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Abstract 

Life-history traits are the most important determinants of Darwinian fitness and thus the 

prime phenotypic targets of selection. However, despite their importance for adaptation, the 

genetic basis of these fitness-related traits in natural populations remains poorly understood. 

The goal of my Ph.D. thesis is to study the phenotypic effects of genetic polymorphisms that 

exhibit putatively adaptive clinal differentiation along the North American east coast in 

Drosophila melanogaster. In Chapter 1, I provide a summary of life-history adaptation, 

spatially varying selection, phenotypic plasticity and Drosophila life-history. In Chapter 2, I 

examine the phenotypic effects of a strongly clinal variant, consisting of two single nucleotide 

polymorphisms (SNPs), in the insulin signaling transcription factor foxo under different 

thermal and dietary conditions. foxo has previously been implicated in life-history regulation 

using loss-of-function mutants and transgenes, but nothing is known about the effects of 

natural variants at this locus. My experiments show that the foxo polymorphism makes an 

important contribution to clinal variation in multiple fitness-related traits. Similarly, in 

Chapter 3, my colleagues and I investigate phenotypic clines along the North American east 

coast and the contribution of the 2-SNP foxo variant to patterns of clinal trait differentiation. 

In Chapter 4, I summarize our ongoing work on using the CRISPR/Cas9 genome editing 

technique to manipulate and functionally test foxo SNPs. In Chapter 5, we show that the 

inversion polymorphism In(3R)Payne, which exhibits adaptive clinal differentiation along the 

North American east coast, contributes to the well-known cline in body size. While In(3R)P is 

thought to be one of the main drivers of clinal adaptation, the phenotypic effects of this 

inversion are not well understood. In Chapter 6, I investigate whether In(3R)P contributes to 

variation in survival traits. I show that In(3R)P contributes to latitudinal clines in lifespan, 

starvation resistance and cold-shock survival. Finally, in Chapter 7, I provide a general 

discussion of my findings and an outlook for future work. Together, my dissertation work 

demonstrates that both polymorphisms examined here, are targets of spatially varying 

selection and that they have pleiotropic effects on several clinal life-history traits in D. 

melanogaster.  
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Résumé 
Les traits d’histoire de vie sont les déterminants majeurs de la valeur adaptative (fitness) 

individuelle, au sens darwinien, et donc les principales cibles de la sélection naturelle. La base 

génétique de ces traits reste cependant peu comprise, malgré leur importance adaptative. Le 

but de ma thèse est l’étude des effets phénotypiques lié aux polymorphismes génétiques et 

leurs potentiels adaptatifs le long d’un gradient latitudinal, chez Drosophila melanogaster. 

Dans le premier chapitre, je propose une synthèse de nos connaissances sur les adaptations 

liées aux traits d’histoire de vie, les forces de sélection qui varient dans l’espace et la 

plasticité phénotypique chez la drosophile. Dans le chapitre 2, j’étudie les effets 

phénotypiques d’un variant clinal, consistant en deux polymorphismes nucléotidiques (SNPs) 

du facteur de transcription, foxo, associé à la voie de signalisation de l’insuline, sous 

différentes conditions de température et de régime alimentaire. Des études utilisant des 

transgènes et des mutants ayant perdu la fonction de foxo, ont montré que ce gène est 

impliqué dans la régulation de traits d’histoire de vie. Toutefois, à ce jour, les effets de 

mutation naturelles sur ce locus sont peu connues. Mes expériences montrent que le 

polymorphisme de foxo contribue fortement à la variation clinale de nombreux traits 

d’histoire de vie, le long de la côte nord-est américaine. Ce polymorphisme nucléotidique 

pourrait également contribuer à la variation phénotypique que l’on observe le long de la côte 

est américaine (Chapitre 3). Dans le chapitre 4, je résume notre expérience en cours, utilisant 

les techniques d’édition de génome CRISPR/Cas9 pour manipuler et tester ces mêmes 

variants génétiques de foxo. Dans le chapitre 5, nous montrons qu’un polymorphisme pour 

l’inversion In(3R)Payne, caractérisé par un gradient de différentiation adaptatif le long des 

côtes nord-est américaines, contribue à la variation de taille du corps des drosophiles, bien 

connue dans cette région. Alors que In(3R)Payne est supposé conditionner ce cline adaptatif, 

les effets phénotypiques de cette inversion sont peu connus à ce jour. Dans le chapitre 6, 

j’examine la contribution de In(3R)Payne aux variations des traits liés à la survie. Je montre 

que, non seulement In(3R)Payne joue un rôle dans la variation latitudinale de la survivance, 

mais aussi dans les variations de résistance à la famine et de survie aux chocs thermiques 

froids. Enfin, dans le chapitre 7, je propose une discussion générale de mes découvertes et 

propose des pistes pour poursuivre ces travaux. Globalement mon travail de thèse démontre 

que les deux polymorphismes étudiés sont les cibles de forces de sélection qui varient dans 

l’espace, et qu’ils ont des effets pléiotropiques sur un certain nombre de traits d’histoire de vie 

chez Drosophila melanogaster. 
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Chapter 1 

Chapter 1  

Introduction to the Thesis 

The major objective of my Ph.D. work is to examine the functional effects of potentially 

adaptive, clinally varying polymorphisms on Drosophila life-history in order to gain a 

better understanding of the genetics of adaptation.  

Life history traits, such as age and size at maturity, fecundity, and lifespan, are the most 

important phenotypic components of Darwinian fitness and thus represent direct targets of 

natural selection (Stearns 1992; Flatt & Heyland 2011). Understanding the causes and 

consequences of life-history variation is thus of central importance for our understanding of 

adaptation (Barrett & Hoekstra 2011).  

 Despite a growing body of work on the molecular mechanisms that affect fitness-related 

traits and processes (e.g., growth and size, lifespan) – mainly from studies of large-effects 

mutants and transgenes in model organisms in the laboratory –  we still know very  little 

about the identity and the properties of naturally occurring loci and molecular polymorphisms 

that underpin adaptive variation in life-history traits (David et al. 1989; Mackay et al. 2009; 

Barrett & Hoekstra 2011; Le Corre & Kremer 2012). For example, quantitative trait locus 

(QTL) mapping, applied to populations and lines that are divergent for life-history traits, has 

been successfully employed to identify causative genomic regions of adaptive significance. 

However, the low resolution of QTL mapping (and of related mapping approaches) has 

typically made it difficult to identify the causative loci or quantitative trait nucleotides 

(QTNs) through fine-scale mapping (Mackay et al. 2009; Barrett & Hoekstra 2011; Le Corre 

& Kremer 2012; Pardo-Diaz et al. 2015). Thus, how naturally occurring polymorphisms 

contribute to adaptive life-history variation remains generally poorly understood.  

One of the most powerful models for dissecting the genetic basis of life-history adaptation 

is the fruit fly Drosophila melanogaster, a cosmopolitan species of sub-Saharan African 
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origin, which has migrated out of Africa ~10,000 to 20,000 years ago, and colonized the New 

World and Australia during the 19th century (Fig. 1) (David & Bocquet 1975; David et al. 

1989; De Jong & Bochdanovits 2003; Li & Stephan 2006; Hoffmann & Weeks 2007; Adrion 

et al. 2015). During this range expansion, this ancestrally tropical species has acquired major 

adaptations to novel temperate and seasonal habitats (David & Capy 1988; De Jong & 

Bochdanovits 2003; Paaby & Schmidt 2009). As a consequence of this evolutionary history, 

footprints of natural selection can be identified both at the phenotypic and genetic level by 

studying geographic patterns of life-history differentiation. A well-known example of this are 

clines, i.e gradual patterns of phenotypic and/or genetic change across environmental 

gradients, for example across latitude, presumably driven by gradients in temperature and/or 

seasonality. Indeed, a large body of work has identified numerous examples of clinal 

phenotypic and genetic differentiation among populations along the North American and 

Australian east coasts, gradients that span low-latitude (subtropical/tropical) to high-latitude 

(temperate habitats) (De Jong & Bochdanovits 2003; Schmidt et al. 2005a; b; Hoffmann & 

Weeks 2007; Paaby & Schmidt 2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Cogni et 

al. 2013; 2014; Adrion et al. 2015; Kapun et al. 2016a). 

Fig 1. The colonization of Europe, Asia, the Americas and Australia by Drosophila melanogaster. The 

ancestral population in sub-Saharan Africa is shown with a black circle and the colonization routes are 

represented by arrows. Figure adapted from David & Capy (1988) (www.wikimedia.org.).  
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At the phenotypic level, major patterns of latitudinal trait differentiation have been 

observed for total body size and size-related traits, fecundity, stress resistance traits such as 

chill coma recovery, lifespan, and the propensity to undergo reproductive diapause or 

dormancy. Importantly, many of these clinal patterns have been found on multiple continents, 

thus strongly suggesting that these clines are adaptive and shaped by convergent spatially 

varying (clinal) selection (David & Capy 1988; David et al. 1989; Munjal et al. 1997; 

Schmidt et al. 2000; Agis & Schlötterer 2001; Hoffmann et al. 2001; Sezgin 2004; Schmidt et 

al. 2005a; Rako et al. 2007; Paaby et al. 2010; Kolaczkowski et al. 2011; Hoffmann et al. 

2012; Hut et al. 2013; Campo et al. 2013; Paaby et al. 2014; Behrman et al. 2015; Mathur & 

Schmidt 2017). Flies from high-latitude populations are typically characterized by faster 

development, lower egg-to-adult survival (viability), larger body size, reduced wing loading, 

lower fecundity, higher propensity of reproductive diapause, increased resistance to 

starvation, cold and heat stress, and longer lifespan as compared to flies from low-latitude 

populations (Coyne & Beecham 1987; Karan et al. 1998; Azevedo et al. 1998; Land et al. 

1999; Bochdanovits & de Jong 2003a; b; Hoffmann et al. 2005; Schmidt et al. 2005b; 

Schmidt & Paaby 2008; Folguera et al. 2008; Goenaga et al. 2013; Bhan et al. 2014; Mathur 

& Schmidt 2017).  

Similarly, at the genetic level, numerous genotype frequency clines have been reported for 

allozymes, microsatellites, chromosomal inversion polymorphisms, and single nucleotide 

polymorphisms (SNPs), most recently on a genome-wide level for both the Australian and 

North American clines (Mettler et al. 1977; David et al. 1989; Bellen et al. 1992; Boussy et 

al. 1998; Agis & Schlötterer 2001; Weeks et al. 2002; Kennington et al. 2003; De Jong & 

Bochdanovits 2003; Hoffmann et al. 2004; Anderson et al. 2005; Kirkpatrick 2006; Rako et 

al. 2006; 2007; Kennington et al. 2007; Paaby et al. 2010; Kolaczkowski et al. 2011; Lee et 

al. 2011; Hoffmann et al. 2012; Fabian et al. 2012; Reinhardt et al. 2014; Bergland et al. 
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2014; Paaby et al. 2014; Bergland et al. 2016; Kapun et al. 2016). Several genomic studies of 

clinal differentiation have identified numerous clinally varying SNPs located in genes that 

have  previously been characterized in molecular genetic and functional studies. Although 

many of these loci are known to play a major role in affecting the development and 

physiology of fitness-related traits, almost nothing is known yet about the fitness effects of 

naturally occurring SNPs located in or in proximity to these genes. 

In a previous study from our group, Fabian et al. (2012) have performed the first genome-

wide analysis of clinal differentiation along the North American east coast. They uncovered 

pervasive, genome-wide patterns of clinal genetic differentiation based on an FST outlier 

approach. Hundreds of clinally varying SNPs were found to reside in loci involved in the 

insulin/insulin-like growth factor signaling (IIS) / target of rapamycin (TOR), ecdysone, torso, 

EGFR, TGFβ/BMP, JAK/STAT, lipid metabolism, immunity and circadian rhythm pathways, 

pathways that are all involved in the molecular and physiological regulation of fitness-related 

traits, including growth, size, reproduction, stress resistance, somatic maintenance, and 

lifespan. In addition, many of the identified variants were found to exhibit parallel 

differentiation along the Australian cline, thus strengthening the case for these SNPs being 

subject to spatially varying (clinal) selection (Kolaczkowski et al. 2011; Fabian et al. 2012; 

Reinhardt et al. 2014; Kapun et al. 2016a). Notably, Fabian et al. (2012) found that the 

clinally varying SNPs are not homogeneously distributed along the genome. The majority of 

clinally varying SNPs (between >50-79%, depending on the analysis) is located on 

chromosomal arm 3R in a region spanned by a large (approx. 8 Mb), cosmopolitan and 

clinally varying chromosomal inversion, In(3R)Payne. 

As mentioned above, several molecular pathways that harbor clinally varying loci and 

SNPs in this dataset have previously been found in laboratory studies of large-effect mutants 

and transgenes to affect the molecular regulation of life history (Flatt & Heyland 2011; Fabian 
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et al. 2012). In particular, Fabian et al. (2012) identified many strongly clinally varying SNPs 

in multiple components of the IIS/TOR pathway, including SNPs located in Drosophila 

insulin-like peptides 3 and 5 (dilp3, dilp5), insulin-like receptor (InR), phosphatidyl-inositol-

4,5-bis-phosphate 3-kinase (Pi3K), forkhead box-O transcription factor (foxo), the foxo 

regulator 14-3-3ε, target of brain insulin (tobi), tuberous sclerosis complex 1 (Tsc1), target of 

rapamycin (Tor), and other loci involved in IIS (Fig. 2) (Fabian et al. 2012).  

Figure 2. Clinal candidates in the insulin/TOR signaling pathway. Overview of the insulin/insulin-

like growth factor signaling (IIS) / target of rapamycin (TOR) pathway in D. melanogaster (Oldham & 

Hafen 2003; Giannakou & Partridge 2007; Teleman 2010). Genes that harbor strongly clinally varying 

SNPs across latitude, identified by Fabian et al. (2012), are highlighted in red; arrows indicate 

activation and bar-ended lines represent inhibitory effects (see Chapter 2 for details).  

Interestingly, loss-of-function mutations in the IIS/TOR pathway have been shown to have 

evolutionarily conserved effects on the regulation of growth, size, reproduction and lifespan 

in Drosophila, C. elegans, and the mouse (Tatar 2003; Murphy 2013; Papatheodorou et al. 

2014). For example, it has been shown that reduced IIS, which leads to the activation of 
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FOXO, a central transcription factor in IIS, results in smaller body size, reduced fecundity 

and ovarian arrest. Loss-of-function mutations of foxo, for instance, cause prolonged 

developmental time, smaller body size, reduced fecundity, shorter lifespan and increased 

sensitivity to oxidative and starvation stress  (Jünger et al. 2003; Kramer et al. 2003; 

Hwangbo et al. 2004; Giannakou et al. 2007; Kramer et al. 2008; Slack et al. 2011). 

Accordingly, it has been hypothesized that the IIS/TOR pathway might represent a major 

mediator of life-history variation and adaptation in Drosophila (De Jong & Bochdanovits 

2003; Paaby et al. 2010; 2014). Yet, to date, we only have a small handful of examples of 

naturally occurring polymorphisms in the IIS and other functionally important pathways that 

have been shown to affect phenotypic variation in fitness components in natural populations. 

 One example is the insulin-like receptor (InR), which is well known from mutant studies to 

have pleiotropic effects on various fitness-related traits, including developmental time, body 

size, ovarian development, lifespan and stress resistance (Tatar et al. 2001; Okamoto et al. 

2013; Liu et al. 2013). Interestingly, Paaby and collaborators (Paaby et al. 2010; 2014) have 

identified a clinally varying insertion-deletion (indel) polymorphism in InR which seems to be 

involved in climate adaptation and which confers pleiotropic effects on multiple life-history 

traits. Another example concerns the genetic factors underlying reproductive diapause or 

dormancy (Schmidt et al. 2008; Paaby et al. 2014), a plastic and pleiotropic trait syndrome 

that affects, in response to cold temperatures and shortened photoperiod, ovarian 

development, fecundity, stress resistance and lifespan, and which is thought to represent an 

overwintering adaptation of temperate populations (Saunders et al. 1989; Schmidt et al. 

2005a; b; Schmidt & Conde 2006). Using QTL mapping, Schmidt et al. (2008) have 

identified a naturally occurring SNP in the gene couch potato (cpo) which underlies the clinal 
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variation in diapause propensity along the North American east coast (Schmidt et al. 2008; 

Paaby et al. 2014).  

Reproductive diapause represents a prominent example for adaptive phenotypic plasticity 

associated with environmental heterogeneity (Williams & Sokolowski 1993; Kubrak et al. 

2014; Zhao et al. 2015); in stark contrast to flies from Maine, for example, the majority of 

genotypes in Florida is unable to enter diapause under diapause-inducing conditions (Schmidt 

et al. 2005a; b; Schmidt & Conde 2006, Schmidt et al. 2008). However, generally speaking, 

little is known about adaptive phenotypic plasticity in the context of clinal gradients. An 

attractive hypothesis is that genotypes from temperate, strongly seasonal high-latitude 

populations might be more plastic in response to environmental heterogeneity (e.g., 

temperature change, seasonality, food shortage) than those from tropical, low-latitude 

populations (Overgaard et al. 2011; Klepsatel et al. 2013; Mathur & Schmidt 2017). Yet, our 

understanding of plasticity and genotype-by-environment interactions across latitudinal 

gradients remains limited.  

Interestingly, both InR and cpo are located in the genomic region spanned by the 

In(3R)Payne inversion (see above), which itself has been associated with climate adaptation. 

This large inversion polymorphism varies clinally along latitude on multiple continents, most 

prominently along the North American and Australian east coast; it exhibits intermediate 

frequency (~50%) at low latitudes but is rare or absent at high latitudes (Mettler et al. 1977; 

Stalker 1980; Inoue & Watanabe 1992; Anderson et al. 2005; Matzkin 2005; Fabian et al. 

2012; Kapun et al. 2014; 2016a). Remarkably, the region spanned by In(3R)Payne actually 

contains the majority of clinally varying SNPs along the North American east coast (Fabian et 

al. 2012; Kapun et al. 2016a). Indeed, recent findings suggest that this inversion is adaptively 

maintained by spatially varying (clinal) selection, independent of admixture or population 

structure (Kapun et al. 2016a). It has thus been hypothesized that In(3R)Payne might 
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represent the major driver of clinality in North American and Australian D. melanogaster (De 

Jong & Bochdanovits 2003; Kennington et al. 2006; Kapun et al. 2016a). Perhaps in line with 

this notion, In(3R)Payne harbors, for example, several major genes of the IIS/TOR pathway 

(De Jong & Bochdanovits 2003; Paaby et al. 2010; Fabian et al. 2012; Paaby et al. 2014). 

Despite its potential importance in clinal adaptation, however, little is known about the effects 

of In(3R)Payne on clinally varying traits. A small number studies from Australia has found 

effects on body size (Weeks et al. 2002; Anderson et al. 2005; Rako et al. 2006; Kennington 

et al. 2007). In suppport of these previous findings, we have recently observed similar 

phenotypic effects for the North American cline: In(3R)Payne is strongly associated with 

body size (Kapun et al. 2016b). These parallel phenotypic effects across multiple clines 

clearly strengthen the case for spatially varying selection, but more data are needed to 

understand how In(3R)Payne contributes to clinal variation in fitness-related traits other than 

body size.  

Thus, while genomic studies of clinal differentiation and adaptation have successfully 

identified many putatively adaptive polymorphisms, the hypothesized functional links 

between these candidate polymorphisms and variation in fitness-related traits (i.e., phenotypic 

targets of clinal selection) are not sufficiently well understood yet, for establishing such 

causative connections requires labor-intensive functional genetic studies of these natural 

variants (Barrett & Hoekstra 2011; Flatt 2016; Kapun et al. 2016a).  

Here, in this Ph.D. thesis I provide functional evidence for the involvement of clinally 

varying polymorphisms in shaping patterns of adaptive clinal differentiation in life-history 

traits along the North American east coast. Based on our previous results (Fabian et al. 2012), 

I decided to prioritize two clinally varying candidate polymorphisms for functional 

experimentation: (1) a strongly clinal 2-SNP variant in the IIS transcription factor gene foxo, 
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and (2) the clinal chromosomal inversion polymorphism In(3R)Payne. Examining the life-

history effects of these polymorphisms defines the two central aims of my Ph.D. thesis. 

Ph.D. Objectives 

The two major objectives of my Ph.D. dissertation research are defined follows: 

   Aim 1: To investigate the functional effects of a clinal polymorphism in the insulin 

signaling transcription factor gene foxo on Drosophila life history. Specifically, in this 

part of the thesis I investigated the functional links between a strongly clinal 2-SNP variant in 

the IIS transcription factor foxo and life-history phenotypes (Chapters 2-4). To examine the 

interplay between clinal variation and phenotypic plasticity, I examined the effects of this 

foxo variant under different thermal and dietary conditions (Chapter 2). To do so, my 

colleagues and I isolated this variant for experimental work by reconstituting outbred 

populations from individually sequenced lines of the Drosophila Genetic Reference Panel 

(DGRP) that are either fixed for the low-latitude or the high-latitude allelic state for this 

polymorphism. In addition, we examined clinal life-history variation among natural 

populations of D. melanogaster along the North American east coast in order to directly 

compare these traits clines to the phenotypic effects of the foxo polymorphism (Chapter 3). 

Finally, in ongoing work I am currently aiming to determine the causative effects of this 

variant using the CRISPR/Cas9 genome editing technique (Chapter 4).  

 Aim 2: To investigate life-history effects of the clinal inversion polymorphism 

In(3R)Payne in D. melanogaster. In this part of the thesis, I set out to examine the effects of 

a second clinally varying variant, the inversion polymorphism In(3R)Payne. To examine the 

impact of geography (clinality) and/or inversion karyotype (i.e., inverted vs. uninverted 

karyotypes) on clinal trait differentiation along the North American east coast, we established 

isochromosomal homokaryon lines isolated from populations approximating the end points of 
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the North American cline (Florida, Maine) and then assayed the lines for several survival 

traits known to vary clinally. Since temperature represents the presumably most important 

environmental factor covarying with latitude, I investigated the phenotypic effects of 

In(3R)Payne under different thermal conditions.  

Together, my work provides novel insights into the genetic architecture of clinal adaptation 

and the interplay between clinality and phenotypic plasticity; in particular, my findings 

highlight the importance of natural variation in insulin signaling and of a major chromosomal 

inversion polymorphism in shaping life-history differentiation among natural populations of 

D. melanogaster.
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Abstract 

A fundamental aim of adaptation genomics is to identify polymorphisms that underpin 

variation in fitness traits. In Drosophila melanogaster latitudinal life-history clines exist 

on multiple continents and thus make an excellent system for dissecting the genetics of 

adaptation. We have previously identified numerous clinal SNPs in the insulin signaling 

pathway, which is known from studies of laboratory mutants to affect fitness traits. 

With a few exceptions, however, effects of natural variants in this pathway have not 

been examined in Drosophila. Here we investigate how a strongly clinal 2-SNP variant in 

foxo, a transcriptional effector of insulin signaling, affects fitness-related traits (egg-to-

adult survival, body size, starvation resistance, fat content). We isolated this 

polymorphism from the North American cline by reconstituting outbred populations, 

fixed for either the low- or high-latitude allele, from lines of the Drosophila Genetic 

Reference Panel (DGRP). Since both diet and temperature can modulate insulin 

signaling, we phenotyped both alleles at two temperatures (18°C, 25°C) and on two diets 

differing in their protein:carbohydrate ratio and sugar source. Consistent with clinal 

expectations, the high-latitude allele conferred larger size and reduced wing loading. 

Although starvation resistance is typically greater in high-latitude flies, the high-latitude 

allele was less resistant. The alleles also differed in the expression of a transcriptional 

target of FOXO. We observed few genotype-by-environment interactions; overall the 

reaction norms of the alleles were rather parallel. Together with previous work on the 

insulin-like receptor, our results demonstrate that natural variation in insulin signaling 

makes an important contribution to clinal life-history adaptation. 
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Introduction 

Life-history traits are central to adaptation: because they affect survival and reproduction, 

they are the most important phenotypic determinants of fitness and organismal targets of 

selection (Stearns 1992). Surprisingly, however, despite their adaptive importance, little is 

known about their evolutionary genetic basis.  

 Although much has been learned about the genetics of fitness traits (e.g., size, lifespan), 

mainly from studies of large-effect mutants and transgenes in yeast, C. elegans, Drosophila 

and the mouse (Finch & Rose 1995; Oldham & Hafen 2003; Tatar et al. 2003; Fielenbach & 

Antebi 2008; Kenyon 2010), loci identified through functional analyses do not necessarily 

harbor segregating allelic variation that contributes to genetic variance for traits in natural 

populations (Flatt 2004; Flatt & Schmidt 2009; Vonesch et al. 2016; Birney 2016). In 

particular, the identity and presumably subtle effects of naturally occurring life-history 

polymorphisms are poorly known (Flatt & Schmidt 2009; Paaby & Schmidt 2009; Flatt & 

Heyland 2011). While adaptation genomics can in principle quite readily identify such 

candidate polymorphisms, a major – but rarely accomplished – objective is to experimentally 

validate these candidates as genic targets of selection (Barrett & Hoekstra 2011; Turner 2014; 

Flatt 2016). Thus, with a few exceptions, examples of causative life-history variants remain 

rare (Schmidt et al. 2008; McKechnie et al. 2010; Paaby et al. 2010; Jones et al. 2012; 

Johnston et al. 2013; Méndez-Vigo et al. 2013; Paaby et al. 2014; Barson et al. 2015; Catalán 

et al. 2016; reviewed in Mackay et al. 2009; Barrett & Hoekstra 2011). 

 Despite conceptual and methodological limitations of the so-called quantitative trait 

nucleotide (QTN) program (Rockman 2012), the identification of life-history polymorphisms 

allows addressing fundamental questions about the genetic basis of adaptation, including: (1) 

Which pathways and molecular functions underpin variation in fitness-related traits? (2) Are 

these mechanisms evolutionarily conserved? (3) What are the phenotypic effects of naturally 
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segregating life-history variants? (4) What is the molecular nature of life-history epistasis, 

pleiotropy and trade-offs? (5) Do life-history polymorphisms mediate plasticity and how? (6) 

Is the genetic basis of evolutionary changes in life history "predictable", i.e. relying on 

variation in the same pathways or genes? Or do life-history traits evolve unpredictably, i.e. 

via different pathways or loci, in different contexts?  

 A powerful model for dissecting the genetics of life-history adaptation is the vinegar fly 

Drosophila melanogaster, a species of sub-Saharan African origin, which has migrated out of 

Africa ~10,000 to 15,000 years ago and subsequently colonized the rest of the world (David 

& Bocquet 1975; David & Capy 1988; de Jong & Bochdanovits 2003; Hoffmann & Weeks 

2007; Adrion et al. 2015). During the colonization of new climate zones, this ancestrally 

tropical insect has undergone a series of life-history adaptations to temperate, seasonal 

habitats (David & Capy 1988; de Jong & Bochdanovits 2003; Paaby & Schmidt 2009). This is 

particularly evident in the case of clines, i.e. directional patterns of phenotypic or genetic 

change across environmental gradients. Many studies have documented patterns of latitudinal 

differentiation among D. melanogaster populations that are presumably driven by spatially 

varying selection, for example along the North American and Australian east coasts, with the 

corresponding clines spanning subtropical/tropical and temperate habitats (de Jong & 

Bochdanovits 2003; Schmidt et al. 2005a, b; Hoffmann & Weeks 2007; Schmidt & Paaby 

2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Adrion et al. 2015; Cogni et al. 2017). 

Clinal trait differentiation has been found, for instance, for body size, fecundity, reproductive 

dormancy, stress resistance and lifespan, typically in a parallel fashion on multiple continents, 

suggesting that these patterns are adaptive (Coyne & Beecham 1987; Weeks et al. 2002; de 

Jong & Bochdanovits 2003; Schmidt et al. 2005a, b; Hoffmann & Weeks 2007; Schmidt & 

Paaby 2008; Adrion et al. 2015; Fabian et al. 2015; Kapun et al. 2016a).  
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 To begin to identify the genetic basis of adaptive life-history clines in D. melanogaster, we 

have previously performed genome-wide analysis of latitudinal differentiation along the 

North American cline (Fabian et al. 2012 and Kapun et al. 2016b; also see Turner et al. 2008; 

Bergland et al. 2014; Reinhardt et al. 2014). Our analysis based on SNP FST outliers 

uncovered pervasive genome-wide patterns of clinality, with hundreds of clinally varying 

SNPs mapping to loci involved in the insulin/insulin-like growth factor signaling (IIS)/target 

of rapamycin (TOR), ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, lipid metabolism, 

immunity and circadian rhythm pathways (Fabian et al. 2012). Many of the identified variants 

also exhibit parallel differentiation along the Australian cline (Fabian et al. 2012 and Kapun 

et al. 2016b; also cf. Kolaczkowski et al. 2011; Reinhardt et al. 2014; Machado et al. 2016), 

thereby strengthening the case for clinal adaptation. However, while many clinal variants 

might be shaped by selection, some of the observed differentiation might be due to non-

adaptive factors, including population structure, demography, admixture or hitchhiking with 

causative sites (Endler 1977; Duchen et al. 2013; Kao et al. 2015; Bergland et al. 2016). 

Unambiguously identifying adaptive clinal variants thus requires comparing clinal patterns 

against neutral expectations and/or functional genetic testing (Barrett & Hoekstra 2011; 

Kapun et al. 2016b; Flatt 2016). 

 Interestingly, many of the pathways that harbor clinal loci are known from functional 

genetic studies to be implicated in the regulation of life-history physiology (Tatar et al. 2003; 

Fielenbach & Antebi 2008; Flatt & Heyland 2011; Flatt et al. 2013). In particular, we found 

strongly clinal SNPs in multiple components of the IIS/TOR pathway, including SNPs in 

insulin-like peptide genes ilp 3 and ilp5, insulin-like receptor (InR), phosphatidyl-inositol-4,5-

bis-phosphate 3-kinase (Pi3K), forkhead box-O transcription factor foxo, the foxo regulator 

14-3-3ε, target of brain insulin (tobi), tuberous sclerosis complex 1 (Tsc1), and target of 

rapamycin (Tor) (Fig. 1; Fabian et al. 2012; Kapun et al. 2016b). This pattern is compelling 
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since loss-of-function mutations in the IIS/TOR pathway have major, evolutionarily 

conserved effects on growth, size, reproduction, lifespan and stress resistance in Drosophila, 

C. elegans, and the mouse (Kenyon et al. 1993; Gems et al. 1998; Böhni et al. 1999; Brogiolo

et al. 2001; Tatar et al. 2001; Clancy et al. 2001; Kenyon 2001; Oldham et al. 2002; Oldham 

& Hafen 2003; Holzenberger et al. 2003; Tatar et al. 2003; Partridge et al. 2005).  

 Since many fitness-related traits affected by IIS/TOR also exhibit phenotypic clines, it is 

tempting to hypothesize that natural variation in this pathway contributes to life-history 

clines, especially with regard to body size (de Jong & Bochdanovits 2003); yet, the 

evolutionary significance of natural variants in this pathway is poorly understood. An 

exception is an indel polymorphism in the D. melanogaster InR gene, which varies clinally 

along both the North American and Australian east coasts and which has multifarious life-

history effects (Paaby et al. 2010, 2014). Consistent with the idea that IIS polymorphisms 

affect adaptation, natural variation in adult reproductive dormancy in D. melanogaster has 

been connected to the Pi3K gene (Williams et al. 2006), and work in Caenorhabditis remanei 

has identified a global selective sweep in the Caenorhabditis homolog of Pi3K, age-1 (Jovelin 

et al. 2014). Multiple lines of evidence also indicate that insulin-like growth factor-1 (IGF-1) 

signaling mediates physiological life-history variation in vertebrate populations (Dantzer & 

Swanson 2011; Swanson & Dantzer 2014). Together, these findings suggest that allelic 

variation in IIS/TOR might profoundly affect life-history adaptation, but experimental 

evidence remains scarce. 

 Here we investigate the life-history effects of a clinal polymorphism in the forkhead box-O 

transcription factor gene foxo of D. melanogaster (Fig. 1), a major regulator of IIS that is 

homologous to C. elegans daf-16 and mammalian FOXO3A. Molecular studies – mainly in 

the fly and nematode – have shown that FOXO plays a key role in regulating growth, lifespan 

and resistance to starvation and oxidative stress (Jünger et al. 2003; Puig et al. 2003; Libina et 
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al. 2003; Murphy et al. 2003; Kramer et al. 2003, 2008; Hwangbo et al. 2004; Puig & Tijan 

2005; Fielenbach & Antebi 2008; Mattila et al. 2009; Slack et al. 2011). Moreover, genetic 

association studies in humans have linked polymorphisms in FOXO3A to longevity in 

centenarians (Flachsbart et al. 2008; Willcox et al. 2008). Natural foxo variants thus represent 

promising candidates for mediating life-history variation in natural populations. 

 From our genomic data (Fabian et al. 2012) we identified a strongly clinal 2-SNP variant 

in foxo, whose frequency changes across latitude from ~10% in Florida to ~70% in Maine 

(also see Betancourt et al., submitted). To characterize the effects of this polymorphism we 

measured several fitness-related traits (egg-to-adult survival, proxies of size, starvation 

resistance, fat content) on replicate populations of the two alternative alleles. Since both diet 

and temperature can modulate IIS (Britton et al. 2002; Kramer et al. 2003; Puig & Tijan 

2005; Giannakou et al. 2008; Teleman 2010; Puig & Mattila 2011; Li & Gong 2015; Zhang et 

al. 2015), we phenotyped both alleles at two temperatures (18°C, 25°C) and on two diets 

differing in their protein:carbohydrate (P:C) ratio and sugar source. Investigating phenotypic 

plasticity and genotype-by-environment interactions (G ⋅ E) for this variant is of interest since 

little is known about the relative importance of clinality versus plasticity and their interplay, 

with most previous work having focused on gene expression, not whole-organism traits (de 

Jong & Bochdanovits 2003; Hoffmann et al. 2005; Levine et al. 2011; Overgaard et al. 2011; 

Chen et al. 2012; Cooper et al. 2012; Zhao et al. 2015; Clemson et al. 2016; Mathur & 

Schmidt 2017). For example, D. melanogaster feeds and breeds on various kinds of rotting 

fruit, with P:C ratios exhibiting spatiotemporal variation (Lachaise et al. 1988; Hoffmann & 

McKechnie 1991; Markow et al. 1999; Keller 2007), but how dietary plasticity and G ⋅ E 

affect traits in a clinal context is not well understood. We give predictions for the expected 

phenotypic behavior of the foxo polymorphism in the Materials and Methods section below. 
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We find that the foxo polymorphism has pleiotropic effects on clinally varying life-history 

traits, thus confirming that it is a target of spatially varying selection. Both alternative alleles 

respond plastically to changes in temperature and diet, but there is little evidence for G ⋅ E 

interactions. In a companion paper we directly compare its effects in a constant laboratory 

environment to clinal expectations based on phenotypic data from six populations along the 

North American cline (Betancourt et al., submitted) 

Materials and Methods 

Predictions   

Here we make qualitative predictions for the expected behavior of the foxo polymorphism 

with regard to (1) clinal phenotypic effects, (2) patterns of trait covariation determined by IIS, 

and (3) plasticity, G ⋅ E, and local adaptation (also see Betancourt et al., submitted). We 

compare our results to these predictions in the Results section. 

(1) Latitudinal clinality. Traits expected to covary with high as compared to low latitude

include faster development, lower egg-to-adult survival (viability), increased body size, 

reduced wing loading, reduced fecundity, prolonged lifespan, and increased resistance to 

starvation, cold and heat stress (Coyne & Beecham 1987; Azevedo et al. 1998; Bochdanovits 

& de Jong 2003a; de Jong & Bochdanovits 2003; Schmidt et al. 2005a, b; Folguera et al. 

2008; Schmidt & Paaby 2008; Bhan et al. 2014; Mathur & Schmidt 2017; Betancourt et al., 

submitted; for contrasting predictions for viability see Van't Land et al. 1999, and for 

starvation resistance cf. Karan et al. 1998, Robinson et al. 2002; Hoffmann et al. 2005, 

Goenaga et al. 2013). We expect the effects of the high- and low-latitude foxo alleles to agree 

with the overall phenotypic patterns along the cline, unless alleles exhibit countergradient 

effects on phenotype (Paaby et al. 2014). 
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(2) IIS. Traits expected to covary with reduced IIS include reduced body size, increased

lifespan, resistance to starvation and cold, increased fat content, reduced fecundity, and 

activation of FOXO (Tatar et al. 2001, 2003; Oldham & Hafen 2003; Broughton et al. 2005; 

Teleman 2010). Loss-of-function mutants of foxo exhibit (depending on the allele) prolonged 

development, reduced weight, smaller wing size, reduced fecundity, shortened lifespan, and 

reduced survival upon oxidative and starvation stress (Jünger et al. 2003; Kramer et al. 2003, 

2008; Hwangbo et al. 2004; Giannakou et al. 2004, 2008; Kramer et al. 2008; Slack et al. 

2011); effects of IIS or foxo on viability are not well understood. Conversely, expression of 

foxo has opposite effects on most of these traits (e.g., lifespan, starvation resistance), yet 

causes decreased size (Kramer et al. 2003; Puig et al. 2003; Hwangbo et al. 2004; Kramer et 

al. 2008; Tang et al. 2011). We predict that the foxo alleles differ consistently along this 

IIS/foxo axis of trait covariation.  

 Notably, traits observed in flies from high versus low latitude resemble those of flies with 

low versus high IIS, respectively (de Jong & Bochdanovits 2003; Flatt et al. 2013; Paaby et 

al. 2014): lower fecundity, improved stress resistance, and longer lifespan observed in high-

latitude flies are traits that are co-expressed in IIS mutants; however, flies from high-latitude 

populations are larger than low-latitude flies, yet reduced IIS causes smaller size. 

(3) Plasticity, G ⋅ E, and local adaptation. With regard to thermal effects, we expect flies

raised at lower temperature to exhibit prolonged development, reduced viability, larger size, 

reduced wing loading, lower fecundity, increased lifespan, and improved starvation resistance 

(David et al. 1994; Partridge et al. 1994a, b; Bochdanovits & de Jong 2003b; Trotta et al. 

2006; Folguera et al. 2008; Klepsatel et al. 2013; Mathur & Schmidt 2017; cf. Hoffmann et 

al. 2005 for a contrasting prediction for starvation survival). With respect to dietary effects, 

higher P:C ratios are expected to cause increased viability, larger size but reduced starvation 

resistance (Lee & Jang 2014; Lihoreau et al. 2016; Reis 2016). In terms of G ⋅ E, genotypes 
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from temperate, seasonal high-latitude habitats might be more plastic than those from low-

latitude habitats (Overgaard et al. 2011; Klepsatel et al. 2013); if so, patterns of differential 

plasticity between high- and low-latitude alleles might be consistent with patterns of local 

adaptation (Mathur & Schmidt 2017).  

Identification and isolation of the foxo polymorphism 

We identified two strongly clinal SNPs in foxo in the data of Fabian et al. (2012) by using a 

FST outlier approach: an A/G polymorphism at position 3R: 9892517 (FST = 0.48) and a T/G 

polymorphism at position 3R: 9894559 (FST = 0.42) (Fig. S1A, Supporting Information; see 

Fabian et al. 2012 for details of outlier detection). The A/G polymorphism is a synonymous 

coding SNP, predicted to be located in the PEST region of the FOXO protein, which serves as 

a protein degradation signal (analysis with ExPASy [Artimo et al. 2012]; Fig. S2, Supporting 

Information). The T/G SNP is located in the first intron of foxo, with no biological function 

attributed to this position (Attrill et al. 2016). While our initial identification of these SNPs 

was based on only three populations (Florida, Pennsylvania, and Maine; Fabian et al. 2012), 

both SNPs are also strongly clinal in a more comprehensive dataset based on 10 populations 

along the cline (see Betancourt et al., submitted), collected by the Drosophila Real Time 

Evolution Consortium (Dros-RTEC; Bergland et al. 2014; Kapun et al. 2016b). Since the two 

SNPs are relatively close together (~2 kb apart; Fig. S1A, Supporting Information), we 

decided to study them experimentally in combination, as a 2-SNP genotype. The frequency of 

the high-latitude [HL] allele (A, T) for this 2-SNP variant ranges from ~10% in Florida to 

~70% in Maine; conversely, the alternative low-latitude [LL] allele (G,G) is prevalent in 

Florida but at low frequency in Maine (Fig. S1A, Supporting Information; also see Betancourt 

et al., submitted).  
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To isolate this variant for experiments we used whole-genome sequenced inbred lines from 

the Drosophila Genetic Reference Panel (DGRP; Mackay et al. 2012) to reconstitute outbred 

populations either fixed for the LL (G,G) and the HL (A,T) alleles (see Betancourt et al., 

submitted). For each allele we used two independent sets of DGRP lines (sets A and B for 

HL; sets C and D for LL; each set consisting of 20 distinct lines) and two replicate population 

cages per set, giving a total of 8 cages (Fig. S3, Table S1, Supporting Information; see 

Betancourt et al., submitted). By analyzing the genomes of the DGRP lines used to set up 

experimental populations we confirmed that sets A and B versus sets C and D were fixed (FST

= 1) for the HL and LL alleles, respectively; this also showed that there was no systematic 

differentiation, as measured by FST, in the genome-wide background of the focal alleles (see 

Betancourt et al., submitted). Figure S1B (Supporting Information) shows that the two focal 

SNPs are in perfect linkage disequilibrium (LD; r2 = 1), without any significant LD in-

between the two sites. 

Population cages 

Population cages were maintained at 25ºC, 12:12 h light:dark, 60% relative air humidity and 

controlled larval density. Larval density was kept constant via egg collections (200-300 eggs 

per bottle [6 oz. = 177 mL]; 10 bottles per cage), with eclosing adults being released into 

cages (17.5 x 17.5 x 17.5 cm; BugDorm®) at a density of ~2000-2500 adults per cage. Prior 

to assays cages were kept for 10 generations to allow for recombination among lines within 

each cage and to homogenize differences in genomic background between the alleles to be 

compared. Before setting up assays, we kept cages for 2 generations under common garden 

conditions (room temperature: ~22ºC, ~10:14 h light:dark, ~50% humidity). 
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Phenotype assays 

The assays reported here were performed in Lausanne; independent assays were performed in 

Philadelphia (see Betancourt et al., submitted), allowing us to account for potential variation 

in life-history traits due to differences in laboratory assay conditions (Ackermann et al. 2001; 

see Betancourt et al., submitted). 

 In generation 13 we assayed flies for viability, size, starvation resistance and lipid content. 

Phenotypes were assayed under four environmental conditions, using a fully factorial 2-way 

design: 2 rearing temperatures (18°C, 25°C) by 2 diets differing in their P:C ratio and sugar 

source (sucrose [cornmeal-agar-yeast-sucrose] vs. molasses [cornmeal-agar-yeast-molasses] 

diet; P:C ~1:3.6 and ~1:12.3, respectively; see Table S2, Supporting Information, for details 

of nutrient content and media recipes). To initiate assays we collected ~6400 eggs from each 

cage, distributed them across 32 bottles (each with 200 eggs; 25 mL medium), and allocated 8 

bottles to each of the 4 conditions (8 bottles ⋅ 8 cages ⋅ 4 conditions = 256 bottles). For all 

assays (except viability; see below), we collected eclosed adults in 48-h cohorts, allowed 

them to mate for 4 days under their respective thermal and dietary conditions, sexed them 

under light CO2 anesthesia 4-6 days post-eclosion, and transferred them to fresh vials 24 h 

prior to assays. Flies used for size assays were stored at -20°C until measurement. 

 Viability (egg-to-adult survival) was calculated as the proportion of adult flies successfully 

developing from eggs by collecting 600 eggs per cage and placing them into vials containing 

8 mL of medium, with 30 eggs per vial (5 vials ⋅ 8 cages ⋅ 4 conditions = 160 vials).  

 Body size was examined by measuring three proxies: wing area, thorax length and femur 

length (N = 26-30 wings, 10-15 thoraces, and 19-21 femurs per cage, treatment, and sex). 

Right wings and femurs were mounted on slides with CC/Mount™ tissue mounting medium 

(Sigma Aldrich) and slides sealed with cover slips. Thorax length was defined as the lateral 

distance between the upper tip of the thorax and the end of the scutellar plate (N = 10-15 
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individuals per cage, treatment, and sex). Images for morphometric measurements were taken 

with a digital camera (Leica DFC 290) attached to a stereo dissecting microscope (Leica MZ 

125; Leica Microsystems GmbH, Wetzlar, Germany). We used ImageJ software (v.1.47) to 

measure femur and thorax length (mm) and to define landmarks for calculating wing area 

(mm2). To measure wing area we defined 12 landmarks located at various vein intersections 

along the wing; the total area encompassed by these landmarks was estimated using a custom-

made Python script (available upon request from MK). In brief, we split the polygon defined 

by the landmarks up into triangles and summed across their areas (Fig. S4, Supporting 

Information). Thorax and femur measurements were repeated three times per individual. 

From these data, we calculated the ratio of wing area:thorax length, which is inversely related 

to "wing loading" (Azevedo et al. 1998; Gilchrist et al. 2000).  

 Starvation resistance was measured by placing flies into vials containing 0.5% agar/water 

medium and scoring age at death (h) every 6 h until all flies had died (N = 5 vials ⋅ 10 flies per 

vial ⋅ 2 sexes ⋅ 8 cages ⋅ 4 conditions = 320 vials or 3200 flies). Since there is typically a 

positive correlation between starvation resistance and lipid content (Hoffmann & Harshman 

1999), we also determined whole-body triacylglyceride (TAG) content (in µg per fly) using a 

serum triglyceride determination kit (Sigma Aldrich; Tennessen et al. 2014). For each cage 

and treatment, triglyceride content was estimated from 5-7-day-old females, either kept under 

fed or starved (24 h) conditions, by preparing 10 replicate homogenates, each made from 2 

flies (8 cages ⋅ 4 conditions ⋅ 2 treatments ⋅ 10 replicates = 640 homogenates). To estimate fat 

loss upon starvation we calculated the difference between fat content under fed versus starved 

conditions, using treatment (fed vs. starved) means from each population cage (mean fat loss 

per fly, in µg). 
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qRT-PCR analysis of insulin signaling state 

A well established transcriptional read-out of FOXO signaling is the insulin-like receptor InR: 

under conditions of high insulin (e.g., after a meal), InR synthesis is repressed by a feedback 

mechanism controlled by FOXO; conversely, under conditions of low insulin, activation of 

FOXO leads to upregulation of InR (Puig et al. 2003; Puig & Tjian 2005). To test whether the 

foxo alleles differ in IIS state we performed qRT-PCR, measuring InR mRNA abundance. For 

each cage and treatment, we extracted total RNA from 5-7-day-old snap-frozen females in 

triplicate, with each replicate prepared from 5 flies. RNA was extracted with the RNeasy kit 

(Qiagen) and reverse transcribed with the GoScript Reverse Transcription System (Promega). 

From each triplicate biological sample we prepared 3 technical replicates (8 cages ⋅ 4 

conditions ⋅ 3 biological replicates ⋅ 3 technical replicates = 288 samples). Relative transcript 

abundance was normalized by using Actin as an endogenous control (Ponton et al. 2011). 

qRT-PCR was carried out using a QuantStudio 6 Flex Real-Time PCR System (Applied 

Biosystems) and SYBR Green GoTaq qPCR Master Mix (Promega). Thermal cycling was 

conducted at 95°C for 2 min, followed by 42 cycles of amplification at 95°C for 15 s and 

60°C for 1 min, and using the following melting curve: 95°C for 15 s, 60°C for 1 min, and 

95°C for 15 s. Quantification of relative abundance for each sample was based on the ΔCT 

method. We used the following primer sequences (Casas-Tinto et al. 2007; Ponton et al. 

2011): Actin forward, 5’-GCGTCGGTCAATTCAATCTT-3’; Actin reverse, 5’-

AAGCTGCAACCTCTTCGTCA-3’; InR forward, 5’-CACAAGCTGGAAAGAAAGTGC-

3’; and InR reverse, 5’- CAAACACGTTTCGATAATATTTTTCT-3’. 

Statistical analysis 

Analyses were performed with JMP (SAS, Raleigh, NC, USA; v.11.1.1). Data were analyzed 

with analysis of variance (ANOVA), testing the fixed effects of allele (A; HL vs. LL), 
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temperature (T; 18°C vs. 25°C), diet (D; sucrose vs. molasses), set (S; independent blocks of 

DGRP lines) nested within A, replicate cage (C) nested within the combination of A and S, 

and all 2- and 3-way interactions:  y = A + T + D + A ⋅ T + A ⋅ D + T ⋅ D + A ⋅ T ⋅ D + S(A) + 

C(A,S), where y denotes the response variable (trait). For simplicity, the sexes were analyzed 

separately (i.e., to reduce the number of higher-order interactions). Whenever measuring 

multiple individuals from vials, we estimated the random effect of vial (V), nested within the 

combination of A, S and C, using restricted maximum likelihood (REML); since the estimates 

of this variance component are not of primary biological interest we do not report them. 

Viability data were arcsine square-root transformed prior to analysis. Analysis of thorax and 

femur length was performed on means across 3 measures per individual; because wings and 

thoraces were measured on separate individuals, analysis of wing:thorax ratio was done on 

population (cage) means. For fat content, we included the fixed effect of starvation treatment 

(Tr; fed vs. starved); interactions involving A and Tr (i.e., A ⋅ Tr; A ⋅ D ⋅ Tr) test for allelic 

differences in fat loss upon starvation. We performed this analysis separately for the two 

rearing temperatures. 

Results 

foxo polymorphism affects viability 

We find that the naturally occurring foxo variant affects viability, with the LL allele 

exhibiting higher egg-to-adult survival than the HL allele (Fig. 2; Table 1), consistent with 

observations suggesting that viability might be higher at low latitudes (Folguera et al. 2008; 

but see Van't Land et al. 1999). Diet – but not temperature – also affected viability, with egg-

to-adult survival being higher on sucrose diet than on carbohydrate-rich molasses diet (Fig. 2; 

Table 1), in agreement with a recent study (Lihoreau et al. 2016). We did not find any 

evidence for G × E interactions with regard to viability. 
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Clinal foxo alleles vary in body size 

Since both latitude and IIS affect size (de Jong & Bochdanovits 2003), we next examined 

three proxies of body size (wing area, thorax and femur length). The HL allele conferred 

larger femur length (Fig. 3; Table 1; in females but not males), wing area (Fig. S5; Table S3, 

Supporting Information), and wing:thorax ratio than the LL allele (Fig. 4; Table 1; for thorax 

data see Fig. S6; Table S3, Supporting Information). These results are consistent with the 

positive size cline in North America (Coyne & Beecham 1987; Betancourt et al., submitted) 

and with reduced wing loading at high latitude (Azevedo et al. 1998; Bhan et al. 2014). Since 

foxo overexpression can reduce overall size (Jünger et al. 2003), it is possible that the LL 

allele exhibits increased FOXO function as compared to the HL allele. For all size traits, 

females were larger than males (Fig. 4; Fig. 5; Table 1; Fig. S5; Fig. S6; Table S3, Supporting 

Information). With regard to the plastic effects of temperature, femur length, thorax length 

and wing area were larger at 18°C than at 25°C (Fig. 3; Fig. S5, Fig. S6, Supporting 

Information; Table 1; Table S3, Supporting Information), as expected based on previous work 

(David et al. 1994; Partridge et al. 1994a). In terms of dietary plasticity, femur and thorax 

length were larger on sucrose than on molasses diet (Fig. 3; Table 1; Fig. S6; Table S3, 

Supporting Information), in line with the observation that carbohydrate-rich diet causes 

smaller size (Reis 2016); however, wing area and wing:thorax ratio were larger on molasses 

than on sucrose diet (Fig. S5; Table S3, Supporting Information; and Fig. 4; Table 1). 

Although we found a few G × E interactions for size traits (Fig. 4; Fig. 5; Table 1; Fig. S5; 

Fig. S6; Table S3, Supporting Information), the allelic reaction norms were remarkably 

parallel across environmental conditions. 
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Natural variation at foxo influences starvation resistance and fat catabolism 

The foxo alleles differed in their effects on female starvation resistance (Fig. 5; Table 1), as 

might be expected based on the observation that foxo mutants are more starvation sensitive 

than wildtype (Jünger et al. 2003; Kramer et al. 2003, 2008). However, contrary to clinal 

predictions (Schmidt & Paaby 2008; Mathur & Schmidt 2017; Betancourt et al., submitted), 

LL females were more starvation resistant than HL females (Fig. 5; Table 1), suggesting a 

countergradient effect; in males, there were no allelic differences in resistance (Fig. S7; Table 

S3, Supporting Information). Overall females were more resistant than males (Fig. 5; Table 1; 

Fig. S7; Table S3, Supporting Information), consistent with some but not other studies 

(Goenaga et al. 2010; but see Matzkin et al. 2009). For both females and males, starvation 

resistance was higher at 18°C than at 25°C (Fig. 5; Table 1; Fig. S7; Table S3, Supporting 

Information), as previously reported (Mathur & Schmidt 2017). Flies raised on molasses diet 

were more resistant than those raised on sucrose diet (Fig. 5; Table 1; Fig. S7; Table S3, 

Supporting Information), supporting the finding that lower P:C ratios favor higher resistance 

(Chippindale et al. 1993; Lee & Jang 2014). We also found evidence for an allele by diet 

interaction: allelic differences in resistance were more pronounced on molasses than sucrose 

diet (Fig. 5; Table 1; Fig. S7; Table S3, Supporting Information).  

To further examine the physiological basis of the starvation response we quantified how 

much fat female flies mobilize upon starvation (Fig 6; Table 2; males were not examined 

since they did not show allelic differences in resistance). Paralleling our result that LL 

females are more resistant than HL females, we found that the amount of fat catabolized 

under starvation was greater in LL than in HL females, under almost all conditions (except for 

females raised on sucrose diet at 25°C; see Fig. 6 and Table 2: significant allele by diet by 

starvation treatment interaction at 25°C but not at 18°C). Fat loss upon starvation was greater 

43



Chapter 2 

for flies raised on molasses than on sucrose diet (Fig 6; Table 2), again matching the results 

for starvation resistance itself. 

foxo alleles differ in their transcriptional feedback control of InR  

From the above patterns we predicted that the LL allele would exhibit decreased IIS and 

increased FOXO activity: the LL allele has smaller size but higher starvation resistance, i.e. 

traits that co-occur in IIS mutants or flies with increased FOXO activity. To test this 

hypothesis we performed qRT-PCR analysis of a major transcriptional target of FOXO, InR: 

when IIS is low, FOXO becomes active and upregulates InR transcription, while under high 

IIS FOXO is inactive and represses InR (Puig et al. 2003; Puig & Tjian 2005). In support of 

this hypothesis we found that the LL allele had a ~12% higher level of InR transcript than the 

HL allele (Fig. S8; Table S4, Supporting Information). Dietary conditions also affected InR 

levels, with flies raised on molasses producing more InR than flies raised on sucrose diet 

(Fig. S8; Table S4, Supporting Information). 

Discussion  

Connecting adaptive phenotypes to genotypes 

Understanding how organisms adapt to heterogeneous environments, and unraveling the 

genotype-phenotype map underlying such adaptation, is a central problem of evolutionary 

genetics (Levins 1968; Lewontin 1974; Endler 1977, 1986; Barrett & Hoekstra 2011).  

 In D. melanogaster, an ancestrally tropical insect, seasonality and cold winters at high 

latitude select for genotypes that are stress resistant and able to overwinter, whereas 

subtropical/tropical low-latitude conditions select for rapid development and high fecundity; 

traits correlated with these features (e.g., size, lifespan) evolve as correlated responses to 

selection, leading to trade-offs across geography (James & Partridge 1995; Schmidt et al. 
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2005a, b; Schmidt & Paaby 2008; Paaby & Schmidt 2009; Flatt et al. 2013; Paaby et al. 2014; 

Fabian et al. 2015). This makes D. melanogaster a powerful system for dissecting the genetic 

basis of adaptation. However, little is known about the polymorphisms that underpin life-

history adaptation in this or other species (Finch & Rose 1995; Flatt & Schmidt 2009; Paaby 

& Schmidt 2009; Barrett & Hoekstra 2011; Flatt & Heyland 2011; Flatt et al. 2013; Paaby et 

al. 2014). 

Several lines of evidence suggest that genes of the IIS/TOR pathway might be promising 

candidates underlying life-history adaptation in D. melanogaster (de Jong & Bochdanovits 

2003): (1) laboratory mutants in this pathway often mirror life-history traits and trade-offs 

observed in natural populations (de Jong & Bochdanovits 2003; Clancy et al. 2001; Tatar et 

al. 2001; Tatar and Yin 2001; Tatar et al. 2003; Paaby et al. 2010; Flatt et al. 2013; Paaby et 

al. 2014); (2) reproductive dormancy in response to cool temperature and short photoperiod, a 

genetically variable and clinal trait (Williams & Sokolowski 1993; Schmidt et al. 2005a, b; 

Schmidt & Paaby 2008), is physiologically regulated by IIS (Williams et al. 2006; Flatt et al. 

2013; Kubrak et al. 2014; Schiesari et al. 2016; Zhao et al. 2016); (3) genomic analyses of 

clinal differentiation has identified many clinal SNPs in the IIS/TOR pathway presumably 

shaped by spatially varying selection (Fig. 1; Kolaczkowksi et al. 2011; Fabian et al. 2012; 

Kapun et al. 2016b); and (4) genome-wide analyses of variation in size traits have identified 

novel regulators of growth, several of which interact with the IIS/TOR pathway (Vonesch et 

al. 2016; Strassburger et al. 2017). 

 Testing targets of selection in a genomic context requires experiments to identify the 

adaptive effects of individual alleles (Barrett & Hoekstra 2011; Turner 2014; Flatt 2016). In 

support of the idea that variation in IIS contributes to adaptation in D. melanogaster (de Jong 

& Bochdanovits 2003), Paaby and colleagues have identified a clinal indel polymorphism in 

InR with pleiotropic effects on development, size, fecundity, lifespan, oxidative stress 
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resistance, chill coma recovery, and insulin signaling (Paaby et al. 2010, 2014). Here we have 

studied the life-history effects of a clinal polymorphism in another IIS gene, foxo, a variant 

that we have identified from our genomic analysis of the North American cline (Fabian et al. 

2012). Our results complement those of Paaby et al. (2010, 2014) and give further credence to 

the hypothesis of de Jong & Bochdanovits (2003). 

The effects of natural versus null alleles at the foxo locus 

Previous work with loss-of-function mutants and transgenes has uncovered a major role of 

foxo in the regulation of growth, lifespan and resistance to starvation and oxidative stress 

(Jünger et al. 2003; Puig et al. 2003; Kramer et al. 2003; Giannakou et al. 2004; Hwangbo et 

al. 2004; Kramer et al. 2008; Slack et al. 2011), but nothing is known about the effects of 

natural alleles at this locus. An important distinction in this context is that null mutants, by 

definition, reveal the complete set of functions and phenotypes of a given gene and may thus 

be highly pleiotropic, whereas “evolutionarily relevant” mutations or alleles might have much 

more subtle effects, with little or no pleiotropy (Stern 2000). Based on our knowledge of the 

traits affected by foxo in null mutants and transgenes (Jünger et al. 2003; Kramer et al. 2003, 

2008; Slack et al. 2011), we measured how the clinal 2-SNP variant affects size traits and 

starvation resistance.  

 Although we could neither predict the directionality nor the degree of pleiotropy of the  

allelic effects a priori, we found that the foxo polymorphism differentially affects size-related 

traits and starvation resistance. With regard to growth and size, our findings from a natural 

variant agree well with functional genetic studies showing that foxo affects body size and 

wing area (Jünger et al. 2003; Slack et al. 2011; Tang et al. 2011). Similarly, our observation 

that variation at foxo affects survival and fat content upon starvation is consistent with the fact 

that foxo mutants display reduced starvation resistance (Jünger et al. 2003; Kramer et al. 
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2003, 2008). In contrast, although foxo null mutants produce viable adults (Jünger et al. 2003; 

Slack et al. 2011), whether distinct foxo alleles vary in viability has not been examined; here 

we find that the two natural alleles differ in egg-to-adult survival. We also asked whether the 

alleles differentially affect mRNA abundance of InR, a transcriptional target of FOXO (Puig 

et al. 2003; Puig & Tjian 2005). Indeed, the LL allele had higher InR levels, consistent with 

the LL genotype exhibiting reduced IIS and higher FOXO activity. For most traits measured, 

both alleles reacted plastically to changes in diet and temperature in the direction predicted 

from previous work (Partridge et al. 1994a, b; Lee & Jang 2014; Lihoreau et al. 2016; Mathur 

& Schmidt 2017), yet we found little evidence for allele by environment interactions. 

 While our experimental design does not allow us to disentangle the contribution of the 2 

individual SNPs to the total effects seen in the 2-SNP haplotype, it is noteworthy that a 

natural polymorphism defined by variation at only two (albeit linked) nucleotide positions has 

strongly pleiotropic effects on viability, several proxies of size and starvation resistance. This 

supports the idea that the architecture of life-history traits, connected via multiple trade-offs, 

is inherently pleiotropic (Williams 1957; Finch & Rose 1995; Flatt et al. 2005; Flatt & 

Promislow 2007; Flatt & Schmidt 2009; Flatt et al. 2013; Paaby et al. 2014) – and provides a 

contrast to the model from evo-devo which posits that most evolutionarily relevant mutations 

exhibit little or no pleiotropy (Stern 2011). The pleiotropic effects of the foxo variant might 

also explain why it is being maintained as polymorphic in natural populations along the cline.  

Insulin signaling, clinality, and countergradient variation 

How does the foxo variant contribute to the phenotypic cline observed across latitude? High-

latitude flies tend to be characterized by rapid development, reduced viability, larger size, 

decreased fecundity, longer lifespan and improved stress resistance as compared to low-

latitude flies, and this differentiation is genetically based (Coyne & Beecham 1987; Azevedo 
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et al. 1998; Schmidt et al. 2005a,b; Folguera et al. 2008; Schmidt & Paaby 2008; Mathur & 

Schmidt 2017; Betancourt et al., submitted). Do the allelic effects go in the same direction as 

the latitudinal gradient, representing cogradient variation, or do certain allelic effects run 

counter to the cline, representing countergradient variation (Levins 1968; Conover & Schultz 

1995)? Cogradient variation occurs when diversifying selection favors different traits in 

different environments, as expected from selection along a cline, whereas countergradient 

variation occurs when stabilizing selection favors similar traits in different environments 

(Conover & Schultz 1995; Marcil et al. 2006). 

 Consistent with clinal expectation, the HL allele confers larger size (Coyne & Beecham 

1987; de Jong & Bochdanovits 2003); increased wing:thorax ratio, which corresponds to 

reduced "wing loading", a trait hypothesized to be adaptive for flight at cold temperature 

(Stalker 1980; David et al. 1994; Azevedo et al. 1998; Bhan et al. 2014); and reduced 

viability (Folguera et al. 2008). Conversely, the LL allele exhibits smaller size, increased 

wing loading, and higher viability. Thus, these results demonstrate that the foxo variant 

contributes to the observed phenotypic cline in the predicted direction (gradient or cogradient 

variation) and that it is maintained by spatially varying selection. (For a remarkable example 

where size is subject to countergradient – not cogradient – variation along an altitudinal 

gradient in Puerto Rican D. melanogaster see Levins 1968, 1969). 

 For starvation resistance, we found – against clinal predictions – that the HL allele is less 

resistant than the LL allele, suggesting countergradient variation. Interestingly, a similar 

countergradient effect, on size, has been observed for the polymorphism in InR mentioned 

above: the high-latitude InRshort allele confers smaller size, even though high-latitude flies are 

normally bigger (Paaby et al. 2014). Likewise, for a clinal variant of neurofibromin 1 (Nf1) 

the high-latitude haplotype has smaller wing size, an effect that runs counter to the cline (Lee 

et al. 2013).  
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For IIS itself, de Jong & Bochdanovits (2003) predicted that temperate fly populations 

might be characterized by ‘thrifty’ genotypes with high IIS, whereas tropical populations 

might have a higher frequency of ‘spendthrift’ genotypes with low IIS. Our finding that the 

low-latitude foxo allele likely exhibits increased FOXO activity and lower IIS seems to 

support this, yet Paaby et al. (2014) found that IIS was lower for the high-latitude InR allele. 

The directionality of IIS effects along the cline thus remains difficult to predict (de Jong & 

Bochdanovits 2003).  

As noted by Lee et al. (2013) and Paaby et al. (2014), clinal variants subject to 

countergradient effects might interact epistatically with other loci affecting the trait, or they 

might be affected by antagonistic selection pressures (Schluter et al. 1991). Conflicting 

selection pressures on clinal variants might be particularly acute when they exhibit pleiotropic 

effects on multiple traits, as is the case for the polymorphisms at Nf1, InR, and foxo. These 

examples illustrate the complexity of dissecting the dynamics of clinal selection and the 

genotype-phenotype map underlying clinal adaptation (Lee et al. 2013; Paaby et al. 2014; 

Adrion et al. 2015; Flatt 2016).  

Limits to our reductionist understanding of adaptation? 

The above considerations make clear the limitations of using a reductionist approach to 

establish adaptive effects of individual alleles (Rockman 2012). In his famous 1974 book The 

Genetic Basis of Evolutionary Change Richard Lewontin writes: "Even if it were possible to 

randomize the alleles at a single locus with respect to the rest of the genome and then to 

measure the marginal fitnesses of the alternative genotypes at that locus to an arbitrary level 

of accuracy, it would be a useless occupation. Genes in populations do not exist in random 

combinations with other genes. The alleles at a locus are segregating in a context that includes 
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a great deal of correlation with the segregation of other genes at nearby loci... Context and 

interaction are of the essence." (Lewontin 1974, p. 318).  

 This is an incisive critique of the kind of experimental approach we have used here, and to 

a large extent we agree with Lewontin. However, adopting the alternative approach, i.e. using 

a macroscopic, quantitative genetics description, also comes at a cost, namely treating the 

genetic architecture of adaptive traits as a phenomenological, mechanistic black box (Houle 

2001; Stern & Orgogozo 2008; Barret & Hoekstra 2011; Flatt & Heyland 2011; Rockman 

2012; Flatt et al. 2013; Nunes et al. 2013). 

The problem is that – in the absence of functional analysis of candidate loci or alleles – 

neither population nor quantitative genetics can provide an explicit understanding of how 

causative polymorphisms map to evolutionarily relevant traits (Nunes et al. 2013). For 

instance, quantitative trait locus (QTL) mapping has rarely been able to identify causative loci 

or nucleotide variants of functional relevance (Rockman 2012; Nunes et al. 2013). In fact, as 

Lewontin has argued himself (1974, 2000), if an adequate description of evolution is to be 

given, evolutionary genetics must tackle the problem of mapping genotypes into phenotypes: 

“Much of the past and the present problems of population genetics can be understood only as 

an attempt to finesse the unsolved problem of an adequate description of development.” 

(Lewontin 2000, p. 7). 

Growing evidence for a major role of IIS in life-history variation 

The IIS pathway might serve a good example of how mechanistic and evolutionary insights 

can be combined to gain a more complete understanding of life-history evolution (Houle 

2001; Flatt & Heyland 2011). Since the 1990s, a great deal has been learned about the 

genetic, developmental and physiological effects of this pathway in model organisms. This 

work has shown that IIS mutants affect major fitness-related traits, and this in turn has 
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illuminated our understanding of the molecular underpinnings of growth, size, lifespan and 

trade-offs (Partridge & Gems 2002; Tatar et al. 2003; Flatt et al. 2005; Flatt & Heyland 

2011). In particular, these studies have revealed that IIS plays an evolutionarily conserved 

role in the physiological regulation of longevity (Partridge & Gems 2002; Tatar et al. 2003); 

they have also given us some of the clearest examples of alleles exhibiting antagonistic 

pleiotropy (Williams 1957; Flatt & Promislow 2007). The functional characterization of this 

pathway thus promised an opportunity for evolutionary geneticists to identify natural variants 

involved in life-history evolution (de Jong & Bochdanovits 2003). On the other hand, “life-

history loci” identified via functional genetic analysis must not necessarily contribute to 

standing variation for these traits in the wild (Flatt 2004; Flatt & Schmidt 2009).  

For some time, it thus remained unclear whether natural variation in this pathway impacts 

variation in fitness-related traits in natural populations (cf. Reznick 2005). This situation has 

changed quite substantially in recent years: to date, we have growing evidence that IIS 

contributes to life-history variation and adaptation in flies and other insects, worms, fish, 

reptiles and mammals, including effects on longevity in humans (de Jong & Bochdanovits 

2003; Williams et al. 2006; O’Neill et al. 2007; Flachsbart et al. 2008; Suh et al. 2008; 

Willcox et al. 2008; Alvarez-Ponce et al. 2009; Sparkman et al. 2009, 2010; Paaby et al. 

2010; Stuart & Page 2010; Dantzer & Swanson 2012; Jovelin et al. 2014; Paaby et al. 2014; 

Swanson & Dantzer 2014; McGaugh et al. 2015; Schwartz & Bronikowski 2016; Zhao et al. 

2016). This work thus illustrates how, by studying a candidate pathway from multiple angles, 

one might be able to connect genotypes to molecular mechanisms to environments and to 

adaptive phenotypes (cf. Houle 2001; Flatt et al. 2005; Flatt et al. 2013). 
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Conclusions 

Here we have found that a clinal polymorphism in the insulin signaling transcription factor 

gene foxo pleiotropically affects fitness-related traits that are themselves known to be clinally 

varying, including egg-to-adult survival, several size traits, starvation resistance and fat 

content. The directionality of most of these effects matches the observed phenotypic cline 

(Schmidt et al. 2005a, b; Schmidt & Paaby 2008; Betancourt et al., submitted), thus 

confirming previous genomic data suggesting that this variant is shaped by selection (Fabian 

et al. 2012). Our results are also in good agreement with functional studies of the foxo locus 

(Jünger et al. 2003, 2008; Kramer et al. 2008; Slack et al. 2011). Together with the results on 

InR (Paaby et al. 2010, 2014), our study demonstrates that variation in IIS makes an important 

and – at least partly – predictable contribution to clinal life-history adaptation in Drosophila.  

Acknowledgements 

We thank the members of the Schmidt and Flatt labs for assistance in the lab, and Tad 

Kawecki, Wolf Blanckenhorn and Marc Tatar for helpful discussions. Our research was 

funded by the Swiss National Science Foundation (SNSF grants PP00P3_133641; 

PP00P3_165836; 310030E-164207 to TF), the Austrian Science Foundation (FWF P21498-

B11 to TF), the National Institutes of Health (NIH 5R01GM100366 to PS), the National 

Science Foundation (NSF DEB 0921307 to PSS), and the Department of Ecology and 

Evolution at the University of Lausanne.  

References 
Ackermann M, Bijlsma R, James AC, et al. (2001) Effects of assay conditions in life history 

experiments with Drosophila melanogaster. Journal of Evolutionary Biology, 14, 199-209. 
Adrion JR, Hahn MW, Cooper BS. 2015. Revisiting classic clines in Drosophila 

melanogaster in the age of genomics. Trends in Genetics, 31, 434-444. 
Alvarez-Ponce D, Aguadé M, Rozas J (2009) Network-level molecular evolutionary analysis 

of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome 
Research, 19, 234-242. 

Artimo P, Jonnalagedda M, Arnold K et al. (2012) ExPASy: SIB bioinformatics resource 

52



Chapter 2 

portal. Nucleic Acids Research, 40, W597-W603. 
Attrill H, Falls K, Goodman JL et al. (2016) FlyBase: establishing a Gene Group resource for 

Drosophila melanogaster. Nucleic Acids Research, 44, D786-D792. 
Azevedo R, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing : thorax 

size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution, 52, 1353-1362. 
Barrett RDH, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic 

level. Nature Reviews Genetics, 12, 767-780. 
Barson NJ, Aykanat T, Hindar K, et al. (2015) Sex-dependent dominance at a single locus 

maintains variation in age at maturity in salmon. Nature, 528, 405-408. 
Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA (2014) Genomic evidence 

of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS 
Genetics, 10, e1004775. 

Bergland AO, Tobler R, González J, Schmidt P, Petrov D (2016) Secondary contact and local 
adaptation contribute to genome-wide patterns of clinal variation in Drosophila 
melanogaster. Molecular Ecology, 25, 1157-1174. 

Betancourt NJ, Rajpuorhit S, Durmaz E, Kapun M, Flatt T, Schmidt PS (2017) Allelic 
polymorphism at foxo contributes to adaptive patterns of life history differentiation in 
natural populations of Drosophila melanogaster, submitted manuscript. 

Bhan V, Parkash R, Aggarwal DD (2014) Effects of body-size variation on flight-related 
traits in latitudinal populations of Drosophila melanogaster. Journal of Genetics, 93, 103-
112. 

Birney E (2016) The Mighty Fruit Fly Moves into Outbred Genetics. PLoS Genetics, 12, 
e1006388. 

Bochdanovits Z, de Jong G (2003a) Temperature dependence of fitness components in 
geographical populations of Drosophila melanogaster: changing the association between 
size and fitness. Biological Journal of the Linnean Society, 80, 717-725. 

Bochdanovits Z, de Jong G (2003b) Experimental evolution in Drosophila melanogaster: 
interaction of temperature and food quality selection regimes. Evolution, 57,1829-1836. 

Böhni R, Riesgo-Escovar J, Oldham S, et al. (1999) Autonomous control of cell and organ 
size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell, 97, 865-875. 

Britton J, Lockwood W, Li L, Cohen S, Edgar B (2002) Drosophila's insulin/PI3-kinase 
pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell, 2, 
239-249.

Brogiolo W, Stocker H, Ikeya T, et al. (2001) An evolutionarily conserved function of the 
Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 
11, 213-221. 

Broughton SJ, Piper MDW, Ikeya T, et al. (2005) Longer lifespan, altered metabolism, and 
stress resistance in Drosophila from ablation of cells making insulin-like ligands. 
Proceedings of the National Academy of Sciences of the United States of America, 102, 
3105-3110. 

Casas-Tinto S, Marr MT 2nd, Andreu P, Puig O (2007) Characterization of the Drosophila 
insulin receptor promoter. Biochimica Biophysica Acta, 1769, 236-243. 

Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J (2016) An indel 
polymorphism in the MtnA 3' untranslated region is associated with gene expression 

variation and local adaptation in Drosophila melanogaster. PLoS Genetics, 12, e1005987. 
Chen Y, Lee SF, Blanc E, et al. (2012) Genome-wide transcription analysis of clinal 

genetic variation in Drosophila. PLoS ONE, 7, e34620. 

53



Chapter 2

Chippindale AK, Leroi AM, Kim SB, Rose MR (1993) Phenotypic plasticity and selection in 
Drosophila life-history evolution. I. Nutrition and the cost of reproduction. Journal of 
Evolutionary Biology, 6, 171-193. 

Clancy DJ, Gems D, Harshman LG, et al. (2001) Extension of life-span by loss of CHICO, a 
Drosophila insulin receptor substrate protein. Science, 292, 104-106. 

Clemson AS, Sgro CM, Telonis-Scott M. (2016) Thermal plasticity in Drosophila 
melanogaster populations from eastern Australia: quantitative traits to transcripts. Journal 
of Evolutionary Biology, 29, 2447-2463. 

Cogni R, Kuczynski K, Koury S, et al. (2017) On the Long-term Stability of Clines in Some 
Metabolic Genes in Drosophila melanogaster. Scientific Reports,7, 42766. 

Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of 
countergradient variation. Trends in Ecology and Evolution, 10, 248-252. 

Cooper BS, Tharp II JM, Jernberg II, Angilletta Jr MJ (2012) Developmental plasticity of 
thermal tolerances in temperate and subtropical populations of Drosophila melanogaster. 
Journal of Thermal Biology, 37, 211-216. 

Coyne JA, Beecham E (1987) Heritability of Two Morphological Characters Within and 
Among Natural Populations of Drosophila melanogaster. Genetics, 117, 727-737. 

Dantzer B, Swanson EM (2011) Mediation of vertebrate life histories via insulin-like growth 
factor-1. Biological Reviews, 87, 414-429. 

David JR, Bocquet C (1975) Evolution in a cosmopolitan species: genetic latitudinal clines in 
Drosophila melanogaster wild populations. Experientia, 31, 164-166. 

David JR, Capy P (1988) Genetic variation of Drosophila melanogaster natural populations. 
Trends in Genetics, 4, 106-111. 

David JR, Moreteau B, Gauthier JP et al. (1994) Reaction Norms of Size Characters in 
Relation to Growth Temperature in Drosophila melanogaster - an Isofemale Lines Analysis. 
Genetics Selection Evolution, 26, 229-251. 

de Jong G, Bochdanovits Z (2003) Latitudinal clines in Drosophila melanogaster: body size, 
allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. Journal of 
Genetics, 82, 207-223. 

Duchen P, Zivkovic D, Hutter S, Stephan W, Laurent S (2013) Demographic inference 
reveals African and European admixture in the North American Drosophila melanogaster 
population. Genetics, 193, 291-301. 

Endler JA (1977) Geographic Variation, Speciation and Clines. Princeton University Press, 
Princeton, NJ. 

Endler JA (1986) Natural Selection in the Wild. Princeton University Press, Princeton, NJ. 
Fabian DK, Kapun M, Nolte V et al. (2012) Genome-wide patterns of latitudinal 

differentiation among populations of Drosophila melanogaster from North America. 
Molecular Ecology, 21, 4748-4769. 

Fabian DK, Lack JB, Mathur V, et al. (2015) Spatially varying selection shapes life history 
clines among populations of Drosophila melanogaster from sub-Saharan Africa. Journal of 
Evolutionary Biology, 28, 826-840. 

Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of 
plasticity. Genes & Development, 22, 2149-2165. 

Finch CE, Rose MR (1995) Hormones and the physiological architecture of life history 
evolution. Quarterly Review of Biology, 70, 1-52. 

Flachsbart F, Caliebe A, Kleindorp R, et al. (2009) Association of FOXO3A variation with 
human longevity confirmed in German centenarians. Proceedings of the National Academy 

54



Chapter 2 

of Sciences of the United States of America, 106, 2700-2705. 
Flatt T (2004) Assessing natural variation in genes affecting Drosophila lifespan. Mechanisms 

of Ageing and Development, 125, 155-159. 
Flatt T (2016) Genomics of clinal variation in Drosophila: disentangling the interactions of 

selection and demography. Molecular Ecology, 25, 1023-1026. 
Flatt T, Heyland A (2011) Mechanisms of Life History Evolution. Oxford University Press, 

Oxford. 
Flatt T, Promislow DE (2007) Physiology. Still pondering an age-old question. Science, 318, 

1255-1256. 
Flatt T, Schmidt PS (2009) Integrating evolutionary and molecular genetics of aging. 

Biochimica et Biophysica Acta, 1790, 951-962. 
Flatt T, Tu M-P, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of 

Drosophila development and life history. BioEssays, 27, 999-1010. 
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW (2013) Life-History Evolution and the 

Polyphenic Regulation of Somatic Maintenance and Survival. Quarterly Review of Biology, 
88, 185-218. 

Folguera G, Ceballos S, Spezzi L, Fanara JJ, Hasson E (2008) Clinal variation in 
developmental time and viability, and the response to thermal treatments in two species of 
Drosophila. Biological Journal of the Linnean Society, 95, 233-245. 

Gems D, Sutton A, Sundermeyer M, et al. (1998) Two pleiotropic classes of daf-2 mutation 
affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. 
Genetics, 150, 129-155. 

Giannakou ME, Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. 
Trends in Biochemical Sciences, 32, 180-188. 

Giannakou ME, Goss M, Junger MA, et al. (2004) Long-lived Drosophila with overexpressed 
dFOXO in adult fat body. Science, 305, 361. 

Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary 
restriction in Drosophila melanogaster: not required, but its activity modulates the response. 
Aging Cell, 7, 187-198. 

Gilchrist AS, Azevedo RBR, Partridge L, O'Higgins P (2000) Adaptation and constraint in the 
evolution of Drosophila melanogaster wing shape. Evolution & Development, 2, 114-124. 

Goenaga J, Fanara JJ, Hasson E (2010) A quantitative genetic study of starvation resistance at 
different geographic scales in natural populations of Drosophila melanogaster. Genetical 
Research, 92, 253-259. 

Goenaga J, Fanara JJ, Hasson E (2013) Latitudinal Variation in Starvation Resistance is 
Explained by Lipid Content in Natural Populations of Drosophila melanogaster. 
Evolutionary Biology, 40, 601-612. 

Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: 
patterns of variation at the species, population and intrapopulation levels. Heredity, 83, 637-

643. 
Hoffmann AA, McKechnie SW (1991) Heritable variation in resource utilization and 

response in a winery population of Drosophila melanogaster. Evolution, 45, 1000-1015. 
Hoffmann AA, Weeks AR (2007) Climatic selection on genes and traits after a 100 year-old 

invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from 
eastern Australia. Genetica, 129, 133-147. 

Hoffmann AA, Shirriffs J, Scott M (2005) Relative importance of plastic vs genetic factors in 
adaptive differentiation: geographical variation for stress resistance in Drosophila 

55



Chapter 2 

melanogaster from eastern Australia. Functional Ecology, 19, 222-227. 
Holzenberger M, Dupont J, Ducos B, et al. (2003) IGF-1 receptor regulates lifespan and 

resistance to oxidative stress in mice. Nature, 421, 182-187. 
Houle D (2001) Characters as the Units of Evolutionary Change In: The Character Concept in 

Evolutionary Biology (ed. Wagner GP), pp. 109-140. Academic Press: San Diego.  
Hwangbo DS, Gersham B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls 

lifespan and regulates insulin signalling in brain and fat body. Nature, 429, 562-566. 
James AC, Partridge L (1995) Thermal evolution of rate of larval development in Drosophila 

melanogaster in laboratory and field populations. Journal of Evolutionary Biology, 8, 315-
330. 

Johnston SE, Gratten J, Berenos C, et al. (2013) Life history trade-offs at a single locus 
maintain sexually selected genetic variation. Nature, 502, 93-95. 

Jones FC, Grabherr MG, Chan YF et al. (2012) The genomic basis of adaptive evolution in 
threespine sticklebacks. Nature, 484, 55-61. 

Jovelin R, Comstock JS, Cutter AD, Phillips PC (2014) A Recent Global Selective Sweep on 
the age-1 Phosphatidylinositol 3-OH Kinase Regulator of the Insulin-Like Signaling 
Pathway Within Caenorhabditis remanei. G3: Genes|Genomes|Genetics, 4, 1123-1133. 

Jünger MA, Rintelen F, Stocker H et al. (2003) The Drosophila forkhead transcription factor 
FOXO mediates the reduction in cell number associated with reduced insulin signaling. 
Journal of Biology, 2, 20. 

Kao JY, Zubair A, Salomon MP, Nuzhdin SV, Campo D (2015) Population genomic analysis 
uncovers African and European admixture in Drosophila melanogaster populations from 
the south-eastern United States and Caribbean Islands. Molecular Ecology, 24, 1499-1509. 

Kapun M, Schmidt C, Durmaz E, Schmidt PS, Flatt T (2016a) Parallel effects of the inversion 
In(3R)Payne on body size across the North American and Australian clines in Drosophila 
melanogaster. Journal of Evolutionary Biology, 29, 1059-1072. 

Kapun M, Fabian DK, Goudet J, Flatt T (2016b) Genomic Evidence for Adaptive Inversion 
Clines in Drosophila melanogaster. Molecular Biology and Evolution, 33, 1317-1336. 

Karan D, Dahiya N, Munjal AK et al. (1998) Desiccation and Starvation Tolerance of Adult 
Drosophila: Opposite Latitudinal Clines in Natural Populations of Three Different Species. 
Evolution, 52, 825-831. 

Keller A (2007) Drosophila melanogaster's history as a human commensal. Current Biology, 
17, R77-R81. 

Kenyon C (2001) A conserved regulatory system for aging. Cell, 105, 165-168. 
Kenyon CJ (2010) The genetics of ageing. Nature, 464, 504-512. 
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives 

twice as long as wild type. Nature, 366, 461-464. 
Klepsatel P, Gáliková M, De Maio N et al. (2013) Variation in Thermal Performance and 

Reaction Norms Among Populations of Drosophila melanogaster. Evolution, 67, 3573-
3587. 

Klepsatel P, Gáliková M, Huber CD, Flatt T (2014) Similarities and differences in altitudinal 
versus latitudinal variation for morphological traits in Drosophila melanogaster. Evolution, 
68, 1385-1398. 

Kolaczkowski B, Kern AD, Holloway AK, Begun DJ (2011) Genomic differentiation 
between temperate and tropical Australian populations of Drosophila melanogaster. 
Genetics, 187, 245–260. 

Kramer JM, Davidge JT, Lockyer JM, Staveley BE (2003) Expression of Drosophila FOXO 

56



Chapter 2 

regulates growth and can phenocopy starvation. BMC Developmental Biology, 3, 5. 
Kramer JM, Slade JD, Staveley BE (2008) foxo is required for resistance to amino acid 

starvation in Drosophila. Genome, 51, 668-672. 
Kubrak OI, Kučerová L, Theopold U, Nässel DR (2014) The Sleeping Beauty: How 

Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and 
Somatic Maintenance in Drosophila melanogaster. PLoS ONE, 9, e113051. 

Lachaise D, Cariou M-L, David JR, et al. (1988) Historical biogeography of the Drosophila 
melanogaster species subgroup. Evolutionary Biology, 22, 159-225. 

Lee KP, Jang T (2014) Exploring the nutritional basis of starvation resistance in Drosophila 
melanogaster. Functional Ecology, 28, 1144-1155. 

Lee SF, Eyre-Walker YC, Rane RV, et al. (2013) Polymorphism in the neurofibromin gene, 
Nf1, is associated with antagonistic selection on wing size and development time in 
Drosophila melanogaster. Molecular Ecology, 22, 2716-2725. 

Levine MT, Eckert ML, Begun DJ (2011) Whole-Genome Expression Plasticity across 
Tropical and Temperate Drosophila melanogaster Populations from Eastern Australia. 
Molecular Biology and Evolution, 28, 249-256. 

Levins, R (1968) Evolution in Changing in Environments. Princeton University Press, 
Princeton. 

Levins R (1969) Thermal Acclimation and Heat Resistance in Drosophila Species. American 
Naturalist, 103, 483-499. 

Lewontin RC (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, 
New York. 

Lewontin RC (2000) The Problem of Population Genetics. In: Evolutionary Genetics – From 
Molecules to Morphology (eds Singh RS, Krimbas CB), pp. 5-23. Cambridge University 
Press, Cambridge. 

Li Q, Gong Z (2015) Cold-sensing regulates Drosophila growth through insulin-producing 
cells. Nature Communications, 6, 10083. 

Libina N, Berman J, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the 
regulation of lifespan. Cell, 115, 489-502. 

Lihoreau M, Poissonnier L-A, Isabel G, Dussutour A (2016) Drosophila females trade off 
good nutrition with high-quality oviposition sites when choosing foods. Journal of 
Experimental Biology, 219, 2514-2524. 

Machado HE, Bergland AO, O’Brien KR, et al. (2016) Comparative population genomics of 
latitudinal variation in Drosophila simulans and Drosophila melanogaster. Molecular 
Ecology, 25, 723-740. 

Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and 
prospects. Nature Reviews Genetics, 10, 565-577. 

Mackay TFC, Richards S, Stone EA et al. (2012) The Drosophila melanogaster Genetic 
Reference Panel. Nature, 482, 173-178. 

Marcil J, Swain DP, Hutchings JA (2006) Countergradient variation in body shape between 
two populations of Atlantic cod (Gadus morhua). Proceedings of the Royal Society of 
London B, 273, 217-223. 

Markow TA, Raphael B, Dobberfuhl D, et al. (1999) Elemental stoichiometry of Drosophila 
and their hosts. Functional Ecology, 13, 78-84. 

Mathur V, Schmidt PS (2017) Adaptive patterns of phenotypic plasticity in laboratory and 
field environments in Drosophila melanogaster. Evolution, 71, 465-474. 

Mattila J, Bremer A, Ahonen L, Kostiainen R, Puig O (2009) Drosophila FoxO Regulates 

57



Chapter 2 

Organism Size and Stress Resistance through an Adenylate Cyclase. Molecular and 
Cellular Biology, 29, 5357-5365. 

Matzkin LM, Watts TD, Markow TA (2009) Evolution of stress resistance in Drosophila: 
interspecific variation in tolerance to desiccation and starvation. Functional Ecology, 23, 
521-527.

McGaugh SE, Bronikowski AM, Kuo C-H, et al. (2015) Rapid molecular evolution across 
amniotes of the IIS/TOR network. Proceedings of the National Academy of Sciences of the 
United States of America, 112, 7055-7060. 

McKechnie SW, Blacket MJ, Song SV et al. (2010) A clinally varying promoter 
polymorphism associated with adaptive variation in wing size in Drosophila. Molecular 
Ecology, 19, 775-784. 

Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C (2013) The Flowering Repressor 
SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background. 
PLoS Genetics, 9, e1003289. 

Murphy CT, McCarroll SA, Bargmann CI, et al. (2003) Genes that act downstream of DAF-
16 to influence the lifespan of Caenorhabditis elegans. Nature, 424, 277-283. 

Nunes MDS, Arif S, Schlötterer C, McGregor AP (2013) A Perspective on Micro-Evo-Devo: 
Progress and Potential. Genetics, 195, 625-634. 

Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in 
growth control. Trends in Cell Biology, 13, 79-85. 

Oldham S, Stocker H, Laffargue M, et al. (2002) The Drosophila insulin/IGF receptor 
controls growth and size by modulating PtdIns P3 levels. Development, 129, 4103-4109. 

Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA (2011) Thermal Tolerance in 
Widespread and Tropical Drosophila Species: Does Phenotypic Plasticity Increase with 
Latitude? American Naturalist, 178, S80-S96. 

Paaby AB, Schmidt PS (2009) Dissecting the genetics of longevity in Drosophila 
melanogaster. Fly, 3, 1-10. 

Paaby AB, Bergland AO, Behrman EL, Schmidt PS (2014) A highly pleiotropic amino acid 
polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. 
Evolution, 68, 3395–3409. 

Paaby AB, Blacket MJ, Hoffmann AA, Schmidt PS (2010) Identification of a candidate 
adaptive polymorphism for Drosophila life history by parallel independent clines on two 
continents. Molecular Ecology, 19, 760-774. 

Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nature Reviews 
Genetics, 3, 165-175. 

Partridge L, Barrie B, Fowler K, French V (1994a) Evolution and development of body size 
and cell size in Drosophila melanogaster in response to temperature. Evolution, 48, 1269-
1276. 

Partridge L, Barrie B, Fowler K, French V (1994b) Thermal Evolution of Pre-Adult Life-
History Traits in Drosophila melanogaster. Journal of Evolutionary Biology, 7, 645-663. 

Partridge L, Gems D, Withers DJ (2005) Sex and Death: What Is the Connection? Cell, 120, 
461-472.

Ponton F, Chapuis M-P, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential 
reference genes for reverse transcription-qPCR studies of physiological responses in 
Drosophila melanogaster. Journal of Insect Physiology, 57, 840-850 

Puig O, Mattila J (2011) Understanding Forkhead Box Class O Function: Lessons from 
Drosophila melanogaster. Antioxidants & Redox Signaling, 14, 635-647. 

58



Chapter 2 

Puig O, Tjian R (2005) Transcriptional feedback control of insulin receptor by dFOXO / 
FOXO1. Genes & Development, 19, 2435-2446. 

Puig O, Marr MT, Ruhf ML, Tjian R (2003) Control of cell number by Drosophila FOXO: 
downstream and feedback regulation of the insulin receptor pathway. Genes & 
Development, 17, 2006–2020. 

Reinhardt JA, Kolaczkowski B, Jones CD, Begun DJ, Kern AD (2014) Parallel Geographic 
Variation in Drosophila melanogaster. Genetics, 197, 361-373. 

Reis T (2016) Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila 
Development, Body Fat, and Lifespan. PLoS ONE, 11, e0146758. 

Reznick DN (2005) The genetic basis of aging: an evolutionary biologist's perspective. 
Science Aging Knowledge Environment, 11, pe7. 

Robinson SJW, Zwaan B, Partridge L (2000) Starvation Resistance and Adult Body 
Composition in a Latitudinal Cline of Drosophila melanogaster. Evolution, 54, 1819-1824. 

Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that's 
gold does not glitter. Evolution, 66, 1-17. 

Schiesari L, Andreatta G, Kyriacou CP, O’Connor MB, Costa R (2016) The Insulin-Like 
Proteins dILPs-2/5 Determine Diapause Inducibility in Drosophila. PLoS ONE, 11, 
e0163680. 

Schluter D, Price TD, Rowe L (1991) Conflicting selection pressures and life history trade-
offs. Proceedings of the Royal Society of London B, 246,11-17. 

Schmidt PS, Conde DR (2006) Environmental Heterogeneity and the Maintenance of Genetic 
Variation for Reproductive Diapause in Drosophila melanogaster. Evolution, 60, 1602. 

Schmidt PS, Paaby AB (2008) Reproductive Diapause and Life-History Clines in North 
American Populations of Drosophila melanogaster. Evolution, 62, 1204-1215. 

Schmidt PS, Duvernell DD, Eanes WF (2000) Adaptive evolution of a candidate gene for 
aging in Drosophila. Proceedings of the National Academy of Sciences, 97, 10861–10865. 

Schmidt PS, Matzkin L, Ippolito M, Eanes WF (2005a) Geographic Variation in Diapause 
Incidence, Life-History Traits, and Climatic Adaptation in Drosophila melanogaster. 
Evolution, 59, 1721-1732. 

Schmidt PS, Paaby AB, Heschel MS (2005b) Genetic variance for diapause expression and 
associated life histories in Drosophila melanogaster. Evolution, 59, 2616-2625. 

Schmidt P, Zhu C, Das J, Batavia M, Yang L, Eanes M (2008). An amino acid polymorphism 
in the couch potato gene forms the basis for climatic adaptation in Drosophila 
melanogaster. Proceedings of the National Academy of Sciences USA, 105, 16207-16211. 

Schwartz TS, Bronikowski AM (2016) Evolution and Function of the Insulin and Insulin-like 
Signaling Network in Ectothermic Reptiles: Some Answers and More Questions. Integrative 
and Comparative Biology, 56, 171-184. 

Slack C, Giannakou ME, Foley A, Goss M, Partridge L (2011) dFOXO-independent effects 
of reduced insulin-like signaling in Drosophila. Aging Cell, 10, 735-748. 

Sparkman AM, Vleck CM, Bronikowski AM (2009) Evolutionary ecology of endocrine-
mediated life-history variation in the garter snake Thamnophis elegans. Ecology, 90, 720-
728. 

Sparkman AM, Byars D, Ford NB, Bronikowski AM (2010) The role of insulin-like growth 
factor-1 (IGF-1) in growth and reproduction in female brown house snakes (Lamprophis 
fuliginosus). General and Comparative Endocrinology, 168, 408-414. 

Strassburger K, Zoeller T, Sandmann T, et al. 2017. Sorting & Sequencing Flies By Size: 
Identification Of Novel TOR Regulators And Parameters For Successful Sorting. Preprint, 

59



Chapter 2 

bioRxiv, doi: https://doi.org/10.1101/119719. 
Stalker HD (1980) Chromosome-Studies in Wild Populations of Drosophila melanogaster .2. 

Relationship of Inversion Frequencies to Latitude, Season, Wing-Loading and Flight 
Activity. Genetics, 95, 211-223. 

Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, New York. 
Stern DL (2000) Perspective: evolutionary developmental biology and the problem of 

variation. Evolution, 54, 1079-1091. 
Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? 

Evolution, 62, 2155-2177. 
Stuart JA, Page MM (2010) Plasma IGF-1 is negatively correlated with body mass in a 

comparison of 36 mammalian species. Mechanisms of Ageing and Development, 131, 591-
598. 

Suh Y, Atzmon G, Cho MO, et al. (2008) Functionally significant insulin-like growth factor I 
receptor mutations in centenarians. Proceedings of the National Academy of Sciences of the 
United States of America, 105, 3438-3442. 

Swanson EM, Dantzer B (2014) Insulin-like growth factor-1 is associated with life-history 
variation across Mammalia. Proceedings of the Royal Society of London B, 281, 20132458. 

Tang HY, Smith-Caldas MS, Driscoll MV, Salhadar S, Shingleton AW (2011) FOXO 
regulates organ-specific phenotypic plasticity in Drosophila. PLoS Genetics, 7(11), 
e1002373. 

Tatar M, Yin C-M (2001) Slow aging during insect reproductive diapause: why butterflies, 
grasshoppers and flies are like forms. Experimental Gerontology, 36, 723-738. 

Tatar M, Bartke A, Antebi A (2003) The Endocrine Regulation of Aging by Insulin-like 
Signals. Science, 299, 1346-1351. 

Tatar M, Kopelman A, Epstein D et al. (2001) A mutant Drosophila insulin receptor homolog 
that extends life-span and impairs neuroendocrine function. Science, 292, 107-110. 

Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. 
Biochemical Journal, 425, 13-26. 

Tennessen JM, Barry WE, Cox J, Thummel CS (2014) Methods for studying metabolism in 
Drosophila. Methods, 68, 105-115. 

Trotta V, Calboli FC, Ziosi M, et al. (2006) Thermal plasticity in Drosophila melanogaster: A 
comparison of geographic populations. BMC Evolutionary Biology, 6, 67. 

Turner TL (2014) Fine-mapping natural alleles: quantitative complementation to the rescue. 
Molecular Ecology, 23, 2377–2382. 

Turner TL, Levine MT, Eckert ML, Begun DJ. (2008) Genomic Analysis of Adaptive 
Differentiation in Drosophila melanogaster. Genetics, 179, 455-473. 

Van't Land J, van Putten P, Zwaan B, et al. (1999) Latitudinal variation in wild populations of 
Drosophila melanogaster: heritabilities and reaction norms. Journal of Evolutionary 
Biology, 12, 222-232. 

Vonesch SC, Lamparter D, Mackay TFC, Bergmann S, Hafen E (2016) Genome-Wide 
Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster. PLoS Genetics, 
12, e1005616. 

Weeks AR, McKechnie SW, Hoffmann AA (2002) Dissecting adaptive clinal variation: 
markers, inversions and size/stress associations in Drosophila melanogaster from a central 
field population. Ecology Letters, 5, 756–763. 

Willcox BJ, Donlon TA, He Q, et al. (2008) FOXO3A genotype is strongly associated with 
human longevity. Proceedings of the National Academy of Sciences of the United States of 

60



Chapter 2 

America, 105, 13987-1399. 
Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution, 

11, 398-411. 
Williams K, Busto M, Suster M, et al. (2006) Natural variation in Drosophila melanogaster 

diapause due to the insulin-regulated PI3-kinase. Proceedings of the National Academy of  
Sciences of the United States of America, 103, 15911-15915. 

Williams KD, Sokolowski MB (1993) Diapause in Drosophila melanogaster females: a 
genetic analysis. Heredity, 71, 312-317. 

Zhang B, Xiao R, Ronan Elizabeth A, et al. (2015) Environmental Temperature Differentially 
Modulates C. elegans Longevity through a Thermosensitive TRP Channel. Cell Reports, 11, 
1414-1424. 

Zhao L, Wit J, Svetec N, Begun DJ (2015) Parallel Gene Expression Differences between 
Low and High Latitude Populations of Drosophila melanogaster and D. simulans. PLoS 
Genetics, 11, e1005184. 

Zhao X, Bergland AO, Behrman EL, et al. (2016) Global Transcriptional Profiling of 
Diapause and Climatic Adaptation in Drosophila melanogaster. Molecular Biology and 
Evolution, 33, 707-720. 

Author Contributions 
PS and TF conceived the study and designed research; SR and NB established populations; 
ED, SR, NB, DF and MK performed research and analyzed data; and ED, PS and TF wrote 
the paper. 

Data Accessibility  
Data deposited at Dryad. doi link to be added upon publication. 

61



Chapter 2 

Table 1. Summary of ANOVA results. ANOVA results for egg-to-adult survival, femur 
length, the ratio of wing area:thorax length, and female starvation resistance. White and grey 
cells show the results for females and males, respectively. * p < 0.05; ** p < 0.01; *** p < 
0.001. See Results for details. 

Factor Egg-to-adult 
survival Femur Length Wing Area: Thorax 

Length Ratio 
Starvation 
Resistance 

Allele 
F1,32=20.65***

F1,32=16.662*** F1,4=46.6377***

F1,32=23.86***
F1,32=0.1573 F1,4=82.1679***

Temperature F1,114=3.24 
F1,1923=1617.795*** F1,18=477.4462***

F1,1547=732.08***
F1,1923=443.6041*** F1,18=1366.872***

Diet F1,114=8.43**
F1,1923=144.7179*** F1,18=50.348***

F1,1547=129.99***
F1,1923=68.2378*** F1,18=127.7711*** 

Allele x 
Temperature F1,114=2.25 

F1,1923=0.3556 F1,18=0.144 
F1,1547=3.43 

F1,1923=1.4012 F1,18=0.3154 

Temperature x 
Diet F1,114=1.85 

F1,1923=13.2584*** F1,18=16.6361*** 

F1,1547=14.81***
F1,1923=4.6497 F1,18=56.3609*** 

Allele x Diet F1,114=1.71 
F1,1923=3.2833 F1,18=0.2063 

F1,1547=16.22***
F1,1923=4.0377* F1,18=2.5286 

Allele x 
Temperature x 

Diet 
F1,114=0.39 

F1,1923=6.4056* F1,18=0 
F1,1547=1.63 

F1,1923=0.9495 F1,18=8.341** 

Set(Allele) F2,32=2.50 
F2,32=5.8853** F2,4=6.8604**

F2,32=45.24***
F2,32=0.7511 F2,4=3.7987*

Cage(Set, 
Allele) F4,32=61.25***

F4,32=37.4303*** NA 

F4,32=11.17***
F4,32=415.6616*** NA 
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Table 2. ANOVA results for female fat loss upon starvation. * p < 0.05; ** p < 0.01; *** p 
< 0.001. See Results for details. 

Fat content 

Factor 18°C 25°C 

Allele F1,32=0.0224 F1,32=1.8986 

Diet F1,301=70.9711*** F1,300=310.8217*** 

Treatment F1,301=223.4784*** F1,300=130.68*** 

Allele x Diet F1,301=20.5823*** F1,300=6.9304** 

Diet x Treatment F1,301=25.4602*** F1,300=21.3097*** 

Allele x Treatment F1,301=7.0094** F1,300=1.242 

Allele x Diet x Treatment F1,301=0 F1,300=7.0267** 

Set(Allele) F2,32=13.1143*** F2,32=4.2374* 

Cage(Set, Allele) F4,32=9.4591*** F4,32=1.4424 
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Figure Legends 

Fig. 1. Clinal candidates in the insulin/TOR signaling pathway. Overview of the 
insulin/insulin-like growth factor signaling (IIS)/target of rapamycin (TOR) pathway in 
Drosophila melanogaster (Oldham & Hafen 2003; Giannakou & Partridge 2007; Teleman 
2010). Genes that harbor strongly clinally varying SNPs across latitude, identified by Fabian 
et al. (2012), are highlighted in red; arrows indicate activation and bar-ended lines represent 
inhibitory effects. In response to nutrients, IIS is activated by binding of ligands, called 
insulin-like peptides (ilps 1-8), to the insulin-like receptor (InR) at the cell membrane. Inside 
the cell, signaling is transduced by an insulin receptor substrate (IRS) protein called chico. 
This activates phosphoinositide-3-kinase (PI3K) which converts phosphatidylinositol (3,4)-
bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-trisphosphate (PIP3). In turn, PIP3 
stimulates pyruvate dehydrogenase kinase (PDK) and activates protein kinase B (AKT/PKB). 
The action of PI3K is antagonized by phosphatase and tensin homologue (PTEN) which 
converts PIP3 back to PIP2. AKT/PKB suppresses the forkhead (FKH) box O transcription 
factor FOXO by phosphorylating it; upon reduced IIS, FOXO becomes dephosphorylated and 
moves into the nucleus where it regulates the expression of hundreds of target genes. Target 
genes of FOXO include InR, controlled via a transcriptional feedback loop, and initiation 
factor 4E-binding protein (4E-BP); another target gene of IIS is target of brain insulin (Tobi), 
which encodes a glucosidase, but the details of its regulation remain poorly understood. 
FOXO is antagonized by 14-3-3ε. AKT/PKB antagonizes the activity of the tuberous sclerosis 
complex 1/2 (TSC1/TSC2); TSC1/2 in turn inactivates RAS homologue enriched in brain 
(RHEB). The inactivation of RHEB deinhibits, i.e. activates, target of rapamycin (TOR). TOR 
then activates the effector gene S6 kinase (S6K) and inhibits the negative regulator 4E-BP. 
The phenotypic effects of naturally occuring alleles of the genes in the IIS/TOR pathway 
remain poorly understood, but clinal polymorphisms in InR (Paaby et al. 2010, 2013) and 
foxo (this study) have pleiotropic effects on life history in Drosophila. 

Fig. 2. Egg-to-adult survival. Effects of the clinal foxo variant on the proportion egg-to-adult 
survival (viability). (A) Dietary reaction norms at 18°C. (B) Dietary reaction norms at 25°C. 
(C) Thermal reaction norms measured on sucrose diet. (D) Thermal reaction norms measured
on molasses diet. Data in (A, B) are the same as those shown in (C, D). Shown are means and
standard errors. Red lines: low-latitude (LL) allele, blue lines: high-latitude (HL) allele.

Fig. 3. Femur length. Effects of the foxo polymorphism on femur length (mm) in females 
and males. (A) Dietary reaction norms at 18°C. (B) Dietary reaction norms at 25°C. (C) 
Thermal reaction norms measured on sucrose diet. (D) Thermal reaction norms measured on 
molasses diet. Data in (A, B) are the same as those shown in (C, D). Shown are means and 
standard errors. Red lines: low-latitude (LL) allele, blue lines: high-latitude (HL) allele. 

Fig. 4. Wing:thorax ratio. Effects of the foxo variant on the ratio of wing area:thorax length 
(mm) in females and males. (A) Dietary reaction norms at 18°C. (B) Dietary reaction norms
at 25°C. (C) Thermal reaction norms measured on sucrose diet. (D) Thermal reaction norms
measured on molasses diet. Data in (A, B) are the same as those shown in (C, D). Shown are
means and (propagated) standard errors. Red lines: low-latitude (LL) allele, blue lines: high-
latitude (HL) allele.

Fig. 5. Starvation resistance. Effects of the clinal foxo polymorphism on age at death upon 
starvation in females. (A) Dietary reaction norms at 18°C. (B) Dietary reaction norms at 
25°C. (C) Thermal reaction norms measured on sucrose diet. (D) Thermal reaction norms 
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measured on molasses diet. Data in (A, B) are the same as those shown in (C, D). Shown are 
means and standard errors. Red lines: low-latitude (LL) allele, blue lines: high-latitude (HL) 
allele. 

Fig. 6. Fat loss upon starvation. Effects of the clinal foxo variant on female triglyceride loss 
upon starvation (µg/fly). (A) Dietary reaction norms at 18°C. (B) Dietary reaction norms at 
25°C. (C) Thermal reaction norms measured on sucrose diet. (D) Thermal reaction norms 
measured on molasses diet. Data in (A, B) are the same as those shown in (C, D). Shown are 
means and (propagated) standard errors. Red lines: low-latitude (LL) allele, blue lines: high-
latitude (HL) allele.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Supporting Information for Durmaz et al., A clinal polymorphism in the insulin
signaling transcription factor foxo contributes to life-history adaptation in Drosophila 

Supporting Information Figure Legends 

Fig. S1. Clinal foxo candidate SNPs. (A) Allele frequencies of clinal foxo SNPs in Florida 
(red), Pennsylvania (green) and Maine (blue), identified by Fabian et al. 2012 and conditioned 
to raise in frequency from Florida to Maine. The two strongly clinal foxo SNPs studied here 
are marked with star symbols; the x-axis shows the genomic position of the SNPs on 
chromosome 3R in million base pairs (mbp). The plot underneath the x-axis shows the gene 
model for foxo. (B) Linkage disequilibrium (LD; as measured by pairwise r2) among all 
polymorphic foxo SNPs (minor allele frequency ≥ 0.1) in the DGRP lines used to set up 
experimental populations (see Materials and Methods section). The two focal SNPs are in 
perfect LD in the experimental populations (r2 =1), but there is no significant LD among 
other, non-focal sites. Also see Fig. S3.

Fig. S2. PEST motif prediction for FOXO. The T/G polymorphism in foxo at position the 
3R: 9894559, is predicted to be located in the PEST region of the FOXO protein (analysis of 
foxo sequence using ExPASy [Artimo et al. 2012]); PEST motifs serve as protein degradation 
signals (Artimo et al. 2012). The potential PEST motif (RPENFVEPTDELDSTK) between 
amino acid positions 49 and 64 (shown in green) encompasses the foxo SNP at position 51 
(E).  

Fig. S3. Experimental design for reconstituted outbred foxo populations. We isolated the 
2-SNP foxo variant by reconstituting outbred populations, fixed for either the low- or high-
latitude allele, from lines of the Drosophila Genetic Reference Panel (DGRP). Each foxo
allele was represented by two independent sets of distinct DGRP lines, with two replicate
cages per set. See Materials and Methods section for details; also see Fig. S1B.

Fig. S4. Coordinates of landmarks used to estimate wing area. We calculated the total 
wing area encompassed by 12 landmarks (in yellow) by splitting the polygon up into triangles 
(shown in different colors) and by summing across the areas defined by these triangles. See 
Materials and Methods section for details. 

Fig. S5. Effects of the foxo variant on total wing area. Effects of the clinal foxo variant on 
wing area (mm2) in females and males. (A) Dietary reaction norms at 18°C. (B) Dietary 
reaction norms at 25°C. (C) Thermal reaction norms on sucrose diet. (D) Thermal reaction 
norms on molasses diet. Shown are means and standard errors. Red lines: low-latitude (LL) 
allele, blue lines: high-latitude (HL) allele. See Results section for details. 

Fig. S6. Effects of the foxo variant on thorax length. Effects of the clinal foxo variant on 
thorax length (mm) in females and males. (A) Dietary reaction norms at 18°C. (B) Dietary 
reaction norms at 25°C. (C) Thermal reaction norms on sucrose diet. (D) Thermal reaction 
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norms on molasses diet. Shown are means and standard errors. Red lines: low-latitude (LL) 
allele, blue lines: high-latitude (HL) allele. See Results section for details. 

Fig. S7. Effects of the foxo variant on male survival upon starvation. Effects of the clinal 
foxo variant on age at death upon starvation in males. (A) Dietary reaction norms at 18°C. (B) 
Dietary reaction norms at 25°C. (C) Thermal reaction norms on sucrose diet. (D) Thermal 
reaction norms on molasses diet. Shown are means and standard errors. Red lines: low-
latitude (LL) allele, blue lines: high-latitude (HL) allele. See Results section for details. 

Fig. S8. Effects of the foxo variant on relative abundance of insulin-like receptor (InR) 
transcription levels. (A) Low-latitude (LL) allele has higher level of InR transcription than 
the high-latitude (HL) allele. (B) Carbohydrate-rich molasses diet resulted in more InR 
transcripts than the sucrose diet. Shown are means and standard errors. See Results section for 
details. 
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Figure S1 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S7 
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Figure S8 
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Table S1. Details of design of reconstituted outbred population cages. HL: high-latitude foxo allele; LL: low-latitude foxo allele. See 
Materials and Methods section for details. 

Allele Position Set Cage 
number DGRP lines 

LL 3R:9892517 + 9894559 (GG) A 1 26, 57, 73, 75, 91, 101, 105, 161, 176, 280, 313, 
318, 367, 371, 375, 377, 378, 379 

LL 3R:9892517 + 9894559 (GG) A 2 26, 57, 73, 75, 91, 101, 105, 161, 176, 280, 313, 
318, 367, 371, 375, 377, 378, 379 

LL 3R:9892517 + 9894559 (GG) B 3 208, 373, 406, 426, 440, 491, 492, 508, 513, 535, 
639, 646, 757, 761, 796, 805, 812, 852 

LL 3R:9892517 + 9894559 (GG) B 4 208, 373, 406, 426, 440, 491, 492, 508, 513, 535, 
639, 646, 757, 761, 796, 805, 812, 852 

HL 3R:9892517 + 9894559 (AT) C 5 40, 41, 42, 69, 83, 109, 142, 153, 158, 177, 195, 
229, 233, 365, 370, 380, 391, 405 

HL 3R:9892517 + 9894559 (AT) C 6 40, 41, 42, 69, 83, 109, 142, 153, 158, 177, 195, 
229, 233, 365, 370, 380, 391, 405 

HL 3R:9892517 + 9894559 (AT) D 7 45, 332, 338, 443, 517, 531, 595, 703, 705, 707, 
774, 790, 804, 820, 837, 855, 879, 890 

HL 3R:9892517 + 9894559 (AT) D 8 45, 332, 338, 443, 517, 531, 595, 703, 705, 707, 
774, 790, 804, 820, 837, 855, 879, 890 
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Table S2. Nutritional value and composition of sucrose and molasses diets. Table S2a: 
nutritional values of fly food ingredients per 100 g; Table S2b: recipe for sucrose and 
molasses diets; Table S2c: comparison of nutritional values of sucrose and molasses diets. See 
Materials and Methods section for details. The sucrose diet is the standard medium used in 
our laboratory in Lausanne; the recipe for the molasses diet follows that recipe of the 
Bloomington Drosophila Stock Center (BDSC) but uses different products for the food 
ingredients. 

S2a. Nutritional values of ingredients in 100g of fly food 
Yeast Cornmeal Sucrose Molasses 

Energy (kcal) 310 345 400 290 
Protein (g) 45 8 0 0 
Total carbohydrates (g) 15 74 100 75 

S2b. Food recipes for sucrose and molasses diets 
Sucrose  Molasses 

Cornmeal (g/L) 
(Polenta, Migros) 50 61.3 

Yeast (g/L) 
(Actilife, Migros) 50 12.4 

Sugar (g/L) 
(Cristal, Migros) 50 0 

Molasses (g/L) 
(Zuckerrohrmelasse, EM Schweiz) 0 109.6 

Agar (g/L) 
(Drosophila Agar Type II, Genesee) 7 6 

Nipagin 10% (ml/L) 
(Sigma Aldrich) 10 14.3 

Propionic acid (ml/L) 
(Sigma Aldrich) 6 6 

S2c. Nutritional values of sucrose and molasses diets 
Sucrose  Molasses  

Energy (kcal) 527.5 567.765 
Protein (g/L) 26.5 10.484 
Total carbohydrate (g/L) 94.5 129.422 

P:C ratio ~ 1:3.6 
(≈             0.28) 

~1:12.3 
(≈                                                                          0.08) 
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Table S3. Summary of ANOVA results for wing area, thorax length, and male 
starvation resistance. White and grey cells show the results for females and males, 
respectively. * p < 0.05; ** p < 0.01; *** p < 0.001. See Results section for details. 

Factor in ANOVA Total wing area Thorax length Starvation resistance 

Allele 
F1,32=105.39*** F1,32=4.3338* 

F1,32=0.70 
F1,32=103.87*** F1,32=3.7805 

Temperature 
F1,912=2852.52*** F1,422=216.4634*** 

F1,1553=1711.77*** 
F1,918=3962.67*** F1,381=145.4612*** 

Diet 
F1,912=48.36*** F1,422=31.899*** 

F1,1553=176.44*** 
F1,918=28.15*** F1,381=88.6215*** 

Allele x 
Temperature 

F1,912=7.15** F1,422=10.6595** 
 F1,1553=0.58 

F1,918=5.89* F1,381=8.7214** 

Temperature x Diet 
F1,912=35.96*** F1,422=1.6748 

F1,1553=7.51** 
F1,918=56.66*** F1,381=3.482 

Allele x Diet 
F1,912=0.73 F1,422=2.4425 

F1,1553=0.58*** 
F1,918=1.08 F1,381=2.4619 

Allele x 
Temperature x Diet 

F1,912=1.79 F1,422=1.8863 
F1,1553=2.48 

F1,918=0.22 F1,381=11.1914*** 

Set (Allele) 
F2,32=53.59*** F2,32=8.0495*** 

F2,32=1.01 
 F2,32=30.53*** F2,32=7.5618*** 

Cage (Set, Allele) 
F4,32=64.45*** F4,32=3.4063** 

F4,32=12.78*** 
F4,32=29.58*** F4,32=0.7344 
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Table S4. Summary of ANOVA results for relative abundance of insulin-like receptor 
(InR) transcript levels. * p < 0.05; ** p < 0.01; *** p < 0.001.  

Factor in ANOVA Relative Abundance of InR 

Allele F1,80=4.5431* 

Temperature F1,80=0.9003 

Diet F1,80=75.9869*** 

Allele x Temperature F1,80=0.0492 

Temperature x Diet F1,80=0.0501 

Allele x Diet F1,80=0.4097 

Allele x Temperature x Diet F1,80=0.0753 

Set (Allele) F2,80=6.5294** 

Cage (Set, Allele) F4,80=5.7327***
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Abstract 

Understanding adaptive responses to environmental variation is a fundamental goal in 

evolutionary biology. The insulin/insulin-like growth factor signaling pathway (IIS) has 

been hypothesized to be a major determinant of life history profiles that vary adaptively 

across environmental gradients in Drosophila melanogaster. Pooled genome sequencing 

of populations across latitudinal gradients on multiple continents has revealed that 

several components in the IIS pathway vary predictably with latitude. This includes 

foxo, a gene encoding a highly conserved fork-head transcription factor that regulates 

IIS and with known pleiotropic effects on longevity, starvation, and size. We 

hypothesized that naturally occurring variation at foxo could be a major contributor to 

life history variation in natural populations. To evaluate this, we constructed 

recombinant outbred populations in which alternative allelic states for two SNP 

positions in foxo were fixed and the genomic background was randomized. After eight 

generations of recombination, flies were phenotyped for a series of fitness traits. Our 

results suggest that natural variation at foxo has pronounced effects on life history. 

Between foxo alleles, there are differences in starvation resistance and two body size 

traits (thorax length, wing area). However, alleles were equivalent for development time. 

We also hypothesized that the patterns associated with the foxo alleles contribute to 

those observed in wild populations. To test this, we assessed six populations from recent 

outbred collections along the latitudinal gradient in the eastern United States for the 

same traits. The data demonstrate that there are clear latitudinal clines for both body 

size and a novel cline in starvation tolerance. However, as with the foxo data, there was 

no predictable variation among populations for development time. These data suggest 

that variation in the IIS pathway, and at foxo in particular, underlies adaptive 

phenotypic differences in life history traits such as body size in natural populations. 
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Introduction 

Understanding the basis for adaptive response to environmental variation is a fundamental 

goal in evolutionary biology. Variation in metazoan life history traits exists among species, 

among populations within a species, and among individuals in a given population. Because 

life history traits are critical components of fitness, their distribution along environmental 

gradients often reflect adaptive responses to varying selection pressures (De Jong & 

Bochdanovits 2003). Drosophila melanogaster is an ancestrally tropical species from sub-

Saharan Africa that has recently colonized the Americas and Australia over the last few 

hundred years (David & Bocquet 1975; David & Capy 1988; De Jong & Bochdanovits 2003; 

Hoffmann & Weeks 2007; Adrion et al. 2015). Thus, the radiation of these flies into 

temperate regions is thought to have resulted in several climatic adaptations, particularly for 

life history traits (David & Capy 1988; Hoffmann et al. 2003; Schmidt et al. 2005a; b; Paaby 

& Schmidt 2009). As such, predictable patterns for these traits including body size, 

development time, starvation tolerance, and other traits over latitudinal gradients in this 

model species (Coyne & Beecham 1987; Weeks et al. 2002; De Jong & Bochdanovits 2003; 

Schmidt et al. 2005a; b; Paaby et al. 2010; 2014; Kapun et al. 2016b). However, there has 

been a by and large failure to explain many of these observed patterns in light of the natural 

allelic variation present in wild populations (Paaby & Schmidt 2008; Schmidt et al. 2008). 

 It is well established that adult flies from temperate populations are larger than those from 

tropical populations in almost every measurable parameter (Noach et al. 1996; Gilchrist & 

Partridge 1999; Calboli et al. 2003; Kennington & Hoffmann 2010; Kapun et al. 2016b). 

Indeed, positive clines for body size, from the equator to the poles, exist in almost every 

continent it has been researched (De Jong & Bochdanovits 2003; Schmidt et al. 2005a). For 

example, there is a well-characterized body size cline in Australia from Queensland to 

Tasmania (James et al. 1995; 1997; Kennington et al. 2007; Kennington & Hoffmann 2010; 
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Kapun et al. 2016b) and a long established body size cline in North America (Coyne & 

Beecham 1987; Kapun et al. 2016b). Larger sizes in temperate populations have been found 

to be most related to increases in cell size and number. Indeed, in the Australian body size 

cline mentioned above, flies from the temperate populations were found to have increased cell 

numbers and greater mean cell sizes relative to those from tropical populations (James et al. 

1995; 1997).  

 Aside from body size, development time also tends to differ between temperate and 

tropical populations. Despite their greater sizes, temperate fly populations often have been 

found to develop faster on average than tropical ones when reared at similar temperatures 

(James & Partridge 1995). Specifically, in the Australian cline, larvae collected from high 

latitudes were found to use limited food more efficiently than larvae collected from tropical 

populations, or low latitudes (James & Partridge 1995; Robinson & Partridge 2001). 

Consequently, this may have allowed temperate larvae to achieve larger overall adult body 

sizes upon development relative to tropical larvae. It was also hypothesized that the increases 

in larval growth efficiency could explain their more rapid development in addition to their 

larger sizes (Robinson & Partridge 2001) . The primary mechanism that selects for the faster 

development and larger size in temperate populations seems directly related to temperature. 

Indeed, this trend has been substantiated by the parallel evolutionary patterns of these traits 

seen across cold-adapted lab populations and warm-adapted lab populations (James & 

Partridge 1995; Blanckenhorn 2000).  

 Unlike body size and other life history traits, the cline for the stress trait, starvation 

tolerance, has not been characterized consistently across continents and less is known about 

the selection pressures that influence this trait and the genes regulating it. However, a study 

on the Indian subcontinent demonstrated a negative starvation cline, where flies closer to the 

equator had increased starvation resistance, but also found a positive cline for desiccation 
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tolerance going in the opposite direction (Karan et al. 1998). Despite these findings, in 

Australia and South America, no clear or consistent cline for starvation resistance was found 

in North America (Robinson et al. 2000; Hoffmann et al. 2001). Considering a different 

approach, selection line experiments have revealed that when selecting for starvation 

resistance, body sizes tend to increase while development time also increases (Chippindale et 

al. 1996; Harshman et al. 1999). This contradicts the growth-efficiency relationship observed 

in temperate populations in regard to larger body size being associated with quicker 

development time relative to tropical populations. Thus, there seems to exist complex 

pleiotropic interactions and inherent trade-offs between these three life history traits and the 

effects of the genes controlling them. 

 The insulin/insulin-like growth factor signaling pathway (IIS) has been hypothesized as a 

major determinant of life history profiles that vary adaptively across environmental gradients. 

Indeed, this pathway is highly conserved across organisms and several homologs exist 

between Drosophila, mice, C. elegans, and humans (Kenyon et al. 1993; Clancy 2001; Tatar 

et al. 2001; Garofalo 2002; Oldham & Hafen 2003; Tatar 2003). An exhaustive dissection of 

the D. melanogaster has confirmed the extensive role of this pathway in regulating growth 

and cell proliferation (Saucedo & Edgar 2002; Oldham & Hafen 2003; Nielsen et al. 2008). 

Furthermore, the insulin-signaling pathway is known to affect nutrient storage and 

metabolism among other traits (Garofalo 2002). Single mutations in this pathway have been 

demonstrated to confer substantial pleiotropic effects on life history profiles (Giannakou & 

Partridge 2007). Studies of known members in the IIS pathway have identified a number of 

genes that can extend lifespan by reducing insulin signaling. Specifically, loss of function 

mutations or disruptions of the insulin-like receptor (InR) or its substrate, chico, promote 

increased nuclear localization of the fork-head transcription factor, foxo, which ultimately 

reduces insulin signaling (Clancy 2001; Tatar et al. 2001). Similarly, overexpression of foxo, 
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which acts as a downstream regulatory transcription factor, reduces insulin signaling and 

ultimately increases longevity (Hwangbo et al. 2004; Giannakou et al. 2004). Lifespan is 

another life history trait that is associated with many tradeoffs, and recent studies have found 

correlations between the level of insulin signaling and a variety of fitness traits (Paaby et al. 

2014).  

 Surprisingly, the functional significance of naturally occurring allelic variation at foxo has 

not been comprehensively examined. We previously identified a number of clinal SNPs in 

multiple genes in the central IIS pathway, including a number of promising candidates in foxo 

(Fabian et al. 2012).  Here, we test whether two clinal foxo alleles, defined by nucleotide state 

at two SNPs across ~2kb, are functionally distinct with respect to a series of life history-

associated phenotypes that vary predictably among natural populations (body size, 

development rate, and starvation tolerance). We then examined variation in these traits across 

a series of natural populations from the eastern United States, and whether functional 

differentiation between foxo alleles might explain (to a large or small extent) the observed 

patterns of variation in the field.  We hypothesized that foxo alleles regulate major aspects of 

variation in Drosophila life history in a trait-specific fashion. Indeed, our results demonstrate 

that the two foxo alleles differ with respect to starvation tolerance and body size, but are 

equivalent with respect to development time. These patterns mirror those observed in natural 

populations, for which we also demonstrate clines in body size and starvation tolerance, but 

no variation with latitude for development time. Furthermore, our data suggest that allelic 

variation at foxo is a minor, albeit significant, contributor to genetic variance in starvation 

tolerance in natural populations, but a major contributor to variance in body size.  
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Material and Methods 

Identification of SNPs/alleles that vary predictably with latitude 

Fabian et al. (2012) identified a series of SNPs in foxo that exhibited high FST in pooled 

sequencing of natural populations derived from Florida (low latitude), Pennsylvania (mid 

latitude), and Maine, U.S.A. (high latitude). From this analysis, we identified a candidate foxo 

allele based on the nucleotide state at two SNPs spanning approximately ~2kb. We 

subsequently used the more extensive pooled population sequencing from the Drosophila 

Real Time Evolution Consortium (Dros-RTEC) to examine associations with allele frequency 

and latitude in natural populations collected in 2012 across a variety of locations in the U.S. 

(NCBI SRA BioProject PRJNA308584#; (Bergland et al. 2014; Kapun et al. 2016a). We 

investigated the allele frequency changes for candidate foxo SNPs and showed that both SNPs 

are also strongly clinal in this dataset. Thus, we investigated the functional effects of these 

SNPs as a 2-SNP allelic polymorphism by reconstituting outbred populations.  

Constructing outbred population cages with foxo alleles 

Based on the combination of the results of Fabian et al. (2012) and the DrosRTEC data set, 

we identified individual lines in the Drosophila Genetic Reference Panel (DGRP) (Mackay et 

al. 2012), that were homozygous for either the foxo allele that was at high frequency in high 

latitude populations (hereafter, the high latitude allele), and lines that were fixed for the foxo 

allele that was at high frequency in low latitude samples (hereafter, the low latitude allele).  

Two biological replicate population cages were established from 20 independent lines per 

cage per allele; these biological replicates are denoted by sets A and B, each containing 

independent sets of 20 inbred lines. These biological replicates were then experimentally 

replicated 2X by splitting each biological replicate into two experimental replicates in the first 

generation of founding. All replicate cages (2 foxo alleles x 2 biological replicates (sets A and 

95



Chapter 3 

 

B, each comprised of 20 independent inbred lines) x 2 experimental replicates = 8 total 

population cages) were founded by 10 individuals of each sex per inbred line from density-

controlled cultures; subsequently, each population cage was cultured under constant density 

on standard cornmeal-molasses medium for 8 discrete generations under conditions of 

constant temperature (25˚C) and photoperiod (12L:12D) in Percival I36VL incubators. Thus, 

at the end of the recombination period, we generated replicate population cages in which the 

focal foxo allele was fixed for either the high latitude or low latitude allele and the genomic 

background was randomized across the 20 inbred lines used to found each respective cage 

(Paaby et al. 2014; Zhao et al. 2015). After 8 generations of density-standardized culture 

under standardized environmental conditions, we established replicate density controlled vial 

cultures (30 ± 20 eggs/vial) for subsequent phenotyping of the high latitude and low latitude 

foxo alleles.  

 

Selecting outbred lines from recent collections along the Eastern U.S. 

Thirty isofemale lines were randomly selected from each of six previously collected outbred 

populations along the Eastern U.S. sampled in the years 2011-2013 from Homestead, FL 

(HFL), Jacksonville, FL (JFL), Charlottesville, VA (CVA), Media PA (MPA), Lancaster, MA 

(LMA), and Bowdoin, ME (BME) (Fig. 3; described in (Bergland et al. 2014; Behrman et al. 

2015; Rajpurohit et al. 2017a; b). 

 The individual lines for each population were maintained in a standard 3-week culture 

regime under the same conditions as the foxo recombinant cages. Prior to phenotyping, each 

isofemale line was cultured for two generations at low density (30±20 eggs/vial) under 25˚C, 

12L:12D; in the third generation, freshly eclosed flies were collected in daily cohorts and 

used in the phenotypic assays described below. 
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Phenotype Assessment 

In all assessments, foxo recombinant cages were tested simultaneously at three independent 

time points and the data partitioned into blocks. For assessment of starvation resistance, virus 

contamination of the cages precluded running three independent blocks and a single time 

point was included in the analysis. For the natural populations, all lines from all populations 

were assayed simultaneously for all phenotypes using discrete 1d cohorts for each phenotype. 

Starvation Resistance 

For the foxo cage populations, embryos were collected from each cage in two replicate 

bottles. After lowering the density to ~150 eggs per bottle, they were kept at 25°C, 12L:12D, 

60% RH. Similarly, eggs were collected from each outbred population’s respective lines, but 

instead collected in food vials with controlled density ~50 eggs per vial.  

In both independent procedures, the early, only the 2nd and 3rd day eclosers were collected 

and considered for the phenotype assays; after aging and mating for 4-5 days upon eclosion. 

The flies were then separated by sex and divided, 10 each, into glass vials equipped with a 

small cotton ball saturated with 1 mL of water, and kept at the same conditions as 

development. The survival upon starvation (starvation tolerance) was recorded daily at time 

points: 9AM, 1PM, 5PM, and 9PM. The foxo cages were given three replicates (a,b,c) per 

cage population; the natural populations were tested for all of their lines once, respectively.  

Development Time 

For the foxo cage populations, several eggs were collected from each cage in a three-hour 

window using petri dishes reared with cornmeal culture and activated yeast. The collected 

eggs were then counted and distributed, 30 each, in three replicate vials (a,b,c) per cage reared 

with the standard cornmeal culture. 
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For the natural populations, this assessment was broken into 3 separate blocks, each 

representing a random set of lines from their respective populations. Similar to the foxo cage 

procedure, eggs were collected in a three-hour window with egg collecting receptacles reared 

with cornmeal culture. The eggs were distributed 30 each in vials, one per line, for each of the 

populations. 

In both independent procedures, the flies were kept in the same conditions for the 

starvation tolerance assessments. Data was recorded at time points: 9AM, 1PM, 5PM, and 

9PM. Adult emergence and sex was recorded when flies successfully eclosed from their pupal 

cases. Eclosed flies were stored in 95% ethahol and used for body size measurements.  

 

Body Size/ Morphology 

For foxo flies, 10 flies for each sex were measured from each cage population. For the 

natural populations, 5 flies for each sex were measured for every line within their respective 

population. The body size measurements were recorded using an Olympus DP73 Microscope-

Imaging Camera with CellSens Standard measuring software, which took measurements of 

pictures relative to a programmed scale. The body size parameters, thorax length and full 

wing area, were parameterized (Fig. S1, Supporting Information). Thorax length was 

measured as the longest length from the dorsal tip of the thorax to the tangent surface of the 

thorax near the head (Fig S1, Supporting Information). Total wing area measured as a 

polygon surrounding a series of set points of interest, which were easy to recognize, 

representative of almost the entire wing area, and consistently not damaged across all samples 

in males and females (Fig S1, Supporting Information). The ratio of total wing area to thorax 

length, as indicative of wing loading, was also calculated and subsequently analyzed. 
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Statistical Analysis 

For the natural populations, data were analyzed separately by sex. Isofemale line was 

considered a random variable and all data were analyzed using a restricted maximum 

likelihood ANOVA with population as a fixed effect. For all other traits other than starvation 

tolerance, experimental block (N=3) was also included as a covariate. For the foxo 

experimental population cages, a similar nested ANOVA was run independently for both 

sexes in which foxo allele, biological replicate (set), and experimental replicate (cage) were 

included as predictors.  

 

Results 

Allele frequency changes in Dros-RTEC dataset and genome-wide background analysis 

The analysis confirmed previously observed clinal pattern for foxo alleles in Dros-RTEC data, 

which showed the allele frequency change across latitude for examined SNPs vary clinally in 

North American east coast. in D. melanogaster (Fig. 1). We observed ~60% allele frequency 

difference between low and of high-latitude alleles along the cline; low-latitude allele is 

prevalent in Florida (~70%) but at low frequency in Maine (~10%).  We also analyzed the 

genomes of the DGRP lines used to set up and confirmed that the were fixed (FST = 1) for the 

focal LL alleles, without any systematic differentiation in the genome-wide background (Fig. 

2) by testing all polymorphic sites following the approach by Weir & Cockerham 1984.  

 

Natural populations – phenotype analysis and output 

The total statistical output and effect tests are summarized in Table 1 for the natural 

population life history assays. For a visual representation of the observed clines from our 

data, we plotted lines of best fit between population mean trait values using latitude as a 

predictor variable for illustrative purposes (Fig. 3). Male and female clines are separated for 
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each trait and the same traits assessed across the outbred foxo cages have been assessed here. 

Also on the left side of the figure is a NOAA mean-temperature-graded map of the Eastern 

coast of the United States. The sampled populations we collected from have been marked and 

their associated latitudes have labeled beside them, respectively.  

 

Total Wing Area 

In natural populations, for the trait full wing area, the entire mixed model was found to be 

significant across the latitudinal gradient of the Eastern U.S (Table 1, Fig.3). Specifically, the 

respective populations showed differences in body size (p < 0.001). The common size 

different between sexes was also observed in natural populations (p < 0.001). Furthermore, an 

extension effect of the previous two effects, population crossed with sex, also showed highly 

significant differences. Though each line comes from the same population, we expected a 

considerable degree of genetic variation within a population, as the line effects was found in 

our analysis. Because each line represents an isofemale line established independently from a 

collection site, it is not surprising that we observe significant differences between lines within 

a population. Also, it is important to note that high degrees of repetition and blocks were used 

to accurately determine representative means and standard errors from each population, thus 

the variability within lines of a population only serves as a more robust representation of the 

population as a whole. More importantly, perhaps, is the effect test of block, which shows no 

significant difference between each round of independent assessment in females (p > 0.05). 

This repeatability further strengthens our confidence in our data that the cline for full wing 

area, and body size in general, does indeed exist in Eastern North America. 

We also observed robust clines for both males and females across the latitudinal gradient. 

This data effectively reaffirms the clinal end point study conducted by Coyne and Beecham 

(1987) on Florida and Maine flies, respectively. By adding populations at intermediate 
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latitudes to a study of this kind, we were able to more confidently claim that a body size cline 

exists along the latitudinal gradient of the Eastern U.S. where body size tends to increase with 

latitude, which parallels much of the work done on continental body size clines in Drosophila 

melanogaster (De Jong & Bochdanovits 2003). 

Thorax Length 

In natural populations, for the other body size parameter trait, thorax length, the entire mixed 

model was also found to be significant (Fig. 3; Table 1). As in the previous morphological 

model, we observed differences between the respective populations (p < 0.001), sexes 

(Females: p < 0.001; Males: p < 0.01), and isofemale lines. As for the previous trait, we 

expect a considerable degree of genetic variation within a population, as observed for both 

size related traits for isofemale lines.  

We demonstrate positive clines for both males and females for the ratio of total wing area 

to thorax length across the latitudinal gradient in the Eastern U.S (Fig. 3). Indeed, both sexes 

demonstrate a general increase in this ratio with increasing latitude despite considerable 

regional variability observed for this trait. Though both sexes exhibit variability for this trait, 

the female data represents a slightly more robust cline with a greater trait slope relative to the 

males in natural populations. Like the cline of the previous morphological trait, the cline for 

wing area: thorax size largely agrees with much of the work done on continental body size 

clines in D. melanogaster (Coyne & Beecham 1987; De Jong & Bochdanovits 2003).  

Starvation Resistance 

In natural populations, for the trait starvation tolerance, we found that populations differ in 

their resistance across latitudinal gradient of the Eastern U.S (p < 0.001; Fig.3; Table 1). 

Additionally, we observed a difference between the sexes, and their interaction with 
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population. And similar to the morphological traits, we again observed differences between 

isofemale lines in a given population.  

For starvation resistance, we demonstrate robust positive clines for both males and females 

across the latitudinal gradient in the Eastern United States. The data points for males seems to 

especially fit well the line of regression, while the female data presents a considerably more 

robust cline despite not fitting the line of regression over latitude as well. Here we are seeing 

a clearly adaptive response over the North American latitudinal gradient, with starvation 

resistance increasing with latitude. This is a novel starvation resistance cline observed in 

North America for D. melanogaster. Indeed, starvation clines have yet to be found on the 

South American and Australian continents (Robinson et al. 2000; Hoffmann et al. 2001). And 

perhaps more strangely, we found the starvation tolerance cline in North America to go in the 

opposite direction as what was observed on the Indian subcontinent, where studies have found 

that Indian flies near the equator tend to be more starvation resistance than those at higher 

latitudes (Karan et al. 1998). 

 

Development Time 

For development time, the entire mixed model was found to be significant across the 

latitudinal gradient of the Eastern U.S (Fig.3; Table 1). Specifically, we observed differences 

between the respective populations both in males and females (p < 0.001). However, we did 

not observe an interaction between sex and population. Also, we observed differences for 

isofemale lines and experimental block, which indicates that this trait has considerable 

variability and that uncontrollable factors, such as time of year and air pressure, may 

contribute more to this trait than latitudinal gradients do.  

There seems to exist no clear or consistent pattern for development time along the 

latitudinal gradient of the United States. The only consist pattern that exists is in between the 
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sexes, which both have population means distributed in a similar arrangement. We were 

surprised to not observe a cline for this trait in North America. Past studies have linked 

increased temperate population size to larval growth efficiency, which should also confer 

speedier development to these populations relative to tropical fly populations when reared at 

the same temperature (James & Partridge 1995; Blanckenhorn 2000). On the other hand, a 

more recently proposed selection regime based on seasonal stress tolerance and diapause 

posits that temperate populations should develop more slowly than tropical flies (Paaby & 

Schmidt 2009). However, we did not observe results consistent with either pattern here in 

North America.  

 

foxo recombinant cages – phenotype analysis and output 

The total statistical output and effect tests are summarized in Table 2 for males and females 

from the foxo recombinant cage population life history assays (Fig. 3). The male and female 

data are separated for each trait. 

 

Full Wing Area 

For the trait full wing area, the entire mixed model was shown to be statistically significant in 

both males and females (Fig.3; Table 2). The high latitude foxo allele was associated with 

increased wing area relative to the low latitude allele in both sexes (p < 0.001). This suggests 

that the focal foxo alleles have functional significance that underlies differential adaptive 

responses in body size that are consistent with expectations from work on several clines on 

body size and on work on temperate and tropical flies in general (Noach et al. 1996; De Jong 

& Bochdanovits 2003). 
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Thorax Length 

For the trait thorax length, the entire mixed model was also shown to be statistically 

significant in both males and females (Fig.3; Table 2). The high latitude foxo allele was 

associated with larger thorax length both in females and males (p < 0.01). Similar results were 

observed for the ratio of total wing area to thorax length, with this ratio demonstrating a more 

pronounced latitudinal cline (Fig. 3). 

 

Starvation Resistance 

For the stress trait starvation resistance, the entire mixed model shown to be statistically 

significant in both males and females as in the previous two assessed morphological traits 

(Fig.3; Table 2). Overall, candidate flies fixed for the low latitude foxo allele demonstrated 

reduced starvation tolerance relative to flies fixed for the high latitude, temperate allele both 

in females and males (p < 0.01). This relationship is interesting and newly attributed to this 

transcription factor, foxo. The mechanism for increased starvation resistance, however, may 

simply be correlated to increased body sizes and fat reserves. The low-latitude allele flies 

have consistently demonstrated smaller body size in both the thorax and wing area across 

both sexes, and now have also demonstrated consistently less starvation tolerance than high-

latitude allele flies. 

 

Development Time 

Unlike the previously measured traits, the entire mixed model for development time was 

found to be not significant with respect to foxo allele both in females and males (p > 0.05). 

Development time varied significantly across blocks and replicates, but was not distinct 

between the high and low latitude foxo alleles (Fig.3; Table 2). Overall this model seems to 
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demonstrate that there is no functional significance associated with foxo allele in terms of 

predictable effects on development time, despite previous models’ implication for functional 

significance on body size and starvation tolerance. This is somewhat congruent with data on 

Australian clines, where the relationship between body size and development time is 

inconsistent across latitude (James et al. 1995; 1997). This implies that other selection 

pressures on other genes and pathways are playing more important roles in differentiating 

development time responses than what is being offered by the differential phenotypic 

contributions of the two nucleotide states of the linked candidate SNP in foxo. Also, 

development time was the most variable trait studied in all models, and could perhaps be most 

affected by inbreeding depression effects in lab. 

Discussion 

Past studies on foxo have validated the fork-head transcription factor as a major regulator of 

lifespan in Drosophila, c. elegans, mice and humans (Garofalo 2002; Giannakou et al. 2007; 

Alic et al. 2014; Morris et al. 2015), and more recent studies have elucidated a role for foxo in 

reproductive diapause regulation in C. pipiens and D. melanogaster (Tatar & Yin 2001; Sim 

et al. 2015). Because this gene encodes a transcription factor for the fundamental insulin-

signaling pathway in most multicellular organisms, it is not surprising that foxo exhibits 

extensive pleiotropic effects. Here, we have presented evidence of a novel functional 

polymorphism in foxo, which varies predictably with latitude and confers predictable effects 

on life history traits, namely for body size and starvation resistance. Specifically, between the 

two-nucleotide states of the tested candidate SNP (high vs. low latitude, Fig. 3), flies with the 

low-latitude SNP were shown to be significantly smaller than flies with the high-latitude 

SNP. This was the case for both body size parameters; however, the data was more significant 

and robust for the full wing area parameter. Additionally, data from the males in both 

105



Chapter 3 

parameters was more robust and conclusive in determining the functional significance of the 

polymorphism in foxo. Thus, taken together with the male data, we believe the female data 

also offers robust evidence for the functional significance of this polymorphism in 

determining body size across latitudinal gradients, which seems to increase with latitude. 

Functionally, the mechanism behind the polymorphism conferring increased body size 

most likely has to do with increased cell sizes or cell numbers being exhibited in flies at 

higher latitudes (James et al. 1995; 1997). However, past studies have shown that at least for 

wing area, cell number seems to be a more important in determining variation than cell size 

(Zwaan 2000). In this light of this, it is interesting to note that the full wing area differences 

were more significant between the foxo alleles across the sexes than they were for thorax 

length. Thus we hypothesize that the clinal polymorphism in foxo is likely to be functionally 

significant in determining variable cell numbers in D. melanogaster populations over 

latitudinal gradients.  

Not only that, but here we also presented an additional functional significance of the clinal 

polymorphism in foxo. Our data demonstrate that between the low- and high-latitude variants,  

there were indeed significant differences in starvation resistance for both sexes. Ultimately, 

this data taken together suggests that foxo definitively plays a functional role in determining 

variation of starvation tolerance over latitudinal gradients, albeit perhaps only in North 

America. How this occurs mechanistically is unclear; however, variation in the IIS pathway 

has long been shown to affect nutrient storage, metabolism, and cell growth (Saucedo & 

Edgar 2002; Oldham & Hafen 2003). Variation in these aspects, particularly in nutrient 

storage and metabolism, could be responsible for the predictable change we see in starvation 

tolerance along the latitudinal gradient of the United States.  

Despite the functional significances we found in the clinal polymorphism for foxo in 

morphology and starvation tolerance, we failed to recognize any functional significance of 
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this SNP in regards to development time. Male data was shown to be especially variable and 

inconsistent, where the alleles displayed no significant differences. Due to the high degrees of 

variability across both sexes in this phenotype and the lack of a consistent pattern across 

alternate nucleotide states, we conclude that the candidate SNP in foxo is not relevant in 

determining variation for development time over latitudinal gradients.  

In qualifying our first hypothesis, we believe our data from the foxo recombinant SNP 

cages clearly demonstrate that natural variation at foxo at least in part contributes to the 

adaptive differences in life history profiles we see in natural populations, namely for body 

size and starvation tolerance in D. melanogaster. To bolster our study, we also tested outbred 

populations collected along the Eastern United States for the same series of traits. Our results 

reconfirm the long-known existence of a positive body size cline along the latitudinal gradient 

of North America (Coyne & Beecham 1987). However, because we also used intermediate 

populations in between Maine and Florida, as opposed to only using endpoint populations, the 

body size cline that we demonstrate is perhaps the most robust offered in North America. The 

two measured body size parameters displayed similar trends, however, the parameter for full 

wing area offered especially robust clines for both males and females relative to thorax 

length, which was more variable across populations. More importantly, it is very reassuring 

that the functional significance between the low- and high-latitude alleles matches the body 

size cline we observed in North America. These results taken together, powerfully conclude 

that variation in foxo is indeed in part responsible for body size variation between tropical and 

temperate flies across the latitudinal gradient in the United States.  

Furthermore, additional assessment of the natural populations revealed a novel positive 

starvation cline in North America. This contradicts the negative starvation cline found years 

ago on the Indian subcontinent (Karan et al. 1998) and also comes as somewhat of a surprise 

considering that starvation resistance clines have not been found in either Australia or South 
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America (Robinson et al. 2000; Hoffmann et al. 2001). The mechanism behind this 

relationship is unclear; however, a recently proposed selection regime for temperate 

populations based on seasonally induced diapause and stress tolerance has associated 

increased body size with increased stress resistance and slower development for those 

populations (Paaby & Schmidt 2009). In light of this relationship, it is not surprising that 

clines for body size and starvation resistance match in the United States. Additionally, the 

increased stress resistance may be due causally to increased cell size or cell number, but 

further research is warranted to elucidate this connection.  

For the final life history trait assessed, development time, natural population data, as with 

the foxo data, demonstrated no clear or consistent patterns of development time over the 

latitudinal gradient. Though we were relieved that the lack of a pattern in the foxo alleles 

matched the lack of a cline in the natural populations, we were surprised at the results across 

the board. We expected to see some sort of relationship of development time with latitude as 

we had seen in the previous traits. However, our expectations were unclear from the start. 

There are two conflicting hypotheses for temperature-based temperate fly selection regimes in 

which one proposes larval growth efficiency as the major factor that is being selected on 

(Robinson & Partridge 2001), and the other regime focuses more on selecting for increased 

stress tolerance and diapause activation (Paaby & Schmidt 2009). As a result, the former 

predicts enhanced larval growth efficiency to be associated with increased size and decreased 

development time while the latter predicts enhanced stress tolerance to be associated with 

larger body size and slower development. In our data, we saw neither of these relationships 

and propose that the true selection regime in North America is a composite of these two, 

perhaps favoring the stress tolerance regime due to existence of a robust starvation cline in the 

U.S. Alternately, selection on other factors such as those associated with diet and larval 

crowding may be more important than temperature and the latitudinal gradient in determining 
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variation for development time. Indeed, work on the Australian cline has not always reported 

consistent correlations between body size and development time  (James et al. 1995; 1997). 

In short, we have elucidated novel functional significance for a SNP in foxo, the fork-head 

transcription factor that regulates the insulin signaling pathway in D. melanogaster. This is 

just another step forward in characterizing the many members of the IIS pathway, which have 

been known to confer pleiotropic effects on several life history traits such as diapause 

regulation and regulation of lifespan (Clancy 2001; Tatar et al. 2001). Indeed, further work is 

warranted on members of this pathway and we challenge other researchers to identify more 

functional SNPs that vary predictably with latitude in order to further elucidate the effects the 

IIS pathway. It may also be interesting to see the interactive effects of several members of this 

pathway, to see if they interact additively or in epistasis. For example, fixing a latitudinal 

variant SNP in foxo, chico, and InR, all for “derived-temperate SNPs,” may produce extreme 

phenotypes that would help further elucidate the variable effects of the insulin signaling 

pathway on organisms in wild populations.  

From our findings, we conclude that variation in the IIS pathway, particularly at foxo, at 

least in part contributes to the differential functional responses in D. melanogaster. In 

particular, our analysis indicates functional significance in foxo in determining differential 

body size and starvation tolerance at opposite ends of the cline. 
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Table 1. ANOVA results for the assayed phenotypic traits among natural populations. 
ANOVA results for development time, thorax length, wing area, wing area:thorax length 
ratio, and starvation tolerance. White and grey cells show the results for females and males, 
respectively. * p < 0.05; ** p < 0.01; *** p < 0.001. See Results for details. 

Factor Development 
Time Thorax Length Wing Area 

Wing 
Area:Thorax 
Length Ratio 

Starvation 
Tolerance 

Population 

F5,133=6.75*** F5,135=4.71*** F5,137=14.15*** F5,136=13.91*** F5,117=11.04***

F5,132=6.42*** F5,140=3.28** F5,136=11.54*** F5,138=11.45*** F5,114=5.63***

Block 

F2,650=69.69*** F2,364=0.05 F2,387=2.72 F2,365=3.687* NA 

F2,540=75.52*** F2,366=1.96 F2,395=4.71** F2,372=3.27* NA 
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Table 2. ANOVA results for the effects of high and low latitude foxo alleles on 
phenotype. ANOVA results for development time, thorax length, wing area, wing area:thorax 
length ratio, and starvation tolerance. White and grey cells show the results for females and 
males, respectively. Sums of squares are shown in parenthesis. * p < 0.05; ** p < 0.01; *** p 
< 0.001. See Results for details. 

Factor Development 
Time Thorax Length Wing Area 

Wing 
Area:Thorax 
Length Ratio 

Starvation 
Tolerance 

Allele 

F=0.67 

(57.12) 

F=8.17** 

(8185.11) 

F=57.74*** 

(1.95E+11) 

F=39.83*** 

(97159.11) 

F=8.38** 

(1128.84) 

F=3.23 

(111.80) 

F=9.97** 

(5689.75) 

F=41.35*** 

(8.69E+10) 

F=34.19*** 

(52392.04) 

F=8.14** 

(1039.23) 

Set 
(Allele) 

F=2.44 

(416.40) 

F=5.78** 

(11580.03) 

F=16.50*** 

(1.12E+11) 

F=7.99*** 

(38974.63) 

F=9.41*** 

(2535.86) 

F=4.45* 

(307.58) 

F=4.95** 

(5644.90) 

F=10.23*** 

(4.30E+10) 

F=6.36** 

(19500.92) 

F=7.79*** 

(1988.76) 

Cage(Set, 
Allele) 

F=7.04*** 

(2400.37) 

F=3.72** 

(14914.63) 

F=18.15*** 

(2.46E+11) 

F=15.60*** 

(152264.86) 

F=4.63** 

(2492.85) 

F=2.99* 

(413.11) 

F=4.00** 

(9119.65) 

F=12.00*** 

(1.01E+11) 

F=13.95*** 

(85498.41) 

F=2.36 

(1202.37) 
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Figure legends 

Fig. 1. Allele frequency changes for foxo SNPs in the Dros-RTEC dataset. Figure shows 
allele frequency differences conditioned to increase from south to north, with the frequency in 
Florida being set to zero. The foxo candidate SNPs are highlighted by two vertical black lines 
in the gene plot (A) or in bold red in the clinal plot (B). Note that the coordinates refer to the 
Drosophila melanogaster reference version 6. 
 
Fig. 2. FST Manhattan plots for the biological replicates A and B, constructed from 
independent sets of inbred lines from the DGRP panel. The foxo candidate SNPs are 
highlighted in red, demonstrating that there are no confounding genomic background signals 
in either set. 
 
Fig. 3. Phenotypic analysis of natural populations collected across the latitudinal 
gradient in the eastern U.S. (A-D) and the homozygous high- and low-latitude foxo 
genotypes (E-H). In all panels, females are depicted by filled symbols and males by open 
symbols. Starvation tolerance increases with increasing latitude (A); similarly, the high 
latitude foxo allele is associated with increased starvation resistance (E). Development time 
does not vary predictably with latitude (B), and is also equivalent between foxo alleles (F).  
Wing area (C) and the ratio of wing area to thorax length (D) exhibit a positive latitudinal 
cline in the sampled populations; these patterns of size variation in the natural populations are 
mirrored in both magnitude and direction by the observed differences in size parameters 
between the low and high latitude foxo alleles (G, H). 
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Supporting Information for Betancourt et al., Allelic polymorphism at foxo contributes 
to adaptive patterns of life history differentiation in natural populations of Drosophila 
melanogaster 
 
Supporting Information Figure Legends 
 
Figure S1. Body size parameters. The area of polygon in between the eight points of interest 
represent the parameter we used for measuring wing area (A). The length of the red line 
between the tip of the thorax and the tangent point of the thorax near the head represent the 
parameter we used for measuring thorax length (B). 
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Summary 

Homologous replacement of naturally occurring alleles in a controlled, isogenic background 

is “gold standard” for mapping as well as establishing the causative effects of natural genetic 

variants. In this mini-chapter, I am giving a brief progress report on our ongoing attempt to 

use the CRISPR/Cas9 genome editing technique to manipulate and experimentally study a 

clinally (latitudinally) varying genotype consisting of two single nucleotide polymorphisms 

(SNPs) in the insulin signaling transcription factor foxo in D. melanogaster. 
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Introduction 

In a previous analysis, our team has identified genome-wide patterns of clinal differentiation 

among populations from the North American east coast and identified hundreds of clinally 

varying SNPs (based on SNP FST outliers) (Fabian et al. 2012). Many candidates were found 

to be located in genes belonging to several metabolic pathways, most notably in the 

insulin/insulin-like growth factor signaling (IIS) pathway, a pathway known from studies of 

mutants and transgenes in model organisms to have major regulatory effects on growth, size, 

reproduction and lifespan (Tatar 2003; De Jong & Bochdanovits 2003; Bochdanovits & de 

Jong 2004; Nässel et al. 2015). However, with very few exceptions practically nothing is 

known yet about the effects of naturally occurring alleles affecting this major nutrient sensing 

and energy pathway. 

In collaboration with the team of Prof. Paul Schmidt (University of Pennsylvania), I have 

investigated the life-history effects of a clinally varying 2-SNP haplotype (3R:9892517; 

3R:9894559) in the gene foxo, a central forkhead box-O transcription factor involved in IIS. 

By reconstituting outbred populations, I have found that this polymorphism exerts pleiotropic 

life-history effects, mainly on body size, starvation resistance and fat storage. All of these 

traits are known to be affected in loss-of-function mutants or transgenic overexpression 

constructs of foxo (Chapter 2). Similarly, we have investigated the clinal life-history 

phenotypes in natural populations of Drosophila melanogaster and examined the contribution 

of foxo alleles to clinal life-history variation in body size (Chapter 3). 

Bioinformatic analyses of the genomes of the inbred lines used in our outbred population 

approach suggest that the only consistently strong signal of differentiation (FST=1) between 

experimental populations differing in allelic state (A,T vs. GG) occurs at the 2-SNP positions 

of interest, so that our comparison of allelic states is unlikely confounded by other between-

group differences in genomic background (Chapter 3). However, the "gold standard" for 
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establishing causal effects of natural alleles is their homologous replacement into a common 

genetic background, for example via CRISPR/Cas9 (clustered regularly interspaced short 

palindromic repeats/CRISPR associated protein 9), a powerful genome editing method that is 

rapidly advancing and improving (Cong et al. 2013; Sander & Joung 2014; Turner 2014; 

Zhang et al. 2014b; Zhang 2015; D’Agostino & D’Aniello 2017). To establish causative 

effects of our candidate polymorphism in a maximally controlled genomic background we 

therefore decided to apply this novel state-of-the-art method, in collaboration with Alistair 

McGregor (Oxford Brookes University), and Ariane Ramaekers (Vlaams Instituut voor 

Biotechnologie), two experts in using this system in Drosophila. 

The CRISPR/Cas9 system is involved in the prokaryotic acquired immune system, 

conferring resistance to foreign genetic elements (Horvath & Barrangou 2010; Garneau et al. 

2010; Jinek et al. 2012; Gasiunas & Siksnys 2013). This system has recently been used to 

develop a powerful and flexible gene-editing platform for higher organisms. This new 

CRISPR/Cas9 method is very versatile, efficient and straightforward, especially when 

compared to previous genome editing techniques such as transcription activator-like effectors 

(TALENs) or zinc finger nucleases (ZFNs) (Gaj et al. 2013; Zhang 2014; Gupta & Musunuru 

2014; D’Agostino & D’Aniello 2017). Another benefit of this system is that CRISPR/Cas9 

can edit multiple targets at once, thus allowing for multiple-site manipulations in the genome 

(Cong et al. 2013; Wang et al. 2013; Chylinski et al. 2014; Mahfouz et al. 2014). More 

specifically, the novel CRISPR/Cas9 method allows the experimenter to engineer genomes, 

knockdown or activate target genes and edit transcription levels (D’Agostino & D’Aniello 

2017). Changing, disrupting or editing genomic sequences in a variety of cell types and 

organisms such as viruses, plants, insects, worms, fish, birds, mice and humans gives the 

researchers a chance to investigate causative effects of genetic polymorphisms. Over the last 

years, there has been a growing body of literature reporting improved protocols, and the 
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method has successfully been used in a wide variety of organisms (Mali et al. 2013b; 

Friedland et al. 2013; Bassett et al. 2013; Mali et al. 2013a; Zhang et al. 2014a; Wei et al. 

2014; Platt et al. 2014; Fan et al. 2014; Gratz et al. 2014b; Ho et al. 2015; Liang et al. 2015; 

Gratz et al. 2015; Véron et al. 2015; Cai et al. 2015; Zhou et al. 2016; Cinesi et al. 2016). 

 At the molecular level, genome editing with CRISPR/Cas9 requires (1) a universal 

endonuclease (Cas9), (2) a protospacer adjacent motif (PAM) in the genetic region of interest, 

and (3) a 20bp long sequence specific guide RNA (sgRNA) (Figure 1).  The sgRNA guides 

Cas9 to the homologous region of editing, followed by binding of Cas9 which induces the 

double stranded break (DSB) 3bp upstream of the PAM region, with the resulting break being 

repaired by the cellular machinery. Two different repair mechanisms can prevent the potential 

loss of genetic information due to DSBs (Gaj et al. 2013). First, the more common non-

homologous end joining (NHEJ) provides a mechanism whereby a break is repaired without 

the use of a template by random addition or removal of nucleotides, thus being prone to small 

deletions and random insertions (Lieber 2010; Deriano & Roth 2013). Second, in homology 

directed repair (HDR), damage is repaired by the use of a template that is homologous to 

sequences up- and downstream of the break. A desired change in the sequence can thus be 

introduced in the donor template which would serve as sister chromatid in HDR, and precise 

gene-editing can be directed to the site of the DSB (Figure 1) (Kadyk & Hartwell 1992; 

Goldfarb & Lichten 2010). In most studies to date, CRISPR/Cas9 gene-editing has been 

performed without providing a template for homologous repair, and has relied on NHEJ, so 

that many of the edits resulted in random indel (insertion deletion) polymorphisms in the 

region of interest (Gratz et al. 2013). This being said, a growing number of studies have 

attempted and managed to successfully induce a HDR response, thereby causing specific 

alterations of the target sequences (Bassett et al. 2014; Zhang et al. 2014a). Yet, the precise 

manipulation of a single nucleotide position is quite rare and limited, mainly due to the low 
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frequency of homology directed repair in the cell (Wang et al. 2013; Inui et al. 2014; Irion 

et al. 2014; Zimmer et al. 2016). 

Figure 1: Schematic of the CRISPR/Cas9 genome editing. The Cas9 nuclease (in grey) is guided to editing 

site DNA by an sgRNA consisting of a 20-nt guide sequence (blue). The guide sequence pairs with the DNA 

target directly upstream of a requisite 5′-NGG adjacent motif (PAM; yellow). Cas9 mediates a double stranded 

break (DSB) ∼3 bp upstream of the PAM (red triangle). In the error-prone NHEJ pathway, the ends of DSB are 

rejoined by DNA repair machinery, which can result in random indel mutations. In the HDR pathway, a repair 

template can be supplied in the form of ssODN or plasmid to allow precise editing. 

 For the purpose of our project mentioned in Chapters 2 and 3 of this thesis, we aimed to 

introduce a clinally varying foxo 2-SNP polymorphism into a common genetic background in 
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order to unambiguously determine its potentially causative phenotypic effects in a controlled 

background. Below I provide a brief summary of the status of this ongoing project. 

Preliminary attempt to apply CRISPR/Cas9 to a 2-SNP variant in foxo 

In a preliminary test of the CRISPR/Cas9 method in this context, we aimed to introduce the 

first foxo SNP locus (3R: 9892517) into a common genetic background and then – in a further 

step – alter the second site. This approach would allow us to investigate the individual as well 

as intralocus epistatic effects of our 2 foxo candidate SNPs. After the introduction of the clinal 

SNPs, we planned to test the effects of the SNPs on Drosophila life-history and insulin 

signaling states, similar to the assays we have performed on the outbred populations (see 

Chapter 2). These assays would allow us to assess the effects of clinal foxo SNPs, 

independent of their natural genetic context. 

 In collaboration with Alistair McGregor, we followed the protocol established by Andrew 

Bassett for Drosophila; as the starting material for CRISPR/Cas9 we chose an isofemale line 

with a previously sequenced genome (DGRP, #380) (Mackay et al. 2012; Bassett et al. 2013). 

First, to confirm the DGRP sequence, we resequenced the region of interest and utilized this 

information to design single guide (sg)RNAs and donor templates with the CRISPR design 

tool (http://crispr.mit.edu). Our designed construct had a very high quality score of 96 (out of 

100), with no predicted exonic off-targets. Second, we designed a single-stranded 

oligodeoxynucleotide (ssODN) that carried the identical sequence as the region of interest 

except for the single nucleotide change (corresponding to the clinal foxo SNP) we aimed to 

introduce via HDR. Finally, we injected a cocktail of the sgRNA, mRNA for Cas9 and the 

ssODN into ~1000 syncytical embryos. 
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 Due to the injections during early development, we expected embryos to be mosaics for the 

SNP edit; we therefore waited for two generations before screening for germ-line 

transformants. Since the clinal SNP we intended to manipulate is located in an exon, we did 

not want to interrupt the sequence by introducing a visible marker gene, such as for example 

green fluorescent protein (GFP). Instead of using visible markers, we thus decided to screen 

for transformants via sequencing of PCR products for the site of interest. Unfortunately, none 

of the screened individuals carried the desired alteration (or an indel polymorphism). As we 

observed rather high embryonic lethality (98%), we assume that the genetic modification was 

either arresting embryonic development or that the high quantity of foreign RNA might have 

been toxic. 

Use of a modified CRISPR/Cas9 protocol 

To increase the chance of successful editing, we have recently decided to use a different 

protocol and include several recently developed changes of the basic method. We are now 

following a protocol established by Scott Gratz (Gratz et al. 2014a; b), which has several 

modifications and improvements compared to the previous protocol. These modifications 

include: (i) using flies that have ubiquitous Cas9 expression (act-cas9; Bloomington 

Drosophila Stock Center [BDSC] #54590, act-cas9-Lig4; BDSC #58492), (ii) using plasmids 

for sgRNA and donor template, (iii) using a visible marker (DsRed) for screening and (iv) 

inhibition of NHEJ by using Ligase4 (Lig4) mutants (BDSC #58492).  

 Using act-cas9 or act-cas9-Lig4 as a genetic background has several advantages. First, both 

mutants were engineered on the same genetic background as Drosophila reference genome 

(Port et al. 2014; Zhang et al. 2014c). Therefore, we could directly use the sequences for foxo 

from Drosophila reference genome. Second, in addition to ubiquitous expression of 

endonuclease, act-cas9-Lig4 mutants have ubiquitous Lig4 knockdown, which has been found 
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to significantly increase the frequency of error-free HDR as Lig4 is an essential component of 

the final complex needed to complete NHEJ (Vartak & Raghavan 2015; Liang et al. 2017). 

Also, the plasmid used in this protocol contains a DsRed region flanked by loxP sites, to 

allow for more efficient screening of successful mutants which relies less heavily on 

molecular screening, as the DsRed marker is indicative of the successful insertion of the 

donor DNA template.  Upon the identification of the DsRed phenotype, genetic crosses with 

hs-cre flies (BDSC #1501) successfully removes the DsRed marker (Siegal & Hartl 1996; 

Gratz et al. 2014a).   

 We are currently in the process of using this modified CRISPR/Cas9 protocol to manipulate 

and experimentally validate the foxo 2-SNP variant. To introduce the foxo SNPs into a 

common genetic background, we first sequenced the 1000bp upstream and downstream of 

both SNPs and designed multiple sgRNAs. We also used these sequences to design donor 

templates of ~2000bp per SNP for homology directed repair. At the moment, we are in the 

process of cloning sgRNAs and donor templates into plasmids. Then, we will inject a cocktail 

of plasmids that carry either sgRNA or donor template into act-cas9 and act-cas9-Lig4 

embryos. Once injected, we will screen for the presence of DsRed marker and after that, we 

will set up genetic crosses with hs-cre flies to remove the marker using the Cre/loxP system. I 

am anticipating a workload of 4-5 weeks until I have positive transformants, followed by a 

few weeks of PCR-based screening for double-checking. Thus, not counting the actual 

phenotypic assays to be performed on this material, I expect that I would know after about 2 

months of part-time work whether our modified protocol has worked successfully or not. This 

modified CRISPR/Cas9 protocol will hopefully allow us to determine additive and/or 

epistatic effects across the 2 SNPs of interest in a controlled genetic background. 
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Abstract

Chromosomal inversions are thought to play a major role in climatic adapta-

tion. In D. melanogaster, the cosmopolitan inversion In(3R)Payne exhibits lati-

tudinal clines on multiple continents. As many fitness traits show similar

clines, it is tempting to hypothesize that In(3R)P underlies observed clinal

patterns for some of these traits. In support of this idea, previous work in

Australian populations has demonstrated that In(3R)P affects body size but

not development time or cold resistance. However, similar data from other

clines of this inversion are largely lacking; finding parallel effects of In(3R)P

across multiple clines would considerably strengthen the case for clinal

selection. Here, we have analysed the phenotypic effects of In(3R)P in popu-

lations originating from the endpoints of the latitudinal cline along the

North American east coast. We measured development time, egg-to-adult

survival, several size-related traits (femur and tibia length, wing area and

shape), chill coma recovery, oxidative stress resistance and triglyceride con-

tent in homokaryon lines carrying In(3R)P or the standard arrangement.

Our central finding is that the effects of In(3R)P along the North American

cline match those observed in Australia: standard arrangement lines were

larger than inverted lines, but the inversion did not influence development

time or cold resistance. Similarly, In(3R)P did not affect egg-to-adult sur-

vival, oxidative stress resistance and lipid content. In(3R)P thus seems to

specifically affect size traits in populations from both continents. This paral-

lelism strongly suggests an adaptive pattern, whereby the inversion has cap-

tured alleles associated with growth regulation and clinal selection acts on

size across both continents.

Introduction

One of the central goals of evolutionary biology is to

understand how organisms adapt to environmental

heterogeneity (Hoffmann & Sgr�o, 2011; Savolainen

et al., 2013). A promising approach towards this end is

to investigate systematic, gradual phenotypic and geno-

typic changes along environmental (e.g. climatic) gradi-

ents, so-called clines that are thought to be driven by

spatially varying selection (Mayr, 1963; Endler, 1977;

de Jong & Bochdanovits, 2003; Charlesworth & Char-

lesworth, 2010).

A classical model system for studying clinality is Dro-

sophila melanogaster (de Jong & Bochdanovits, 2003;

Hoffmann & Weeks, 2007; Adrion et al., 2015), an

ancestrally tropical vinegar (fruit) fly that has migrated

out of sub-Saharan Africa about 10 000–15 000 years

ago and subsequently colonized the rest of the world as

a human commensal (David & Capy, 1988; Keller,

2007). As a result of its colonization history, this species

had to adapt to a wide range of climatic and ecological

conditions, including temperate and seasonal habitats.

This is evidenced by patterns of clinal differentiation of
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numerous life history, morphological and physiological

traits across latitude: clinally varying traits include

development time (James & Partridge, 1995), body size

(Coyne & Beecham, 1987; Imasheva et al., 1994; James

et al., 1995, 1997; Zwaan et al., 2000; Gockel et al.,

2001; Gibert et al., 2004; Klepsatel et al., 2014; Fabian

et al., 2015), wing loading (Stalker, 1980; Azevedo

et al., 1998), pigmentation (Telonis-Scott et al., 2011),

ovariole number (Capy et al., 1993; Gibert et al., 2004;

Klepsatel et al., 2014), diapause propensity (Schmidt

et al., 2005; Schmidt & Paaby, 2008), cold and heat

resistance (Hoffmann & Shirriffs, 2002) and desiccation

resistance (Hoffmann & Parsons, 2009).

Consistent with spatially varying selection, many of

these traits exhibit parallel clinal patterns across latitude

on multiple continents, even though demography (e.g.

admixture) can also contribute to patterns of clinality

(Bergland et al., 2016; Kao et al., 2015; Flatt, 2016). For

example, qualitatively identical latitudinal clines have

been reported across several continents for body size

(Coyne & Beecham, 1987; James et al., 1995; van’t

Land et al., 1999; Klepsatel et al., 2014; Fabian et al.,

2015), pigmentation (David et al., 1985; Munjal et al.,

1997; Telonis-Scott et al., 2011) and chill coma recovery

time (Gibert et al., 2001; Hoffmann et al., 2002; Ayrin-

hac et al., 2004).

Despite much work on phenotypic clines in Droso-

phila, and although several single genetic markers are

known to covary latitudinally with trait clines (de Jong

& Bochdanovits, 2003; Hoffmann & Weeks, 2007;

Adrion et al., 2015; and references therein), little is

known about the genetics underlying clinal trait varia-

tion (for some exceptions see Schmidt et al., 2008;

Paaby et al., 2014) and the mechanisms by which clines

are formed and maintained. Recent progress comes

from genomewide studies of the Australian and North

American clines that have identified hundreds of cli-

nally varying single-nucleotide polymorphisms (SNPs)

(Kolaczkowski et al., 2011; Fabian et al., 2012; Bergland

et al., 2014, 2015; Reinhardt et al., 2014; Kapun et al.,

2016). While some proportion of these clinal variants is

expected to causally contribute to clinal trait variation,

other variants might be subject to hitchhiking (genetic

draft) or admixture (Fabian et al., 2012; Bergland et al.,

2016; Kapun et al., 2016). Thus, identifying the true

genic targets of clinal selection remains a considerable

challenge (Adrion et al., 2015; Flatt, 2016).

Information on potentially functionally relevant

genomic sites or regions might be gleaned from the

genomewide distribution of clinal SNPs. Remarkably,

even though clinally varying SNPs occur throughout

the genome, the majority of clinal variants is located on

the right arm of the third chromosome (3R), especially

within the region spanned by a large (~8 Mb), cos-

mopolitan chromosomal inversion, In(3R)Payne (also

called In(3R)P) (Kolaczkowski et al., 2011; Fabian et al.,

2012; Kapun et al., 2016).

The In(3R)P inversion is of particular interest for four

reasons. First, in several geographical areas (e.g. North

American east coast, Australian east coast, India,

Japan), this inversion exhibits steep, parallel latitudinal

clines: the inverted karyotype reaches intermediate fre-

quencies at low latitudes but is rare or absent at high

latitudes (Mettler et al., 1977; Inoue & Watanabe, 1979;

Stalker, 1980; Knibb et al., 1981; Knibb, 1982; Das &

Singh, 1991; Matzkin et al., 2005; Fabian et al., 2012;

Kapun et al., 2014, 2016; Rane et al., 2015). For exam-

ple, along the North American cline, this arrangement

reaches a frequency of ~50% in southern Florida but is

absent in Maine (Mettler et al., 1977; Knibb, 1982;

Fabian et al., 2012; Kapun et al., 2014, 2016); thus, flies

from high-latitude populations are fixed or nearly fixed

for the standard arrangement. Second, in Australia and

North America, the latitudinal slopes of the In(3R)P cli-

nes have remained stable across > 40 years of observa-

tion, consistent with the clines being maintained by

spatially varying selection (Anderson et al., 2005;

Umina et al., 2005; Kapun et al., 2014, 2016); in Aus-

tralia, the intercept of the clinal slope has recently

shifted – possibly as a consequence of climate change

(Anderson et al., 2005; Umina et al., 2005). Third,

recent evidence suggests that the North American cline

of In(3R)P is maintained non-neutrally and independent

of population structure or admixture (Kapun et al.,

2016). Fourth, several inversions in Drosophila have

previously been found to be associated with develop-

ment time, egg-to-adult survival, size-related traits,

fecundity and fertility, stress resistance (to cold, heat,

starvation) and lifespan (Sperlich & Pfriem, 1986; Hoff-

mann et al., 2004; Hoffmann & Weeks, 2007; Hoffmann

& Rieseberg, 2008; and references therein). Thus,

although many alleles within In(3R)P might be in link-

age disequilibrium (LD) and thus subject to hitchhiking,

the observation that the majority of clinal SNPs resides

in the genomic region spanned by this inversion sug-

gests that clinal trait variation might at least partly be

driven by In(3R)P (de Jong & Bochdanovits, 2003;

Fabian et al., 2012; Kapun et al., 2016).

Indeed, several association mapping studies have

linked In(3R)P to clinal size variation among Australian

populations (Weeks et al., 2002; Rako et al., 2006; Ken-

nington et al., 2007). Similarly, using quantitative trait

locus (QTL) mapping, Calboli et al. (2003) found that

the largest QTL peak for body size for the endpoints of

the Australian and South American clines overlaps the

region of In(3R)P. However, little is known about asso-

ciations between In(3R)P and clinal phenotypes (includ-

ing size) for other continents; finding parallel

phenotypic effects of In(3R)P across multiple clines

would considerably strengthen the case for spatially

varying (clinal) selection. Moreover, effects of this

inversion polymorphism on clinal fitness-related traits

other than size remain largely unknown (cf. Rako et al.,

2006).
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Here, we investigate – for the first time – the pheno-

typic effects of In(3R)P in populations that approximate

the endpoints of the North American east coastal cline

(southern Florida vs. Maine). We measured several fit-

ness-related traits thought to be clinal (development

time, egg-to-adult survival, proxies of body size [femur

length, tibia length, wing area and wing shape], chill

coma recovery time, oxidative stress resistance and

triglyceride content [a correlate of starvation resis-

tance]) in isochromosomal homokaryon lines carrying

In(3R)P or the standard chromosomal arrangement.

Our results for the effects of In(3R)P on several mea-

sures of body size mirror those previously observed in

populations from the Australian cline (Weeks et al.,

2002; Rako et al., 2006; Kennington et al., 2007) – this

strongly suggests the existence of parallel adaptive

effects of In(3R)P on clinal size variation across both

continents that are driven by spatially varying selec-

tion.

Materials and methods

Fly stocks and maintenance

We used isofemale lines collected from populations that

approximate the endpoints of the clinal gradient run-

ning along the North American east coast: a set of lines

from subtropical southern Florida (Homestead and

Jacksonville) and one from a temperate population in

Maine (Bowdoin) (see Table 1; also see Schmidt et al.,

2005; Schmidt & Paaby, 2008; Fabian et al., 2012 for

further details on these populations). As we failed to

detect phenotypic differences between the two Florida

populations (not shown), we combined lines from both

populations for statistical analysis. Isofemale lines were

kept for long-term maintenance under constant condi-

tions at 18 °C and 60% relative air humidity, at a pho-

toperiod of 12 h:12 h light: dark.

All isofemale lines were screened for the presence of

six cosmopolitan inversions (In(2L)t, In(2R)NS, In(3L)P,

In(3R)K, In(3R)Mo and In(3R)P; see Lemeunier & Aulard,

1992) by extracting DNA from pools of 5–10 individuals

from each line with a salt–chloroform extraction proto-

col and using PCR markers described in Matzkin et al.

(2005) and Corbett-Detig et al. (2012). Consistent with

previous data (Mettler et al., 1977; Knibb, 1982; Kapun

et al., 2016), In(3L)P and In(3R)P segregated at interme-

diate frequencies in the subtropical samples from Flor-

ida but were absent in Maine. In(3R)Mo, in contrast,

showed the opposite trend: it segregated at 11% fre-

quency in Maine but was absent in Florida. None of

the other inversions showed clinality (Table 1; also see

below).

Generation of isochromosomal lines

To isolate wild-type chromosomes either carrying the

inverted In(3R)P arrangement or the standard arrange-

ment from isofemale lines (see above), we used a com-

pound (second and third chromosome) balancer (SMB6;

TM6B; Bloomington Drosophila Stock Center [BDSC],

stock #5687) in an ebony (e1) mutant background

(Fig. S1). For a given isofemale line, we crossed a wild-

type male from that line to a female carrying the bal-

ancer. F1 pupae heterozygous for the balancer were

selected visually based on the dominant tubby (Tb1)

mutant phenotype. Upon eclosion, F1 adults were back-

crossed to the balancer line to amplify the isolated wild-

type chromosome. After four days of egg laying, F2 adults

were screened for the presence or absence of In(3R)P

using PCR markers described in Matzkin et al. (2005).

Isochromosomal homokaryon lines were generated by

selecting against balancer phenotypes in F3 crosses.

We isolated 41 3R chromosomes carrying In(3R)P

(‘Florida inverted’, FI) and 30 carrying the standard

arrangement (‘Florida standard’, FS) from the two Flor-

ida populations and 20 chromosomes carrying the stan-

dard arrangement from Maine (‘Maine standard’, MS).

In total, we were able to generate 14 FI (34.1% of all

FI isolates), 13 FS (43.3% of FS isolates) and 6 MS

(30% of MS isolates) isochromosomal homokaryon

lines for phenotyping (see below). For the remaining

isolates, we failed to obtain homokaryons, possibly due

to recessive deleterious or lethal variants in the wild-

type chromosomes; we maintained these lines as

heterozygotes over a balancer chromosome but

excluded them from the phenotypic assays reported

here. We verified 3R karyotype using PCR on 3–5 single

individuals per isolated chromosome, as described

above.

Table 1 Summary of samples used in this study and estimates of inversion frequencies.

Location State n Latitude Longitude Date Collector

Inversion frequencies

In(2L)t In(2R)NS In(3L)P In(3R)K In(3R)Mo In(3R)P

Homestead Florida 51 25.5°N �71.06 °E 5/2011 P. Schmidt 0.38 0.06 0.42 0.09 0.00 0.63

Jacksonville Florida 32 30.3°N �81.6°E 8/2011 R. Cogni 0.63 0.05 0.20 0.42 0.09 0.31

Bowdoin Maine 35 42.3°N �80.5°E 10/2012 P. Schmidt 0.43 0.03 0.00 0.03 0.11 0.00

n = number of isofemale lines screened to isolate 3R homokaryons.
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During the isolation process we did not control for

inversions on chromosomal arms other than 3R: apart

from In(2L)t, which segregated in ~30% of isolated

lines, other inversions were either absent or present at

only very low frequencies. Given that In(2L)t segregated

at approximately equal proportions among the three

sets of isochromosomal lines, we did not control for its

effects in our analyses.

Phenotypic assays

General methods
Isochromosomal lines were used to measure several

pre-adult life-history traits (development time and egg-

to-adult survival), stress-related and physiological traits

(chill coma recovery time, oxidative stress resistance

and triglyceride content) and proxies of body size (fe-

mur length, tibia length, wing area and wing shape).

Isochromosomal lines were assigned randomized identi-

fiers; assays were performed blind with respect to iden-

tifiers to eliminate potential bias. Vials or bottles were

maintained and experiments performed at 25 °C and

60% relative humidity, under a photoperiod of

12 h:12 h light: dark.

To avoid nongenetic parental and environmental

effects, assays were performed on flies from the F2 gen-

eration. Prior to the assays, we let 100 flies from each

line oviposit for 2 days on standard (cornmeal–agar–
yeast) medium. Eclosing F1 individuals were distributed

into three replicate bottles (~200 flies per bottle) and

aged for 5 days; flies were then transferred to new bot-

tles and allowed to lay eggs for 3 h. For each line, we

collected 200 eggs and placed them into bottles contain-

ing 25 mL of standard medium. The positions of experi-

mental bottles were randomized once per day to avoid

potential effects caused by environmental heterogeneity

inside the incubator. Eclosing F2 adults were collected

every 6 h during the day and every 12 h overnight and

aged for 3 days before being used for phenotypic

assays.

Pre-adult life history (development time and egg-to-
adult survival)
To assess egg-to-adult development time and egg-to-

adult survival (proportion viability), we recorded

eclosion times for each individual and estimated devel-

opmental time in hours relative to the time point of

egg laying.

Chill coma recovery
Adults were aged for two days after eclosion prior to

the chill coma recovery assay. Twenty-four hours

before the start of the assay, we anesthetized flies with

CO2 and created new subsets of up to 20 flies per sex

and line in new vials with standard medium. To induce

chill coma, flies were transferred to empty vials without

anaesthesia and vials placed on ice at 0 °C for 3 h. Flies

were subsequently transferred to petri dishes at room

temperature and visually monitored until they woke

up. For each individual, the time elapsed between

removals from ice and waking was recorded; a fly was

deemed ‘awake’ as soon as it was able to stand on all

its legs. Flies from this assay were stored for triglyceride

measurements at �20 °C.

Oxidative stress resistance
Adults were aged for two days after eclosion and split

in two replicate subsets of 10 flies per sex and line 24 h

before the start of the assay. To induce oxidative stress,

flies were transferred to media-free vials containing fil-

ter paper saturated with 5 mL of 30 mM methyl violo-

gen (paraquat) (Sigma-Aldrich, Steinheim, Germany)

in 5% sucrose solution (Paaby & Schmidt, 2008). To

prevent evaporation, each vial was sealed with paraf-

ilm. We monitored mortality every two hours until ~
90% of all flies had died. We continued monitoring

flies in 8-h intervals until all flies were dead. Corpses

were preserved for morphometric measurements in

ethanol.

Triglyceride content
As starvation resistance is often correlated with lipid

content (Hoffmann & Harshman, 1999; Schmidt et al.,

2005; Goenaga et al., 2013), we measured whole-body

triglyceride (triacylglyceride [TAG]) content as a proxy.

For each sample, we generated homogenates using 2

pooled flies and estimated serum TAG levels in micro-

grams per fly from blanks and standards run with each

plate, using an enzymatic assay kit (Serum Triglyceride

Determination Kit; Sigma-Aldrich) (also see McGowan

et al., 1983; Tennessen et al., 2014).

Size-related traits and morphometric analysis
For morphometric measurements, we removed the first

right leg and right wing of each fly. Both body parts

were mounted on slides with CC/MountTM tissue

mounting medium (Sigma-Aldrich) and sealed with

cover slips. Images of legs and wings were taken with a

digital camera (Leica DFC 290, Leica Microsystems

GmbH, Wetzlar, Germany) attached to a stereo dissect-

ing microscope (Leica MZ125). Femur and tibia length

were measured as the distance between two sets of

landmarks with IMAGEJ (http://imagej.nih.gov/ij/;

v.1.47d), following the approach described in Debat

et al. (2011).

To minimize measurement error, we repeated all

measurements three times and used the average lengths

for statistical analysis. For wing measurements, we used

IMAGEJ (v.1.47d) to define two orientation landmarks at

the distal side of the humeral break at the posterior end

of the costal cell (C) and the notch at the sinus

between the alula (Al) and the axillary cell (Ax) of the

wing (Fig. S2). These landmarks were used to

infer semi-landmarks and to fit B-splines along the
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outline of the wing and along wing veins with WINGS4

and CPR software (van der Linde & Houle, 2009;

http://bio.fsu.edu/dhoule/wings.html). Males and

females were analysed separately, and landmark data

for every image were processed manually. We applied

multivariate outlier detection based on principal com-

ponents analysis (PCA) of landmark coordinates using

CPR and excluded extreme outliers caused by broken

wings or images of insufficient quality. As a proxy for

wing size, we used total wing area, based on spline

functions along the wing outline. Wing shape variation

was analysed using LORY software (http://bio.fsu.edu/

dhoule/lory.html), following the methods described by

M�arquez et al. (2012). We obtained point estimates of

shape deformation by locally evaluating Jacobian matri-

ces of interpolation functions at pseudo-landmarks

using LORY. Log (-log2) - transformed determinants of

Jacobian matrices contain information about local space

contractions or expansions relative to a reference con-

figuration and can be used as discrete summary vari-

ables that describe shape variation.

Deformations of individual configurations were anal-

ysed relative to Procrustes-transformed landmark coor-

dinates, averaged across all individuals for each sex. We

fitted elastic body splines (EBS) as interpolation

functions at 122 (females) and 124 (males) evenly dis-

tributed pseudolandmarks and calculated log-trans-

formed Jacobian determinants for each individual. To

visualize shape differences, we averaged Jacobian deter-

minants across all individuals for each pseudolandmark,

group (FI, FS and MS) and sex. To interpolate shape

values between landmarks, we performed ‘kriging’

(Gaussian process regression) using the R package KRIG-

ING and plotted wings by showing interpolated Jacobian

determinants for each group and sex using custom soft-

ware (available upon request from M.K). Finally, to

examine the variation in allometry between body parts

among the three karyotypic groups (FI, FS and MS),

we calculated the ratios of (1) femur length to tibia

length, (2) femur length vs. wing area and (3) tibia

length vs. wing area.

Statistical analysis

Statistical analyses were performed using JMP (SAS,

Raleigh, NC, USA; v.11.1.1) and R (https://www.r-pro-

ject.org/; v.3.2.1) software. Given that the In(3R)P is

absent in Maine, we could not analyse the data with a

fully factorial (orthogonal) model, testing the effects of

karyotype (standard vs. inverted), geography (Florida

vs. Maine) and the karyotype by geography interaction.

We thus created a compound grouping factor g with

three levels (‘Florida inverted’, FI; ‘Florida standard’,

FS; ‘Maine standard’, MS).

We first performed multivariate analysis of variance

(MANOVA) to test the effects of karyotype and geography

on multivariate phenotype (i.e. a linear combination of

all measured traits, except wing shape [due to its high

dimensionality] and size ratios), using the following

model: Yi = g + s + g 9 s, where Yi denotes the matrix

of measured individual traits averaged by line and sex

for the ith line, g is the nominal fixed grouping factor

(with levels FI, FS, MS), s denotes the fixed effect of

sex, and g 9 s denotes the interaction term. We also

used MANOVA to analyse the multivariate wing shape

based on multiple Jacobian determinants, separately for

each sex, using the following model: Yi = g + l(g), where

l(g) represents the effect of line nested within the group-

ing factor g.

Next, we analysed each trait (including size ratios;

see above) separately using a nested mixed-effects anal-

ysis of variance (ANOVA) model of the following form: yi
= g + s + g 9 s + l(g), where yi is the measured pheno-

type for the ith individual, g denotes the grouping fac-

tor, s denotes sex, and l(g) is the random effect of line

nested in g, estimated using restricted maximum likeli-

hood (REML). The random line effect was included to

account for variation among lines, but we were not pri-

marily interested in the variance component estimates

of this effect; we therefore do not report these esti-

mates.

To analyse the egg-to-adult survival (proportion via-

bility), we used the following ANOVA model: arcsine

square root (yi) = g + s + g 9 s, where yi is the proportion

of egg-to-adult survival of the ith line and g and s

denote the grouping factor and sex, respectively; note

that, in this analysis, ‘line’ was the lowest level of repli-

cation.

To tease apart the effects of karyotype and geogra-

phy, we performed post hoc tests using Tukey’s honest

significant difference (HSD) tests implemented in JMP,

whenever the effect of the grouping factor g was sig-

nificant; Tukey’s HSD method corrects for multiple

testing (i.e. the family-wise error rate). (For MANOVAs,

we used planned contrasts instead as post hoc tests

were not available in JMP.) We were specifically inter-

ested in using these tests to determine the effects of In

(3R)P karyotype; the effects of geography were only of

secondary interest. Significant differences between FI

and FS and between FI and MS, with the comparison

FS vs. MS being nonsignificant, imply a clear-cut effect

of karyotype, and that the standard homokaryons from

Florida and Maine have qualitatively identical effects.

A pattern where FI vs. FS, FI vs. MS, and FS vs. MS

are all significantly different implies that inverted vs.

standard karyotypes differ in their effect, but that the

two standard arrangement genotypes from Florida and

Maine differ as well. In this situation, the effects of

karyotype and geography cannot be completely sepa-

rated; nonetheless, the significant difference between

FI and FS indicates an effect of In(3R)P karyotype.

Under either scenario, it thus seems safe to conclude

that In(3R)P karyotype affects the phenotype of

interest.
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To compare our results for the differential effects of

In(3R)P karyotype on wing area in North America to

those from Australia (Queensland; Rako et al., 2006),

we calculated Cohen’s standardized effect size d

(Cohen, 1988) (1) from lines means and standard devi-

ations for the FI and FS lines from Florida (this study)

and (2) from approximate values of line means and

standard deviations of inverted and standard lines

obtained from Fig. 1 in Rako et al. (2006), using the

online tool WebPlotDigitizer (Rohatgi, 2015).

In contrast to size data, the assumptions of normality

and homoscedasticity underlying ANOVA were not

always fulfilled for other traits. As data for development

time, egg-to-adult survival, chill coma recovery and

oxidative stress resistance represent failure time or

time-to-event data that can violate ANOVA assumptions,

Fig. 1 The effects of In(3R)P on size-related traits. The left panel shows trait values averaged across line means for the three different

groups differing in In(3R)P karyotype (‘Florida inverted’, FI; ‘Florida standard’, FS; ‘Maine standard’, MS). Error bars show standard errors.

Letters above bars show the outcomes of Tukey’s HSD post hoc tests, carried out for each sex separately: groups that not containing the

same letter are significantly different (P < 0.05). The right panel shows average wing outlines and Jacobian determinants for each of the

three groups (FI, FS and MS). Jacobian determinants, interpolated with kriging, represent local expansion (positive values; red) or

contractions (negative values; blue) relative to the grand mean.
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we additionally analysed these traits using mixed-effects

Cox (proportional hazards) regression implemented in

the R package COXME (Therneau, 2012), following the

same model structure as defined above. These analyses

yielded outcomes that were qualitatively identical to

those based on ANOVA (not shown).

Results

Effects on multivariate phenotype

To account for potential phenotypic correlations among

traits, we performed MANOVA analysis of the multivariate

phenotype, that is a linear combination of all measured

traits (except wing shape; see below). Examination of

contrasts for the grouping factor g (FI vs. FS, FI vs. MS,

FS vs. MS) indicated that inverted In(3R)P and standard

arrangement differ in their effects on multivariate phe-

notype (Table S1; also see below and Table S3). The

karyotypic effect of In(3R)P was most clearly revealed

by the significant difference between the FI and FS

groups. Inspection of contrasts also suggested that geo-

graphical origin (Florida vs. Maine) might affect multi-

variate phenotype (Table S1). In particular, the

significant difference between FS and MS might be con-

sistent with an effect of geography; however, a nonmu-

tually exclusive alternative is that standard

arrangements from Florida and Maine differ genotypi-

cally in their effects upon phenotype.

Effects on pre-adult life history and stress
resistance

Pre-adult life-history traits (developmenst time and

egg-to-adult survival) were neither affected by In(3R)P

karyotype nor by geography (Table 2). Similarly, kary-

otype and geography had no measurable effect on any

of the stress resistance or physiological traits (chill coma

recovery time, oxidative stress resistance and triglyc-

eride content) (Table 2).

Effects on size, shape and allometry

In contrast to life history and stress resistance, inverted

and standard chromosomal arrangements differed in

their effects on size-related traits. Inverted and standard

lines from Florida differed significantly for both femur

and tibia length, suggesting an effect of In(3R)P on body

size (Table 2). The tibiae of inverted homokaryons were

significantly shorter than those of noninverted lines for

both sexes; the same effect was seen for femur length

but only in males (Fig. 1, Table 2). Although for both

traits standard arrangement lines from Maine did not

differ from the two Florida karyotypes (Fig. 1, Table 2),

we failed to identify a clear effect of geography when

comparing lines from Florida and Maine without

accounting for karyotype (not shown). These observa-

tions indicate that In(3R)P karyotype affects size, even

though geographical differences independent of kary-

otype might also make a contribution.

The notion that In(3R)P inverted vs. standard

arrangements have differential effects on size was

clearly confirmed by an analysis of variation in wing

size: for both sexes, Florida inverted lines had signifi-

cantly smaller wings than Florida standard and Maine

standard lines, whereas standard arrangement lines

from Florida and Maine did not differ from each other

(Fig. 1, Table 2). Despite different measurement meth-

ods and sample sizes, we found that the effect sizes for

wing size differences between inverted and standard

karyotypes from low-latitude populations in North

America (Florida; our data) and Australia (Queensland;

Rako et al., 2006) were large (i.e. Cohen’s d > 1.4) and

qualitatively very similar (Florida: d = 1.74; Queens-

land, Australia: d = 1.64) across both continents

(Table S2).

Table 2 Mixed-effects ANOVA tables for phenotypic analyses.

Trait

Factors

Group (g) Sex (s) g 9 s

Development time (h) F2,31 = 1.07 F1.3554 = 402.52*** F2,3554 = 0.06

Egg-to-adult survival (%) F2,62 = 2.88 F1,62 = 3.12 F2,62 = 0.577

Wing area (mm2) F2,29 = 10.24** F1,1075 = 3551.66*** F2,1075 = 0.89

Femur length (mm) F1, 29 = 6.3** F1,1053 = 525.04*** F2,1053 = 5.1**

Tibia length (mm) F1, 29 = 6.39** F1,1053 = 318.66*** F2,1053 = 0.23

Femur-to-tibia ratio F1, 28 = 0.9 F1,1059 = 0.9 F2,1059 = 0.9

Femur-to-wing area ratio F1, 29 = 7.72** F1,1056 = 2268*** F2,1056 = 2.58

Tibia-to-wing area ratio F1, 29 = 5.77** F1,1055 = 2119*** F2,1055 = 3.4*

Chill coma recovery (time to recovery, h) F1, 28 = 1.29 F1,1041 = 20.3*** F2,1040 = 9.09**

Oxidative stress resistance (age at death, h) F1, 29 = 0.56 F1,1183 = 0.65 F2,1183 = 0.03

Triglyceride content (lg) F1, 29 = 0.61 F1,488 = 264.76*** F2,488 = 2.68

*P < 0.05; **P < 0.01; ***P < 0.001. Significant among-group effects for the grouping factor g were analysed using Tukey’s HSD post hoc

tests; results of these tests are shown in Fig. 1. See Materials and methods and Results sections for further details.
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MANOVA applied to a linear combination of femur

length, tibia length and wing area, thus accounting for

potential intercorrelations among size-related traits, also

revealed significant among-group contrasts consistent

with effects of karyotype and geography on size

(Table S3).

We next analysed among-group variation in wing

shape. Contrasts from MANOVA performed on Jacobian

determinants of pseudolandmarks showed significant

effects of karyotype and geography on wing shape for

both sexes (Table S4). Florida inverted and Maine stan-

dard lines differed most strongly in their effects on wing

shape, with Florida standard lines being intermediate.

In both sexes, areas that showed largest variation for

wing shape were located at the proximal part of the

wing around the humeral break, around the terminal

end of the distal (L5) wing vein, and at the distal end

of the 1st posterior (1P) wing cell (Fig. 1, Fig. S2).

We also examined whether the three groups differ

in allometry by analysing among-group variation in

the size ratios of leg parts (femur length vs. tibia

length) and different body parts (femur length vs.

wing area, tibia length vs. wing area). While we failed

to detect effects for the ratio of femur: tibia length,

both group and sex affected the ratios of leg parts to

wing area, with the ratios being larger for males than

females (Table 2, Fig. S3). This suggests that in males

wing size is smaller relative to leg size. For both mea-

sures of leg: wing size, Florida inverted lines exhibited

larger ratios than Maine standard lines, irrespective of

sex. The effect of In(3R)P karyotype was most clear-cut

for the femur length: wing area ratio in males: Florida

inverted lines had a greater ratio than both Florida

and Maine standard lines, whereas standard lines from

Florida and Maine did not differ from each other

(Table 2, Fig. S3).

Together, our results indicate that In(3R)P affects

multiple aspects of body size, shape and allometry but

does not seem to have detectable effects upon pre-adult

life history, stress resistance (e.g. chill coma recovery,

oxidative stress resistance) and fat content.

Discussion

Chromosomal inversion polymorphisms are commonly

found in D. melanogaster populations (Lemeunier &

Aulard, 1992) but evidence for selection acting on them

is surprisingly scarce (Kapun et al., 2016). In support of

a role for selection, In(3R)Payne, a cosmopolitan inver-

sion that is clinally distributed along latitudinal gradi-

ents in Australia and North America, has been

associated with body size clines in Australian popula-

tions (Weeks et al., 2002; Rako et al., 2006; Kennington

et al., 2007). However, comparable phenotypic data

from other continents are not available, and whether

the observations from the Australian cline represent a

local phenomenon or a general pattern remains

unclear. Moreover, effects of this inversion on traits

other than size remain largely unknown (cf. Rako et al.,

2006). Here, we have investigated the phenotypic

effects of In(3R)P in populations originating from the

endpoints of the latitudinal cline running along the

North American east coast.

In(3R)P has parallel effects on size across the North
American and Australian clines

Our study provides the first evidence for an association

between In(3R)P and the body size cline (cf. Coyne &

Beecham, 1987) in North America. For the endpoints

of the Australian cline, Rako et al. (2006) reported that

flies carrying In(3R)P had smaller wings than standard

arrangement flies. Similarly, for several proxies of body

size, we found that inverted flies from the North Amer-

ican cline are smaller than flies carrying the standard

chromosomal arrangement. Our findings thus mirror

previous observations from the Australian cline (Weeks

et al., 2002; Rako et al., 2006; Kennington et al., 2007)

and suggest that In(3R)P has parallel – very likely adap-

tive – effects on body size along both clinal gradients

(cf. Kapun et al., 2016).

Another size trait known to exhibit clinal variation

on multiple continents – and thus likely to be subject

to spatially varying selection – is wing ‘loading’ (the

intercept of the relationship between body and wing

size) (Azevedo et al., 1998; Gilchrist et al., 2000).

Stalker (1980), for example, reasoned that larger wings

relative to body size (i.e. low wing loading) might result

in increased lift and would thus compensate for lower

beat frequencies at lower temperatures experienced at

higher latitudes. Perhaps consistent with this prediction,

we observed lowest wing loading for standard arrange-

ment lines from Maine, intermediate loading in stan-

dard arrangement lines from Florida and highest

loading in inverted lines from Florida. It is noteworthy

in this context that QTL mapping has identified a major

peak for male flight duration within the region spanned

by In(3R)P (Luckinbill et al., 2005; see discussion in

Rako et al., 2006).

We also found karyotypic and geographical variation

in wing shape. Inverted lines from Florida and standard

arrangement lines from Maine differed most strongly in

wing shape, whereas standard lines from Florida

showed an intermediate pattern. Consistent with obser-

vations by Gilchrist et al. (2000), who investigated wing

shape variation along size clines from three continents

(albeit without examining In(3R)P), we observed large

shape deformations in the anterior distal region

between the medial and cubital vein. Moreover, we

identified large shape differences at the discal cell and

the 3rd posterior cell along the distal vein (L5), indicat-

ing shape expansion in Florida inverted lines but shape

contraction in Maine standard lines. In contrast, shape

differentiation was minimal along the leading edge of
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the wing. This is in good agreement with kinetic analy-

ses of wing aerodynamics: the anterior–posterior wing

region might potentially be functionally constrained as

it maintains the rotation axis close to the leading edge

(Dickinson et al., 1999; Gilchrist et al., 2000). However,

the evolutionary mechanisms that maintain variation

in wing shape remain poorly understood; while wing

size is subjected to directional selection, wing shape

seems to be the result of optimizing (stabilizing) selec-

tion (potentially due to selection for ‘canalization’

[Flatt, 2005; ]) rather than directional selection (Gilchr-

ist & Partridge, 2001). Additional data will be required

to unravel the potentially adaptive effects of In(3R)P on

variation in wing shape.

In(3R)P and the genetic basis of size and shape

Further support for potentially causal links between In

(3R)P and size-related traits comes from studies of the

genetic basis of size and shape variation in Drosophila

(see de Jong & Bochdanovits, 2003; Mirth & Shingle-

ton, 2012; and references therein). Gockel et al. (2002)

and Calboli et al. (2003), for example, used QTL analy-

sis to map genetic variation associated with thorax

length and wing size and found that the third chromo-

some accounts for a major proportion of size variation

between the endpoints of the Australian and South

American clines. Weeks et al. (2002) identified three

indel (insertion deletion) and microsatellite polymor-

phisms within the region spanned by In(3R)P that are

strongly associated with body size variation among Aus-

tralian populations. Similarly, Kennington et al. (2007)

found that microsatellite alleles associated with

decreased wing size are in strong LD with In(3R)P.

Moreover, the gene Dca (Drosophila cold acclimation; also

known as smp-30), which is located close to the proxi-

mal breakpoint of In(3R)P and likely associated with

this inversion through hitchhiking, accounts for

approximately 5–10% of natural wing size variation in

Australian populations (McKechnie et al., 2010), and a

clinal promoter polymorphism in this gene has been

shown to decrease wing size (McKechnie et al., 2010;

Lee et al., 2011).

In agreement with these findings, the region spanned

by In(3R)P harbours several genes known to be impor-

tant for growth regulation and the determination of

body size (de Jong & Bochdanovits, 2003; Fabian et al.,

2012; Kapun et al., 2016; see flybase.org for details of

gene function and original source references). For

example, In(3R)P contains multiple loci involved in

insulin/insulin-like growth factor signalling (IIS), a

pathway that plays a major role in regulating growth,

size and shape, including InR (insulin-like receptor), Tsc1

(tuberous sclerosis complex 1) and Pi3K (Pi3K92E, phospho-

inositide 3-kinase at 92E; also known as Dp110) (Brogiolo

et al., 2001; de Jong & Bochdanovits, 2003; Oldham &

Hafen, 2003; Edgar, 2006; Shingleton et al., 2007; Mirth

& Shingleton, 2012; N€assel et al., 2015; also see below).

Importantly, InR harbours many alleles that are

strongly clinal along the North American east coast

(Fabian et al., 2012; Paaby et al., 2014); indeed, a natu-

rally occurring, clinal indel polymorphism in InR (albeit

apparently not in LD with In(3R)P) affects body size in

North American populations (Paaby et al., 2014).

Whole-genome analyses of clinal variation associated

with In(3R)P have also uncovered candidates with

known effects on growth, including clinally varying

alleles in InR, Tsc1, Hmgcr (hydroxymethlyglutaryl coenzyme

A reductase, known to interact with IIS), Orct2 (organic

cation transporter 2 or calder�on, involved in IIS as well)

and Stat92E (signal-transducer and activator of transcription

protein at 92E, a transcription factor involved in JAK/

STAT signalling) (Fabian et al., 2012; Kapun et al.,

2016). Several of these genes, including InR, Orct2 and

Stat92E, also vary clinally along the Australian cline

(Kolaczkowski et al., 2011).

Two other interesting candidates are hh (hedgehog)

and Dad (Daughters against DPP), both of which harbour

clinal alleles associated with In(3R)P in North America

(Fabian et al., 2012; Kapun et al., 2016). The hh locus

encodes a signalling protein, which forms gradients in

the developing wing and controls the placement and

spacing of the longitudinal wing veins L3 and L4 (Blair,

2007; Matamoro-Vidal et al., 2015). Perhaps consistent

with the involvement of this gene, we identified strong

variation in the spacing of these veins among kary-

otypes (see Fig. 1). Dad encodes a negative regulator of

Dpp (Decapentaplegic), a morphogen that modulates the

placement of the L2 and L5 wing veins (Tsuneizumi

et al., 1997; Matamoro-Vidal et al., 2015); notably, we

observed strong shape variation among karyotypes

within the 3rd posterior cell along the L5 vein.

Thus, multiple lines of evidence suggest that In(3R)P

harbours clinal variants in several major genes known

to affect growth, size and shape. Although the causative

effects of In(3R)P-linked alleles at these loci on size and

shape remain unknown, these variants represent

promising candidates for functional testing (cf. Kapun

et al., 2016).

In(3R)P has no measurable effects on pre-adult life
history or stress resistance

Little is known about whether In(3R)P affects traits

other than size. For example, with regard to Australian

populations, a study by Anderson et al. (2003) reported

an association between cold resistance and In(3R)P, and

McColl et al. (1996) found an association between the

response to thermal selection and the hsr-omega and

hsp68 genes, both located in the region spanned by In

(3R)P (Anderson et al., 2003). However, Rako et al.

(2006), using a more direct genetic association

approach based on In(3R)P homokaryon lines, failed to

find an effect of In(3R)P on cold resistance. These find-
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ings are in good agreement with ours: we also did not

detect any measurable effects of In(3R)P on cold resis-

tance. Although several genes known to be involved in

cold resistance are located within the region of In(3R)P

(Anderson et al., 2003), it is unknown whether alleles

at these loci are in LD with this inversion (cf. Weeks

et al., 2002; Rako et al., 2006).

Rako et al. (2006) also found no effects of In(3R)P on

development time for the Australian cline, an observa-

tion that is again consistent with ours. Given the usu-

ally tight physiological and genetic correlations

between development time and body size (e.g. in artifi-

cial selection or experimental evolution experiments;

see de Jong & Bochdanovits, 2003; and references

therein), it is perhaps surprising that In(3R)P does not

affect development time. However, clinal patterns for

this trait often seem to be weak (James & Partridge,

1995) or absent (Fabian et al., 2015); in line with this,

development time and body size do not seem to be

associated among populations along the Australian cline

(James et al., 1995). This raises the interesting but

unresolved question of how, in terms of physiological

mechanisms, In(3R)P affects size.

We also measured several traits that were not assayed

by Rako et al. (2006), including egg-to-adult survival,

oxidative stress resistance and triglyceride content;

however, again, we could not find any measurable

effects of In(3R)P on these traits. For the South Ameri-

can cline, Robinson et al. (2000) also failed to find a

cline for fat content (and starvation resistance), albeit

without examining In(3R)P. Together with the previous

findings from Australia, our results therefore suggest

that In(3R)P might have quite specific effects on size-

related – but not necessarily other fitness-related –
traits; yet, two important caveats remain. First, this

inversion might have subtle effects on the non-signifi-

cant traits we have measured but our statistical power

for finding these effects was perhaps insufficient. Sec-

ondly, there are other major fitness-related traits

known to be clinal (e.g. ovariole number, fecundity,

lifespan, reproductive diapause) that we have not mea-

sured as a function of In(3R)P karyotype.

The adaptive significance of In(3R)P

The In(3R)P polymorphism exhibits steep, persistent lat-

itudinal frequency clines between subtropical/tropical

and temperate, seasonal environments on multiple con-

tinents (e.g. North America, Australia, Indian subconti-

nent, Japan), but – intriguingly – does not seem to be

clinal within the tropics proper (e.g. sub-Saharan

Africa, South-East Asia) (Aulard et al., 2002; Glinka

et al., 2005). This strongly suggests that the inverted

arrangement is selectively favoured in warm, low-lati-

tude habitats, whereas the standard arrangement is

favoured in temperate, seasonal and high-latitude

habitats.

Recent findings indeed support the notion that lati-

tudinal clines of In(3R)P are maintained by spatially

varying selection: in North America, the latitudinal

cline of In(3R)P has remained stable for > 40 years,

deviates from neutral expectation and is maintained

independent of isolation by distance and admixture

(Kapun et al., 2016). Moreover, the majority (> 90%)

of the most strongly clinally varying single-nucleotide

polymorphisms (SNPs) contained in In(3R)P are

shared between the North American and Australian

clines, consistent with parallel effects of spatially

varying selection across both continents (Kapun et al.,

2016).

Interestingly, in areas where In(3R)P is known to be

clinal (e.g. North America, Australia, India, Japan),

body size also exhibits latitudinal clines (see Introduc-

tion). Together with the observation that In(3R)P is

associated with body size in both Australia and North

America, this suggests that In(3R)P clines might be dri-

ven by selection on body size. While the selective forces

shaping body size clines still remain largely unknown

(Partridge & Coyne, 1997), thermal experimental evo-

lution experiments in Drosophila have shown that adap-

tation to warm vs. cool conditions favours small vs.

large size (Partridge et al., 1994). Thus, temperature

might represent the most parsimonious selective agent

underlying latitudinal size clines. As hypothesized by

James & Partridge (1995), a possible reason for the

existence of a temperature–latitude–size correlation in

Drosophila could be that larval food resources might be

more ephemeral in the tropical climates due to

increased competition and that this would cause selec-

tion to favour rapid development and thus smaller

adult size. In temperate habitats, in contrast, resources

might be more stable and selection might thus favour

longer development time and larger adult size (James &

Partridge, 1995). Even though we did not find an effect

of In(3R)P on development time, the fact that In(3R)P

causes smaller size (through as of yet unknown devel-

opmental effects) and that its frequency is much more

prevalent in warmer areas might be consistent with

such a scenario.

The idea that inversions such as In(3R)P might be

shaped by climatic adaptation is underscored by several

observations. First, in North America, In(3R)P frequency

is strongly positively associated with multiple measures

of temperature and precipitation, whereas temperature

dispersion (range) and seasonality seem to favour

higher frequencies of the standard chromosomal

arrangement (Kapun et al., 2016; also see Knibb, 1982).

Second, along the Australian east coast, the latitudinal

cline of In(3R)P has shifted in position (intercept) across

a time span of 20 years in response to recent climate

change; as no single climatic factor could fully account

for this pattern, it is likely that a combination of cli-

matic variables, not temperature alone, has driven this

shift (Umina et al., 2005). Third, in support of climatic
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selection, we have previously found in an experimental

evolution experiment that In(3R)Mo and In(3R)C, two

inversions that partly overlap with In(3R)P, were selec-

tively favoured in replicate populations exposed to cold

vs. warm temperatures, respectively (Kapun et al.,

2014). However, an important caveat is that in the

same experiment In(3R)P itself was rapidly lost, from an

initial frequency of ~20%, in both cold and warm

environments. Thus, together with the findings men-

tioned above, unknown selective factors other than –
or in addition to – temperature must play a major role

in maintaining this inversion. It will clearly be of great

interest – as well as a major challenge – to determine

the selective factors affecting In(3R)P in future work.

Conclusions

Here, we have demonstrated that the chromosomal

inversion In(3R)P affects several size-related traits in

North American populations of D. melanogaster.

Remarkably, these effects go in the same direction –
and are of similar magnitude (e.g. see Table S2) – as

those that have been previously reported for the Aus-

tralian cline (Rako et al., 2006). In conjunction with

the Australian data, our results thus suggest a major

role of In(3R)P in shaping clinal size variation across

both continents, thereby considerably strengthening the

case for spatially varying selection acting on body size

via genetic variants contained within this inversion.

However, the effects we have identified here remain

correlational; future efforts will be required to dissect

the functional links between size and the causative

genetic variants harboured by this inversion.
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Supporting Information 

Supporting Figure Legends 

Figure S1. Crossing scheme for isolating isochromosomal 3R lines. Wild-type males were 

crossed to females of a double balancer stock (SMB6; TM6B), marked with a dominant tubby 

(Tb1) and a recessive ebony (e1) mutation. F1 pupae exhibiting Tb were selected and 

backcrossed to the balancer. In the next generation, pupae showing Tb but not the ebony 

phenotype were selected and allowed to interbreed. Finally, wild-type pupae were selected to 

clear the balancer chromosome, resulting in isochromosomal 3R homokaryon isolates. See 

Materials and Methods section for further details. 

Figure S2. Details of wing morphology. Designations and locations of wing cells in red (A: 

Anal cell, Al: Alula, Ax: Axillary cell, B1: Basal cell 1, B2: Basal cell 2, C: Costal cell, D: 

Distal cell, M: marginal cell, 1P: 1st posterior cell, 2P: 2nd posterior cell, 3P: 3rd posterior cell, 

S: Submarginal cell) and wing veins in white (a-cv: Anterior cross-vein, L1: Vein L1, L2: 

Radial vein, L3: Medial vein, L4: Cubital vein, L5: Distal vein, L6: Vein L6, p-cv: Posterior 

cross-vein), following the nomenclature of Chyb & Gompel (2013). Blue arrows indicate 

landmarks used for fitting spline functions with Wings4. See Materials and Methods section 

for further details. 

Figure S3. Effects of In(3R)P on allometry. Size ratios of femur/tibia, femur/wing and 

wing/tibia, averaged across line means for the groups differing in In(3R)P karyotype: “Florida 

inverted” (FI), “Florida standard” (FS) and “Maine standard” (MS). Error bars show standard 

errors. Letters above bars indicate differences according to Tukey HSD post-hoc tests, carried 

out for each sex separately: groups not containing the same letters are significantly different 

(p<0.05). See Materials and Methods and Results section for further details. 
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Table S1. MANOVA of multivariate phenotype based on line averages of all measured traits 

(except wing shape and size ratios). Contrasts between the three groups (FI versus FS; FI 

versus MS; FS versus MS) revealed significant differences, indicating that both karyotype and 

geography have an effect on multivariate phenotype. ** p < 0.01; *** p < 0.001. 

Factors Wilk's λ F ratio 

group (g) 0.39 F16,84= 3.13** 

sex (s) - F8,42= 54.3***

g × s 0.82 F16,84= 0.58
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Table S2. Cohen’s standardized effect sizes d for the differential effects of the two In(3R)P 

karyotypes (inverted versus standard arrangement) on wing size for Queensland (Australia; 

data from Rako et al., 2006) and Florida (our study), calculated based on line means and 

standard deviations. See the Materials and Methods and Results sections for further details. 

Australia Mean SD 

Queensland inverted 2.72 0.03 

Queensland standard 2.77 0.02 

Cohen's d 1.65 

North America Mean SD 

Florida inverted (FI) 1.71 0.06 

Florida standard (FS) 1.82 0.06 

Cohen's d 1.74 
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Table S3. MANOVA of multivariate size phenotype (i.e., a linear combination of wing area, 

femur length and tibia length). Contrasts between the three groups (FI versus FS; FI versus 

MS; FS versus MS) revealed significant differences, indicating that both karyotype and 

geography have an effect on multivariate wing shape phenotype. *** p < 0.001. 

Factors Wilk's λ F ratio 

group 0.509 F6,96= 6.42*** 

sex F3,48= 142.9*** 

group x sex 0.96 F6,96=0.36 
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Table S4. MANOVA of multivariate wing shape, based on Jacobian determinants of 122 

(females) and 124 (males) pseudo-landmarks. Contrasts between the three groups (FI versus 

FS; FI versus MS; FS versus MS) revealed significant differences, indicating that both 

karyotype and geography have an effect on multivariate wing shape phenotype. *** p < 

0.001. 

Sex Factors Wilk's λ F ratio 

Female group (g) 0.23 F244,832= 3.67*** 

line(group) (l(g)) 1.9 x 10-8 F3538,12059= 3.1*** 

Male group (g) 0.23 F248,760= 3.26*** 

line(group) (l(g)) 3.9 x 10-8 F3472,10680= 2.67*** 
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Figure S2 
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Figure S3 
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Abstract 

In many organisms, chromosomal inversions contribute to local adaptation across clinal (e.g., 

latitudinal) gradients, but how they affect phenotypes – especially fitness-related traits – is 

poorly understood. We and others have previously shown that a clinally varying inversion 

polymorphism in Drosophila melanogaster, In(3R)Payne, underpins body size clines along 

the North American and Australian east coasts but failed to find effects on other traits. Here, 

we examine whether across the North American cline the In(3R)P polymorphism contributes 

to clinal variation in survival traits (lifespan, survival upon starvation, and survival upon cold 

shock). To do so, we used homokaryon lines, either carrying the inverted or the uninverted 

chromosomal arrangement, isolated from populations that approximate the endpoints of the 

North American cline (Florida, Maine) and phenotyped flies at two growth temperatures 

(18°C, 25°C). Across both temperatures, and consistent with clinal expectations, high-latitude 

flies from Maine overall lived longer and were more stress resistant than low-latitude flies 

from Florida. Interestingly, the latitudinal clinality of survival traits was – at least partly – 

explained by the clinal distribution of In(3R)P: karyotypes carrying the inverted segment 

tended to be shorter-lived and less stress resistant than karyotypes with the uninverted 

arrangement. Moreover, survival traits were affected by karyotype by temperature 

interactions. We conclude that In(3R)P – beyond its effects on body size – contributes to 

latitudinal clines in survival traits. Yet, given that In(3R)P has a mostly negative impact on 

fitness components, it remains unclear how spatially varying selection maintains this clinal 

polymorphism. 

Keywords: Inversions, clines, adaptation, temperature, survival, D. melanogaster. 
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Introduction 

Since the pioneering work of Dobzhansky, many lines of evidence suggest that chromosomal 

inversion polymorphisms play a major role in climatic adaptation to altitudinal and latitudinal 

gradients, so-called clines (e.g., Dobzhansky, 1937; 1943; 1947a, b; Wright & Dobzhansky, 

1946; Leumeunier & Aulard, 1992; Hoffmann et al., 2004; Kirkpatrick & Barton, 2006; 

Hoffmann & Rieseberg, 2008; Schaeffer, 2008; Kirkpatrick & Kern, 2012; Kapun et al., 

2016a; and references therein). However, while inversions have been statistically associated 

with many traits (e.g., Sperlich & Pfriem, 1986; Etges, 1989; De Jong & Bochdanovits, 2003; 

Hoffmann et al., 2004; Lowry & Willis, 2010), still little is known about associations between 

inversions and fitness-related traits, thus limiting our understanding of how these adaptive 

polymorphisms are maintained by selection (e.g., Hoffmann & Rieseberg, 2008).  

 The commonly observed latitudinal frequency clines of inversion polymorphisms in the 

Drosophila melanogaster system, often observed in a parallel fashion on multiple continents, 

provide an excellent opportunity to address this problem (e.g., Mettler et al., 1977; Knibb et 

al., 1981; Knibb, 1982; Leumeunier & Aulard, 1992; De Jong & Bochdanovits, 2003; 

Hoffmann & Weeks, 2007). For example, a large (~8 Mb), cosmopolitan inversion 

polymorphism on the right arm of the third chromosome, In(3R)Payne (also called In(3R)P), 

varies clinally along latitudinal gradients on several continents, most prominently along the 

Australian and North American east coasts (e.g., Mettler et al., 1977; Inoue & Watanabe, 

1979; Stalker, 1980; Knibb et al., 1981; Knibb, 1982; Das & Singh, 1991; Anderson et al. 

2005; Matzkin et al., 2005; Fabian et al., 2012; Kapun et al., 2014; Rane et al., 2015; Kapun 

et al., 2016a). On all continents or subcontinents examined so far, the inverted karyotype of 

In(3R)P exhibits intermediate-to-high frequencies at low latitudes (i.e., in subtropical to 

tropical climates) but is rare or absent at high latitudes (i.e., in temperate, seasonal climates) 

(see references above). Along the North American east coast, for example, the inverted 
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arrangement has a frequency of ~50% in Florida but its frequency decreases along the cline to 

~0% in Maine (e.g., Mettler et al., 1977; Knibb, 1982; Fabian et al., 2012; Kapun et al., 2014, 

2016a). Recent population genetic evidence suggests that the North American cline in 

In(3R)P is adaptively maintained by spatially varying (clinal) selection, independent of 

admixture or population structure (Kapun et al., 2016a). 

 Interestingly, several major fitness-related traits exhibit similar clinal gradients across 

latitude (e.g., De Jong & Bochdanovits, 2003; Hoffmann & Weeks, 2007; Adrion et al., 2015; 

and references therein), and it is thus tempting to speculate that the clinal behavior of In(3R)P 

(or that of other clinally varying inversions) might causally underlie – or contribute to – these 

life-history clines. For example, as compared to flies from low latitude, high-latitude flies 

tend to be characterized by increased body size, reduced wing loading, reduced fecundity, 

prolonged lifespan, increased resistance to starvation, cold and heat stress, and the plastic 

ability to undergo reproductive dormancy in response to cool temperature and short 

photoperiod (e.g., Coyne & Beecham, 1987; Azevedo et al., 1998; de Jong & Bochdanovits, 

2003; Hoffmann et al., 2005; Schmidt et al., 2005a, b; Schmidt & Paaby, 2008; Fabian et al., 

2015; Mathur & Schmidt, 2017). Yet, whether clinally varying inversion polymorphisms 

contribute to these phenotypic clines is largely unclear (e.g., De Jong & Bochdanovits, 2003; 

Rako et al., 2006; Hoffmann et al., 2004; Hoffmann & Weeks, 2007; Hoffmann & Rieseberg, 

2008; Kapun et al., 2016a, b; and discussion therein). 

 Consistent with a contribution of In(3R)P to clinal trait differentiation, we and others have 

previously found that the latitudinal cline in this inversion explains – at least partly – the body 

size cline along the Australian (Weeks et al., 2002; Rako et al., 2006; Kennington et al., 

2007) and North American (Kapun et al., 2016b) east coasts. Yet, little is known about 

whether In(3R)P also affects other traits. In Australian populations, for example, Anderson et 

al. (2003) found an association between susceptibility to cold and In(3R)P, but a subsequent 
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study by Rako et al. (2006) failed to find a clear effect. Similarly, for the North American 

cline, we also failed to detect an association between In(3R)P and chill coma recovery (Kapun 

et al., 2016b). Moreover, neither study found an effect of In(3R)P on developmental time 

(Rako et al., 2006; Kapun et al., 2016b). Thus, whether In(3R)P contributes to clinal variation 

in fitness-related traits other than body size is not known. Although it is possible that In(3R)P 

predominantly – or exclusively – affects body size and not any other traits (cf. Kapun et al., 

2016b), this seems rather unlikely, for two reasons: (1) the majority of significantly clinally 

varying SNPs in the genome reside in the region spanned by this inversion, and (2) many of 

these clinal SNPs within In(3R)P are located in genes that are known from studies of mutants 

and transgenes to affect life-history traits (Kapun et al., 2016a; also see Fabian et al., 2012).  

 Here, we examine whether the clinal In(3R)P polymorphism affects three major survival 

traits in North American populations of D. melanogaster: adult lifespan, survival upon 

starvation, and cold resistance (measured as survival upon cold shock). All three traits are 

known to vary clinally in North America as a function of latitude and/or high-latitude vs. low-

latitude genotypes (e.g., Schmidt et al., 2000; Schmidt et al., 2005a, b; Schmidt & Paaby, 

2008; Paaby et al., 2014; Mathur & Schmidt, 2017). In support of previous results, we find 

that high-latitude flies from Maine overall live longer and are more stress resistant than low-

latitude flies from Florida, thus confirming the idea that selection at high latitude favors 

genotypes and phenotypes with improved survival and somatic maintenance (Paaby & 

Schmidt, 2009; Flatt et al., 2013; Paaby et al., 2014). Interestingly, we find that the clines in 

these traits are, at least partly, driven by the clinal frequency gradient in In(3R)P: on average 

flies carrying the In(3R)P inversion from Florida live shorter and are less stress resistant than 

flies from Florida or Maine which possess the uninverted chromosomal segment.  
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Materials and methods 

Fly stocks and maintenance 

We isolated third-chromosome isochromosomal (homokaryon) lines, either carrying two 

copies of the inverted In(3R)P arrangement or two copies of the uninverted (standard) 

arrangement, from two areas approximating the endpoints of the North American cline (low 

latitude: Florida [Homestead and Jacksonville]; and high latitude: Maine [Bowdoin]), as 

previously described (see Kapun et al., 2016b for details). Across the cline In(3R)P has a 

frequency of ~50% in Florida but is absent in Maine, so that flies from high-latitude 

populations are fixed for the uninverted arrangement (e.g., Mettler et al., 1977; Knibb, 1982; 

Fabian et al., 2012; Kapun et al., 2014,  2016a, b). Wild-type chromosomes were isogenized 

using a compound balancer for the second and third chromosomes (SM6b; TM6B; 

Bloomington Drosophila Stock Center [BDSC] stock #5687) in an ebony (e1) mutant 

background (cf. Kapun et al., 2016b for details). From Florida, where both the inverted and 

uninverted segments segregate, we isolated 9 isochromosomal lines carrying In(3R)P 

(‘Florida inverted’, FI) and 9 lines possessing the standard arrangement (‘Florida standard’, 

FS); from Maine, where the inverted segment is absent, we isolated 9 lines with the standard 

arrangement only (‘Maine standard’, MS). Prior to phenotyping assays, which were 

performed at two growth temperatures (see below), lines were kept under common garden 

conditions for three generations (~21°C, 10h:14h light:dark [LD], ~50% relative air humidity 

[RH]).  

 

Phenotype assays 

We measured three survival traits on the homokaryon lines: lifespan, survival upon starvation, 

and survival upon cold shock (see below). Assays were performed at two growth temperatures 

(18°C or 25°C), at 12:12h LD and 60% RH, on a cornmeal/sugar/yeast/agar diet. To obtain 
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(F1) flies for phenotypic assays, we let ~20-25 females and males mate and lay eggs into vials 

containing 8 mL of medium at room temperature (n = 46 vials for each of the 27 lines [= 3 

karyotypes ⋅ 9 lines]; total = 1242 vials). Depending on their fecundity, females in each vial 

were allowed to lay eggs for up to ~24 hours; egg density was inspected regularly by eye and 

adjusted to ~40-50 eggs per vial. Vials were then transferred to their respective developmental 

temperature treatment (i.e., 18°C vs. 25°C; 23 replicate vials per temperature and 

isochromosomal line).  

 For lifespan assays, we collected cohorts of newly eclosed adult females and males within 

a 24-h period. Flies were sexed and counted under light CO2 anesthesia and transferred to 

demography cages (see Tatar et al., 2001 for details of cage design) 24 hours after eclosion. 

Each cage was initiated with 75 females and 75 males. We set up 2 replicate cages per line 

and temperature (n = 2 cages ⋅ 27 lines ⋅ 2 temperatures = 108 cages; 108 cages ⋅ 150 flies = 

16,200 flies in total). Every second day at 25°C and every third day at 18°C, we changed food 

vials and removed and recorded dead flies until all flies in the experiment had died. Flies that 

got stuck to the food medium were censored from analysis. 

 For assays of survival upon starvation, we used 5-7 day-old mated individuals. Eclosing 

adults were collected in 48-hour cohorts and maintained in mixed-sex groups for 4 days in 

their respective thermal treatments. 24 hours prior to initiating the assay, flies were sexed 

under light CO2 anesthesia and transferred to fresh vials containing 10 individuals per vial and 

sex. On the day of the experiment, flies were transferred to food-free vials, containing 0.5% 

agar/water solution. For each line, temperature and sex, we used 5 replicate vials (n = 5 vials ⋅ 

27 lines ⋅ 2 temperatures ⋅ 2 sexes = 540 vials, each with 10 flies; total = 5400 flies). Age at 

death was scored in 8-hour intervals until all flies had died. 

 We used an identical experimental design for measuring survival upon cold shock; again, 

we used 5 replicate vials per group (n = 5 vials ⋅ 27 lines ⋅ 2 temperatures ⋅ 2 sexes = 540 
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vials, each with 10 flies; total = 5400 flies). On the day of the experiment, 5-7 day-old mated 

flies were transferred to media-free vials and the vials dipped immediately into -4°C cold, 

salted ice water for 90 minutes. (Depending on acclimation, several hours of exposure to 

temperatures between -2ºC and -5ºC typically result in >50% mortality; cf. Hoffmann, 2010.) 

After cold shock, flies were transferred to petri dishes (60 ⋅ 15 mm) with 2 mL fly food in one 

corner and left at room temperature for recovery. Survival was scored after 24 hours; flies that 

were alive after 24 hours were censored from analysis. 

 

Statistical analysis 

The primary interest of our analysis was to determine the effects of In(3R)P karyotype 

(inverted vs. uninverted arrangement) upon survival traits; effects of clinality / geography 

(i.e., Florida vs. Maine) were of secondary interest. However, the biology of this system is 

such that the effects of karyotype vs. geography cannot be completely disentangled: since 

In(3R)P is polymorphic (with a ~50:50% frequency of inverted vs. standard arrangement) in 

Florida but not in Maine, where only the uninverted arrangement is present (i.e., the 

frequency of the inversion is ~0%), one cannot use a fully factorial, orthogonal design to 

analyze data for this inversion polymorphism. Nonetheless, significant differences between FI 

and FS and between FI and MS, with no difference between FS and MS, imply a clear main 

effect of In(3R)P karyotype. On the other hand, a situation in which all three pairwise 

comparisons (FI vs. FS; FI vs. MS; FS vs. MS) are different implies that inverted vs. standard 

arrangements differ in their effects, yet that the two uninverted arrangement types from 

Florida and Maine differ too, perhaps due to an effect of geography (Florida vs. Maine). In 

this scenario, it is not possible to clearly separate the effects of karyotype vs. geography; 

nevertheless, the significant difference between FI and FS indicates an effect of In(3R)P 

karyotype. In both cases, it seems thus safe to infer that In(3R)P karyotype affects the trait of 
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interest. Lastly, a scenario in which FI = FS but where both FI and FS are significantly 

different from MS might imply – assuming parsimony – a main effect of geography / clinal 

differentiation independent of In(3R)P karyotype. 

 Due to the constraint that the effects of karyotype and geography must be analyzed jointly, 

we created a compound grouping factor K ('Karyotype', partly confounded by geography) 

with three levels ('Florida inverted', FI; 'Florida standard', FS; and 'Maine standard', MS) and 

used pairwise comparisons between the levels of K in order to infer the effects of karyotype, 

geography or both (see below). The second factor that entered our analyses was temperature T 

(18°C vs. 25°C). We analyzed our survival (mortality) data in two ways. First, we used Cox 

(proportional hazards) regression to fit the fixed effects of K, T and the interaction K ⋅ T. This 

'global' approach gave us main effects for K (averaged across temperatures) and T (averaged 

across levels of K) and indicated whether – importantly – there are significant K ⋅ T (i.e., 

genotype by environment) interactions. Second, to dissect the source of significance of the 

effects of K and/or K ⋅ T, we employed Kaplan-Meier survival analysis with generalized 

Wilcoxon (χ2) tests to perform pairwise comparisons (i.e., FI vs. FS; FI vs. MS; FS vs. MS) 

for each temperature and sex separately, followed by Bonferroni correction for multiple 

testing. These pairwise comparisons thus serve as post-hoc tests for the Cox models. 

Analyses were performed in JMP v.11.2.0 (SAS, Raleigh, NC, USA). 

Results 

In(3R)P shortens lifespan; high-latitude flies live longer than low-latitude flies 

We first analyzed the effects of 'Karyotype' and temperature and their interaction on lifespan 

(Fig. 1, Fig. S1). For both females and males, Cox regression revealed effects of 'Karyotype' 

(likelihood ratio test [LRT]; females: χ2
(2) = 387.8, males: χ2

(2) = 359.0, both P < 0.0001), 

temperature T (females: χ2
(1) = 4301.9, males: χ2

(1) = 2893.4, both P < 0.0001) and the K ⋅ T 

173



Chapter 6 

interaction (females: χ2
(2) = 19.3, males: χ2

(2) = 31.2, both P < 0.0001). This analysis, together 

with pairwise generalized Wilcoxon χ2 tests [GWT], showed that Florida inverted (FI) flies 

lived shorter than both Florida standard (FS) and Maine standard (MS) flies (Fig. 1, Table 1, 

Fig. S1), implying a clear effect of In(3R)P karyotype on adult survival. Moreover, at 18°C – 

but not at 25°C – FS flies lived shorter than MS flies (Fig. 1, Table 1, Fig. S1). These results 

indicate that both karyotype (inverted flies live shorter than uninverted flies from both Florida 

and Maine) and geography (at least at 18°C, flies from Maine live longer than both inverted 

and uninverted flies from Florida) affect lifespan (Fig. 1, Table 1, Fig. S1). With regard to 

temperature, flies lived longer at 18°C than at 25°C (see significant effect of T in Cox 

regression above; and GWT, females: χ2
(1) = 3490.4, males: χ2

(1) = 2262.5, both P < 0.0001) 

(Fig. 1, Fig. S1). At 18°C females lived longer than males, but we failed to find such a sex 

difference at 25°C (GWT, 18°C: χ2
(1) = 115.7, P < 0.0001, 25°C: χ2

(1) = 0.122, P = 0.73) (Fig. 

1, Fig. S1). In summary, the In(3R)P inversion negatively impacts adult survival as compared 

to the uninverted arrangement, and lifespan exhibits clinal differentiation, with high-latitude 

flies from Maine overall living longer than flies from low-latitude. 

Florida inverted flies survive starvation better than uninverted flies at 18°C; high-

latitude flies are more resistant than low-latitude flies 

Next, we examined survival upon starvation and found significant effects of 'Karyotype' (Cox 

LRT; females: χ2
(2) = 174.9, males: χ2

(2) = 93.2, both P < 0.0001), temperature (females: χ2
(1)

= 253.3, males: χ2
(1) = 660.2, both P < 0.0001), and – for females – of K ⋅ T (females: χ2

(2) = 

18.2, P < 0.0001; males: χ2
(2) = 4.1, P = 0.13) (Fig. 2, Fig. S2). Interestingly, at 18°C FI flies 

were more starvation resistant than FS flies for both sexes, whereas at 25°C this pattern was 

reversed for females, without a significant difference in males (Fig. 2, Table 2, Fig. S2). 

Overall, across both temperatures, high-latitude MS flies were more starvation resistant than 
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low-latitude FI and FS flies (Fig. 2, Table 2, Fig. S2). Survival upon starvation was greater for 

flies reared at 18°C than at 25°C (see significant effect of T in Cox model above; GWT, 

females: χ2
(1) = 252.4, males: χ2

(1) = 848.7, both P < 0.0001), and females were more resistant 

than males at both temperatures (GWT, 18°C: χ2
(1) = 938.6, 25°C: χ2

(1) = 1339.1, both 

P<0.0001) (Fig. 2, Fig. S2). Together, these results show that in Florida the effects of In(3R)P 

karyotype on starvation survival depend upon temperature, and that high-latitude flies from 

Maine are more starvation resistant than low-latitude flies from Florida. 

In(3R)P confers cold-shock mortality in females at 25°C; high-latitude females are more 

cold-shock resistant than low-latitude females at 25°C 

Finally, we investigated patterns of mortality upon 24 hours of exposure to cold shock at        

-4°C (Fig. 3). In both females and males, we failed to find effects of 'Karyotype' (Cox LRT;

females: χ2
(2) = 2.1, P = 0.39; males: χ2

(2) ≈ 0, P = 1.0), whereas the K ⋅ T was significant for 

females but not males (females: χ2
(2) = 9.2, P = 0.01; in males, the interaction could not be fit 

since at 18°C all males survived and were censored from analysis). Temperature affected 

cold-shock survival in both sexes (Cox LRT; females: χ2
(1) = 350.7, males: χ2

(1) = 1529.8, 

both P < 0.0001). Pairwise comparisons between the three karyotypes with GWT showed that 

at 25°C FI inverted females survived cold shock less well than both FS and MS uninverted 

females; at the same time, uninverted high-latitude females from Maine survived cold shock 

better than both low-latitude karyotypes (Fig. 3, Table 3). In contrast, we found no differences 

among karyotypes at 18°C or for males at both temperatures (Fig. 3, Table 3). For both 

females and males, flies survived cold shock better at 18°C than at 25°C (see significant 

effect of T in Cox regression above; GWT, females: χ2
(1) = 652.2, , males: χ2

(1) = 1875.1, both 

P < 0.0001) (Fig. 3). At 25°C females tended to survive cold shock better than males (GWT, 

25°C: χ2
 (1) = 41.0, P<0.0001; since at 18°C all males were censored for analysis we did not 
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compare the two sexes at this temperature) (Fig. 3). Thus, In(3R)P confers increased mortality 

to cold shock, and uninverted female flies from Maine tend to survive acute cold exposure 

better than low-latitude flies from Florida, at least at 25°. 

Discussion 

High-latitude flies are long-lived and stress resistant 

Natural populations of D. melanogaster in North America, and also on other continents, 

display gradients of phenotypic differentiation for fitness-related traits such as development 

time, fecundity, stress resistance, reproductive dormancy and longevity across latitude (e.g., 

Coyne & Beecham, 1987; de Jong & Bochdanovits, 2003; Hoffmann et al., 2005; Schmidt et 

al., 2005a, b; Schmidt & Paaby, 2008; Paaby et al., 2014; Fabian et al., 2015; Mathur & 

Schmidt, 2017). These patterns of clinal trait differentiation are hypothesized to be driven by 

differential selection pressures at high vs. low latitude (Paaby & Schmidt, 2009): genotypes 

that confer stress resistance and survival at the expense of reduced fecundity might be favored 

at high latitudes, where seasonal stressors such as cold and food shortage impose strong 

selection on somatic maintenance, whereas at low latitude selection might favor alternative 

genotypes that confer fast development and high fecundity at the expense of reduced stress 

resistance and survival. In support of this adaptive scenario, we observed that overall high-

latitude flies from Maine lived longer and were more resistant to starvation and cold stress 

than low-latitude flies from Florida, in good agreement with previous observations along the 

North American cline (Schmidt et al., 2000; Schmidt et al., 2005a, b; Schmidt & Paaby, 

2008; Paaby et al., 2014; Mathur & Schmidt, 2017).  

While the genetic basis of latitudinal clines for survival traits remains poorly understood, it 

is noteworthy that many strongly clinally varying single nucleotide polymorphisms (SNPs) 

are located in genes known to be important for the determination of adult lifespan and stress 
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resistance, for example in the insulin/insulin-like growth factor signaling (IIS) pathway (see 

Fabian et al., 2012; Kapun et al. 2016a). This observation opens up the opportunity to identify 

naturally segregating polymorphisms that affect lifespan and stress resistance (e.g., Flatt & 

Schmidt, 2009; Paaby & Schmidt, 2009). Two examples serve to illustrate this point. A 

clinally varying indel polymorphism in the insulin-like receptor gene has been shown to 

affect lifespan and stress resistance in the predicted clinal direction, with the high-latitude 

genotype conferring improved stress resistance and survival (Paaby et al., 2010, 2014). 

Similarly, an amino acid polymorphism in the couch potato gene has been found to explain 

clinal variation in the ability of flies to undergo reproductive dormancy (Schmidt et al., 2008), 

a plastic state associated with improved stress resistance and lifespan (e.g., Schmidt & Paaby, 

2008; Flatt et al., 2013).  

It is also worth to point out in this context that both InR and cpo are located in the region 

spanned by In(3R)P, even though the two specific variants discussed above are apparently not 

in linkage disequilibrium (LD) with this inversion. Since the In(3R)P inversion polymorphism 

is the dominant driver of genotypic latitudinal clines in North America (Fabian et al., 2012; 

Kapun et al., 2016a), either due direct or indirect selection (via genetic draft / hitchhiking), it 

is interesting to ask whether the cline in In(3R)P might causally contribute to the phenotypic 

clines seen for survival traits. Addressing this question was the main purpose of our study. 

  

In(3R)P contributes to latitudinal clinality of survival traits 

Recent population genomic evidence demonstrates that In(3R)P is adaptively maintained by 

spatially varying selection along the North American cline (Kapun et al., 2016a), but how this 

inversion polymorphism affects trait differentiation is poorly understood. In previous assays, 

we found that In(3R)P affects body size, consistent with observations from Australia (Rako et 

al., 2006), but developmental time, egg-to-adult survival, chill coma recovery, oxidative 
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stress resistance, and lipid content were unaffected by this inversion polymorphism (Kapun et 

al., 2016b). In agreement with our findings for North America, the Australian study also 

failed to find effects of  In(3R) on developmental time and chill coma recovery (Rako et al., 

2006). Despite these negative results for traits beyond body size, here we have found that the 

North American cline in In(3R)P underpins, at least partly, previously observed latitudinal 

clines for three survival traits, i.e. lifespan, starvation resistance and survival upon cold shock 

(Schmidt et al., 2000; Schmidt et al., 2005a, b; Schmidt & Paaby, 2008; Paaby et al., 2014; 

Mathur & Schmidt, 2017). The effects of In(3R)P on these traits go in the predicted clinal 

direction, with flies from Maine and Florida possessing the uninverted arrangement being on 

average longer-lived and more stress resistant than flies from Florida carrying the inverted 

In(3R)P segment. Importantly, this establishes that the In(3R)P polymorphism affects – and 

harbors genetic variance for – multiple, clinally varying components of fitness. This is in line 

with the observation that the genomic region spanned by In(3R)P contains numerous clinally 

varying SNPs in genes known to affect body size, lifespan, stress resistance and other fitness-

related traits (Fabian et al., 2012; Kapun et al., 2016a, b).  

 Although work by Rako et al. (2006) and us (Kapun et al., 2016b) did not find an effect of 

In(3R)P on cold tolerance in terms of chill coma recovery (but see Anderson et al., 2003), our 

experiments here show that the inverted arrangement confers mortality to cold shock in 

females. This result is in good qualitative agreement with the data of Anderson et al. (2003), 

who found that cold-shock mortality is associated with a genetic marker (hsr-omega) that is in 

LD with In(3R)P, and also with the earlier findings of Tucic (1979), who found a major effect 

of chromosome 3 on larval and adult cold tolerance. The fact that different measures of cold 

tolerance (chill coma recovery vs. cold-shock mortality) can give discordant results implies 

that the details of assay protocols used for measuring aspects of cold tolerance matter a lot 

(e.g., McDonald et al., 2004; Andersen et al., 2015). 
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 Thus, by experimentally isolating and phenotyping In(3R)P karyotypes from populations 

approximating the end points of the North American cline, our results strongly suggest that 

this inversion polymorphism makes a major contribution to the clinality of several survival 

traits. An open task for future work will be to regress means of survival traits for multiple 

populations spanning the cline against the population frequency of In(3R)P as a predictor, for 

this would allow to estimate the amount of phenotypic variance explained by In(3R)P. 

How is the In(3R)P polymorphism maintained? 

Although it is clear that In(3R)P is maintained by selection along the cline independent of 

admixture or population structure (Kapun et al., 2016a), the details of the underlying selective 

mechanisms remain unknown. Clearly, our results cannot explain how this polymorphism is 

maintained since the inverted segment seems to have predominantly negative effects on the 

measured fitness-components: inverted homokaryons were on average smaller, shorter-lived 

and less stress resistant than uninverted homokaryons (also see Kapun et al., 2016b). So, what 

are the fitness benefits that maintain the inverted karyotype at low latitude?  

Four major considerations should be kept in mind. First, we have only phenotyped inverted 

vs. uninverted homokaryons but not heterokaryons: because inversions might be maintained 

by overdominance or associative overdominance (e.g., Dobzhansky, 1970; Kirpatrick & 

Barton, 2006), it will be critical to phenotype In(3R)P heterokaryons in future work. Second, 

inversion polymorphisms can be maintained by frequency-dependent selection. For example, 

Nassar et al. (1973) reported that In(3R)P might subject to frequency-dependent selection 

under conditions of larval crowding; however, it is unclear on theoretical grounds how 

frequency-dependent selection would be able to maintain an inversion polymorphism for a 

long period of time since even small amounts of recombination or gene conversion in 

heterokaryons will destroy LD between the genic target(s) of balancing selection and the 
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inversion (Kirpatrick & Barton, 2006). Nonetheless, it would be interesting to reassess the 

findings of Nassar et al. (1973) and to directly investigate, for example, larval competitive 

ability as a function of In(3R)P karyotype. Third, there are several fitness-related traits that 

we have not measured on the homokaryons, including fecundity: since low-latitude flies are 

more fecund than high-latitude flies (Schmidt & Paaby, 2008), an important open question is 

whether In(3R)P affects fecundity. Fourth, the fitness components through which the In(3R)P 

polymorphism is maintained might be subject to genotype by environment interactions. In our 

assays, we phenotyped homokaryons at two growth temperatures and indeed found several 

karyotype by temperature interactions. Perhaps most interestingly, we observed that at 18°C 

Florida inversion homokaryons are significantly more resistant to starvation stress than 

Florida uninverted homokaryons, whereas this pattern was reversed for females at 25°C. 

However, this effect was very small; moreover, while the latitudinal temperature gradient is a 

major determinant of the cline in In(3R)P, other latitudinally varying environmental factors 

(e.g., precipitation, seasonality) seem to be important too (Kapun et al., 2016a). Determining 

how selection maintains the In(3R)P polymorphism will thus depend on a much more detailed 

understanding of the various environmental factors that might affect this system.  

Conclusions 

Here we have asked whether a clinally varying chromosomal inversion polymorphism in D. 

melanogaster, In(3R)P, contributes to the clinality of three fitness-related traits: adult 

lifespan, survival of starvation stress, and survival upon acute cold shock. Our main finding is 

that the cline in In(3R)P underpins, at least partly, the latitudinal clines observed for these 

survival traits (cf. Schmidt et al. 2000; Schmidt et al., 2005a, b; Schmidt & Paaby, 2008; 

Mathur & Schmidt, 2017). Together with the fact that In(3R)P contributes to clines in body 

size (Rako et al., 2006; Kapun et al., 2016b), these results add to our understanding of how 
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this inversion polymorphism affects multiple fitness-related traits subject to spatially varying 

(clinal) selection. Yet, given that most fitness-related traits seem to be affected negatively by 

In(3R)P, the exact nature of the selective forces that maintain this inversion polymorphism 

remain to be elucidated. 
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Supporting Information 
Additional Supporting Information may be found in the online version of this article: 
 
Figure S1. Survival curves as a function of In(3R)P karyotype and temperature. Effects 
of In(3R)P and temperature (18°C vs. 25°C) on the proportion adult survival in females and 
males. The different curves represent Florida inverted (black), Florida standard (red), and 
Maine standard (blue). See Results, Fig. 1, and Table 1 for details. 
 
Figure S2. Starvation survival curves as a function of In(3R)P and temperature. . Effects 
of In(3R)P and temperature (18°C vs. 25°C) on the proportion adult survival upon starvation 
in females and males. The different curves show Florida inverted (black), Florida standard 
(red), Maine standard (blue). See Results, Fig. 2 and Table 2 for details. 
 
Data Accessibility  
Data deposited at Dryad. doi link to be added upon publication. 
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Table 1. Analysis of lifespan. The columns show the directionality of lifespan effects for 
each pairwise comparison between the three karyotypes (FI = Florida inverted, FS = Florida 
standard, MS = Maine standard), grouped by sex and temperature. χ2 test statistics and P-
values are from generalized Wilcoxon tests. Significant effects are in bold; significance after 
Bonferroni correction is indicated by † (α’ = 0.05/3 = 0.016). n represents the number of 
failed individuals; the total cohort size is shown in parenthesis. See Results and Figs. 1 and S1 
for further details. 

Sex Temperature Direction χ2 P n 

Female 

18°C 

FI < FS 35.86 <0.0001† 2609 (2639) 

FI < MS 137.31 <0.0001† 2591 (2644) 

FS < MS 28.52 <0.0001† 2520 (2571) 

25°C 

FI < FS 98.75 <0.0001† 2500 (2549) 

FI < MS 71.53 <0.0001† 2478 (2539)  

FS = MS 0.65 0.42 2508 (2566) 

Male 

18°C 

FI < FS 85.72 <0.0001† 2437 (2455) 

FI < MS 247.67 <0.0001† 2514 (2547) 

FS < MS 37.26 <0.0001† 2453 (2484) 

25°C 

FI < FS 100.39 <0.0001† 2565 (2600) 

FI < MS 109.59 <0.0001† 2537 (2580) 

FS = MS 0.32 0.57 2512 (2558) 
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Table 2. Analysis of survival upon starvation. The columns show the directionality of 
survival upon starvation for each pairwise comparison between the three karyotypes (FI = 
Florida inverted, FS = Florida standard, MS = Maine standard), grouped by sex and 
temperature. χ2 test statistics and P-values are from generalized Wilcoxon tests. Significant 
effects are in bold; significance after Bonferroni correction is indicated by † (α’ = 0.05/3 = 
0.016). n represents the total cohort size, i.e. the number of failed individuals (no flies were 
censored in this assay). See Results and Figs. 2 and S2 for further details. 

Sex Temperature Direction χ2 P n 

Female 

18°C 

FI > FS 5.35 0.02 881 

FI < MS 72.94 <0.0001† 878 

FS < MS 90.88 <0.0001† 899 

25°C 

FI < FS 10.14 0.0014† 899 

FI < MS 88.68 <0.0001† 900 

FS < MS 25.99 <0.0001† 899 

Male 

18°C 

FI > FS 10.44 0.0012† 900 

FI < MS 34.72 <0.0001† 897 

FS < MS 78.31 <0.0001† 897 

25°C 

FI = FS 0.15 0.70 898 

FI < MS 30.44 <0.0001† 896 

FS < MS 31.60 <0.0001† 894 
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Table 3. Analysis of survival upon cold shock. The columns show the directionality of 1 
survival upon cold shock for each pairwise comparison between the three karyotypes (FI = 2 
Florida inverted, FS = Florida standard, MS = Maine standard), grouped by sex and 3 
temperature. χ2 test statistics and P-values are from generalized Wilcoxon tests. Significant 4 
effects are in bold; significance after Bonferroni correction is indicated by † (α’ = 0.05/3 = 5 
0.016). n represents the number of failed individuals; the total cohort size is shown in 6 
parenthesis. Note that at 18°C all males survived 24 hours of cold shock and were thus all 7 
censored. See Results and Fig. 3 for further details. 8 

9 

Sex Temperature Direction χ2 P n 

Female 

18°C 

FI = FS 0.64 0.43 197 (887) 

FI = MS 0.88 0.35 199 (888) 

FS = MS 0.02 0.89 210 (893) 

25°C 

FI < FS 47.39 <0.0001† 694 (897) 

FI < MS 77.48 <0.0001† 664 (896) 

FS < MS 4.18 0.04 580 (899) 

Male 

18°C 

- - - 0 (896) 

- - - 0 (897) 

- - - 0 (895) 

25°C 

FI = FS 2.01 0.16 737 (887) 

FI = MS 2.35 0.14 734 (885) 

FS = MS 0.01 0.90 719 (886) 

10 

11 

12 

13 

14 

15 
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Figure Legends 16 
17 

Fig. 1. In(3R)P shortens lifespan and lifespan varies clinally. Effects of the In(3R)P 18 
inversion polymorphism on adult lifespan (days) in females and males. The bar plots show 19 
means and standard errors. Black bars: Florida inverted (FI); dark grey bars: Florida standard 20 
(FS); light grey bars: Maine standard (MS). Results for pairwise comparisons among 21 
karyotypes with generalized Wilcoxon (χ2) tests are shown in letters: groups that do not 22 
contain the same letter are significantly different from each other (P<0.05). The In(3R)P 23 
inversion shortens lifespan as compared to uninverted karyotypes; lifespan is clinally 24 
differentiated, with high-latitude flies from Maine living longer than flies from low-latitude. 25 
See Results and Table 1 for details; for survival curves see Fig. S1. 26 

27 
Fig. 2. In(3R)P affects starvation in a temperature-dependent manner. Effects of In(3R)P 28 
on age at death (hours) upon starvation in females and males. Shown are means and standard 29 
errors. Black bars: Florida inverted (FI), dark grey bars: Florida standard (FS), light grey bars: 30 
Maine standard (MS). Results for pairwise comparisons among karyotypes with generalized 31 
Wilcoxon (χ2) tests are shown in letters: groups that do not contain the same letter are 32 
significantly different from each other (P<0.05). At 18°C Florida inverted flies survive 33 
starvation better than uninverted flies, whereas this pattern is reversed for females at 25°C. 34 
Morevoer, high-latitude flies from Maine are overall more resistant than low-latitude flies 35 
from Florida. See Results and Table 2 for details; for survival curves see Fig. S2. 36 

37 
Fig. 3. At 25ºC In(3R)P confers mortality upon cold shock. Effects of In(3R)P on the 38 
proportion of female and male flies surviving cold shock. Shown are means and standard 39 
errors. Black bars: Florida inverted (FI); dark grey bars: Florida standard (FS); light grey bars: 40 
Maine standard (MS). Results for pairwise comparisons among karyotypes with generalized 41 
Wilcoxon (χ2) tests are shown in letters: groups that do not contain the same letter are 42 
significantly different from each other (P<0.05). The In(3R)P inversion increases sensitivity 43 
to cold shock at 25°C. Generally, at 25°C, high-latitude females from Maine are more cold- 44 
shock resistant than low-latitude females from Florida. See Results and Table 3 for details. 45 

189



Chapter 6 

Figure 1 46 
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Figure 2 54 
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Figure 3 62 
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Supporting Information 

Supporting Figure Legends 

Figure S1. Survival curves as a function of In(3R)P karyotype and temperature. Effects 
of In(3R)P and temperature (18°C vs. 25°C) on the proportion adult survival in females and 
males. The different curves represent Florida inverted (black), Florida standard (red), and 
Maine standard (blue). See Results, Fig. 1, and Table 1 for details. 

Figure S2. Starvation survival curves as a function of In(3R)P and temperature. . Effects 
of In(3R)P and temperature (18°C vs. 25°C) on the proportion adult survival upon starvation 
in females and males. The different curves show Florida inverted (black), Florida standard 
(red), Maine standard (blue). See Results, Fig. 2 and Table 2 for details. 
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Figure S1
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Figure S2 
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Chapter 7 

General Discussion and Perspectives 

The Main Objective of this Dissertation 

Adaptation across environmental gradients, for example across latitude or altitude, typically 

results in the evolution of clines, i.e. patterns of gradual, systematic change or differentiation 

in genotype frequencies and/or phenotypic traits along such gradients, presumably by spatial 

differences in temperature and/or seasonality. In my Ph.D. thesis, I have used the Drosophila 

melanogaster model system to examine the effects of two strongly clinally varying 

polymorphisms on life-history traits in order to gain a better understanding of the genetics of 

adaptation.  

Brief Recap of the Chapters in this Thesis 

My thesis consists of 7 chapters. In Chapter 1, I have provided a brief overview of life-

history variation in D. melanogaster, this species’ demographic and colonization history, and 

the genetic basis of clinal adaptation. In Chapters 2, 3 and 4, I have presented results of 

phenotypic analyses of a clinally varying, presumably adaptive polymorphism in the insulin 

signaling transcription factor foxo, aimed at examining the role of this variant in affecting life 

history and in contributing to previously observed phenotypic clines across latitude. In 

Chapters 5 and 6, I have reported life-history effects of a major, cosmopolitan, clinally 

varying inversion polymorphism, In(3R)Payne, which has previously been shown to be 

maintained by spatially varying (clinal) selection across latitude. Here, in Chapter 7, I 

provide a brief summary and discussion of my main findings; for a more detailed discussion 

of my results I refer the reader to the detailed discussion sections in the individual chapters. 
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The Genomic Basis of Life-History Adaptation in Drosophila 

The fruit (or vinegar) fly Drosophila melanogaster is an ancestrally tropical insect that has 

originated in sub-Saharan Africa and subsequently become cosmopolitan, having evolved 

major adaptations to novel temperate and seasonal habitats during its range expansion (David 

& Capy 1988; De Jong & Bochdanovits 2003; Kolaczkowski et al. 2011; Fabian et al. 2012; 

Adrion et al. 2015; Kapun et al. 2016a). For example, as a manifestation of this adaptation to 

new climates and habitats, natural populations of this species exhibit major patterns of clinal 

differentiation both at phenotypic and genetic level, often exhibiting parallel clines on 

multiple continents, thus representing a naturally replicated system of convergent adaptive 

evolution (Paaby et al. 2010; Adrion et al. 2015; Schrider et al. 2016; Kapun et al. 2016b; a). 

However, with a few exceptions, still very little is known about the identity and function of 

naturally occurring polymorphisms that might causally underpin adaptive clinal life-history 

differentiation. Contributing to an improved understanding of the genetic basis of clinal life-

history adaptation in the Drosophila model was the overarching aim of my dissertation 

research work. Specifically, my thesis research deals with two related questions: (1) Does 

natural, clinal variation at loci of the insulin/insulin-like growth factor signaling (IIS) pathway 

contribute to clinal life-history adaptation and, if so, how?, and, similarly, (2) Does a well-

known, clinally varying chromosomal inversion polymorphism, called In(3R)Payne, 

contribute to clinal life-history adaptation and, and if yes, how? 

Does Variation in Insulin Signaling Contribute to Clinal Life-History Adaptation? 

Since loss-of-function mutants in the evolutionarily conserved insulin/insulin-like growth 

factor signaling (IIS) / target of rapamycin (TOR) pathway have been shown to affect several 

major fitness-related traits (e.g., growth, size, ovarian development, fecundity, stress 
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resistance, and lifespan, it has been hypothesized that this pathway might be an important 

determinant of life-history adaptation (Brogiolo et al. 2001; Barbieri et al. 2003; Swanson & 

Dantzer 2014; Das & Arur 2017).  

 Interestingly, in previous work from our group, Fabian et al. (2012) have performed the 

first genome-wide analysis of latitudinal differentiation along the North American east coast 

and identified numerous strongly clinally varying single nucleotide polymorphisms (SNPs) in 

this pathway. Based on functional genetic studies of this pathway, and based on the 

observation of parallel clinal differentiation of many IIS components on multiple continents, 

IIS has been speculated to be one of the main drivers of life-history clinality (De Jong & 

Bochdanovits 2003; Paaby et al. 2010; Fabian et al. 2012; Kapun et al. 2016b).  

One of the most important components of this is the forkhead box-O transcription factor 

foxo, a gene involved in regulating growth, size, stress resistance and lifespan (Jünger et al. 

2003; Barthel et al. 2005; Zheng et al. 2007; Flatt et al. 2008; Kramer et al. 2008; Yamamoto 

& Tatar 2011; Alic et al. 2014). Given the central role of this transcription factor, we set out 

to investigate the phenotypic effects of a strongly clinal and potentially adaptive 2-SNP 

variant in this gene by performing functional phenotypic assays across two independent 

laboratories.  

Our analyses in Chapters 2 and 3 reveal that this foxo polymorphism has pleiotropic effects 

on multiple life-history traits, including egg-to-adult survival, several proxies of body size and 

on starvation resistance (Chapters 2 and 3). Our findings for this naturally occurring variant 

are consistent with functional genetic studies of large-effect mutants or transgenes showing 

that foxo affects, amongst other traits, body size and starvation resistance (Jünger et al. 2003; 

Kramer et al. 2003; 2008; Slack et al. 2011; Tang et al. 2011) as well as with clinal 

predictions for latitudinally varying traits (Robinson et al. 2000; De Jong & Bochdanovits 

2003; Wadgymar et al. 2017).  
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Specifically, our results in Chapter 2 show that in North American populations the high-

latitude allele, as compared to the low-latitude allele, confers decreased egg-to-adult survival 

(viability), larger body size and increased insulin signaling (as measured by effects on 

expression of the insulin-like receptor (InR), a major transcriptional target of foxo; see Puig 

2003; Puig & Tjian 2014). Moreover, we found that both alleles exhibited plastic responses to 

temperature and diet in the direction predicted based on previous studies of thermal and 

dietary plasticity, however, we found little evidence for genotype by environment interactions 

(GxE). Thus, even though we did not find strong patterns of GxE that might be indicative of 

local adaptation, our experiments provide robust evidence that this natural variant contributes 

to clinal adaptation across latitude. 

In Chapter 3 my collaborators from Paul Schmidt’s laboratory at the University of 

Pennsylvania (Philadelphia, USA) and I directly compared the effects of the foxo variant with 

novel phenotypic data collected across the North American east coastal cline by the Schmidt 

lab. For the natural populations along the cline, we confirmed the existence of the previously 

described body size cline but also identified a new cline for starvation resistance, indicating 

that flies from high latitudes are more starvation resistant than flies from low latitudes. This 

new finding is consistent with the notion that flies from high-latitude populations are typically 

more stress resistant and longer-lived than flies from low latitudes (see Chapter 3 for a more 

detailed discussion). Notably, for body size the patterns of differentiation between the two 

alternative foxo alleles mirrored those observed in natural populations, thus suggesting that 

the foxo variant makes a major contribution to the size cline. For developmental time, we 

failed to observe a clinal pattern both for natural populations as well as for the foxo variant 

(results of developmental time assays performed in Lausanne also failed to yield a clear allelic 

difference; data not shown).   
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One strength of our studies of the foxo variant is that we performed independent 

experiments in two laboratories, here in Lausanne as well as in Philadelphia. On the positive 

side, our assays under different laboratory conditions mutually confirmed that the clinal foxo 

variant has clear-cut, robust and replicable effects on various size-related traits and that these 

effects go, as mentioned above, in the direction that is predicted from the overall body size 

cline along the North American east coast. However, an important caveat is that the same was 

unfortunately not true for starvation resistance: this fact is reflected in the contrasting results 

and conclusions in Chapters 2 versus 3. For the presentation of this thesis we have opted to 

present the two complementary studies as independent stand-alone studies, to be judged based 

on their individual merit and internal self-consistency. We are currently in the process of 

trying to get to the bottom of this discrepancy; this will obviously be important before we can 

submit our two complementary studies for publication. In principle, it is possible that the 

discrepant results for starvation resistance in Chapters 2 versus 3 are due to subtle differences 

in laboratory and assay conditions between the laboratories in Lausanne and Philadelphia 

(see, for example, Ackermann et al. 2001). For example, differences in larval density and 

crowding might affect the expression of starvation resistance (Zwaan et al. 1991); indeed, 

larval density was rather tightly controlled in our assays in Lausanne but a bit more laxly so in 

the assays in Philadelphia. Similarly, infections with Drosophila C virus (which can often go 

undetected) can lead to gut blockage and nutritional stress which might potentially exacerbate 

the effects of starvation stress (Zwaan et al. 1991; Zinke et al. 2002; Chtarbanova et al. 2014). 

We note that during the Philadelphia assays there was indeed a small issue with a viral 

infection, resulting in the exclusion of two out of three experimental blocks in the starvation 

assay (see Chapter 3 for details). We can thus not fully exclude the possibility that the third 

(apparently not infected) block might have suffered from an unnoticed viral infection; yet, 

even if this would have been the case, it is not easy to see why this would revert the latitudinal 
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directionality of the allelic effects for starvation resistance (see Chapters 2 and 3). For the 

time being, we stand by our results and conclusions from our work here in Lausanne: we 

conclude that the low-latitude allelic state is more starvation resistant than the high-latitude 

allele. If this is correct, it implies that – in contrast to its effects on body size, the foxo variant 

exhibits a countergradient effect (see discussion in Chapter 2). Whatever the case in terms of 

the true allelic directionality of these effects, it is important to keep in mind that both studies 

found significant differences in starvation resistance between the two allelic states that are 

highly unlikely due to chance. 

 Importantly, our experiments in Chapters 2 and 3 represent the first evidence for life-

history effects of natural alleles at this locus, confirming our previous genomic analysis which 

suggested that clinally varying SNPs in foxo might contribute to clinal adaptation (Fabian et 

al. 2012), similar to previous findings for a clinal (indel) variant at the InR locus (Paaby et al. 

2010; 2014). Together with previous studies (Paaby et al. 2010; 2014), our work thus clearly 

demonstrates that variation in IIS can make an important and – at least partly – predictable 

contribution to clinal life-history adaptation in Drosophila. It will clearly be of great interest 

to examine other clinally varying loci affecting the IIS pathway. 

 The “gold standard” for testing natural variants is the manipulation and replacement of 

naturally occurring alleles in controlled isogenic background by using homologous 

recombination. While this is technically feasible nowadays, it still technically very 

challenging, especially when attempting to manipulate single nucleotides. As outlined in 

Chapter 4, we are currently in the process of using the CRISPR/Cas9 genome editing method 

to confirm the causative effects of the clinal foxo polymorphism in a maximally controlled 

genetic background (Cong et al. 2013). In contrast to an earlier unsuccessful attempt, we are 

now using a modified, improved protocol; we should hopefully know in a few months 

whether homologous recombination has successfully worked in our hands. If successful, this 
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approach will allow us to investigate the alleles at the two foxo SNP positions singly as well 

as in all pairwise combinations, thereby permitting us to investigate additive versus epistatic 

effects. 

The Contribution of a Chromosomal Inversion Polymorphism to Clinal Adaptation 

In the second part of my thesis, in Chapters 5 and 6, I investigated the phenotypic effects of 

an adaptive, clinally varying chromosomal inversion polymorphism, In(3R)Payne, along the 

North American east coast. The In(3R)Payne inversion has long been thought to be a major 

driver or adaptive trait clines, both in North America and Australia (Weeks et al. 2002; Kapun 

et al. 2016a).  

 In Chapter 5, consistent with previous previous data from Australia showing that this 

inversion contributes to the body size cline on this continent (Kennington et al. 2007; Kapun 

et al. 2016b), we found that In(3R)Payne also contributes to the body size cline along the 

North American east coast (Kapun et al. 2016a). Our new data thus reveal for the first time 

that this inversion has parallel effects on body size along two independent clinal gradients, 

thus demonstrating that this inversion is maintained, at least partly, by spatially varying 

selection acting on body size on two continents. As discussed in Chapter 5, an important 

reason for why In(3R)Payne is maintained along latitudinal clines must somehow have to do 

with spatially varying selection on body size. Moreover, it is worth pointing out that the effect 

sizes (i.e., Cohen’s standardized effect size) were extremely similar between the previous 

Australian findings and our results for the North American cline. Interestingly, In(3R)Payne 

harbors several loci that are known from developmental genetics studies to be involved in 

growth regulation and the determination of adult body size (see Chapter 5 for details). 

 In Chapter 6, we discovered a new role for In(3R)Payne in affecting three survival traits 

that are known to vary clinally across latitude. Consistent with previous clinal findings, we 
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observed that high-latitude flies are on average longer-lived and more stress resistant than 

low-latitude flies (Schmidt et al. 2000; a; b; Schmidt & Paaby 2008; Mathur & Schmidt 

2017). More interestingly, we found that at least part of the latitudinal differentiation for these 

survival traits is explained by the clinal distribution of In(3R)Payne inversion polymorphism 

itself: overall, standard arrangement flies from Maine and Florida tended to be longer-lived 

and more stress resistant than inverted arrangement flies from Florida. Thus, our results show 

that In(3R)Payne underpins, at least to some degree, the latitudinal clines in these survival 

traits. Together with the fact that In(3R)Payne harbors many clinally varying SNPs in genes 

known to affect body size, lifespan and stress resistance (Kapun et al. 2016a), our results 

demonstrate that this inversion affects multiple clinally varying life-history traits, not just 

body size as previously suspected (Rako et al. 2006; Kapun et al. 2016b). In terms of 

plasticity and GxE across two growth temperatures, we found several (relatively minor) 

karyotype-by-environment interactions. Most interestingly, inversion homokaryons were 

more starvation resistant than standard homokaryons from Florida, yet this effect was rather  

small and only observed at 18°C. 

 While our results clearly establish major effects of this chromosomal inversion on clinally 

varying life-history traits, they are not sufficient to explain how this inversion polymorphism 

in maintained in natural populations along the cline (also see Kapun et al. 2016a): most of the 

fitness-related traits examined seem to be negatively affected by the inverted arrangement. 

For example, as is discussed in more detail in Chapter 6, it would be of great future interest to 

examine heterokaryons of this inversion and test whether In(3R)Payne might be subject to 

fitness overdominance. Similarly, the climatic (and other environmental) factors, and thus the 

selective factors, that underlie the latitudinal cline in the frequency of this inversion are 

incompletely understood (see Kapun et al. 2016a). Thus, the exact nature of the selective 

forces that maintain this inversion polymorphism remain to be elucidated in future work. 
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Conclusions 

Genome-wide studies have identified many candidate genes and alleles that might contribute 

to life-history adaptation in natural populations (e.g., along putatively adaptive clinal 

gradients) in Drosophila and other organisms, but causative confirmation of such genomic 

candidates ultimately requires functional testing and experimentation. In my Ph.D. work I 

have therefore set out to examine two putatively adaptive, clinally varying polymorphisms in 

D. melanogaster, which have been previously identified through genomic analysis (e.g., see 

Fabian et al. 2012), by experimentally investigating their phenotypic effects upon fitness-

related traits. In my experiments, I was able to show that both clinal polymorphisms indeed 

contribute – as predicted – to previously observed phenotypic patterns of clinal differentiation 

along the North American east coast, thus confirming that these candidate variants are shaped 

by spatially varying selection. Thus, together with a small handful of previous studies (e.g., 

Paaby et al. 2010, 2014), my experiments represent an important proof-of-principle: it is 

possible to experimentally isolate and examine clinally varying polymorphisms and to show 

that they contribute to presumably adaptive phenotypic clines. More specifically, my studies 

provide the first experimental evidence for life-history effects of a natural polymorphism in 

foxo, a central transcription factor of the insulin signaling pathway, as well as for causative 

associations between the chromosomal inversion polymorphism In(3R)Payne, body size and 

survival traits along the North American cline. In sum, my Ph.D. dissertation demonstrates that 

both clinal polymorphisms are very likely to be bona fide targets of spatially varying (clinal) 

selection in D. melanogaster.  
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Outlook 

 Currently, some efforts are still ongoing in our laboratory to further examine the effects of 

these clinal polymorphisms, including assays involving CRISPR/Cas9 applied to the foxo 

polymorphism; RNA-sequencing of In(3R)P homokaryons; and so forth. 

  With regard to the inversion, it would for example be important and interesting to learn 

more about the mode and nature of selection that maintains the In(3R)Payne inversion 

polymorphic, for instance by carrying out population cage experiments to test for balancing 

and/or frequency-dependent selection, with cages being seeded at different starting 

proportions of inverted vs. standard homokaryons. Similarly, in my experiments on this 

inversion I have only used homokaryons, but it will be critically important to examine 

heterokaryons, for the polymorphism might be maintained by overdominance. In addition, it 

would be of great interest to use reciprocal transplant experiments in order to test for effects 

of local adaptation conferred by In(3R)P, e.g. using outdoor population cages in Florida 

versus Maine. This would provide novel insights into the underlying selective forces that 

maintain this inversion polymorphism.  

 With regard to the insulin signaling pathway it would for example be tempting to 

functionally test the effects of other clinally varying SNPs in genes other than foxo (i.e., InR, 

14-3-e, Tobi and PI3K) by reconstituting outbred populations or by using using

CRISPR/Cas9. Interestingly, for instance, our laboratory's recent work has identified an 

extremely strongly differentiated SNP in InR that is nearly completely fixed for alternative 

alleles between inversion vs. standard homokaryons of In(3R)P. 

 Together, such future experiments would help significantly to further advance our 

understanding of the genetic basis of clinal adaptation and of spatially varing selection in 

Drosophila melanogaster and beyond. 
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