supported a role for IL-4 in driving a polarized Th1 response
and conferring resistance to BALB/c mice during L. major infection (8, 25). Conversely,
during experimental cutaneous leishmaniasis in C57BL/6 mice with a global deletion of
IL-4R�, it was seen that the deletion had no impact on resistance in these mice (16).
Dendritic cells are the primary source of IL-12 and initiate antigen-specific immunity to
Leishmania (31). Biedermann et al. incubated bone marrow-derived DCs with a Th1-
priming adjuvant in the presence of recombinant IL-4 and found increased IL-12
production upon IL-4 stimulation. Ova-specific CD4� T cells primed with activated
dendritic cells also had significantly upregulated IFN-� under these conditions, indicat-
ing that IL-4 could instruct dendritic cells to secrete IL-12, thereby inducing Th1 cell
differentiation (8). Biedermann et al. also demonstrated this IL-4 instruction theory in
mouse studies, showing that exogenous IL-4 administered during the period of den-
dritic cell activation was required to drive dendritic cells to elicit the Th1 response in
usually susceptible BALB/c mice (8). The study by Biedermann et al. highlighted that
a high dose of IL-4 administered exogenously was needed to observe a shift to
protective Th1 immunity; however, the study did not provide insight on physio-
logical doses of endogenous IL-4 during infection. Hurdayal et al. (9) addressed this
using BALB/c mice with abrogated IL-4R� expression on CD11c� dendritic cells.
During L. major infection these mice were hypersusceptible to infection, showing
increased footpad swelling and parasite loads and increased Th2 immune re-
sponses. This indicated that IL-4R�-responsive dendritic cells play an important role
in the elicited immune response. Ehrchen et al. further explored the IL-4 instruction
theory by focusing on the microenvironment of the infected tissue (13). Impor-
tantly, various cytokines, including IL-4, were induced in L. major-infected C57BL/6
mice and L. major-infected BALB/c mice (13). Additionally, cytokine induction,
including IL-4 in the skin and by keratinocytes, was higher in C57BL/6 mice than in
BALB/c mice, and genes involved in keratinocyte differentiation were found to be
overrepresented, suggesting an influence on their expression by the presence of L.
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major parasites. While Biedermann et al. showed that exogenous recombinant IL-4
could drive dendritic cells to instruct a Th1 response (8), Ehrchen et al. illustrated
that blocking endogenous IL-4 with exogenous anti-IL-4 antibody in L. major-
infected C57BL/6 mice caused these mice to switch from a genetically resistant Th1
to a susceptible Th2 phenotype (8). Following on from Biedermann et al. (8) and
Ehrchen et al. (13), we aimed to investigate whether IL-4R�-responsive keratino-
cytes influence the outcome of disease during CL. Our initial study showed that in
genetically resistant C57BL/6 mice, IL-4R�-responsive keratinocytes did not affect
the resistant phenotype (16), as seen by Ehrchen et al. in these resistant mice (13).
The next step was to investigate whether deletion of IL-4R�-responsive keratino-
cytes would contribute to nonhealing disease during experimental CL in BALB/c
mice. If IL-4R� is indeed demonstrated to be important for disease outcome,
IL-4/IL-13 released by these keratinocytes could signal and influence keratinocytes
in an autocrine manner or influence dendritic cells in a paracrine manner. A
keratinocyte-specific IL-4R�-deficient mouse model was generated using the Cre/

FIG 6 Low-dose infection in the ear dermis does not significantly alter immune response between control littermates and KRT14cre IL-4R��/lox mice on a BALB/c
genetic background during L. major IL-81 infection. At 8 weeks postinfection, mice were sacrificed and cervical draining lymph nodes (cLN) retrieved. Single-cell
suspensions obtained from the lymph nodes were extracellularly stained for CD4 (CD3�CD4�) T cells, CD8 (CD3�CD8�) T cells, and B cells (CD19� B220�) (A),
DC (dendritic cells) (CD11chi MHCIIhi) and MF (macrophages) (CD11bhi CD11c� MHCIIhi) (B), and also stimulated with PMA-ionomysin-monensin (C), followed
by staining for intracellular cytokine production. Cells were restimulated with anti-CD3 and SLA for 72 h, after which cytokine production was measured with
ELISA for IFN-� (D), IL-4 (E), and IL-13 (F). (G to I) L. major-specific type 1 (IgG2a) (G) and type 2 antibodies (IgG1 and total IgE) (H and I) were measured by ELISA
of sera from mice infected for 6 weeks. Data are representative of two experiments (n � 3 to 5 mice per group). Statistical analysis was performed with
comparisons to the control IL-4R��/lox littermate mouse group as significant (*, P � 0.05; ***, P � 0.001), using 2-way ANOVA with Dunnett’s multiple-
comparison test (A to F), two-way ANOVA with Bonferroni posttests (G and H), and Mann-Whitney test (nonparametric, unpaired t test) (I).
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loxP system under the control of the krt14 locus. These mice were infected with L.
major either s.c. in the footpad or i.d. in the ear, after which disease progression and
cellular and humoral immunity were evaluated.

Subcutaneous infection of L. major IL-81 or LV39 in the footpad of KRT14cre

IL-4R��/lox BALB/c mice revealed no role for IL-4R�-responsive keratinocytes in mod-
ulating nonhealing disease to L. major. KRT14cre IL-4R��/lox BALB/c mice were suscep-
tible to infection, showing progressive footpad swelling and parasite loads, character-
istic of genetically susceptible BALB/c mice (32). L. major IL-81-infected KRT14cre

IL-4R��/lox BALB/c mice showed dissemination of parasites to the spleen, similar to that
of littermate control IL-4R��/lox BALB/c mice and as expected in susceptible wild-type
BALB/c mice (33, 34). In these mice, the mounting of a Th2 response, along with the
alternative activation of macrophages, is the reason why parasites disseminate and
cause severe disease (35–38). The parasites can use the polyamines generated from
alternative activation of macrophages for their growth and survival (9). Disease pro-
gression in BALB/c mice infected with L. major corresponds to an upregulation of Th2
cytokines, CD4� Th2 cells, and type 2 antibody responses (9, 26, 39–42). Increased
infiltration of macrophages to the draining lymph node in C57BL/6 mice could be
linked to the roles they play in protection, being essential not just for uptake of
parasites and establishment of an immune response but also for their killing function
by classically activated macrophages (1, 6, 43–45). Together, the data suggested that
BALB/c mice with abrogated IL-4R� were susceptible to L. major infection and that the
absence of IL-4R� expression on keratinocytes did not allow for protection against L.
major.

An intradermal inoculation of low-dose stationary-phase promastigote L. major
parasites in the ear better mimics natural infection by the sandfly than s.c. inoculation
(28–30, 46–49). KRT14cre IL-4R��/lox BALB/c mice infected i.d. with 104 L. major parasites
showed swelling progression and parasite burden similar to that of littermate control
IL-4R��/lox BALB/c mice. L. major LV39-infected KRT14cre IL-4R��/lox BALB/c mice
showed significantly fewer parasites at the site of infection (the ear) than the littermate
control IL-4R��/lox BALB/c mice. This suggests that KRT14cre IL-4R��/lox BALB/c mice
were able to control parasite replication in the ear and that IL-4/IL-13 signaling
through IL-4R� on keratinocytes hampers immune regulatory functions when
present. Upon investigation of the early production of IL-4 in the ear after 2 weeks
of infection with L. major LV39, we found no significant change in KRT14cre

IL-4R��/lox BALB/c mice compared to results for littermate control IL-4R��/lox

BALB/c mice, while resistant C57BL/6 mice appeared to have significantly lower
production of IL-4. Overall, our data suggested that while IL-4R�-responsive kera-
tinocytes were not contributing to the development of the lesions or overall T
helper immune responses of KRT14cre IL-4R��/lox BALB/c mice in the ear infection
model, parasite replication at the site of the L. major LV39 infection was more
controlled in these mice than in littermate control IL-4R��/lox BALB/c mice.

Hence, our findings indicate that while IL-4/IL-13 signaling via IL-4R� on keratino-
cytes in BALB/c mice does not contribute to their nonhealing phenotype, it could
contribute to parasite control or replication at the site of infection in the ear model
during L. major LV39 infection but not during L. major IL-81 infection. This finding needs
to be further explored. This study therefore provides some understanding of the early
immune responses occurring in the dermis and during cutaneous leishmaniasis in
nonhealer BALB/c mice, and it also complements our recent findings in healer C57BL/6
mice (16). Additionally, our data highlight the importance of the strain of the L. major
parasite, as well as the use of a more physiological route of infection, when studying
cutaneous leishmaniasis in experimental mouse models.

MATERIALS AND METHODS
Ethical statement. All mice were kept under specific-pathogen-free conditions. Mouse experiments

were performed in strict accordance with the South African National Standard (SANS 10386:2008), as well
as with the Animal Research Ethics Committee of the Faculty of Health Sciences, University of Cape Town
(license no. 015/034).

Govender et al. Infection and Immunity

December 2018 Volume 86 Issue 12 e00710-18 iai.asm.org 12

https://iai.asm.org


Generation and genotyping of KRT14cre IL-4R��/lox mice. Keratinocyte cell-specific IL-4R�-
deficient (KRT14cre IL-4R��/lox) BALB/c mice were generated using the Cre/loxP system and characterized
by our laboratory. Briefly, KRT14cre mice (Jackson Laboratory) were crossed with IL-4R��/� BALB/c mice
(17) and transgenic IL-4R�lox/lox mice (18) to generate hemizygous KRT14cre IL-4R��/lox BALB/c mice after
nine generations of breeding. All mice were kept under specific-pathogen-free conditions in individually
ventilated cages. Experimental mice were age and sex matched and used between 8 and 10 weeks of
age. Genotyping of KRT14cre IL-4R��/lox BALB/c mice was carried out using the following specific primers:
KRT14 P1, forward primer, 5=-TTC CTC AGG AGT GTC TTC GC; KRT14 P2, reverse primer, 5=-GTC CAT GTC
CTT CCT GAA GC; KRT14 P3, forward primer, 5=-CAA ATG TTG CTT GTC TGG TG; KRT14 P4, reverse primer,
5=-GTC AGT CGA GTG CAC AGT TT.

Functional characterization of KRT14cre IL-4R��/lox mice. IL-4R� deletion was confirmed with flow
cytometry, with staining for IL-4R� on ear-isolated keratinocytes. Briefly, ears were digested in complete
Dulbecco’s modified Eagle’s medium (cDMEM) containing 0.2 mg/ml Liberase (TL research grade; Roche)
and filtered through a 40-�m filter. Keratinocytes were then isolated, counted, and labeled. Labeling was
performed by adding the antibodies for 20 min on ice, followed by the addition of the secondary
antibody. Keratinocytes were gated as CD45� and were double positive for CD49 and K14. Antibodies
included CD45-peridinin chlorophyll protein (PerCP), CD49f-fluorescein isothiocyanate (FITC), mouse
anti-keratin 14, and goat anti-mouse A555 (ThermoFisher Scientific). CD45� CD49� K14� keratinocytes
were then stained for the presence of IL-4R� with IL-4R�-phycoerythrin (PE) (BD, Pharmingen), and
samples were acquired on a Fortessa machine (BD, San Jose, CA, USA). Flow data were analyzed using
FlowJo software (TreeStar, Ashland, OR, USA). Cell surface IL-4R� expression was further analyzed in total
lymphocytes, Th cells (CD3� CD4�), B cells (CD19� B220�), dendritic cells (CD11c� MHCII�), and
macrophages (CD11b� MHCII�) in the draining lymph node of L. major-infected IL-4R��/�, IL-4R��/lox,
and KRT14cre IL-4R��/lox mice by flow cytometry. For Dsc-1 mRNA expression in keratinocytes, primary
keratinocytes were isolated from the tail skin of adult mice. Briefly, the skin from the tail was collected
and incubated at 4°C for 16 h in 5 U/ml dispase (STEMCELL) supplemented with 1% penicillin-
streptomycin-neomycin (PSN) (Gibco) and 0.5% gentamicin (Gibco). The epidermis was next separated
from the dermis and treated with 0.2% trypsin (Gibco) for 5 min at 37°C. The reaction was stopped with
fetal calf serum (FCS), and cells were then collected by crushing the epidermis through a 100-�m cell
strainer. A total of 0.75 � 106 cells/ml were plated in a 6-well plate coated with type 1 collagen
(STEMCELL). Cells were grown for 8 days at 37°C in CnT-57.S medium (CELLnTEC) supplemented with 1%
PSN and 0.5% gentamicin. The medium was discarded and cells were detached with 200 �l 0.2% trypsin
for 5 min at 37°C. Cells were counted and plated at 0.3 � 106 cells/ml in a 96-well plate coated with type
1 collagen. Isolated keratinocytes were then stimulated with 20 ng/ml of mouse IL-4 recombinant protein
(Affymetrix, eBioscience) or left untreated for 24 h at 37°C as previously described (22). mRNA was
isolated thereafter using an RNA Minikit (Qiagen) according to the manufacturer’s instructions, cDNA
synthesized, and quantitative reverse transcription-PCR (RT-PCR) performed using a LightCycler (Roche).
Values were normalized to hprt level and are presented as fold induction compared to the level for
unstimulated keratinocytes. The primer sequences for Dsc-1 were the following: forward (F), 5=-GGGAG
CACCTTCTCTAAGCA-3=; reverse (R), 5=-TTTTGACAGGCATCACAAAATAA-3= (22).

L. major infection. L. major LV39 substrain 50132 (MRHO/SU/59/P), obtained from the American
Type Culture Collection (ATCC), an LV39 substrain (MRHO/SV/59/P) obtained from the University of
Lausanne (50, 51), and L. major IL-81 (MHOM/IL/81/FEBNI) were maintained via continuous passage in
BALB/c mice (17), and in vivo cultures were incubated in Schneider’s medium (Sigma-Aldrich) supple-
mented with 20% FCS in a T25 tissue flask (Corning). Parasites were prepared for infection as previously
described (17). Mice were anesthetized prior to subcutaneous inoculation with 2 � 105 (IL-81) or 2 � 106

(LV39) stationary-phase promastigotes into the left hind footpad, contained in a volume of 50 �l of
phosphate-buffered saline (PBS) (9, 17, 39). Disease progression was monitored weekly by measuring
change in swelling of infected footpads using a Mitutoyo micrometer caliper (Brütsch, Zürich, Switzer-
land). Alternatively, mice received an intradermal inoculation with 1 � 104 stationary-phase promastig-
otes in the left ear, contained in a volume of 10 �l of PBS (28–30). Disease progression was monitored
weekly by measuring change in diameter of lesions of the infected ear using a digital Vernier caliper
(South Africa).

Detection of viable parasite burden. Infected footpad, ear, draining lymph node, and spleen cell
suspensions were cultured in Schneider’s culture medium (Sigma). Parasite burden was determined with
the limiting dilution assay (LDA) that has been previously described (17).

Early detection of IFN-�, IL-4, and IL-13 in infected ears. Mice were infected in the left ear with
intradermal inoculation of 1 � 104 stationary-phase promastigotes, contained in a volume of 10 �l of PBS
as described above. At 2 weeks postinfection, infected and noninfected ears were retrieved for early
detection of IFN-�, IL-4, and IL-13 with qPCR. Whole ear was extracted and homogenized in QIAzol lysis
reagent (Giagen, Germany). Total RNA was isolated from the homogenate using an RNeasy Minikit
(Qiagen, Germany) according to the manufacturer’s instructions. RNA quantity and purity were measured
with an ND-1000 NanoDrop (ThermoScientific, DE, USA). Reverse transcription was performed using a
transcript first-strand cDNA synthesis kit (Roche, Germany) according to the manufacturer’s instructions.
Real-time qPCR was performed using LightCycler 480 SYBR green I master mix (Roche, Germany) and
gene-specific primers (IDT, CA, USA). The mRNA expression of each gene was normalized to the
housekeeping gene encoding hypoxanthine phosphoribosyl transferase (HPRT). The primer sequences
were the following: HPRT F, 5=-GTT GGA TAT GCC CTT GAC-3=; R, 5=-AGG ACT AGA ACA CCT GCT-3=; IL-4
F, 5=-TCG GCA TTT TGA ACG AGG TC-3=; R, 5=-GAA AAG CCC GAA AGA GTG GCA-3=; IL-13 F, 5=-CTC ACT
GGC TCT GGG CTT CA-3=; R, 5=-CTC ATT AGA AGG GGC CGT GG-3=; IFN-� F, 5=-GCT CTG AGA CAA TGA
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ACG CT-3=; R, 5=-AAA GAG ATA ATC TGG CTC TGC-3=. For ELISA detection of the cytokines IFN-�, IL-4, and
IL-13, whole ear was extracted and homogenized in Tween saline buffer and ELISA was performed as
described below.

Ex vivo restimulation of draining lymph node cells. Single-cell lymph node suspensions (1 � 106)
were stimulated with 20 �g/ml anti-CD3 or 50 �g/ml SLA and incubated at 37°C and 5% CO2 for 72 h.
Supernatants were collected and cytokines were measured by sandwich ELISA as previously described (17).

Flow cytometry. Single-cell lymph node suspensions (1 � 106 cells/well) were seeded (96-well Nunc
plate) and stained for the expression of surface markers for lymph node cell populations (T cells, B cells,
dendritic cells, and macrophages). The T and B cell panel included CD3-FITC, CD4-PE, CD8-allo-
phycocyanin (APC), and CD19-PerCP-Cy5.5. The dendritic cell and macrophage panel included CD11c-
APC, CD11b-PE, and major histocompatibility complex class II (MHCII)-FITC. Each mix also included 1% rat
serum and 10 �g Fc gamma receptor blocker (Fc�). For intracellular cytokine staining, single-cell lymph
node suspensions (2 � 106 cells/well) were stimulated at 37°C for 2 h with 50 ng/ml PMA and 250 ng/ml
ionomycin, followed by the addition of 200 �M monensin for 4 h. Cells were stained with extracellular
markers (CD3-FITC, CD4-PerCP, CD8-APC, 1% rat serum, and 10 �g Fc�), fixed with 2% paraformaldehyde,
and permeabilized with 0.5% saponin buffer, followed by intracellular staining for IFN-�, IL-4, and IL-13
with PE-labeled anti-mouse antibodies. Acquisition of cells was completed on a FACSCalibur machine (BD
Immunocytometry Systems, San Jose, CA, USA). Flow data were analyzed using FlowJo software (Treestar,
Ashland, OR, USA).

ELISA for cytokine and antibody detection. Cytokines were detected in the cell supernatants with
a sandwich ELISA as previously described (17). Detection of serum antigen-specific levels of IgG2a and
IgG1 and total IgE was performed as previously described (17). Microtiter plate readings were carried out
with a VersaMax ELISA plate reader.

Statistics. Statistical analysis was carried out using GraphPad Prism 7 software. The data were
calculated as means � standard errors of the means (SEM). There was a normal distribution of samples,
and statistical significance was determined with specific tests as stated for each experiment, defining
differences from IL-4R��/lox as significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
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