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A growing number of evidence demonstrates that ancestral exposure to xenobiotics
(pollutants, drugs of abuse, etc.) can perturb the physiology and behavior
of descendants. Both maternal and paternal transmission of phenotype across
generations has been proved, demonstrating that parental drug history may have
significant implications for subsequent generations. In the last years, the burden of
novel synthetic opioid (NSO) consumption, due to increased medical prescription of
pain medications and to easier accessibility of these substances on illegal market, is
raising new questions first in term of public health, but also about the consequences
of the parental use of these drugs on future generations. Besides being associated
to the neonatal abstinence syndrome, in utero exposure to opioids has an impact
on neuronal development with long-term repercussions that are potentially transmitted
to subsequent generations. In addition, recent reports suggest that opioid use even
before conception influences the reactivity to opioids of the progeny and the following
generations, likely through epigenetic mechanisms. This review describes the current
knowledge about the transgenerational effects of opioid consumption. We summarize
the preclinical and clinical findings showing the implications for the subsequent
generations of parental exposure to opioids earlier in life. Limitations of the existing data
on NSOs and new perspectives of the research are also discussed, as well as clinical
and forensic consequences.

Keywords: opioids, transgenerational inheritance, epigenetics, parental exposure, prenatal exposure,
vulnerability

INTRODUCTION

The last decade is witnessing a huge increase in medical use and abuse of opioids, which is
emerging as a major public health threat due to the concomitant dramatic rise in overdose
morbidity and mortality (Humphreys, 2017; Kertesz, 2017). In the United States, epidemiological
data indicate that the number of deaths involving opioids has more than quadrupled since 1999
(CDC, 2017), and the trend shows no sign of diminishing. The increase of opioid prescriptions
to manage acute and chronic pain obviously contributed to generate this burden (Bedson et al.,
2013; McCabe et al., 2017). In addition, opioid spread has been strongly favored by the easy
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accessibility of a number of licit (pharmaceutical or counterfeit),
and illicit opioids of synthesis, cheaply manufactured on
industrial scale and distributed online (Pergolizzi et al., 2018).
These opioids include fentanyl, firstly synthetized in 1960 and
approved as anesthetic and for palliative use, fentanyl analogs
and novel synthetic opioids (NSOs), such as AH-7921, U-47700
and MT-45 butyrylfentanyl (Armenian et al., 2017). Newer
compounds are also produced by clandestine manufacturers
at a fast pace, which makes difficult their analytical detection
and legal regulation by international drug agencies (Armenian
et al., 2017). Most of these molecules are potent agonists of the
µ-opioid receptor, while they are less active on the κ and δ

isoforms. Opioid receptors are distributed throughout the central
nervous system and mediate the analgesic, but also the adverse
effects including respiratory depression, constipation, rewarding
properties, etc. (Cox, 2011; Pasternak and Pan, 2013). Notably,
increasing evidence suggests that, besides its direct effect on
treated individuals, drug exposure may induce lasting effects
on subsequent generations (Vassoler et al., 2014). Nevertheless,
information about the possible transgenerational consequences
of opioid use is still very limited, with relevant consequences
at regulatory level for prescription. This review summarizes
the molecular mechanisms that underlie transgenerational
inheritance of drug exposure and the available data on opioids,
focusing on human data. Due to the scarcity of studies specifically
addressing NSOs, data on opiates and opioids will also be
included.

MOLECULAR MECHANISMS
UNDERLYING THE IMPACT OF DRUGS
ON FUTURE GENERATIONS

A family history of drug abuse correlates with increased risk
of drug use in offspring (Yohn et al., 2015). However, only
a small number of gene variants has been associated to drug
addiction, indicating that genetics cannot provide the sole
explanation. Indeed, environmental components, including drug
consumption, may also influence the physiology and behavior
of future descendants. The first demonstration of such impact
referred to exposure to vinclozin, an agricultural fungicide,
which can generate stable and heritable changes across several
generations (Anway et al., 2005). Since then, many examples
of both maternal and paternal phenotype transmission have
been documented following prenatal stress (Morgan and Bale,
2011), diet variations (Kaati et al., 2002; Dunn and Bale, 2009;
Champagne, 2010; Ng et al., 2010; Ost et al., 2014) and drug
use/abuse (He et al., 2006; Novikova et al., 2008; Vassoler et al.,
2014). In most cases, such transgenerational effects are mediated
by epigenetic mechanisms. Epigenetics refers to all the molecular
processes that regulate genome activity without changes in the
DNA sequence (Skinner, 2011), which underlie, for instance, the
ability of the same genome to produce multiple differentiated
cell types in the same organism. Of note, epigenetic information
responds to short- and long-term environmental inputs, allowing
cells to adapt to new conditions, and such changes might
be preserved during mitosis (Campos et al., 2014). Therefore,

epigenetic remodeling events occurring in the germline can
potentially persist through several generations, thus promoting
effects also on individuals that were not exposed to the initial
insult (Sharma and Rando, 2017).

Speaking about epigenetic inheritance, one important
distinction relates to the type of exposure that can be prenatal,
when occurring in a pregnant female or parental, if occurring
prior to pregnancy (Figure 1A). In the first case, the possible
effects are considered as true transgenerational inheritance,
manifesting in the absence of any exposure, only if they are
preserved at least in the third generation of descendants (F3)
(Heard and Martienssen, 2014). By contrast, in case of parental
exposure, we speak about transgenerational epigenetic alterations
starting already in the F2 generation.

Epigenetic Mechanisms
Epigenetic changes are able to regulate the expression of specific
genes by remodeling the structure of chromatin thus enabling
the transition from open and transcriptionally active state to a
condensed and transcriptionally repressed state (Margueron and
Reinberg, 2010). At molecular level, the modifications involved
in epigenetic inheritance include mainly post-translational
modifications (PTMs) of histones and DNA methylation, but
also non-coding and coding RNAs (Heard and Martienssen,
2014).

Histone N-terminal tails are targets of a number of covalent,
but reversible modifications, such as acetylation, methylation,
phosphorylation, crotonylation, succinylation, ubiquitylation,
citrullination, and O-GlcNAcylation (Allis and Jenuwein, 2016;
Sharma and Rando, 2017). The transcriptional effects of
distinct histone PTMs are different (Figure 1B). While histone
acetylation is associated with transcriptional activation, histone
methylation is implicated in both activation and repression
of transcription, depending on the residue involved and on
the level of methylation (Teperino et al., 2010). In mammals,
sperm alterations of histone H3 acetylation and methylation
were reported in response to cocaine (Vassoler et al., 2013),
hepatotoxin (Gapp et al., 2014), and low-protein diet (Carone
et al., 2010), although it is still unclear if these PTMs are sufficient
to convey instructive information for the progeny.

Another fundamental epigenetic process is DNA methylation,
which occurs typically on the cytosine of CpG dinucleotides,
enriched in the proximity of gene promoters and enhancers
(Figure 1B) (Margueron and Reinberg, 2010). DNA methylation
is mostly associated with transcriptional suppression and
this mechanism underlies several examples of genomic
regulation, such as genomic imprinting (genes whose
expression is determined only by the paternal or maternal
allele), X-chromosome inactivation and epigenetic memory
maintenance (Bergman and Cedar, 2013). In sperm, the
degree of DNA methylation at various loci is influenced by
environmental factors including diet (Radford et al., 2014),
alcohol (Govorko et al., 2012) and traumatic stress (Gapp et al.,
2014; Bohacek et al., 2015) and similar aberrations were observed
in the brain of the offspring. However, also in this case, the
demonstration that parental DNA methylation alterations are
causally contributing to specific traits in the descendants is
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FIGURE 1 | Mechanisms of epigenetic inheritance induced by drug exposure. (A) Exposure of a pregnant female (F0) to a drug (prenatal exposure) implies also
exposure in utero of the fetus and its own future germline (i). In this case, inherited epigenetic effects rising in the newborn (F1) and the direct descendants (F2) are
considered as intergenerational, because cells of the future organism were directly exposed. Only epigenetic changes preserved in the following generations (F3 and
after) are transgenerational, as manifesting in the absence of any exposure. On the other hand, exposure can occur in females (ii) or males (iii) prior to pregnancy
(parental exposure), thus potentially touching the germline, which will produce the next generation (F1). In this case, inherited epigenetic alterations will be considered
as transgenerational already in the F2 generation and beyond. (B) Schematic representation of epigenetic mechanisms. In chromatin, DNA is wrapped around
individual histone proteins. DNA methylation at CpG dinucleotides (Methyl CpG) and methylation of histones at specific lysine residues are associated to a
condensed chromatin structure, where DNA is less accessible to transcription factors, which results in silenced transcription (i). In contrast, acetylation of histones
and specific histone methylation favors a more open structure of the chromatin, which allows the recruitment of transcription factors and activation of
transcription (ii). (C) DNA methylation (means and 95% confidence intervals) at OPRM1 gene (position +126 counted from the adenine of the start codon, left panel)
and LINE-1 (long-interspersed nuclear elements – central panel) in a cohort of 132 chronic pain patients of whom 62 were treated with opioid analgesics for more
than 1 year. Methylation was higher in the opioid-treated patients than in age-matched non-opioid-treated pain patients. The significances (∗∗P < 0.01,
∗∗∗P < 0.001) are the results of t-test comparisons between groups. For comparison of the specificity of the hypermethylation at position +126 of the OPRM1 gene,
a non-significant position (+159) is shown at right. Data shown in C panel are from Doehring et al. (2013) (License No. 4331930562761).
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challenging, due to the difficulty to assign specific modifications
to a given phenotype (Bohacek and Mansuy, 2015).

In mammals, most epigenetic changes arising in germline
throughout life are actually erased during reproduction, which
apparently leaves little chance for inheritance of epigenetic
marks (Heard and Martienssen, 2014). Two reprogramming
events of global DNA methylation take place in early embryonic
development to promote cellular totipotency. However, at
specific loci, some methylation and histone marks can escape this
complete erasure (Bartolomei, 2009; Orozco et al., 2014; Sharma
and Rando, 2017), which suggests that epigenetic modifications
might be carriers of inheritable information. More recently,
several reports described that sperm RNAs can convey the
transfer of complex acquired phenotype from father to the
offspring (Grandjean et al., 2015; Rodgers et al., 2015; Chen et al.,
2016), likely through their ability to influence DNA methylation
(Kiani et al., 2013). Although these findings pointed out a causal
role of sperm RNAs in epigenetic germline inheritance, the
underlying mechanisms remain unresolved so far.

CONSEQUENCES OF OPIOID PRENATAL
EXPOSURE

According to recent reports, up to 1 in 5 women are taking an
opioid medication at some point while pregnant (Desai et al.,
2014). This is concerning because opioids are known to cross
rapidly the placenta in concentrations consistent with maternal
dose (de Castro et al., 2011) thus potentially triggering short
and long-term vulnerabilities in the progeny. Prenatal opioid
exposure can induce neonatal abstinence syndrome (NAS) in
newborn infants, but knowledge about its long-term effects is
limited, and information about possible transgenerational effects
is even less abundant.

Neonatal abstinence syndrome is a true opioid withdrawal
syndrome often requiring pharmacological treatment with
replacement opioids and longer hospitalization to cope with
symptoms including dehydration, diarrhea, fever, congestion,
and diaphoresis (Practice and Medicine, 2017). A maintenance
treatment with methadone or buprenorphine is the gold standard
therapy for opioid-addicted pregnant women and NAS is
estimated to occur in about 50% of infants chronically exposed
to opioids (Klaman et al., 2017). This incidence corresponds to
5 out of 1000 live birth in United States (Patrick et al., 2015),
with big health and economical implications, particularly because
of the current inability to understand the factors associated to
a severe NAS outcome. Indeed, despite multiple efforts aiming
at modeling the contributions of maternal opioid dose and of
the concurrent exposure to other medications or illicit drugs, the
results remain so far inconclusive. Some genetic polymorphisms
of genes related to dopamine and endogenous opioid systems
such as prepronociceptin (PNOC) (Wachman et al., 2017), opioid
receptors (Wachman et al., 2015) (OPRM1,OPRK1, andOPRD1),
and catechol-O-methyltransferase (COMT) (Wachman et al.,
2013), seem associated to a more severe NAS outcome, although
further test on a larger scale are required to confirm these
indications. Notably, one report showed that high methylation of

three specific CpG sites of the OPRM1 promoter is associated to
a worse NAS outcome in newborn babies from mothers receiving
methadone or buprenorphine during pregnancy, likely due to the
subsequent lower expression of the receptor and a need for higher
doses of opioid medication to control NAS symptoms (Wachman
et al., 2014).

Regarding the long-term consequences of in utero opioid
exposure, clinical studies in humans are extremely complicated
by the huge amount of variables (i.e., doses and length of
treatment) and of concurring risk factors that are often present,
such as polysubstance use, stability, mother–child interaction, etc.
Animal studies, performed mostly in rodents and in rigorously
controlled experimental conditions, have helped to partially fill
this gap. These studies highlighted broad neurodevelopmental
effects of prenatal opioid exposure, including long-lasting
changes in pre- and post-synaptic activity, altered opioid-
mediated analgesia, reward-related behaviors, and impairment
of hippocampal-based learning, in addition to alterations of
the immune response (for recent review readers can refer to
Byrnes and Vassoler, 2017). Unfortunately, these investigations
almost completely referred to morphine, with only few exceptions
examining oxycodone (Davis et al., 2010; Devarapalli et al., 2016),
methadone (Hou et al., 2004; Vestal-Laborde et al., 2014; Wong
et al., 2014; Chiang et al., 2015), and buprenorphine (Hung
et al., 2013; Chiang et al., 2014; Wu et al., 2014). To the best of
our knowledge, no report exists on long-term effects of prenatal
administration of other synthetic opioids, such as fentanyl, in
animal models. In addition, the heritability of such changes in
the following generations was not really investigated. Alarmingly,
in spite of converging animal data indicating possible long-term
consequence of prenatal exposure to opioids, only few studies
addressed the fate of exposed infants as they grow and enter
adolescence and young adulthood. Young children born from
women exposed to opioids during pregnancy show increased
likelihood of problems related to motor skills, attention, and
behavior regulation (Ornoy et al., 2001; Slinning, 2004; Melinder
et al., 2013; Sundelin Wahlsten and Sarman, 2013). More
divergent findings are reported concerning general cognitive
abilities, with some study indicating an impairment of memory
abilities in exposed children (Bunikowski et al., 1998; Hunt et al.,
2008; Salo et al., 2009; Sundelin Wahlsten and Sarman, 2013),
whereas others show no differences (Rosen and Johnson, 1985; de
Cubas and Field, 1993; Melinder et al., 2013). Less information
is available about adult offspring of opioid-dependent users,
although few longitudinal studies reported deficits on several
cognitive parameters (Konijnenberg et al., 2016; Nygaard et al.,
2016, 2017). Collectively, however, these data must be taken with
caution due to the heterogeneity of prenatal drug exposure and
the difficulty to dissociate opioid effects from other risk factors to
which they are often associated.

It is important to mention that, although most available
studies refer to infants/young adult born to opioid-dependent
women, many other patients are prescribed opioids during
the pregnancy for pain control issues [severe migraine
headache, myalgia, joint pain, low back, and pelvic pain
(Bateman et al., 2014)]. A report referring to more than 1 million
pregnant women with low socioeconomical status in the
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United States, highlighted that 21.6% was dispensed at least once
with prescription opioids during pregnancy and a significant
increase was observed between the beginning (2000) and the end
(2007) of the enrolment (Desai et al., 2014). The percentage was
slightly lower, but still substantial (14%) in more affluent women
(commercially insured) (Bateman et al., 2014). In Europe, data
collected from a population-based registry covering the entire
Norwegian population showed that, between 2004 and 2006,
6% of the pregnant women who ended the pregnancy filled at
least one opioid prescription (Engeland et al., 2008). Chronic
treatment with prescription opioids seems less diffused, as
reported by a retrospective study on the period between 1998 and
2009, which recorded opioid use for more than 1 month during
pregnancy in 6 out of 1000 deliveries (Kellogg et al., 2011).
Regarding their prescription in pregnancy, most opioids were
classified by the Food and Drug Administration under category
C (Table 1), indicating that animal studies provided evidence
for potential harm to the fetus, but human studies are lacking.
Considered as overly simplistic, letter pregnancy categories
were removed from drug labeling in 2015 and now risks for
drug use during pregnancy, breast-feeding and in females and
males of reproductive potential must be detailed. However, it
remains difficult to infer from the available data if and at which

TABLE 1 | Classification of opioid medications according to the FDA pregnancy
category rule valid until June 2015.

Active
substance

Common names of medication Use in pregnancy
category (FDA)

Buprenorphine Belbuca, Bunavail, Buprenex,
Buprenorphine, Butrans, Probuphine,
Sublocade, Suboxone, Zubsolv

C

Codeine Butalbital, Carisoprodol, Fioricit,
Codeine, Fioricet, Fiorinal, Prometh VC,
Synalgos, Tylenol

C

Fentanyl Abstral, Actiq, Duragesic, Fentanyl,
Fentora, Ionsys, Lazanda, Sublimaze,
Subsys

C

Hydrocodone Anexsia, Apadaz, Flowtuss, Hycofenix,
Hydrocodone bitartrate, Hysingla,
Norco, Reprexain, Rezira, Tussicaps,
Tussigon, Vicodin, Vituz, Zohydro ER,
Zutripro

C

Methadone Dolophine hydrochloride, methadone
hydrocloride, Methadose

C

Morphine Apokyn, Arymo ER, Astramorph PF,
Duramorph PF, Embeda, Infumorph,
Kadian, Morphabond ER, MS Contin

C

Oxycodone Oxaydo, Oxycet, Oxycodone,
Oxycodone hydrochloride, Oxycontin,
Percocet, Percodan, Roxicet,
Roxicodone, Roxybond, Xtampza ER

B

Tapentadol Nucynta, Tapentadol Hydrochloride C

Tramadol Conzip, Tramadol Hydrochloride,
Ultracet, Ultram

C

Commercial medication names are listed in alphabetical order. Category B: no
evidence of harm to the fetus in animal studies, but no adequate and well-controlled
studies in pregnant women. Category C: some evidence of adverse effect in animal
studies OR no animal studies have been conducted AND no adequate and well-
controlled studies in pregnant women.

doses/treatment conditions the use of opioids in pregnancy is
safe. A comprehensive study highlighted an association between
medical use of opioids in the first trimester of pregnancy and
heart and neural tube birth defects (Interrante et al., 2017),
while others refer to the third trimester of pregnancy (Coluzzi
et al., 2014) and no study that we are aware of investigated the
association with inheritable changes. Importantly, to counteract
excessive opioid use, cannabinoids are emerging as alternative or
combination treatment, due to the tight reciprocal interactions
that exist between opioid and endocannabinoid signaling (Hurd,
2017). However, not even medical marijuana is devoid of risk
of inducing hereditary effects (recently reviewed by Szutorisz
and Hurd, 2018). Thus, it remains an urgent need of systematic
longitudinal studies investigating the actual long-term impact
of prenatal opioid exposure on the progeny and in subsequent
generations.

INHERITANCE LINKED TO OPIOID
PARENTAL EXPOSURE

As mentioned above, epigenetic changes induced by drug
exposure in the germline might be inherited by descendants.
In term of public health, the potential ability of opioids to
trigger transgenerational effects following drug exposure before
pregnancy might generate considerable long-term consequences
in the population. The µ-opioid receptor is expressed in sperm
cells and β-endorfin, an endogenous opioid, is produced locally
in male reproductive tract (Albrizio et al., 2006). Expression of
all opioid receptors is also detected in oocytes and, interestingly,
the pattern of µ- and κ-opioid receptors is changing during
oocyte maturation, which points to a possible role of endorphins
in this process (Agirregoitia et al., 2012). The presence of
opioid receptors in both gamete types is suggestive not only
of a contribution of endorphins to maintain gamete function,
but also of possible epigenetic effects triggered by opioids on
these cells that, in turn, could be transmitted to subsequent
generations. Consistent with this hypothesis, opioid addiction
increased DNA methylation at specific sites of the OPRM gene
promoter in several cells, including sperm (Nielsen et al., 2009;
Chorbov et al., 2011; Ebrahimi et al., 2018). Interestingly,
an in vitro study showed that morphine inhibits cellular
cysteine uptake thus altering the redox state of the cells,
which results in reduced availability of S-adenosyl methionine
(SAM), the principal methyl donor for DNA methylation
(Trivedi et al., 2014). Accordingly, global reduction of DNA
methylation was observed in cells treated with morphine, while
an opposite effect was found in leukocytes of chronic pain
patients treated with opioid analgesics (Figure 1C) (Doehring
et al., 2013). The apparent lack of congruence of these results
might be explained by cell specific responses induced by
opioids. Nevertheless, these reports unequivocally demonstrate
that opioids induce epigenetic changes. Accordingly, in mice,
morphine reduced histone methylation (Sun et al., 2012)
and augmented histone H3 acetylation in nucleus accumbens
(Sheng et al., 2011) and basolateral amigdala (Wang et al.,
2015), two brain regions involved in the reward control.
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In humans, most reports highlighted opioid-induced epigenetic
alterations only in the exposed generation, where they can
mediate some of the observed behavioral effects, while there is not
direct evidence of their transmission to subsequent generations.
However, several studies in animals have started to investigate the
impact of parental exposure to morphine at adolescence (F0) to
the offspring (F1). Typically, adolescent female rats were treated
with morphine and, after a wash out period, mated with drug-
naïve males and tests were performed in adult F1 generation.
Both male and female F1 rats showed enhanced locomotor
activity when parents were exposed to morphine (Byrnes,
2005). In addition, males exhibited a more rapid development
of morphine tolerance (Byrnes et al., 2011) and attenuated
locomotor sensitization in association to increased expression of
the dopamine D2 and κ-opioid receptors in nucleus accumbens
(Byrnes et al., 2013). In contrast, in F1 females, parental
morphine exposure altered anxiety-like behaviors (Byrnes et al.,
2011), increased the sensitivity to opioid rewarding effects,
likely due to sex-specific induction of the µ-opioid receptor
(Vassoler et al., 2016), and lowered the levels of morphine self-
administration (Vassoler et al., 2017). Thus, parental exposure to
morphine induces neuroadaptation in both dopamine and opioid
signaling and reshapes drug response in a sex-dependent manner.
Moreover, alterations in hippocampal synaptic plasticity, with
possible consequence on memory performance, were highlighted
in the offspring of either F1 male or female (Sarkaki et al., 2008).
Beyond the effects described in F1 generation, the first evidence of
true transgenerational inheritance of opioid-induced effects came
for the observation that F2 offspring from F0 morphine-exposed
fathers exhibits decreased expression of synaptophysin and
reduced synaptic connection (Vyssotski, 2011). Of note, changes
in drug seeking behavior and drug tolerance were also observed in
F2 generation from females exposed at adolescence (Byrnes et al.,
2013; Vassoler et al., 2017), indicating that even limited exposure
to opioids can have lasting effects across multiple generations.
Whether these transgenerational repercussions are limited to
opioid exposure during adolescence, when the reproductive
system is still maturing, or if they are also present when exposure
occurs in adults, remains to be verified.

CONCLUSION

Medical use and misuse of opioids have strongly increased in
the last decades and the consequences for public health are
numerous. Besides the main effects on the directly exposed

individuals, converging evidence suggests that opioids can
induce long-lasting transgenerational changes in subsequent
generations, particularly concerning drug sensitivity and
tolerance, with possible implications for drug abuse vulnerability.
However, both preclinical and clinical studies are currently
too limited to draw rigorous conclusions on the actual impact
that the spread NSO use might have on future generations.
One big limitation relies on data mostly referring to a
small group of molecules such as morphine, methadone
and buprenorphine, whose relevance is restricted to specific
conditions (i.e., replacement therapy during pregnancy), while
a gap of knowledge persists for other NSO medications used
for pain control, also during pregnancy. Consequently, the
doses of substances that can be considered as safe not only for
the mother, but also for the child and future generation still
remain an open question for lots of NSOs. Moreover, given the
increasing alternative use of opioids together with cannabinoids,
the study of possible effects of such combinations might be highly
relevant. A second crucial point is the very limited amount
of publications investigating the transmission across multiple
generations of parental opioid exposure. Moreover, future studies
should consider not only mother, but also father habits, as
epigenetic transmission occurs also through paternal gametes.
Another critical aspect depends on the complex interpretation
of the clinical studies that tried to address opioid effects on the
following generations, because of the co-occurrence of many
confounding factors (polysubstance use, genetic component).
Therefore, preclinical studies must be carefully designed to
increase as much as possible the translational relevance of the
results and help establishing cause-effect relationships and the
role of epigenetics. For instance, all animal studies investigating
the effects of parental exposure to morphine were performed in a
similar experimental paradigm with exposure at adolescence.
Thus, so far, we totally lack information about the potential
transgenerational impact of opioid exposure at adulthood that
corresponds to the age with major NSO consumption in humans.

In conclusion, a huge research effort is warranted to inform
the regulatory measures that are needed to curb the spread
of synthetic opioids and to keep the risk–benefit ratio of the
medicinal use of opioids as low as possible.
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