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Abstract We consider the rate of piecewise constant approximation to a locally sta-
tionary process X(t), t ∈ [0,1], having a variable smoothness index α(t). Assuming
that α(·) attains its unique minimum at zero and satisfies

α(t) = α0 +btγ +o(tγ) as t→ 0,

we propose a method for construction of observation points (composite dilated de-
sign) such that the integrated mean square error∫ 1

0
E{(X(t)−Xn(t))2}dt ∼ K

nα0(logn)(α0+1)/γ
as n→ ∞,

where a piecewise constant approximation Xn is based on N(n) ∼ n observations
of X . Further, we prove that the suggested approximation rate is optimal, and then
show how to find an optimal constant K.

1 Introduction

Probabilistic models based on the locally stationary processes with variable smooth-
ness became recently an object of interest for applications in various areas (e.g., In-
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ternet traffic, financial records, natural landscapes) due to their flexibility for match-
ing local regularity properties (see, e.g., [15, 17] and references therein). The most
known representative random process of this class is a multifractional Brownian mo-
tion (mBm) independently introduced in [6] and [24]. We refer to [3] for a survey
and to [4, 5, 19, 29] for studies of particular aspects of mBm.

A more general class of α(·)-locally stationary Gaussian processes with a vari-
able smoothness index α(t), t ∈ [0,1], was elaborated in [16]. This class generalizes
also the class of locally stationary Gaussian processes with index α (introduced by
Berman, [8]). It is worthwhile, however, to notice that another approach to “local
stationarity” is possible whenever the processes with time varying parameters are
considered. This direction leads to interesting models and applications in Statistics,
long memory theory, etc, see [15] for more information. The two approaches are
technically different but describe, in our opinion, the same phenomena. In this pa-
per we stick to α(·)-local stationarity, as defined in (1) below. Whenever we need to
model such processes with a given accuracy, the approximation (time discretization)
accuracy has to be evaluated.

More specifically, consider a random process X(t), t ∈ [0,1], with finite sec-
ond moment and variable quadratic mean smoothness (see precise definition (1)
below). The process X is observed at N = N(n) points and a piecewise constant ap-
proximation Xn is built upon these observations. The approximation performance
on the entire interval is measured by the integrated mean square error (IMSE)∫ 1

0 E{(X(t)−Xn(t))2}dt. We construct a sequence of sampling designs (i.e., sets
of observation points) taking into account the varying smoothness of X such that
on a class of processes, the IMSE decreases faster when compared to conventional
regular sampling designs (see, e.g., [28]) or to quasi-regular designs, [2], used for
approximation of locally stationary random processes and random processes with
an isolated singularity point, respectively.

The approximation results obtained in this paper can be used in various problems
in signal processing, e.g., in optimization of compressing digitized signals, (see, e.g.,
[12]), in numerical analysis of random functions (see, e.g., [7, 13, 14]), in simulation
studies with controlled accuracy for functionals on realizations of random processes
(see, e.g., [1, 18]). It is known that a piecewise constant approximation gives an
optimal rate for certain class of continuous random processes satisfying a Hölder
condition (see, e.g., [11, 28]). In this paper we develop a technique improving this
rate for a certain class of locally stationary processes with variable smoothness. The
developed technique can be generalized for more advanced approximation methods
(e.g., Hermite splines) and various classes of random processes and fields. Some
related approximation results for continuous and smooth random functions can be
found in [20, 21, 27]. The book [25] contains a very detailed survey of various
random function approximation problems.

The paper is organized as follows. In Section 2 we specify the problem setting.
We recall a notion of a locally stationary process with variable smoothness, intro-
duce a class of piecewise constant approximation processes, and define integrated
mean square error (IMSE) as a measure of approximation accuracy. Furthermore, we
introduce a special method of composite dilated sampling designs that suggests how
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to distribute the observation points sufficiently densely located near the point of the
lowest smoothness. The implementation of this design depends on some functional
and numerical parameters, and we set up a certain number of mild assumptions
about these parameters. In Section 3, our main results are stated. Namely, for a lo-
cally stationary process with known smoothness, we consider the piecewise constant
interpolation related to dilated sampling designs (adjusted to smoothness parame-
ters) and find the asymptotic behavior of its approximation error. In the second part
of that section, the approximation for conventional regular and some quasi-regular
sampling designs are studied. In Section 4, the results and conjectures related to the
optimality of our bounds are discussed. Section 5 contains the proofs of the state-
ments from Section 3.

2 Variable smoothness random processes and approximation
methods. Basic notation

2.1 Approximation problem setting

Let X =X(t), t ∈ [0,1], be an α(·)-locally stationary random process, i.e., E{X(t)2}<
∞ and

lim
s→0

||X(t + s)−X(t)||2

|s|α(t)
= c(t) uniformly in t ∈ [0,1], (1)

where ||Y || := (EY 2)1/2, α(·),c(·) ∈C([0,1]) and 2≥ α(t)> 0, c(t)> 0.
We assume that the following conditions hold for the function α(·) describing

the smoothness of X :
(C1) α(·) attains its global minimum α0 := α(0) at the unique point t0 = 0.
(C2) there exist b,γ > 0 such that

α(t) = α0 +btγ +o(tγ) as t→ 0.

The choice t0 = 0 in (C1) is made only for notational convenience. The results are
essentially the same for any location of the unique minimum of α(·).

Let X be sampled at the distinct design points Tn = (t0(n), . . . , tN(n)) (also re-
ferred to as knots), where 0 = t0(n) < t1(n) < · · · < tN(n) = 1, N = N(n). We sup-
press the auxiliary integer argument n for design points t j = t j(n) and for the number
of points N = N(n) when doing so causes no confusion. The corresponding piece-
wise constant approximation is defined by

Xn(t) := X(t j−1), t j−1 ≤ t < t j, j = 1, . . . ,N.

In this article, we consider the accuracy of the approximation to X by Xn with respect
to the integrated mean square error (IMSE)
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e2
n = ||X−Xn||22 :=

∫ 1

0
||X(t)−Xn(t)||2dt.

We shall describe below a construction of sampling designs {Tn} providing the
fastest decay of e2

n.

2.2 Sampling design construction

The construction idea is as follows. In order to achieve a rate-optimal approximation
of X by Xn, we introduce a sequence of dilated sampling designs {Tn}.

Recall first that any probability density f (t), t ∈ [0,1], generates a sequence of
associated conventional sampling designs, (cf., e.g., [26], [7], [28]) defined by∫ t j

0
f (t)dt =

j
n
, j = 0, . . . ,n, (2)

i.e., the corresponding sampling points are ( j/n)-percentiles of the distribution hav-
ing density f (·). We call f (·) a sampling density.

Let p(·) be a probability density on R+ := [0,∞); we shall refer to it as the design
density. In our problem, it turns out to be useful to dilate the design density p(·) by
replacing it with a dilated sampling density

pn(t) := dn p(dnt), t ∈ [0,1], (3)

where dn↗ ∞ is a dilation coefficient. Note, that formally pn(·) is not a probability
density, but ∫ 1

0
pn(t)dt =

∫ dn

0
p(u)du→ 1 as n→ ∞.

The idea of dilation is obvious: we wish to put more knots near the point of the worst
smoothness. The delation coefficient should be chosen according to the smoothness
behavior at this critical point. In our case, (C2) requires the choice

dn := (logn)1/γ

that will be maintained in the sequel. As in (2), we define the knots by∫ t j

0
pn(t)dt =

j
n
. (4)

Further optimization of the approximation accuracy bound requires one more ad-
justment: it turns out to be useful to choose the knots t j as in (4) using different
densities in a neighborhood of the critical point and outside of it. We call composite
such sampling design constructions operating differently on two disjoint domains.
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Now we pass to the rigorous description of our sampling designs. Let p(u) and
p̃(u),u∈ [0,∞), be two probability densities. Let the dilated sampling densities pn(·)
be defined as in (3). Similarly, p̃n(t) := dn p̃(dnt).

For 0 < ρ < 1, we define the composite dilated (p,ρ, p̃)-designs Tn by choosing
t j according to (4) for

0≤ j ≤ J(p,ρ,n) := n
∫

ρ

0
pn(t)dt = n

∫
ρdn

0
p(u)du≤ n.

Notice that for these knots, we have 0 ≤ t j ≤ ρ . Furthermore, we fill the interval
(ρ,1] with analogous knots ti using the probability density p̃(·),∫ ti

0
p̃n(t)dt =

j
n
, (5)

where
J(p̃,ρ,n)< j ≤ J(p̃,1,n),

i = j+ J(p,ρ,n)− J(p̃,ρ,n).

For these knots we clearly have ρ < ti ≤ 1. Note, it follows by definition that

J(p,ρ,n) = n
∫

ρdn

0
p(u)du∼ n as n→ ∞,

and similarly, in the interval [ρ,1], the number of points does not exceed

n− J(p̃,ρ,n) = n
∫

∞

ρdn

p̃(u)du = o(n) as n→ ∞,

that is the total number of sampling points satisfies

N(n)∼ J(p,ρ,n)∼ n as n→ ∞. (6)

In the sequel, we will use (p,ρ, p̃)-designs satisfying the following additional
assumptions on p(·), ρ , and p̃(·):

(A1) The design density p(·) is bounded, non-increasing, and

p(u)≥ q1 exp{−q2uγ}, u≥ 0, q1 > 0, b
α0

> q2 > 0. (7)

(A2) We assume that p̃ is regularly varying at infinity with some index r ≤ −1.
This means that for all λ > 0,

p̃(λu)
p̃(u)

→ λ
r as u→ ∞. (8)

(A3) Finally, we assume that the parameter ρ is small enough. Namely, applying
q2 < b/α0 and using (C2) we may choose ρ satisfying
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q2 sup
0≤t≤ρ

α(t)< inf
0≤t≤ρ

α(t)−α(0)
tγ

(9)

and
q2ρ

γ < 1. (10)

For example, let α(t) = 1+ tγ . Then (C1), (C2) hold and (A3) corresponds to ρ <
(1/q2−1)1/γ , where 0 < q2 < 1.

Regularly varying probability densities satisfy (7) for large u, thus we could sim-
plify the design construction by letting p = p̃. For example, the choice

p(u) = p̃(u) := (1+u)−2

agrees with (A1) and (A2).
Moreover, in this case the knots may be easily calculated explicitely, as t j =
j

dn(n− j) . However, this kind of the simplified choice does not provide an optimal
constant K in the main approximation error asymptotics (11) below.

3 Main results

3.1 Dilated approximation designs

In the following theorem, we give the principal result of the paper and consider
IMSE e2

n of approximation to X by Xn for the proposed sequence of composite di-
lated sampling designs Tn,n≥ 1. It follows from (A1) that the following constant is
finite,

K = K(c,α,(p,ρ, p̃)) :=
c0

α0 +1

∫
∞

0
p(u)−α0e−buγ

du < ∞,

where c0 := c(0).

Theorem 1. Let X(t), t ∈ [0,1], be an α(·)-locally stationary random process such
that assumptions (C1), (C2) hold. Let Xn be the piecewise constant approxima-
tions corresponding to composite dilated (p,ρ, p̃)-designs {Tn} satisfying (A1)-
(A3). Then N(n)∼ n and

||X−Xn||22 ∼
K

nα0(logn)(α0+1)/γ
∼ K

Nα0(logN)(α0+1)/γ
as n→ ∞. (11)

Remark 1. Among the assumptions of Theorem 1, the monotonicity of p(·) is worth
of a discussion. Of course, it agrees with the heuristics to put more knots at places
where the smoothness of the process is worse. However, this assumption may be
easily replaced by some mild regularity assumptions on p(·).
Remark 2. The following probability density p∗(·)
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p∗(u) =Ce−buγ/(α0+1), C =
b1/γ

(α0 +1)1/γΓ (1/γ +1)

minimizes the constant K in Theorem 1 and generates the asymptotically optimal
sequence of designs T ∗n . For the optimal T ∗n ,

K∗ :=
c0

α0 +1

(∫
∞

0
e−buγ/(α0+1)du

)α0+1

=
c0

α0 +1

(
(α0 +1)1/γΓ (1/γ +1)

b1/γ

)α0+1

,

see, e.g., [28]. We emphasize that p∗(·) satisfies assumption (7) but it is not regu-
larly varying. In other words, a simple design based on p̃ = p = p∗ does not fit in
theorem’s assumptions.
Remark 3. The idea of considering composite designs might seem to be overcom-
plicated at first glance. However, in some sense it can not be avoided. The previous
remark shows that if we want to get the optimal constant K, we must handle the
exponentially decreasing densities. Assume that

p(u)≤ q1 exp{−q2uγ}. (12)

If we would simplify the design by defining t j(n) as in (4) for the entire interval,
i.e., with ρ = 1, then we would have∫ t j

0
pn(t)dt =

j
n
,

hence,

1
n
=
∫ t j+1

t j

pn(t)dt =
∫ t j+1

t j

dn p(dnt)dt ≤ dnq1

∫ t j+1

t j

exp{−q2(dnt)γ}dt

≤ dnq1(t j+1− t j)exp{−q2(dnt j)
γ}.

Let a ∈ (0,1) and t j ∈ [1−a,1]. Then for the length of the corresponding inter-
vals, we have

t j+1− t j ≥
exp{q2(dnt j)

γ}
ndnq1

≥ exp{q2 logn(1−a)γ}
ndnq1

.

If q2 > 1 and a is so small that q2(1− a)γ > 1, we readily obtain t j+1− t j > a for
large n which is impossible. Therefore, for q2 > 1 there are no sampling points t j in
[1−a,1], i.e., clearly e2

n ≥C > 0 for any n, i.e., IMSE does not tend to zero at all.
The confusion described above may really appear in practice because q2 > 1 is

compatible with the assumption q2 < b/α0 from (7) whenever b > α0.
Theorem 1 shows that for the design densities with regularly varying tails, we

may define all knots by (4) without leaving empty intervals as above. However, we
can not achieve the optimal constant K on this simpler way.
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Remark 4. Actually, the choice of knots outside of [0,ρ] is not relevant for the
approximation rate. One can replace the knots from (5) with a uniform grid of knots
ti = in−µ with appropriate µ < 1.

3.2 Regular sampling designs

The approximation algorithm investigated in Theorem 1 is based upon the assump-
tion that we know the point where α(·) attains its minimum, as well as the index γ

in (C2). If for the same process neither the critical point nor the index γ are known,
a conventional regular design can be used.

Let X(t), t ∈ [0,1], be an α(·)-locally stationary random process, i.e., (1) holds.
Consider now sampling designs Tn = {t j(n), j = 0,1, . . . ,n} generated by a regular
positive continuous density p(t), t ∈ [0,1], (see, e.g., [26], [28]) through (13), i.e.,∫ t j

0
p(t)dt =

j
n
, 0≤ j ≤ n. (13)

Let the constant

K1 :=
c0

α0 +1
Γ (1/γ +1)

pα0
0 b1/γ

, p0 := p(0).

Theorem 2. Let X(t), t ∈ [0,1], be an α(·)-locally stationary random process such
that (C1), (C2) hold. Let Xn be the piecewise constant approximations correspond-
ing to the (regular) sampling designs {Tn} generated by p(·). Then

||X−Xn||22 ∼
K1

nα0(logn)1/γ
as n→ ∞.

Remark 5. If the point where α(·) attains its minimum, is known but γ is unknown,
we may build the designs without dilating the design density. Instead, one could use
quasi-regular sampling designs generated by a possibly unbounded design density
p(t), t ∈ (0,1], at the singularity point t0 = 0 (cf., [2]). For example, if p(·) is a
probability density on (0,1] such that

p(t)∼ At−κ as t↘ 0, 0 < κ < 1,

and t j(n) are chosen through (13), then for an α(·)-locally stationary random pro-
cess X satisfying (C1) and (C2), it is possible to show a slightly weaker asymptotics
than that of Theorem 1, namely,

e2
n ∼

K2

nα0(logn)(1+κα0)/γ
as n→ ∞,

with K2 := c0A−α0Γ (1/γ +1)/((α0 +1)b1/γ).
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Of course, all above mentioned asymptotics differ only by a degree of logarithm
while the polynomial rate is determined by the minimal regularity index α0. But
for some large scale approximation problems and certain regularity properties (C1),
(C2) of α(t) this gain could be significant.
Remark 6. As an anonymous referee pointed out to us, it would be interesting to
extend the results to the case of more general behavior of the function α(·) at the
critical point by replacing (C2) with

α(t) = α0 +g(t)+o(g(t)) as t→ 0,

with a given function g(·) from an appropriate class. For example, it is clear that
the results will be pretty much the same if we allow g to be γ-regularly varying at
zero. Yet we preferred to consider here only the simplest (and arguably the most
important) polynomial case and leave the general case for further research.

4 Optimality

4.1 Optimality of the rate for piecewise constant approximations

We explain here that the approximation rate l−1
n , ln := nα0d(α0+1)

n , achieved in The-
orem 1 is optimal in the class of piecewise constant approximations for every α(·)-
locally stationary random process satisfying (C1) and (C2). For a sampling design
Tn, let the mesh size |Tn| := max{(t j− t j−1), j = 1, . . . ,n}.

Proposition 1. Let Xn be piecewise constant approximations to an α(·)-locally sta-
tionary random process X satisfying (C1) and (C2) constructed according to de-
signs {Tn} such that Nn ∼ n and |Tn| → 0 as n→ ∞. Then

liminf
n→∞

ln e2
n > 0. (14)

Proof. Let rn := d−1
n = (logn)−1/γ and Jn := inf{ j : t j = t j(n) ≥ rn}. Then (19)

entails

e2
n ≥

Jn

∑
j=1

e2
n, j =

Jn

∑
j=1

B j−1w
α(t j−1)+1
j (1+o(1)) = B

Jn

∑
j=1

wan+1
j (1+o(1)),

where an := sup0≤t≤rn
α(t) and w j = t j− t j−1. By using the convexity of the power

function w→ wan+1, we obtain

1
Jn

Jn

∑
j=1

wan+1
j ≥

(
1
Jn

Jn

∑
j=1

w j

)an+1

≥
(

rn

Jn

)an+1

,

hence,
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Jn

∑
j=1

wan+1
j ≥ ran+1

n

Jan
n
≥ ran+1

n

Nan
n

,

whereas

e2
n ≥ B

ran+1
n

Nan
n

(1+o(1)) = B
1

dan+1
n

1
Nan

n
(1+o(1))

= B
1

dα0+1
n nα0

(
1

dnn

)an−α0
(

n
Nn

)an

(1+o(1))

= B l−1
n

(
1

dnn

)an−α0

(1+o(1)).

Recall that by (C2), an−α0 = O(rγ
n) = O((logn)−1) and thus (14) follows. �

4.2 Optimality of the rate in a class of linear methods

We explain here that the approximation rate l−1
n achieved in Theorem 1 is optimal

not only in the class of piecewise constant approximations but in a much wider class
of linear methods, – at least for some α(·)-locally stationary random processes sat-
isfying (C1) and (C2). The corresponding setting is based on the notion of Gaussian
approximation numbers, or `-numbers, that we recall here.

Gaussian approximation numbers of a Gaussian random vector X taking values
in a normed space X are defined by

`n(X ;X )2 = inf
x1 ,...,xn−1
ξ1 ,...,ξn−1

E


∥∥∥∥∥X−

n−1

∑
j=1

ξ jx j

∥∥∥∥∥
2

X

 , (15)

where infimum is taken over all x j ∈X and all Gaussian vectors ξ =(ξ1, . . . ,ξn−1)∈
Rn−1,n≥ 2, see [22, 23]. If X is a Hilbert space, then

`n(X ;X )2 =
∞

∑
j=n

λ j,

where λ j is a decreasing sequence of eigenvalues of the covariance operator of X .
Recall that a multifractional Brownian motion (mBm) with a variable smoothness

index (or fractality function) α(·) ∈ (0,2) introduced in [6, 24] and studied in [3, 4,
5] is a Gaussian process defined through its white noise representation

X(t) =
∫

∞

−∞

eitu−1
|u|(α(t)+1)/2 dW (u),
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where W (t), t ∈ R, is a standard Brownian motion. Notice that mBm is a typical
example of a locally stationary process whenever α(·) is a continuous function.

In the particular case of the constant fractality α(t) ≡ α , we obtain an ordinary
fractional Brownian motion Bα , α ∈ (0,2). For X = Bα considered as an element of
X = L2[0,1], the behavior of its eigenvalues λ j is well known, cf. [9]. Namely,

λ j ∼ cα j−α−1 as j→ ∞,

with some cα > 0 continuously depending on α ∈ (0,2). It follows that

`n(Bα ;L2[0,1])2 ∼ α
−1cα n−α as n→ ∞.

Hence, for all n≥ 1,

`n(Bα ;L2[0,1])2 ≥Cα n−α , Cα > 0.

Furthermore, since Bα is a self-similar process, we can scale this estimate from
X = L2[0,1] to X = L2[0,r] with arbitrary r > 0. An easy computation shows that

`n(Bα ;L2[0,r])2 = rα+1`n(Bα ;L2[0,1])2 ≥Cα rα+1n−α .

Let us now consider a multifractional Brownian motion X parameterized by a frac-
tality function α(·) satisfying (C2). For example, let

α(t) := α0 +btγ , 0≤ t ≤ 1, (16)

with α0,b > 0 chosen so small that α0 + b < 2. This choice secures the necessary
condition 0 < α(t)< 2, 0≤ t ≤ 1. Then, letting r = rn := d−1

n , we have

`n(X ;L2[0,1])2 ≥ `n(X ;L2[0,rn])
2 ≥M`n(Bα(rn);L2[0,rn])

2

≥ MCα(rn)r
α(rn)+1
n n−α(rn) = MCα(rn)d

−α(rn)−1
n n−α(rn)

≥ Cl−1
n (dnn)α0−α(rn) =Cl−1

n (dnn)−brγ
n =Cl−1

n (dnn)−b(logn)−1 ≥ C̃ l−1
n ,

for some positive M,Cα(rn),C,C̃. All bounds here are obvious except for the second
inequality comparing approximation rate of multifractional Brownian motion with
that of a standard fractional Brownian motion. We state this fact as a separate result.

Proposition 2. Let X(t),a ≤ t ≤ b, be a multifractional Brownian motion corre-
sponding to a continuous fractality function α : [a,b]→ (0,2). Let Bβ be a frac-
tional Brownian motion such that infa≤t≤b α(t) ≤ β < 2. Then there exists M =
M(α(·),β )> 0 such that

`n(X ;L2[a,b])≥M`n(Bβ ,L2[a,b]), n≥ 1.

The proof of this proposition requires different methods from those used in this
article. We relegate it to another publication.
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Our conclusion is that a multifractional Brownian motion with fractality function
(16) provides an example of an α(·)-locally stationary random process satisfying
assumptions (C1) and (C2) such that no linear approximation method provides a
better approximation rate than l−1

n .

5 Proofs

Proof of Theorem 1:
We represent the IMSE e2

n = ||X(t)−Xn(t)||22 as the following sum

e2
n =

N

∑
j=1

∫ t j

t j−1

||X(t)−Xn(t)||2dt =
N

∑
j=1

∫ t j

t j−1

||X(t)−X(t j−1)||2dt =:
N

∑
j=1

e2
n, j. (17)

Next, for a large U > 0, let

e2
n =

N

∑
j=1

e2
n, j = S1 +S2 +S3,

where the sums S1,S2,S3 include the terms e2
n, j such that [t j−1, t j] belongs to

[0,U/dn], [U/dn,ρ], and [ρ,1], respectively. Let J1 and J2 denote the corresponding
boundaries for the index j. Recall that ln = nα0dα0+1

n = nα0(logn)(α0+1)/γ and l−1
n is

the approximation rate announced in the theorem. We show that only S1 is relevant
to the asymptotics of e2

n, namely, that lnS3 = o(1) as n→ ∞, while

limsup
n→∞

lnS2 = o(1) as U → ∞. (18)

Let w j := t j − t j−1, u j := dnt j be the normalized knots and denote by v j := u j −
u j−1 = dnw j the corresponding dilated interval lengths. It follows by the definition
of α(·)-local stationarity (1) that for large n,

e2
n, j = c(t j−1)

∫ t j

t j−1

(t− t j−1)
α(t j−1)dt (1+ rn, j)

= B j−1 (t j− t j−1)
α(t j−1)+1 (1+ rn, j)

= B j−1 (v j/dn)
α(t j−1)+1 (1+ rn, j), (19)

where |Tn|= max j w j = o(1) and max j rn, j = o(1) as n→ ∞ and

B j :=
c(t j)

α(t j)+1
, j = 1, . . . ,N.

First, we evaluate S3. Recall that for j > J2 we have ρdn ≤ u j−1 < u j ≤ dn. We
use now the following property of regularly varying functions (see, e.g., [10]): con-
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vergence in (8) is uniform for all intervals 0 < a≤ λ ≤ b < ∞. Using this uniformity
we obtain, for some C1 > 0,

inf
u j−1≤u≤u j

p̃(u)≥ inf
ρdn≤u≤dn

p̃(u)≥C1 p̃(dn).

It follows by (5) that ∫ u j

u j−1

p̃(u)du =
∫ t j

t j−1

p̃n(t)dt =
1
n
.

Hence, for some C2 > 0,

v j ≤
(

inf
u j−1≤u≤u j

p̃(u)
)−1 ∫ u j

u j−1

p̃(u)du≤ 1
n

(
inf

u j−1≤u≤u j
p̃(u)

)−1

≤ 1
C1 np̃(dn)

≤C2
d|r|+1

n

n
, j = J2 +1, . . . ,N, (20)

and max j>J2 w j = d|r|n /n. Recall that by assumption (C1),

α1 := inf
t∈[ρ,1]

α(t)> α0.

Therefore, for large n, we get by (19) and (20), C3,C4 > 0,

S3 ≤ nmax
j>J2

e2
n, j ≤ nC3(v j/dn)

α1+1 ≤C4
d|r|(α1+1)

n

nα1
= o(l−1

n ) as n→ ∞. (21)

Now consider the first two zones corresponding to S1,S2. We have by definition∫ u j

0
p(u)du =

j
n
, 0≤ j < J.

Since the function pn(t), t ∈ [0,1], is non-increasing, the sequence {v j} is non-
decreasing. In fact,

1
n
=
∫ u j

u j−1

p(u)du ∈ [p(u j)v j, p(u j−1)v j],

and therefore,
1

np(u j−1)
≤ v j ≤

1
np(u j)

≤ v j+1 (22)

and it follows by (A1) that max j≤J2 w j = o(1) as n→∞. For j≤ J2, the bounds (19)
and (22) yield for n large,
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e2
n, j = B j−1(v j/dn)

α(t j−1)
v j

dn
(1+o(1))

≤ B j−1(ndn p(u j))
−α(t j−1)

v j

dn
(1+o(1))

≤ B j−1(np(u j))
−α(t j−1)d−α0−1

n v j(1+o(1))

= B j−1l−1
n n−(α(t j−1)−α0)p(u j)

−α(t j−1)v j(1+o(1)). (23)

From now on, we proceed differently in the first and in the second zone.
For the second zone, J1 ≤ j ≤ J2, we do not care about the constant by using

B j ≤ B∗ := max
0≤t≤1

c(t)
α(t)+1

. (24)

Next, (7) and (9) give

p(u j)
−α(t j−1) ≤C exp{q2α(t j−1)u

γ

j} ≤C exp{β1uγ

j}, C > 0, (25)

where β1 := q2 sup0≤t≤ρ α(t). On the other hand, we infer from (9) that

n−(α(t j−1)−α0) = n
−

α(t j−1)−α0
tγj−1

tγ

j−1
≤ n−β2

uγ

j−1
logn = exp{−β2 uγ

j−1}, (26)

where β2 := inf0≤t≤ρ(α(t)−α0)/tγ > β1 by (9).
Recall that by (10), we have 1− q2ργ > 0. Moreover, for U ≤ u j ≤ ρdn, we

derive from (7) and (22)

v j ≤ n−1 p(ρdn)
−1 ≤Cn−1 exp{q2(ρdn)

γ}=Cn−(1−q2ργ ), C > 0,

and it follows

uγ

j+1−uγ

j−1 = uγ

j−1

((
u j+1

u j−1

)γ

−1
)
= O

(
dγ

nn−(1−q2ργ )
)
= o(1) as n→ ∞ (27)

uniformly in J1 ≤ j ≤ J2.
Since {v j} is non-decreasing, (27) implies an integral bound

exp{−β2 uγ

j−1}exp{β1uγ

j}v j

= exp{β2[u
γ

j+1−uγ

j−1]}exp{β1uγ

j −β2uγ

j+1}v j

≤ C inf
u j≤u≤u j+1

exp{β1uγ −β2uγ}v j+1

≤ C
∫ u j+1

u j

e−(β2−β1)uγ

du, C > 0. (28)

By plugging (24), (26), and (28) into (23), and summing up the resulting bounds
over J1 < j ≤ J2, we obtain
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S2 ≤ B∗l−1
n

∫
∞

U
e−(β2−β1)uγ

du(1+o(1)) as n→ ∞. (29)

Therefore, (18) is valid.
In the first zone, j≤ J1, t j ≤U/dn, the knots are uniformly small. Hence, B j−1 are

uniformly close to B due to the continuity of the functions α(·) and c(·). Moreover,
by (C2) for any ε > 0, we have for all n large enough

α0 +(b− ε)tγ

j−1 ≤ α(t j−1)≤ α0 +(b+ ε)tγ

j−1, j ≤ J1. (30)

Hence (23) yields

e2
n, j ≤ (B+ ε)l−1

n n−(b−ε)tγ

j−1 p(u j)
−α0 p(u j)

−(α(t j−1)−α0) v j

= (B+ ε)l−1
n n−(b−ε)(u j−1/dn)

γ

p(u j)
−α0 p(u j)

−(α(t j−1)−α0) v j. (31)

Recall that by the definition of dn, we have

n−(b−ε)(u j−1/dn)
γ

= n−(b−ε)uγ

j−1/ logn = exp{−(b− ε)uγ

j−1}.

Since p(·) in non-increasing and {v j} is non-decreasing, we also have an integral
bound

exp{−(b− ε)uγ

j−1} p(u j)
−α0v j

= exp{(b− ε)[uγ

j+1−uγ

j−1]} p(u j)
−α0 exp{−(b− ε)uγ

j+1}v j

≤ exp{(b− ε)[uγ

j+1−uγ

j−1]} inf
u j≤u≤u j+1

(p(u)−α0e−(b−ε)uγ ) v j

≤ exp{(b− ε)[uγ

j+1−uγ

j−1]}
∫ u j+1

u j

p(u)−α0e−(b−ε)uγ

du. (32)

Moreover, for u j ≤U , we derive from (A1) and (22)

v j ≤ n−1 p(U)−1.

By using the convexity and the concavity of the power function for γ ≥ 1 and γ ≤ 1,
respectively, we get

uγ

j+1−uγ

j−1 ≤ γU γ−1(u j+1−u j) = γU γ−1(v j + v j+1)

≤ 2γU γ−1v j+1 = o(1) as n→ ∞ (γ ≥ 1);
uγ

j+1−uγ

j−1 ≤ (u j+1−u j−1)
γ

= (v j + v j+1)
γ = o(1) as n→ ∞ (γ ≤ 1).

Therefore, the exponential factor in (32) turns out to be negligible.
Finally, for u j ≤U , the property dn→ ∞ yields

p(u j)
−(α(t j−1)−α0) ≤max{1, p(U)−max0≤t≤U/dn (α(t)−α0)}= 1+o(1). (33)
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By plugging (32) and (33) into (31), and summing up the resulting bounds over
j ≤ J1, we obtain

S1 ≤ (B+2ε)l−1
n

∫
∞

0
p(u)−α0e−(b−ε)uγ

du as n→ ∞.

Since ε can be chosen arbitrarily small, we arrive at

limsup
n→∞

lnS1 ≤ B
∫

∞

0
p(u)−α0e−buγ

du = K. (34)

Combining (21), (29), and (34) gives the desired upper bound.
The lower bound is obtained along the same lines: since S2 and S3 are asymptot-

ically negligible, we shall evaluate only S1 starting again from (19). As in (23), we
have

e2
n, j = B j−1(v j/dn)

α(t j−1)
v j

dn
(1+o(1))

≥ B j−1(ndn p(u j−1))
−α(t j−1)

v j

dn
(1+o(1))

= B j−1n−α0n−(α(t j−1)−α0)p(u j−1)
−α(t j−1)d−α0−1

n d
α0−α(t j−1)
n v j(1+o(1))

= B j−1l−1
n n−(α(t j−1)−α0)p(u j−1)

−α(t j−1)d
α0−α(t j−1)
n v j(1+o(1)). (35)

Recall that for j≤ J1 and the constants B j−1 are uniformly close to B. Moreover, by
using (30), we have for large n,

d
α0−α(t j−1)
n ≥ d

−(b+ε)tγ

j−1
n ≥ d−(b+ε)(U/dn)

γ

n = 1+o(1).

Hence, (35) yields

e2
n, j ≥ (B− ε)l−1

n n−(b+ε)tγ

j−1 p(u j−1)
−α0 p(u j−1)

−(α(t j−1)−α0) v j

= (B− ε)l−1
n n−(b+ε)(u j−1/dn)

γ

p(u j−1)
−α0 p(u j−1)

−(α(t j−1)−α0) v j, (36)

where as before

n−(b+ε)(u j−1/dn)
γ

= n−(b+ε)uγ

j−1/ logn = exp{−(b+ ε)uγ

j−1}.

Since p(·) is non-increasing and {v j} is non-decreasing, we also have an integral
bound
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exp{−(b+ ε)uγ

j−1}p(u j−1)
−α0v j

= exp{(b+ ε)[uγ

j−2−uγ

j−1]}p(u j−1)
−α0 exp{−(b+ ε)uγ

j−2}v j

≥ exp{(b+ ε)[uγ

j−2−uγ

j−1]} inf
u j−2≤u≤u j−1

(p(u)−α0e−(b+ε)uγ

) v j−1

≥ exp{(b+ ε)[uγ

j+1−uγ

j−1]}
∫ u j−1

u j−2

p(u)−α0e−(b+ε)uγ

du. (37)

We have already seen that the exponential factor in (37) is negligible.
Finally, for u j ≤U , the fact that dn→ ∞ implies (cf. (33))

p(u j−1)
−(α(t j−1)−α0) ≥min{1, p(0)−max0≤t≤U/dn (α(t)−α0)}= 1+o(1). (38)

By plugging (37) and (38) into (36), and summing up the resulting bounds over
j ≤ J1, we obtain

S1 ≥ (B−2ε)l−1
n

∫ U

0
p(u)−α0e−(b+ε)uγ

du as n→ ∞.

Since ε > 0 can be chosen arbitrarily small, we arrive at

liminf
n→∞

lnS1 ≥ B
∫ U

0
p(u)−α0e−buγ

du.

Finally,

liminf
n→∞

lne2
n ≥ sup

U>0
liminf

n→∞
lnS1 ≥ B

∫
∞

0
p(u)−α0e−buγ

du = K. (39)

This is the desired lower bound. �

Proof of Theorem 2:
Applying the notation of Theorem 1, we have for an interval approximation error

e2
n, j = B j−1 w

α(t j−1)+1
j (1+ rn, j), w j = t j− t j−1, j = 1, . . . ,n,

where max j rn, j = o(1) as n→ ∞. Now for a small enough ρ > 0, similarly to The-
orem 1, we get∫ 1

ρ

en(t)2dt ≤C/nα1 , C > 0, α1 := inf
t∈[ρ,1]

α(t)> α0,

that is only en, j such that [t j−1, t j] ⊂ [0,ρ] are relevant for the asymptotics, say,
en, j, j = 1, . . . ,J = J(ρ,n). Let us denote the approximation rate Ln := nα0(logn)1/γ .
Next, for S1 := ∑

J
j=1 en, j and for a small enough ρ , we have by continuity of the

design density p(·) and by the mean value theorem
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e2
n, j = B j−1 (np(η j))

−α(t j−1)w j (1+o(1))

≤ B
p(0)α0

(1+ ε)n−α0

∫ t j−1

t j−2

e−(b−ε)tγ logndt (1+o(1))

= L−1
n

B
pα0

0
(1+ ε)

∫ u j−1

u j−2

e−(b−ε)uγ

du (1+o(1)),

where p0 := p(0). By summing up, we obtain

limsup
n→∞

LnS1 ≤
B

pα0
0
(1+ ε)

∫
∞

0
e−(b−ε)uγ

du =
B

pα0
0
(1+ ε)

Γ (1/γ +1)
(b− ε)1/γ

.

Hence,

limsup
n→∞

Lne2
n = limsup

n→∞

LnS1 ≤
B

pα0
0

(1+ ε)
Γ (1/γ +1)
(b− ε)1/γ

.

Since ε can be chosen arbitrary small, we get

limsup
n→∞

Lne2
n ≤

B
pα0

0

Γ (1/γ +1)
b1/γ

= K1.

The lower bound follows from similar arguments. This completes the proof. �
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