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Abstract: In this paper we investigate the asymptotic behaviour of the componentwise maxima for two bivariate

skew elliptical triangular arrays with components given in terms of skew transformations of bivariate spherical

random vectors. We find the weak limit of the normalized maxima for both cases that the random radius pertaining

to the elliptical random vectors is either in the Gumbel or in the Weibull max-domain of attractions.
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1 Introduction

In the seminal paper [22], Hüsler and Reiss showed that the maxima of dependent Gaussian triangular arrays

converge in distribution (after normalization) to a random vector with max-stable distribution function (df) referred

to as Hüsler-Reiss df. Specifically, if (Xjn, Zjn), j ≤ n, n ≥ 1 is a triangular array of independent bivariate Gaussian

random vectors such that (Xjn, Zjn)
d
= (X, ρnX+

√
1− ρ2nY ) for ρn ∈ (−1, 1) where X,Y are independent N(0, 1)

random variables with df Φ and
d
= stands for equality of dfs, then the convergence in distribution(

max1≤j≤nXjn − bn
an

,
max1≤j≤n Zjn − bn

an

)
d→ (M1,M2), n→∞ (1.1)

holds with an = 1/
√

2 lnn, bn = Φ−1(1− 1/n) and (M1,M2) having the Hüsler-Reiss df Hλ given by

Hλ(x, y) = exp

(
−Φ

(
λ+

x− y
2λ

)
e−y − Φ

(
λ+

y − x
2λ

)
e−x

)
, λ ∈ [0,∞),

provided that the Hüsler-Reiss condition

lim
n→∞

(1− ρn) lnn = λ2 (1.2)

holds. The marginal dfs of Hλ are the unit Gumbel df Λ(x) = exp(− exp(−x)), x ∈ R.

A popular extension of the normal distribution is the skew normal one, see e.g., [1,25]; a natural question is whether

skewing has an effect on the asymptotic behaviour of the normalized maxima. Specifically, define a triangular array
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(Xjn, Zjn), j ≤ n, n ≥ 1 of bivariate skew normal random vectors as

(Xjn, Zjn)
d
= (|X|, ρn|X|+

√
1− ρ2nY ), ρn ∈ (−1, 1), j ≤ n. (1.3)

If the Hüsler-Reiss condition (1.2) holds, then by conditioning it follows that (1.1) is still valid where instead of

bn = Φ−1(1−1/n), we put bn = Φ−1(1−1/n)+an ln 2; in view of the findings of [4,19] the above result is expected.

However, for the half-skew model, surprisingly the limiting df is not the Hüsler-Reiss df any more. Indeed, if we

suppose that for all j ≤ n

(Xjn, Zjn)
d
= (X, ρn|X|+

√
1− ρ2nY ), ρn ∈ (−1, 1), (1.4)

then again under the Hüsler-Reiss condition (1.2) we obtain the joint convergence in distribution(
max1≤j≤nXjn − bn

an
,

max1≤j≤n Zjn − (bn + an ln 2)

an

)
d→ (M̃1,M̃2), n→∞, (1.5)

where (M̃1,M̃2) has df H̃λ given by

H̃λ(x, y) = Hλ(x, y + ln 2)Λ(y + ln 2), x, y ∈ R. (1.6)

As shown for instance in [18] the Hüsler-Reiss df appears due to the fact that Gaussian random vectors belong to

the larger class of elliptically symmetrical (elliptical for shorthand) random vectors with pertaining random radius

which has df in the Gumbel max-domain of attraction (MDA), see definition below.

In this paper we are concerned with the behaviour of maxima of the larger classes of skew and half-skew elliptically

symmetric distributions. For simplicity, we shall deal with the bivariate setup assuming that (X,Y ) has stochastic

representation

(X,Y )
d
= R(cos Θ, sin Θ), (1.7)

where the random angle Θ is independent of R > 0 and follows the uniform distribution on (−π, π) (abbreviate

this by Θ ∼ U(−π, π)). In the special case that R2 is chi-square distributed with 2 degrees of freedom then X and

Y are independent with df Φ.

Our investigation will be concerned with two different cases: a) we consider the case that the random radius R

has df in the Gumbel MDA which includes the Gaussian one mentioned above, and b) we shall assume that R

has df in the Weibull MDA, see definition below. The motivation for the latter assumption comes from [14, 18].

Interestingly, as shown in the aforementioned papers the case of the Weibull MDA leads to a limiting distribution

which is different from the Hüsler-Reiss distribution, see also [18]. This will be confirmed in this paper also for the

skew elliptical and half-skew elliptical models.
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Our main findings are presented in Theorem 2.1 and Theorem 2.3 below. Therein we show that maxima of

triangular arrays of half-skew elliptically symmetric distributions is different as those of elliptically symmetric and

skew elliptically symmetric distributions. Since for the skew elliptical case the limiting distributions are new our

findings are of some theoretical and applied interest; in a forthcoming paper we shall discuss aspects of statistical

modelling using skew and half-skew elliptically symmetric distributions.

The organisation of the paper is as follows: In Section 2 we present our main results. Two illustrating examples

are given in Section 3. The proofs of the results are relegated to Section 4.

2 Main Results

In this section we shall investigate the asymptotic behavior of maxima of triangular arrays defined via (1.4) with

(X,Y ) specified by (1.7). The main assumption imposed on the random radius R is that it has df F in the Gumbel

or in the Weibull MDA. There is no loss of generality if we fix the right endpoint xF of F . Therefore, hereafter we

shall assume that xF ∈ {1,∞}.

2.1 Gumbel MDA

Next we deal with the case that F is in the Gumbel MDA with some positive scaling function w, i.e., for any s ∈ R

lim
u↑xF

F̄ (u+ s/w(u))

F̄ (u)
= exp(−s), F̄ := 1− F. (2.1)

The scaling function w can be defined asymptotically by (cf. [5, 9])

w(t) = (1 + o(1))
F̄ (t)∫ xF

t
F̄ (s) ds

, t→ xF .

For X = R cos Θ as defined in (1.7) the assumption (2.1) implies that the df G of X is also in the Gumbel MDA with

the same scaling function w as for F . In fact also the converse result holds, see Theorem 4.1 in [20]. Furthermore,

from the aforementioned theorem or Theorem 12.3.1 in [2] (see also Theorem 3 in [15], Proposition A.3 in [16] and

Theorem 1 in [17] for more general results) condition (2.1) implies with v(u) =
√
uw(u)∫ 1

0

F̄

(
u√

1− y

)
dB(y; a, b) =

2aΓ(a+ b)

Γ(b)
(v(u))−2aF̄ (u)(1 + o(1)), u ↑ xF ,

where B(y; a, b) is the beta df with positive parameters a, b which has density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1).
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Here Γ(·) denotes the Euler Gamma function. Since (cos Θ)2 has beta df B(y; 1/2, 1/2) we have thus

2P{X > u} = P {R| cos Θ| > u} =

√
2

π

F̄ (u)

ν(u)
(1 + o(1)), u ↑ xF .

This fact can be also formulated in the classical framework of extreme value theory as

lim
n→∞

sup
x∈R

∣∣∣Gn(anx+ bn)− Λ(x)
∣∣∣ = 0,

with

bn = G←(1− 1/n) = inf{x : G(x) > 1− 1/n}, an =
1

w(bn)
. (2.2)

Next we state our first result.

Theorem 2.1 Let (X,Y ) be given by (1.7) with F the df of the random radius R which satisfies (2.1) with some

positive scaling function w. Let ρn ∈ (0, 1] and let an, bn be given by (2.2). If

lim
n→∞

(1− ρn)bn
an

= 2λ2 ∈ [0,∞) (2.3)

and (Xjn, Zjn), j ≤ n, n ≥ 1 is given by (1.4), then

max1≤j≤n Zjn − (bn + an ln 2)

an

d→ M, n→∞, (2.4)

where M has unit Gumbel df Λ. Furthermore, the joint convergence in (1.5) holds.

Remark 2.2 a) In the case that ρn = ρ ∈ (0, 1) for all large n, then it follows that Theorem 2.1 holds with λ =∞

and H̃∞(x, y) = Λ(x)Λ(y).

b) Let (M̃n1, M̃n2) = (max1≤j≤n Z
(1)
jn ,max1≤j≤n Z

(2)
jn ) with

(Z
(1)
jn , Z

(2)
jn )

d
= (ρ1n|X|+

√
1− ρ21nY, ρ2n|X|+

√
1− ρ22nY ). (2.5)

Suppose that ρin satisfies condition (2.3) with λi ∈ [0,∞), i = 1, 2. Using Lemma 4.1 and following the arguments

of the proof of Theorem 2.1 we obtain(
M̃n1 − (bn + an ln 2)

an
,
M̃n2 − (bn + an ln 2)

an

)
d→ (M1,M2), n→∞,

where (M1,M2) has Hüsler-Reiss df Hλ with λ = |λ1 − λ2|, see (1.2).

c) The bivariate Hüsler-Reiss df appeared initially in [3]; see also the recent articles [6, 24, 27]. Related results for

more general triangular arrays can be found in [7, 10, 11, 21, 23, 26]; see also [8] for novel statistical applications.
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2.2 Weibull case

The main assumption on F in this section is that it belongs to the Weibull MDA, hence xF is necessarily finite.

We assume again that xF = 1. Specifically, we shall suppose that F is in the Weibull MDA with index α > 0, i.e.,

(cf. [5])

lim
t↓0

F̄ (1− tx)

F̄ (1− t)
= xα, x > 0. (2.6)

In view of Theorem 4.5 in [20] the df G of X is in the Weibull MDA, and the converse result is also valid. For

notational simplicity define below a positive constant Iα and a df Υα(·) by

Iα =

√
2

π

∫ 1

0

(1− s2)α ds =
1√
2π

Γ(α+ 1)

Γ(α+ 3/2)
, Υα(t) =

∫ t
−1(1− s2)α ds∫ 1

−1(1− s2)α ds
, t ∈ [−1, 1]. (2.7)

Theorem 2.3 Let (X,Y ) be given by (1.7) with F the df of the random radius R and ρn ∈ (0, 1]. Suppose that F

is in the Weibull MDA satisfying (2.6) for some α > 0.

a) If for some un ↓ 0

lim
n→∞

1− ρn
un

= 2λ2 ∈ [0,∞), (2.8)

then

lim
n→∞

P
{
ρn|X|+

√
1− ρ2nY > 1 + unx

}
u
1/2
n F̄ (1− un)

= 2Iα|x|1/2+α, x < 0. (2.9)

b) Let (Xjn, Zjn), j ≤ n, n ≥ 1 given by (1.4). If (2.8) holds for un such that u
1/2
n F̄ (1− un) = (1 + o(1))/n, then

lim
n→∞

P
{

max1≤j≤nXjn − 1

un
≤ x, max1≤j≤n Zjn − 1

un
≤ y
}

= exp

(
−Iα

(
|x|1/2+αΥα

(
λ+ (y − x)/(2λ)√

2|x|

)
+ |y|1/2+α

(
1 + Υα

(
λ+ (x− y)/(2λ)√

2|y|

))))
(2.10)

holds for all x, y < 0.

Remark 2.4 a) The right-hand side of (2.10) is a bivariate df with dependent Weibull marginal dfs.

b) If ρn = ρ ∈ (0, 1) for all large n, then λ =∞ and the triangular array (Xjn, Zjn), j ≤ n, n ≥ 1 given by (1.4) is

asymptotically tail independent.

c) Let (M̃n1, M̃n2) be given as in Remark 2.2 b). Suppose that ρin satisfies condition (2.8) with λi ∈ [0,∞), i = 1, 2

and un such that u
1/2
n F̄ (1 − un) = (1 + o(1))/n. Using Lemma 4.1 and following the arguments of the proof of

Theorem 2.3 we obtain that for all x, y < 0

lim
n→∞

P

{
M̃n1 − 1

un
≤ x, M̃n2 − 1

un
≤ y

}

= exp

(
−2Iα

(
|x|1/2+αΥα

(
λ+ (y − x)/(2λ)√

2|x|

)
+ |y|1/2+αΥα

(
λ+ (x− y)/(2λ)√

2|y|

)))
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holds with λ = |λ1 − λ2|. Note that the limit joint df above is the same as that without skew transformation, see

(2.8) therein in Theorem 2.1 in [14].

d) For both cases that F is in the Gumbel or in the Weibull MDA utilising the arguments in [14] the more general

cases that (sin Θ)2 has regularly varying tail at π/2 can be dealt with following the ideas of our proofs here; we omit

those results.

3 Examples

In this section, we give two illustrating examples.

Example 3.1 (Kotz Type I) Consider a triangular array as in Theorem 2.1 with almost surely positive random

radius R and df F such that as x→∞

F̄ (x) = (1 + o(1))Kxς exp (−cxτ ) , ς ∈ R,K, c, τ > 0.

It follows that F is in the Gumbel MDA with auxiliary function w(x) = cτxτ−1 and further by (2.2)

Ḡ(x)= (1 + o(1))
K√
2πcτ

xς−τ/2 exp (−cxτ ) =: (1 + o(1))K̃xς̃ exp (−cxτ ) , x→∞,

which implies that (see e.g., [5])

bn = G←(1− 1/n)= (1 + o(1))(c−1 lnn)1/τ , n→∞

and thus bn/an = (1 + o(1))cτ(bn)τ = (1 + o(1))τ lnn. Therefore, condition (2.3) can be written as

lim
n→∞

(1− ρn) lnn =
2λ2

τ
.

Note in passing that for the Gaussian case, which corresponds to τ = 2, the above asymptotic condition reduces

to the Hüsler-Reiss condition (1.2).

Example 3.2 (Weibull case) Consider a triangular array as in Theorem 2.3 with almost surely positive random

radius R being beta distributed with parameters a, b > 0, thus

F̄ (1− x) =
Γ(a+ b)

bΓ(a)Γ(b)
xb
(

1− b(a− 1)x

(b+ 1)
(1 + o(1))

)
, x ↓ 0.

Consequently, condition (2.6) holds with α = b and thus (2.8) is satisfied if further

lim
n→∞

(1− ρn)

(
bΓ(a)Γ(b)

nΓ(a+ b)

)−1/(1/2+b)
= 2λ2

is valid.
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4 Proofs

We present first a lemma. Its proof is deferred to Appendix.

For any x 6= 0, y ∈ R and ρ ∈ (0, 1] denote

β = β(x, y, ρ) = arctan

(
y/x− ρ√

1− ρ2

)
, ψ = arccos ρ ∈ [0, π/2). (4.1)

In the following cn ∼ dn means limn→∞ cn/dn = 1 for cn, dn, n ≥ 1 given positive constants, and instead of

B(y; a, b) we shall write B(y) simply for the beta distribution with parameters 1/2, 1/2.

Lemma 4.1 Let (X,Y )
d
= R(cos Θ, sin Θ) with independent random variables R =

√
X2 + Y 2 > 0 almost surely

and Θ ∈ (−π, π). Then for x, y > 0 and ψ, β given by (4.1), we have

P
{
X > x, ρ|X|+

√
1− ρ2Y > y

}
= P

{
R >

x

cos Θ
,Θ ∈ (β,

π

2
)
}

+ P
{
R >

y

cos(Θ− ψ)
,Θ ∈ (−π

2
+ ψ, β)

}
and

P
{
ρ|X|+

√
1− ρ2Y > x

}
= P

{
R >

x

cos(Θ− ψ)
,Θ− ψ ∈ (−π

2
,
π

2
− ψ)

}
+P
{
R > − x

cos(Θ + ψ)
,Θ ∈ (

π

2
, π) ∪ (−π,−π

2
− ψ)

}
.

Proof of Theorem 2.1: By Lemma 4.1 putting ψn = arccos ρn and un(y) = any + bn we obtain

nP
{
ρn|X|+

√
1− ρ2nY > un(y)

}
=

n

2π

(∫ 0

−π/2
P {R cos θ > un(y)} dθ +

∫ π/2−ψn

0

P {R cos θ > un(y)} dθ

+

∫ π

ψn+π/2

P {R| cos θ| > un(y)} dθ +

∫ −π/2
ψn−π

P {R| cos θ| > un(y)} dθ +

∫ π+ψn

π

P {R| cos θ| > un(y)} dθ

)

=
2n

2π

∫ π/2

0

P {R cos θ > un(y)} dθ +
2n

2π

∫ π/2−ψn

0

P {R cos θ > un(y)} dθ =: An +Bn.

It follows from (2.2) that

An =
n

2

∫ 1

0

P
{
R >

un(y)√
1− s

}
dB(s) = nḠ(un(y))→ e−y, n→∞.

Further, since ρn ≤ 1 and ρn > ε0 for sufficiently large n and any given ε0 ∈ (0, 1),∫ 1

0

P
{
R >

un(y)√
1− s

}
dB(s) ≥

∫ ρ2n

0

P
{
R >

un(y)√
1− s

}
dB(s) =

2Bn
n

≥
∫ ε20

0

P
{
R >

un(y)√
1− s

}
dB(s) ∼

∫ 1

0

P
{
R >

un(y)√
1− s

}
dB(s), n→∞,

where the last step above follows by Proposition 12.2.1 in [2]. Consequently,

lim
n→∞

nP
{
ρn|X|+

√
1− ρ2nY > un(y)

}
= 2e−y.
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and thus (2.4) follows.

Next we assume first that xF = ∞, which implies that both un(x) and un(y) tend to infinity as n → ∞. By

Lemma 4.1

nP
{
X > un(x), ρn|X|+

√
1− ρ2nY > un(y)

}
=

n

2π

∫ π/2

βn

F̄

(
un(x)

cos θ

)
dθ +

n

2π

∫ βn−ψn

−π/2
F̄

(
un(y)

cos θ

)
dθ

=: In + Jn,

where

βn = arctan

(
un(y)/un(x)− ρn√

1− ρ2n

)
, ψn = arccos ρn ∈ [0, π/2),

with

tan(βn) =
un(y)/un(x)− ρn√

1− ρ2n
=

(
y − x+ (1− ρn)x

(1− ρn)bnw(bn)
+ 1

)√
1− ρn
1 + ρn

(
1 +

x

bnw(bn)

)−1
.

The asymptotic behaviours of integrals similar to In and Jn are derived in several contributions, see e.g., [2,12–16].

The idea is to transform both the integrand and the distribution function (in our case B(y)) so that the integrand

converges locally uniformly and so does the sequence of distribution functions. Below we shall treat separately two

cases (i) λ ∈ (0,∞) and (ii) λ = 0. Denote νn = ν(bn) =
√
bnw(bn).

(i) If λx,y := λ+ (y − x)/(2λ) > 0, then βn > 0 holds for sufficiently large n. Thus, for any given ε ∈ (0, 1) and all

n large

In =
n

4

∫ 1

(sin βn)2
F̄

(
un(x)√
1− s

)
dB(s)

∼ n

4νn

∫ ε2ν2
n

(sin βn)2ν2
n

F̄

(
un(x)√
1− s/ν2n

)
dνnB(s/ν2n)

∼ (1− Φ (λx,y)) e−x (4.2)

since w(un(x)) ∼ w(bn), bnw(bn)→∞ as n→∞ and

(sinβn)2ν2n ∼ β2
nν

2
n ∼

(
y − x+ (1− ρn)x

(1− ρn)bnw(bn)
+ 1

)2
1− ρn
1 + ρn

bnw(bn) ∼ (λx,y)
2
.

Similarly, (4.2) holds for λx,y ≤ 0. Further, ψn ∼
√

2(1− ρn)→ 0 as n→∞ and

(sin(βn − ψn))2ν2n ∼ (βn − ψn)2bnw(bn) ∼ bnw(bn)

(
un(y)/un(x)− ρn√

1− ρ2n
−
√

2(1− ρn)

)2

∼ (λy,x)
2
.

Hence, it follows that for both two cases λx,y > 2λ and λx,y ≤ 2λ we have

lim
n→∞

Jn = (1− Φ (λy,x)) e−y, (4.3)
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which implies that for (Mn1,Mn2) := (max1≤j≤nXjn,max1≤j≤n Zjn) and (Xjn, Zjn), j ≤ n given as in (1.4)

− lim
n→∞

n lnP {Mn1 ≤ un(x),Mn2 ≤ un(y)} = e−y + Φ (λx,y) e−x + Φ (λy,x) e−y.

(ii) For λ = 0, note that as n→∞

(sinβn)νn =
(un(y)− ρnun(x))

√
bnw(bn)√

(1− ρ2n)(un(x))2 + (un(y)− ρnun(x))2

∼
(y − ρnx)

√
bnw(bn)√

2(1− ρn)(bnw(bn) + x)2 + (y − ρnx)2
→ ±∞,

(sin(βn − ψn))νn =
(1− ρn)bnw(bn) + (y − ρnx)− (1− ρ2n)(bnw(bn) + x)√

(1− ρ2n)(bnw(bn) + x)2 + ((1− ρn)bnw(bn) + (y − ρnx))2

√
bnw(bn)

→ ±∞,

where the sign above depends on y > x and y ≤ x, respectively. Thus using similar arguments as above for (i) it

follows that both (4.2) and (4.3) hold also for λ = 0.

If the upper endpoint xF ∈ (0,∞), then F̄ (x/ cos θ) = 0 for x/ cos θ > xF , thus one can substitute the upper limits

of the integrals above accordingly and obtain the results. Hence the proof is complete. �

Proof of Theorem 2.3: a) First recall that

zn = arccos ρn ∈ [0, π/2), ψn = arccos(1− un) ∼
√

2un → 0, n→∞.

By Lemma 4.1 and the fact that xF = 1 we have

P
{
ρn|X|+

√
1− ρ2nY > 1− un

}
= P {R cos(Θ− zn) > 1− un,Θ− zn ∈ (−ψn, ψn)}

+P {R cos(Θ + zn) < −(1− un),Θ + zn ∈ (π − ψn, π + min(zn, ψn))}

+P {R cos(Θ + zn) < −(1− un),Θ + zn ∈ (zn − π, ψn − π)}

=: In + Jn +Kn.

Next, for all large n

In =
2

2π

∫ ψn

0

F̄

(
1− un
cos θ

)
dθ =

1

2

∫ (sinψn)
2

0

F̄

(
1− un√

1− s

)
dB(s)

=
1

2

∫ (sinψn)
2/(2un)

0

F̄

(
1− un√
1− 2uns

)
dB(2uns)

=

√
2unF̄ (1− un)

2

∫ (sinψn)
2/(2un)

0

F̄ ((1− un)/
√

1− 2uns)

F̄ (1− un)
d
B(2uns)√

2un
.

By Theorem 12.3.3 in [2] (see also Theorem 2.1 in [14])

In ∼ Iαu1/2n F̄ (1− un), n→∞,
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with Iα given by (2.7). For Jn and Kn, we consider first that 2λ2 > 1, then zn > ψn for sufficiently large n. Thus

Kn = 0 and

Jn = P {R cos(Θ + zn) < −(1− un),Θ + zn ∈ (π − ψn, π + ψn)}

= P {R cos(Θ + zn − π) > 1− un,Θ + zn − π ∈ (−ψn, ψn)} = In.

Similarly for 2λ2 < 1 and 2λ2 = 1 it follows that Jn +Kn = In. Hence the proof of a) follows by utilising further

(2.6).

b) For any x, y negative the case proved in a) above implies that

lim
n→∞

nP
{
ρn|X|+

√
1− ρ2nY > 1 + uny

}
= 2Iα|y|1/2+α

and

lim
n→∞

nP {X > 1 + unx} = lim
n→∞

n

2
P {|X| > 1 + unx} = Iα|x|1/2+α.

It thus remains to deal with

An := P
{
X > 1 + unx, ρn|X|+

√
1− ρ2nY > 1 + uny

}
.

By Lemma 4.1 we have

An = P {R cos Θ > 1 + unx,Θ ∈ (βn, π/2)}+ P {R cos(Θ− zn) > 1 + uny,Θ− zn ∈ (−π/2, βn − zn)}

= P
{
R >

1 + unx

cos Θ
,Θ ∈ (max(−ψ1n, βn), ψ1n)

}
+ P

{
R >

1 + uny

cos(Θ− zn)
,Θ− zn ∈ (−ψ2n,min(βn − zn, ψ2n))

}
=: A1n +A2n,

where zn = arccos ρn ∼ 2λ
√
un as n→∞ and

ψ1n = arccos(1 + unx) ∼
√

2un|x|, ψ2n = arccos(1 + uny) ∼
√

2un|y|,

βn = arctan

(
(1 + uny)/(1 + unx)− ρn√

1− ρ2n

)
∼
(
λ+

y − x
2λ

)
√
un.

If 0 < λx,y := λ+ y−x
2λ <

√
2|x|, then 0 < βn < ψ1n holds for sufficiently large n. Hence

nA1n =
n

2π

∫ ψ1n

βn

F̄

(
1 + unx

cos θ

)
dθ =

n

4

∫ (sinψ1n)
2

(sin βn)2
F̄

(
1 + unx√

1− s

)
dB(s)

=
n

4

∫ (sinψ1n)
2/(2un|x|)

(sin βn)2/(2un|x|)
F̄

(
1 + unx√
1 + 2unxs

)
dB(2un|x|s)

∼ |x|1/2+α(nu1/2n F̄ (1− un))

√
2

2π

∫ 1

λx,y/
√

2|x|
(1− s2)α ds

∼ |x|1/2+α
√

2

2π

∫ 1

λx,y/
√

2|x|
(1− s2)α ds = |x|1/2+αIα

(
1−Υα

(
λx,y√

2|x|

))
, (4.4)
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where Iα and Υα(·) are given by (2.7).

If −
√

2|x| < λx,y < 0, then −ψ1n < βn ≤ 0 holds for all large n. Hence

nA1n =
n

2π

(∫ −βn

0

F̄

(
1 + unx

cos θ

)
dθ +

∫ ψ1n

0

F̄

(
1 + unx

cos θ

)
dθ

)

∼ |x|1/2+α(nu1/2n F̄ (1− un))

√
2

2π

(∫ −λx,y/
√

2|x|

0

(1− s2)α ds+

∫ 1

0

(1− s2)α ds

)

∼ |x|1/2+α
√

2

2π

∫ 1

λx,y/
√

2|x|
(1− s2)α ds = |x|1/2+αIα

(
1−Υα

(
λx,y√

2|x|

))
.

Similarly, (4.4) holds for the other three cases: λx,y = −
√

2|x|, λx,y = 0 and λx,y ≥
√

2|x|, respectively.

For A2n, if 0 < λy,x := λ+ x−y
2λ <

√
2|y|, then −ψ2n < βn − zn < 0 holds for sufficiently large n. Hence

nA2n =
n

2π

∫ βn−zn

−ψ2n

F̄

(
1 + uny

cos θ

)
dθ =

n

4

∫ (sinψ2n)
2

(sin(zn−βn))2
F̄

(
1 + uny√

1− s

)
dB(s)

=
n

4

∫ (sinψ2n)
2/(2un|y|)

(sin(zn−βn))2/(2un|y|)
F̄

(
1 + uny√
1 + 2unys

)
dB(2un|y|s)

∼ |y|1/2+α(nu1/2n F̄ (1− un))

√
2

2π

∫ 1

λy,x/
√

2|y|
(1− s2)α ds

∼ |y|1/2+α
√

2

2π

∫ 1

λy,x/
√

2|y|
(1− s2)α ds = |y|1/2+αIα

(
1−Υα

(
λy,x√

2|y|

))
.

The other three cases λy,x ≤ −
√

2|y|,−
√

2|y| < λy,x ≤ 0 and λy,x ≥
√

2|y| follow with similar arguments as above

establishing thus the claim in b). Consequently, the proof is complete. �
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Appendix

The Appendix contains the proof of Lemma 4.1 and the direct verification of (1.5) for the half-skew Gaussian case.

Proof of Lemma 4.1: Recall that ψ = arccos ρ ∈ [0, π/2) and the representation given by (1.7) implies

(X, ρ|X|+
√

1− ρ2Y )
d
= R(cos Θ, | cos Θ| cosψ + sin Θ sinψ),

where Θ ∈ (−π, π), independent of the random radius R. Hence,

Θρ := ρ| cos Θ|+
√

1− ρ2 sin Θ =

 cos(Θ− ψ), Θ ∈ (−π/2, π/2),

− cos(Θ + ψ), Θ ∈ (−π,−π/2) ∪ (π/2, π).
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Further, Θρ > 0 if and only if

Θρ =

 cos(Θ− ψ), Θ− ψ ∈ (−π/2, π/2− ψ),

− cos(Θ + ψ), Θ + ψ ∈ (ψ − π,−π/2) ∪ (ψ + π/2, ψ + π).

Therefore, for x, y > 0

P
{
ρ|X|+

√
1− ρ2Y > x

}
= P

{
R >

x

cos(Θ− ψ)
,Θ− ψ ∈ (−π

2
,
π

2
− ψ)

}
+P
{
R > − x

cos(Θ + ψ)
,Θ ∈ (

π

2
, π) ∪ (−π,−π

2
− ψ)

}
and

P
{
X > x, ρ|X|+

√
1− ρ2Y > y

}
= P {R cos Θ > x,R cos(Θ− ψ) > y, cos Θ > 0}

= P
{
R > max

(
x

cos Θ
,

y

cos(Θ− ψ)

)
,Θ ∈ (ψ − π

2
,
π

2
)

}
= P

{
R >

x

cos Θ
,Θ ∈ (β,

π

2
)
}

+ P
{
R >

y

cos(Θ− ψ)
,Θ ∈ (−π

2
+ ψ, β)

}
,

where β is the solution of cos(θ − ψ)/ cos θ = y/x with respect to θ ∈ (−π/2, π/2), i.e.,

β := arctan

(
y/x− ρ√

1− ρ2

)
.

�

Proof of the claim in (1.5).

Recall that X,Y are independent standard normal distributed and bn = G←(1 − 1/n) ∼
√

2 lnn, an = 1/bn, thus

ϕ(bn)/bn ∼ 1/n with ϕ(·) the density of an N(0, 1) df. Further (set un(y) = y/bn + bn)

nP
{
ρn|X|+

√
1− ρ2nY > un(y)

}
= 2n

∫ ∞
0

P

{
Y >

un(y)− ρnx√
1− ρ2n

}
dΦ(x)

= 2

∫ ∞
−b2n

nϕ(un(x))

bn
P

{
Y >

un(y)− ρnun(x)√
1− ρ2n

}
dx

∼ 2

∫ ∞
−b2n

exp

(
−
(
x+

x2

2b2n

))(
1− Φ

(
y − x√
1− ρ2nbn

+
(1− ρn)x√

1− ρ2nbn
+

1− ρn√
1− ρ2n

bn

))
dx

= 2

∫ b2n

0

exp

(
x− x2

2b2n

)(
1− Φ

(
y + x√
1− ρ2nbn

+
(1− ρn)(b2n − x)√

1− ρ2nbn

))
dx

+2

∫ ∞
0

exp

(
−
(
x+

x2

2b2n

))(
1− Φ

(
y − x√
1− ρ2nbn

+
(1− ρn)x√

1− ρ2nbn
+

1− ρn√
1− ρ2n

bn

))
dx

=: 2(In + Jn).

Note that

In ≤
∫ b2n

0

ex

(
1− Φ

(
y + x√
1− ρ2nbn

))
dx ≤

∫ ∞
0

ex

(
1− Φ

(
y + x√
1− ρ2nbn

))
dx <∞,

12



where the last inequality holds by the dominated convergence theorem. In fact
√

1− ρ2nbn < 2λ+ 1, y+x > 2λ+ 1

hold for sufficiently large n and x. Further since 1− Φ(x) < ϕ(x)/x, x > 0 we obtain

ex

(
1− Φ

(
y + x√
1− ρ2nbn

))
<
ϕ((y + x)/(2λ+ 1))

(y + x)/(2λ+ 1)
ex ≤ ϕ

(
y + x

2λ+ 1

)
ex.

Consequently, as n→∞

In ∼ 2

∫ ∞
0

(
1− Φ

(
y + x

2λ
+ λ

))
ex dx =: 2I, Jn ∼ 2

∫ ∞
0

(
1− Φ

(
y − x

2λ
+ λ

))
e−x dx =: 2J.

Partial integration for I and J yields that (cf. [22])

I = −
(

1− Φ
( y

2λ
+ λ
))

+
e−y

2λ

∫ ∞
0

ϕ

(
y + x

2λ
− λ
)
dx = −

(
1− Φ

( y
2λ

+ λ
))

+ e−yΦ
(
λ− y

2λ

)
J = 1−

∫ ∞
0

Φ

(
y − x

2λ
+ λ

)
e−x dx = 1− Φ

( y
2λ

+ λ
)

+ e−y
(

1− Φ
(
λ− y

2λ

))
.

Hence,

lim
n→∞

nP
{
ρn|X|+

√
1− ρ2nY > un(y)

}
= 2e−y,

i.e.,

lim
n→∞

nP
{
ρn|X|+

√
1− ρ2nY > any + (bn + an ln 2)

}
= e−y.

Next, note that un(x) > 0 for all x ∈ R and sufficiently large n

nP
{
X > un(x), ρn|X|+

√
1− ρ2nY > un(y)

}
= n

∫ ∞
un(x)

P

{
Y >

un(y)− ρnt√
1− ρ2n

}
dΦ(t)

=

∫ ∞
x

nϕ(un(t))

bn

(
1− Φ

(
un(y)− ρnun(t)√

1− ρ2n

))
dt

∼
∫ ∞
x

ϕ(un(t))

ϕ(bn)

(
1− Φ

(
(y − t) + (1− ρn)t√

1− ρ2nbn
+

√
1− ρn
1 + ρn

bn

))
dt

∼
∫ ∞
x

(
1− Φ

(
y − t
2λ

+ λ

))
e−t dt (4.5)

by the dominated convergence theorem. It follows from [22] that the left-hand side of (4.5) is asymptotically equal

to

e−x + e−y −
(

Φ

(
λ+

x− y
2λ

)
e−y + Φ

(
λ+

y − x
2λ

)
e−x

)
,

establishing the claim. �
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