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Abstract

Objective—Fragile X syndrome (FXS) and tuberous sclerosis (TSC) are genetic disorders that 

result in intellectual disability and an increased prevalence of autism spectrum disorders (ASD). 

While the clinical presentation of each disorder is distinct, the molecular causes are linked to a 

disruption in the mTORC1 (mammalian Target of Rapamycin Complex 1) and ERK1/2 

(Extracellular signal-Regulated Kinase) signaling pathways.

Methods—We assessed the clinical and molecular characteristics of an individual seen at the UC 

Davis MIND Institute with a diagnosis of FXS and TSC. Clinical evaluation of physical, 

behavioral, and cognitive impairments were performed. Additionally, total and phosphorylated 

proteins along the mTORC1 and ERK1/2 pathways were measured in primary fibroblast cell lines 

from the proband.

Results—In this case the phenotypic effects that result in a human with both FXS and TSC are 

shown to be severe. Changes in mTORC1 and ERK1/2 signaling proteins and global protein 

synthesis were not found to be noticeably different between four cohorts (typically developing, 

FMR1 full mutation, FMR1 full mutation and TSC1 loss of function mutation, and TSC1 loss of 

function mutation); however cohort sizes prevented stringent comparisons.

Conclusion—It has previously been suggested that disruption of the mTORC1 pathway was 

reciprocal in TSC and FXS double knock-out mouse models so that the regulation of these 

pathways were more similar to wild-type mice compared to mice harboring a Fmr1−/y or Tsc2−/+ 

mutation alone. However, in this first reported case of a human with a diagnosis of both FXS and 

TSC, substantial clinical impairments, as a result of these two disorders were observed. 

Differences in the mTORC and ERK1/2 pathways were not clearly established when compared 

between individuals with either disorder, or both.
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Introduction

Fragile X syndrome

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by a mutation in 

the fragile X mental retardation 1 (FMR1) gene. Typically, phenotypic severity is greater in 

males with FXS compared to their female counterparts [1]. Approximately 1 in 5000 males 

and 1 in 2500 to 1 in 8000 females have FXS [2]. Individuals with FXS can suffer from an 

array of behavioral, cognitive, neurologic, and physical problems, with core symptoms 

including intellectual disability, facial dysmorphia, macroorchidism, and mood disorders [3].

FXS occurs when the FMR1 gene is silenced by hyper methylation of the expanded 

trinucleotide repeat in the 5′UTR or a loss of function mutation, resulting in the absence of 

the encoded protein, FMRP [4,5]. The lack of FMRP, an RNA binding protein linked to 

translational control [6,7] results in increased translation of many mRNA targets at the 

synapse where it plays an important role for synaptic maturation, plasticity and function [8]. 

In 2004, the mGluR theory of FXS hypothesis proposed a specific example of how FMRP 

could play a role in the regulation of synaptic function and plasticity by regulating long-term 

depression (LTD) of synaptic strength in hippocampal neurons [9]. This form of LTD, 

involving stimulation of the metabotropic glutamate receptor 5 (mGluR5), requires protein 

synthesis. Accordingly, the psychiatric and neurological aspects of FXS may be the 

consequence of an exaggerated response to synaptic activation of the group 1 mGluRs that is 

coupled to local protein synthesis. The learning and memory deficits are proposed to occur 

through the over activation of two signaling pathways that control the synthesis of synaptic 

proteins, the mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway and the 

Extracellular regulating kinase (ERK1/2) pathway [9,10]. The mTORC1 pathway is central 

to regulating protein synthesis, cell growth and proliferation and regulates Cap-dependent 

translation following inputs including growth factors, oxidative stress, and adequate energy 

and amino acid levels [11]. The ERK 1/2 signaling pathway controls the activity of the 

eukaryotic initiation factor 4E (eIF4E), a substrate that initiates translation by recruiting 

ribosomes to the 5′ mRNA cap. The ERK 1/2 signaling pathway is activated through 

extracellular inputs including mitogens and stress inducers [12]. Multiple studies have 

observed increased phosphorylation of mTOR targets in humans and mice with FMR1 
mutations in brain tissue and in peripheral blood cells and platelets when compared to 

tissues from typically developing controls or wild type mice [13,14,15,16,17]. Specifically, 

Sharma, Hoeffer et al. [15] reported that mTOR signaling is upregulated in the KO mouse 

model of FXS and increased expression of the eukaryotic initiation factor complex 4F 

(eIF4F). The dysregulation of the mTOR signaling observed in the FXS mouse model was 

also observed in human subjects with FXS where an increased phosphorylation of P70 S6K1 

(Thr389), ribosomal protein S6 (Ser235/236), Akt (Ser473), and eIF4E (Ser209) was 

detected in brain and PBMCs of individuals with FXS compared to control samples, 

suggesting increased translational activity also in peripheral cells. Recently, increased 
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translational activity and phosphorylation of mTOR (Ser2448), ERK1/2 (Thr202/Tyr204), 

and P70 S6K1 (Thr389) were also reported in primary cultured fibroblast cell lines [17].

Tuberous sclerosis complex

Tuberous Sclerosis Complex (TSC) is a genetic disorder that results in the formation of 

noninvasive lesions within numerous tissues and organs known as hamartomas. Variations in 

the size and number of lesions present lead to a broad range of clinical manifestations. In the 

85% of individuals with hamartomas within the central nervous system, cognitive 

impairments, behavioral problems and increased risk of epilepsy are common [18]. 

Estimated incidence rates for TSC is 1 in 6000 [19].

The genetic cause of TSC is the presence of a heterozygous loss of function mutation in 

either the tuberous sclerosis 1 (TSC1) gene on chromosome 9 or the tuberous sclerosis 2 

(TSC2) gene on chromosome 16. The proteins encoded by TSC1 (hamartin) and TSC2 
(tuberin) normally form a complex that regulates the mTORC1 signaling pathway directly 

through inhibition of the mTOR activator rheb (ras homologue expressed in brain) [20]. 

Therefore, the presence of loss of function mutations in either TSC1 or TSC2 results in 

increased mTORC1 activity [21,22] and subsequent increased phosphorylation of S6K1 and 

4EBP1, the two downstream effectors of translation [23]. Substrates along the mTORC1 

pathway including P70 S6K1 and ribosomal protein S6 show increased phosphorylation in 

individuals with TSC and animal models [24]. Additionally, mice with heterozygous loss-of-

function mutations in TSC1 or TSC2 have reduced mGluR-LTD, decreased postsynaptic 

translation [25] and show learning and memory deficits, independently from a tumor or 

seizure phenotype [26].

Comorbidities across FXS and TSC

FXS and TSC are two closely associated genetic disorders. Both disorders have a high 

prevalence of intellectual disabilities, autism spectrum disorders (ASD) and seizures 

[27,28,29,30,31,32,33,34]. Interference with normal synaptic plasticity causes cognitive 

deficits in both syndromes and is suspected to be a core perturbation that increases the risk 

of developing autism [35,36].

The convergence of FXS and TSC pathophysiology on the mTORC1 signaling pathway 

suggests that understanding the similarities and differences in the mechanisms of these 

disorders could inform and lead to the development of targeted treatments. As such, a 

comparison of the pathophysiology in the Fmr1−/y mouse and Tsc2−/+ mouse was 

investigated [25]. The study reported a reduction in mGluR dependent LTD and protein 

synthesis in the Tsc2+/− mice compared to the exaggerated mGluR-LTD found in the 

Fmr1−/y mice [15,37]. The cross of these mice, Fmr1−/y Tsc2−/+ resulted in mGluR-LTD 

levels between mice with either mutation alone, and most similar to the WT mice. These 

double mutant mice had improved memory compared to the Fmr1−/y or Tsc2−/+ mice, 

suggesting the mutations altered mTORC1 signaling reciprocally and this balanced the 

activity of the pathway when both mutations were present. These results suggested a range 

of activity that is optimal for the translational signaling pathway, and deviation from that 

range either by increasing or decreasing the activity would result in pathology. Noticeably, 

Yrigollen et al. Page 3

J Genet Disord Genet Rep. Author manuscript; available in PMC 2017 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene expression profiles showed significant difference between the Tsc2−/+ and Fmr1−/y 

mice, suggesting that cellular pathophysiology may be profoundly different in contrast to the 

similar phenotypic characteristics [38].

Interestingly, a unique case of a female with both FXS and TSC was clinically evaluated in 

the Fragile X Research Clinic at the UC Davis MIND Institute. Here we describe the clinical 

presentation of this participant as well as molecular consequences of the double genetic hit 

with respect to mTORC1 and ERK1/2 signaling in the derived fibroblast cell line from this 

patient and compare to those observed in subjects with the FMR1 full mutation alone and in 

a subject with a TSC1 loss of function mutation.

Methods

Participants

A total of 7 females: three typically developing controls, two harboring an FMR1 full 

mutation, one with both an FMR1 full mutation and a TSC1 loss of function mutation, and 

one with a TSC1 loss of function mutation (age range for 7 females=11–40 years) were 

included in this study. Participants were recruited following protocols approved by the 

Institutional Review Board at UC Davis and provided informed consent.

Establishing primary fibroblast cell lines

Explants of dermal biopsies (~ 3 mm) were minced and placed in a 100-mm TC-treated 

tissue culture dish (Corning Life Science) with 5 mL fibroblast medium (Gibco AmnioMax-

C100 Basal Medium with 15% AmnioMax-C100 Supplement (Invitrogen)) and placed in 

37°C humidity incubators with 5% CO2 atmosphere. Media was replaced every 3–4 days 

until fibroblast outgrowths from one explant were a quarter of the size of the dish. 

Fibroblasts were passaged into a new dish by trypsinization, and grown in modified 

fibroblast medium (1 part AmnioMax-C100 medium (as described above), 1 part 

RPMI-1640 medium (RPMI-1640 basal medium (Invitrogen) supplemented with 1X 

Primocin (Invivogen), 1% non-essential amino acids, and 10% fetal bovine serum (Corning 

Life Science)). Media was replaced every 3–4 days and allowed to reach 90% confluence 

prior to passaging. Fibroblast cultures were passaged between 2–20 times prior to collection 

for DNA, RNA, cryopreservation, or cell activation.

Cell activation

Primary fibroblasts were seeded in triplicate onto black walled clear bottom TC-treated 96 

well plates at 10,000 cells per well in modified fibroblast medium (as described above) 

overnight in a 37°C humidity incubator with 5% CO2 atmosphere. The following day media 

was replaced with serum-starvation media (RPMI-1640 basal medium supplemented with 

1X Primocin, 1% non-essential amnio-acids, and 0.5% Bovine Serum Albumin (Miltenyi 

Biotec)) and incubated overnight in the 37°C humidity incubator. The next day media was 

replaced with fresh serum-starve media and cells were stimulated with 25 ng/ml of platelet-

derived growth factor (PDGF) (Cell Signaling) or 20 ng/ml or phorbol 12-myristate 13-

acetate (PMA) (Tocris) for 5 minutes to 3 hours. or kept unstimulated. Cells were stimulated 

with PDGF in order to activate the mTOR signaling pathway through PI3 kinase, or PMA to 
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activate the ERK1/2 signaling pathway through protein kinase C, to measure 

phosphorylation of substrates along these pathways following activation. Following 

stimulation, fibroblast cells were fixed in 4% paraformaldehyde for 15 minutes at room 

temperature (RT) for in cell Western (ICW) assays, or washed two times with ice cold PBS 

and lysed in lysis buffer which consisted of 1X Cell Lysis Buffer (Millipore) supplemented 

with Protease Inhibitor Cocktail 1 (Sigma), Phosphatase Inhibitor Cocktail 2 (Sigma), and 

Phosphatase Inhibitor Cocktail 3 (Sigma).

In cell western

Following fixation, cells were permeabilized by five times washes in 0.1% Triton X-100 in 

1X Tris Buffered Saline (TBS). Cells were blocked for 1 hour at RT in Licor Blocking 

Buffer (Licor), and hybridized overnight at 4°C in primary antibody (1:250 phospho-eIF4E 

(Ser209) (Abcam), 1:300 phospho-Akt (Ser473) (Cell Signaling), 1:200 phospho-ERK1/2 

(Thr202/Tyr204) (Cell Signaling), 1:400 phospho-4EBP1 (Thr70) (Cell Signaling), 1:500 

phosphor-P70 (Thr389) (Cell Signaling), 1: 400 phosphor-S6 (Ser235/236) (Cell Signaling), 

and 1:400 phosphor-mTOR (Ser2448) (Cell Signaling)). Cells were washed 5 times in TBS 

with 0.1% Tween-20 and hybridized with 1:5000 Cell Tag (Licor) and 1:800 goat anti-

mouse 800CW (Licor) or donkey anti-rabbit 800CW (Licor) for 1 hour at RT. Cells were 

washed 5 times in TBS with 0.1% Tween-20 and a final wash in TBS. Liquid was decanted 

from the 96 well plate and the plate was scanned using the Odyssey Imager (Licor) and 

Image Studio (Licor). We compensated for differences in cell numbers by adjusting the 

phosphorylation levels (800 channel) by the Cell Tag signal (680 channel). Phosphorylation 

levels are reported as a ratio to the mean signal in the control cells.

Infrared western blotting

Standard methodologies were used. Between 5 and 30 μg of proteins were separated by 

SDS-PAGE and blotted onto PVDF membranes (Millipore). Membranes were blocked for 2 

hours in Licor Blocking Buffer and then hybridized overnight on 1:1000 primary antibodies. 

The following day membranes were washed 3 times in TBST (Bio-Rad) and hybridized with 

secondary antibody for 1 hour (1:50,000) (Licor). Membranes were washed in TBST with a 

final wash in TBS without Tween-20. Detection of immunoreactive bands, was performed 

by scanning the membranes using the Odyssey Imager following manufacturer’s 

recommendations. Band’s intensity was measured using Image Studio software.

Standard western blotting

Standard methodologies were used. Between 5–20 μg of total cell lysate were separated by 

SDS–PAGE electrophoresis and blotted on a PVDF membrane (Millipore). All the 

antibodies used in this study were commercially available except for FMRP (Ferrari et al. 

2007) 1:1000. Primary antibodies: GAPDH (Chemi-Con) 1:10000; p-mTOR (Ser 2448) and 

total mTOR (Cell Signaling) 1:1000, p-ERK1/2 and total ERK1/2 (Santa Cruz) 1:1000;. p-

AKT-P and total AKT (Cell Signaling) 1:1000; p-4E-BP1-P and total 4E-BP1 (Cell 

Signaling).1:1000. Proteins were revealed using an enhanced chemiluminescence kit (BIO-

RAD) and the imaging system LAS-3000 (Fuji). Quantification was performed using the 

AIDA software (Raytest, version 4.27) and Coomassie staining of the membranes.
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SUnSET

A protein synthesis assay was performed as previously described using the SUnSET method 

(Schmidt et al., 2009). Western Blot analyzed puromycin-treated samples and puromycin 

incorporation was detected using the mouse monoclonal antibody (1:5000, PMY-2A4 

DHSB). Coomassie staining of total proteins or immunolabeling of housekeeping proteins as 

GAPDH was used as loading controls.

CGG sizing and methylation status

CGG repeat allele size was determined by using both PCR and Southern Blot analysis as 

previously described [39,40]. Methylation status was assessed on the Southern blot by 

densitometry using the Alpha Innotech FluorChem 8800 Image Detection System. 

Methylation status included percent of methylation, indicating the percent of cells carrying a 

methylated allele and, the activation ratio, which indicate the fraction of cells carrying the 

normal allele on the active X chromosome. FMR1 mRNA expression levels measurements 

were performed by quantitative Real Time PCR; details are as in Tassone et al., [41].

Statistical analysis

To test whether the phosphorylation levels were significantly different in cells harboring an 

FMR1 full mutation or TSC1 mutation compared to control cells, Mann-Whitney tests were 

used, and p-values below 0.05 were reported as statistically significant.

Results

Female subject with heterozygous loss of function mutations in both FMR1 and TSC1: 
clinical history

The 12 year and 9 months old Caucasian female affected with both FXS and TSC was 

medically and clinically evaluated.

Dysmorphic facial features were noted including widely spaced eyes with epicanthal folds 

and a flattened nasal bridge, with midface flattening and mild mandibular prognthism. 

Possible aspects of adenoma sebaceum (facial angiofibroma) on her cheeks were present. 

The woods lamp exam showed the presence of a couple hypopigmented macules on the right 

lower leg, a couple of very small spots on her right hand, and a larger spot about 1 cm square 

on her lower back. Facial angiofibromas were also present as well as a left great toe ungula 

fibroma. These physical abnormalities support the diagnosis of tuberous sclerosis (Figure 1) 

[42]. Her neurosensory exam was normal as was her muscle strength. She was tanner at 

stage III, and her finger joints were hyperextensible with MP extension to 90 degrees.

She was adopted from Russia at 5.5 months of age, she was known to have a 34 week 

gestation with an Apgar score of 7 and 8 and a birth weight of 4 lbs. 6 oz. She was 

diagnosed with FXS during her first year. Her milestones included sitting at 9 months of age, 

walking at 16 months, saying words at 18 months and putting together words at 5 years of 

age. She had some speech regression at 18 months, coinciding with seizure episodes. She 

also had very low muscle tone and had difficulty maintaining an upright posture for a 

sustained period of time.
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She reportedly had frequent staring spells as an infant and at 18 months of age she became 

tonic and then had a generalized seizure. By 1 year 8 months of age she had 12 reported 

events of unusual motor movements diagnosed as seizures. These continued to 33 months of 

age, including febrile convulsions. She had up to 5 or 6 seizures per day with postictal 

sedation and hospitalized at 2 years and 9 months of age. Mesial frontal cortical dysplasia on 

the right side was shown on an MRI scan along with white matter signals in the centrum 

semiovale suggestive of possible ischemic changes. At this time she had an Early Learning 

Composite on the Mullen Scales of Early Learning of 50 (1st percentile). She had cystoscopy 

for recurrent urinary tract infections and adenoidectomy at 18 months of age.

When she was 7 years and 4 months of age she was diagnosed with cholelithiasis. She 

showed mood lability, particularly around her menses, which began at age 10. She had 

impulsivity, inattention, hyperactivity, gaze avoidance, tactile defensiveness, significant 

anxiety, and perseverative language. She has pronounced imitation skills that allow her to 

readily model the actions and words of people around her. She also exhibits hyperarousal to 

sensory stimuli, hyperactivity and selective mutism. Her speech is affected by verbal and 

oral dyspraxia, and she fit the diagnosis of moderate ASD by Autism Diagnostic 

Observation Scale (ADOS 2) when tested at 12 years and 5 months of age. She also has had 

a history of sleep problems.

At 6 years of age she began taking Daytrana (40 mg patch). Prior to Daytrana she was also 

prescribed topiramate, clonazepam, and Diastat. She has continued on Daytrana (40 mg per 

day) and guanfacine (1 mg three times per day), which is helping with her impulsivity and 

hyperarousal along with ADHD symptoms. She has tics including a blinking tic and 

shoulder shrugs but they disappeared on the guanfacine. She was without seizures for several 

years but they reoccurred at age 12 and her anticonvulsant medication was changed to 

oxicarbamazepine and she currently has only one seizure a year. Her most recent MRI at age 

15 demonstrated multiple tubers frontally and a tuber on each side of the Foraman of Munro 

but they are not blocking CSF flow.

Her non-pharmacological treatments have included special education intervention in school 

in addition to physical therapy, occupational therapy and speech and language therapy on a 

weekly basis. She has also utilized the CogMed program, a digital program through the 

internet to improve attention and concentration.

DNA molecular testing

Clinical testing of whole exome sequencing detected a 4 bp deletion in TSC1 resulting in a 

frame-shift loss of function mutation. Fragile X DNA testing also revealed the presence of 

the FMR1 full mutation (570, 710, 1050 CGG repeats), and of a normal allele of 29 CGG 

repeats, with an activation ratio of 0.68. DNA testing in fibroblast cells derived from this 

female revealed the presence of the same normal and methylated full mutation alleles with 

an activation ratio of 0.3. She had lower FMR1 mRNA (0.61 ± 0.10) and lower FMRP 

(0.031) expression levels than typically developing controls (FMR1 mRNA in controls=1.42 

± 0.26, and FMRP levels in ERK 1/2 controls=1.2 ± 0.02 [41,43].
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Regulation of the mTORC1 and ERK pathways not significantly altered in fibroblast cells 
harboring FMR1 and TSC2 mutations

The dysregulation of the pathways controlling protein synthesis is one of the hallmarks of a 

number of neuropsychiatric disorders [44]. A dysregulation of protein synthesis have been 

observed in FXS mice [45,46,47,48] and recently have been also reported in primary cells 

(fibroblasts) as well as in lymphoblastoid cell lines derived from patients with FXS [17,48]. 

Recent experiments showed in a mouse model for Tuberous sclerosis showed an 

amelioration of the dysregulated pathways in FXS [25]. We investigated protein synthesis 

activity in fibroblasts from the proband with the double FMR1/TSC1 mutation, three 

females without FMR1 or TSC1 mutations, 2 females with FMR1 mutations, and 1 female 

with a TSC1 loss of function mutation using SUnSET technology, a non-radioactive assay 

for labeling newly synthesized proteins [49].

Newly synthesized proteins were measured by puromycin incorporation. No significant 

difference in protein synthesis was shown between the four genotypic groups, though small 

increased protein synthesis was observed in the FXS cohort compared to the other three 

cohorts. While our findings suggest that the double mutation might indeed normalize the 

excessive protein synthesis in FXS, the statistical significance of these data were limited by 

the fact that the fibroblast cell line derived from the FXS & TSC patient represents a unique 

human case harboring both FMR1 and TSC1 mutations (compared in this study with the 

matched controls harboring FMR1 or TSC1 mutation) (Figure 2).

Next, we assessed the phosphorylation levels of a number of proteins along the mTORC1 

and ERK1/2 signaling pathways, regulators of protein synthesis, in fibroblast cells from the 

four cohorts. Phosphorylation and total protein levels were measured using both In Cell 

Western assays and Western blots for ERK 1/2, Akt, mTOR, P70 S6K1, eIF4E, 4E-BP, and 

ribosomal protein S6.

Although for all proteins analyzed, the double mutation showed a tendency to a decreased 

phosphorylation status, no significant differences were observed (Figure 3).

Furthermore, fibroblast cells were stimulated with PDGF or PMA, or unstimulated prior to 

measuring mTORC1 and ERK1/2 activity. Mann-Whitney tests compared females in the TD 

cohort and females in the FXS cohort including the proband for each time point. No major 

differences were observed in the phosphorylation of ERK 1/2 (p>0.3), Akt (p>0.4), mTOR 

(p>0.2), p70 S6K1 (p>0.7), eIF4E (p>0.1), 4EBP (p>0.4) or RP-S6 (p>0.2) (Supplementary 

figure 1).. Detection of differences in the protein and phosphorylation levels of these data 

were limited by the cohort sizes, the uniqueness of the human case where no other patient is 

known to exist, and the FMRP expression levels of females harboring an FMR1 full 

mutation are highly variable. However, we did not observe pronounced differences between 

any of our cohorts.

Discussion

While mTORC1 and ERK1/2 signaling dysregulation was not detected in the primary 

cultured fibroblast cells, the clinical evaluation of the proband harboring both the FMR1 full 
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mutation and TSC1 loss of function mutation showed pronounced deficits in learning, 

behavior and, typical physical disease features of FXS and NF1, but the severity of her 

problems were more severe than what is typically seen in females with FXS. Females with 

the FMR1 full mutation are typically less severely affected than their male counterparts, in 

large part due to the X-inactivation that randomly silences either the full mutation or normal 

FMR1 allele in females. As such, FMRP expression in females with FXS is commonly 

observed at a higher level than in affected males, and these higher levels can be beneficial 

[43].

A FXS-TSC “double-hit” mouse model has previously been reported, which showed 

remarkably improved phenotype compared to mouse models of FXS or TSC [26]. Although 

the proband described here presents with a severe phenotype compared to typical females 

with a FXS diagnosis, however it is unclear if this is due to the type of TSC mutation, the 

variability in FMRP expression levels seen in females, or species differences. The proband 

presented with a loss of function mutation in TSC1, such mutations are predicted to have a 

lower severity than TSC2 loss of function mutations, modeled in the “double-hit” mouse. It 

is therefore difficult to compare the biological effect of this double mutation genetic 

background with what has been observed in the Fmr1 (−/y) Tsc2 (−/+) mouse [25] however 

we did not observe a less severe clinical presentation.

In conclusion, this study demonstrates the level of complexity underlying how these 

mutations alter the regulation of both the mTORC1 and ERK1/2 signaling pathways in 

human tissue and cells. Understanding these complexities is of importance for developing 

treatments for both FXS and TSC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Patient with FMR1 and TSC1 mutations. A) Note the long face and prominent ears. B) Skin 

macules seen with Woods lamp. C) White skin macules seen on hand.
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Figure 2. 
Protein synthesis was not significantly different between cohorts in fibroblast cells. A) Left 

upper panel shows a representative WB of cells treated with puromycin and stained with 

antibodies against puromycin. Left lower panel shows the same blot stained with coomassie 

used as loading control. Right panels, levels of protein synthesis obtained normalizing the 

puromycin signal to the Coomassie staining. Bars represent the mean + Standard Error (n = 

3), FXS (n = 2), TSC (n = 1), TSC&FXS (n = 1) technical triplicates). B) Left panel, 

representative WB images for FMRP from cells from controls (TD), FXS, TSC and 

TSC&FXS patients. Right panel, quantification of FMRP normalized to GAPDH. Bars 

represent the mean + Standard Error (n = 3), FXS (n = 2), TSC (n = 1), TSC&FXS (n = 1) 

technical triplicates).
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Figure 3. 
Phosphorylation of substrates along the mTORC1 and ERK1/2 signaling pathways were not 

significantly different between cohorts in fibroblast cells. Left panels, representative WB 

images for mTOR, p-mTOR, ERK-1/2, p-ERK-1/2, FMRP, AKT, p-AKT, 4-EBP1, 

p-4EBP1, rpS6, eIF4E, p-p70, GAPDH (loading control), and coomassie stain from 

fibroblast lysates of controls (TD, n = 3), FXS (n = 2), TSC (n = 1), TSC&FXS (n = 1). 

Right panels, quantification of phosphoproteins levels over total normalized to GAPDH. 

Mean of technical duplicates is represented.
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