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Abstract 16 
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Glossary 35 

 36 
Subjective probability: the probability of an event is interpreted as the expression of a degree of belief in that particular 37 
event. Subjective probabilities are personal and conditional on the individual’s experience and knowledge. As all 38 
probabilities, subjective probabilities take values in the range between 0 and 1. 39 
 40 
Frequentist probability: The frequentist probability is defined as the limit of the relative frequency of a target event that 41 
has occurred in a large number of trials if it is conceivable that the same experiment may be repeated under identical 42 
conditions a very large number of times. 43 
 44 
Utility function: the utility measures on some numerical scale the desirability of decision consequences 𝐶"# = 𝑐(𝑑", 𝜃#	) 45 

that take place when a decision 𝑑" is taken and 𝜃# turns out to be the true state of nature. Whenever a ‘0-1’  scale is used, 46 

a value equal to 0 and 1 is assigned to the least and to the most desirable consequences, respectively. All the remaining 47 
consequences are assigned a value within this interval with the sole constraint of coherence: if a consequence is more 48 
desirable than another, it must have a greater utility, and vice versa.  49 
 50 
Loss function: the loss measures on some numerical scale the undesirability of decision consequences 𝐶"# = 𝑐(𝑑", 𝜃#	) 51 

that take place when a decision 𝑑" is taken and 𝜃# turns out to be the true state of nature. Whenever a ‘0-1’ scale is used, 52 

a value equal to 1 and 0 is assigned to the least and to the most desirable consequences, respectively. All the remaining 53 
consequences are assigned a value within this interval with the sole constraint of coherence: if a consequence is less 54 
desirable than another, it must have a greater loss, and vice versa. Note that that the loss function is obtained as the 55 
difference between the utility of the best consequence under the state of nature at hand and the utility for the consequence 56 
of interest. Stated otherwise, the loss measures the penalty for choosing a non-optimal decision, 57 
 58 
Maximizing expected utility: the desirability of alternative decisions is measured by their corresponding expected utility 59 
which is obtained by combining utilities 𝑢(𝐶"#) associated with the consequences of decisions 𝐶"# and probabilities for 60 

states of nature 𝑃𝑟	(𝜃#) as 𝑢/(𝑑") = ∑ 𝑢1
#23 4𝐶"#5 × 𝑃𝑟	(𝜃#), 𝑖 = 1, … ,𝑚. A standard decision rule instructs one to select 61 

the action which maximizes the expected utility. 62 
 63 
Minimizing expected loss: the undesirability of alternative decisions is measured by their corresponding expected loss 64 
which is obtained by combining losses l(C=>) associated with the consequences of decisions C=> and probabilities for states 65 

of nature 𝑃𝑟	(𝜃#) as 𝑙(̅𝑑") = ∑ 𝑙1
#23 4𝐶"#5 × 𝑃 𝑟4𝜃#5 , 𝑖 = 1, … ,𝑚. A standard decision rule instructs one to select the action 66 

which minimizes the expected loss. 67 
 68 

 69 

  70 
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1. Introduction 71 

Nowadays age estimation of living persons is a recognized discipline in the forensic panorama. Age is a fundamental 72 

piece of information in our society for the exercise of personal rights and duties. Thus, faced with persons unable or 73 

unwilling to declare their age, judicial or administrative authorities often request an expert opinion. Such request have 74 

been on the rise recently, since the number of individuals of questioned age has increased, due to the tremendous tide of 75 

migration movements, ease of world travel, but also due to the professionalization of criminal organizations involved in 76 

human smuggling or trafficking (Law et al., 2010). As highlighted by Schmeling et al. (2007), a question to be answered 77 

in case of age diagnostics for living persons mostly concerns the probability of a person being younger or older than a 78 

legally relevant age threshold, such as the age of majority. In other cases, a point estimate of the real age can be of interest. 79 

In any case, the two pieces of information are strictly related, since the former logically depends on the latter.  80 

Although European Asylum Support Office (EASO, 2018) recommends a holistic perspective for age estimation in living 81 

individuals (including psychological assessments), we believe that scientific evidence-based anthropological/medico-82 

legal methods should provide the basis of an age estimate. The Study Group on Forensic Age Diagnostic (AGFAD) has 83 

provided, particularly in Europe, a strong contribution to this field, by publishing a set of recommendations mainly 84 

focused on operational perspectives (Schmeling et al., 2008). These recommendations include the choice of reference 85 

studies, the examination steps that ideally ought to be performed during a medico-legal age estimation appraisal, and the 86 

structure of expert reports. Similar recommendations were published by the Forensic Anthropology Society of Europe 87 

(Cunha et al., 2009).  88 

An evaluation of multiple items of evidence is highly recommended in order to increase the accuracy of the age estimate 89 

(Schmeling et al., 2003, Schmeling et al., 2008, Bassed, 2012). However, in the early stages of applied forensic age 90 

estimation , the domain suffered from a lack of adequate (statistical) methods that would allow to comprehensively 91 

evaluate the age-related evidence (Ritz-Timme et al., 2000). The aim of this contribution is to illustrate that forensic age 92 

estimation is a problem of inference and decision, and should not be considered only from a statistical perspective. 93 

Provided that uncertainty is unavoidable and should be measured by probability, the Bayesian paradigm represents a 94 

formidable tool to combine different sources of information that are at the disposal to the different actors involved in the 95 

legal disputes regarding a person’s age.  96 

2. Uncertainty and inference in forensic age estimation 97 

In forensic age estimation the forensic experts needs to translate their scientific findings into legal information by 98 

evaluating and interpreting the evidence (Sironi et al., 2017). Typically, a judicial authority needs to decide whether a 99 

person is an adult (e.g. 18 years old or more) or a minor, within the meaning of the law. In order to make a decision, the 100 

authority must obtain information about the chronological age of the individual, i.e., the quantity that measures – in years, 101 

months and days – the time since the person was born (EASO, 2018). However, age-related and developmental evidence 102 
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collected by the forensic expert consists of data on the individual’s biological age, i.e., the developmental step reached 103 

by the individual reflected by achieving a given specific physical attribute  at the time of the examination (Hackman et 104 

al., 2010). This biological (scientific) information has to be correctly used in order (1) to infer the chronological age, i.e., 105 

the information needed by the mandating authority, and (2) for the authority to make a decision about the matter (i.e., in 106 

most cases whether the person in question shall be declared a minor or an adult). 107 

Although physical development is a continuous biological process, it is generally described in categorical steps due to the 108 

extreme difficulty in appreciating globally all changes which occur during  aging in a continuous scale (Lucy et al., 2002). 109 

A body of age-related evidence consists therefore in the detection (by an expert) of the developmental steps reached by 110 

specific physical attributes (or age indicators) in an examined individual constituting the biological age. It is recognized 111 

that the developmental steps are universally reached in their totality and in the same sequence, but the chronology of the 112 

developmental phases varies considerably between individuals (Boldsen et al., 2002, Cameron and Jones, 2010). This is 113 

mainly due to the influence of a large panoply of individual and environmental factors (i.e., social context or ethnic 114 

origin), which may affect the developmental process (Kemkes-Grottenthaler, 2002, Cameron and Jones, 2010) with 115 

varying extent for each biological system, such as the skeletal or dental systems (Schmeling et al., 2005). Interpretation 116 

of age-related evidence must be provided by assessing the uncertainty regarding the relationship between biological age 117 

(i.e. the scientific information) and chronological age (i.e. the legal information). In the presence of available data 118 

collected from subjects whose age is known, the uncertainty about such relationships could be modeled by means of 119 

appropriate statistical models. However, it must be added that an ad-hoc statistical model is not the end of the matter, as 120 

highlighted by Taroni and Biedermann (2014, p. 3948) recalling a statement of I. W. Evett: 121 

“[…] Statistics concentrates primarily on data, whereas the retrospective meaning of an observation 122 

relies on the more general concept of inference which focuses on the notion of uncertainty. […]” 123 

In forensic science, the decision-maker seeks to evaluate a hypothesis or a feature of interest in the light of scientific 124 

findings (Taroni and Biedermann, 2015). This is typically an inductive line of reasoning; it is said to be ampliative, since 125 

the conveyed conclusions contain elements that are not present in the premises. One’s knowledge is extended by inference 126 

throughout data (findings, observations) acquisition. Such amplification naturally implies uncertainty: the key elements 127 

that allows one to move from an initial belief about the feature of interest (i.e. the age of a given individual) to an updated 128 

belief is data acquisition (so often called ‘evidence’), which is generally incomplete, imprecise and rarely conclusive 129 

(Schum, 1994). This is also the case in forensic age estimation: the age-related evidence concerning the biological age is 130 

incomplete by nature, since it informs us about a given moment in time of a continuous evolutionary process. Moreover, 131 

the conclusions in the legal process refer to the chronological age. However, the relationship between biological and 132 
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chronological age is affected by many sources of uncertainty. It is therefore fundamental to handle such uncertainty in a 133 

logical way, in order to provide meaningful findings to the mandating authority.  134 

Uncertainty can be qualified and quantified by means of probability. In fact, probability is the standard measure for 135 

uncertainty (Lindley, 1991). Probability is defined as the measure of one’s degree of belief on a given event or statement 136 

(Taroni et al., 2001). Such an interpretation is generally referred to as subjective (in the meaning of personal, and not 137 

arbitrary) and plays an important role in the forensic context (Berger et al., 2011, Biedermann, 2015, Taroni et al., 2015, 138 

Biedermann et al., 2017b). An ideal solution to handle the uncertainty in inductive reasoning is provided by the Bayesian 139 

paradigm (Taroni and Biedermann, 2014), that formalizes the general approach for thinking about evidence (Robertson 140 

and Vignaux, 1998). The usefulness of Bayesian perspective for forensic evidence interpretation has been recognized 141 

(Aitken and Taroni, 2004, Comitee of forensic experts, 2011, ENFSI, 2015, Robertson et al., 2016) to the point that Evett 142 

(2015, p. 10) states that “The nature of forensic science is now firmly founded in the Bayesian paradigm […]”.  143 

3. Bayesian perspective in forensic age estimation 144 

The Bayesian paradigm states that all uncertainties characterizing an issue of interest must be described by means of 145 

probabilities or probability distributions. Probabilities are interpreted as a conditional measure of uncertainty associated 146 

with the unknown feature of interest (e.g., the chronological age) given the available information. The learning process 147 

about the feature of interest is described as the modification of the uncertainty in the light of new information, the scientific 148 

findings; the Bayes theorem explains how this should be done, formalizing the common notion ‘learning from experience’ 149 

(Jeffreys, 1961). The algebraic expression of the Bayes theorem depends on the nature of the involved variables. Suppose 150 

we have a set 𝑬 of categorical age-related evidence and that we consider the chronological age to be the realization of a 151 

continuous variable 𝐴. A standard application of the Bayes' theorem allows one to obtain the posterior distribution of the 152 

chronological age as 153 

 154 

𝑓D(𝑎|𝑬, 𝐼) =
𝑃𝑟(𝑬|𝑎, 𝐼) × 𝑓D(𝑎|𝐼)

∫𝑃𝑟(𝑬|𝑎, 𝐼) × 𝑓D(𝑎|𝐼)𝑑𝑎
, 

(1) 

 155 
where 𝐼 indicates the background information related to the examined person, such as the sex and the ethnic origin and 156 

any other relevant pieces of information. A discussion on the meaning and the role of background information can be 157 

found in Aitken and Nordgaard (2018). The formulae state that the updated belief, i.e., the posterior probability 158 

distribution on the age 𝑓D(𝑎|𝑬, 𝐼) results from a normalized combination of the initial beliefs about the age, represented 159 

by the prior probability distribution 𝑓D(𝑎|𝐼) and the information originating from the available evidence, quantified as 160 

𝑃𝑟(𝑬|𝑎, 𝐼).  161 

Note that analytically solving Bayesian models can be a tedious and time-consuming procedure, which is unsuitable for 162 

daily practice. Nonetheless, specific statistical tools exist in order to simplify this aspect, especially so-called Bayesian 163 
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Networks (BNs). BNs are probabilistic graphical models that present the dual advantage of graphically describing the 164 

relationship between variables describing the inferential model, as well as of directly providing automatic computations 165 

following the rule of the probability theory (Taroni and Biedermann, 2013). BNs are widely used in forensic science 166 

(Taroni et al., 2014), including age estimation (Sironi et al., 2016). They can be easily extended to take into account the 167 

decisional aspect (Taroni et al., 2014).  168 

4.1 Posterior probability distribution on the chronological age 169 

Posterior density is the target outcome of the inductive process: it encapsulates all available information related to the 170 

specific case, ranging from the collected evidence, the available background information up to the specific expert 171 

knowledge at a given time. It is therefore possible to quantify and combine all sources of uncertainty about the target 172 

quantity (i.e., the chronological age) in a rational way, as clearly requested in the age estimation domain (EASO, 2018, 173 

Malmqvist et al., 2018).  174 

The posterior distribution can provide point and interval estimates of the chronological age. Furthermore, it can be used 175 

to inform us about the probability of competing propositions such as whether the examined individual is older or younger 176 

than a specific threshold. For instance, the probability that an individual is 18 years or older can be obtained by the 177 

integration of the posterior density function 𝑓D(𝑎|𝑬, 𝐼) over the age-space of interest (Thevissen et al., 2010, Sironi et al., 178 

2016): 179 

 180 

𝑃𝑟(𝜃3|𝑬, 𝐼) = I 𝑓D(𝑎|𝑬, 𝐼)
JK

𝑑𝑎 = I
𝑃𝑟(𝑬|𝑎, 𝐼) × 𝑓D(𝑎|𝐼)

∫ 𝑃𝑟(𝑬|𝑎, 𝐼) × 𝑓D(𝑎|𝐼)𝑑𝑎
𝑑𝑎

JK

 
(2) 

 181 
where 𝜃3	is the interval that covers the age space equal to and greater than 18 years of age. The (posterior) probability 182 

that the individual is younger than 18 years, 𝜃L, can be computed analogously.  183 

4.2. Prior probability distribution on the chronological age 184 

The prior probability distribution should reflect prior beliefs on the chronological age of the examined individual before 185 

the evaluation of the collected age-related evidence. Though strategies suitable for formalizing prior beliefs in terms of a 186 

probability distribution have been proposed both in statistical and forensic literature (O'Hagan et al., 2006, Taroni et al., 187 

2010, Sironi et al., 2017, Bolstad and Curran, 2017), the elicitation of a prior in age estimation can be a challenging task, 188 

since there is generally little initial information at the expert’s disposal (Schmeling et al., 2003). From a Bayesian 189 

perspective this must not be felt to be an insurmountable drawback, as the prior probability distribution “[…] reflects 190 

[one’s] belief about the subject matter, conditioned as these will presumably be by [one’s] available background evidence 191 

[…]” (Howson, 2002, p. 53). The expert should be able to qualify or quantify their personal belief on the age of the 192 

examined person based on preliminary information on the case at hand. 193 
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In the framework suggested by the AGFAD, the prior probability distribution could be assigned by the expert based on 194 

information collected during an interview or the physical examination of the person under investigation, since it is 195 

generally acknowledged that data gathered in this initial step of the examination sequence should not be used for the 196 

effective age estimation (Schmeling et al., 2006a, Schmeling et al., 2011). Due to the lack of available information, many 197 

authors have proposed adopting so-called non-informative or vague prior probability distributions, such as a uniform 198 

distribution over a given age range, according to which all possible age values are considered, a priori, equally likely 199 

(Braga et al., 2005, Thevissen et al., 2010, Cameriere et al., 2016, Bleka et al., 2018). This way of thinking should result 200 

in posterior conclusions that will be minimally dependent on prior distribution. This is not intrinsically wrong, but 201 

information-less priors may be misleading as such priors actually do not exist (Howson, 2002). The introduction of a 202 

uniform distribution over a given age range is far from being without information, as it conveys the belief that all ages in 203 

the chosen interval are considered equally likely, whilst those outside the range are considered as not possible (Sironi et 204 

al., 2017). The elicitation of such a uniform distribution may be reasonable in some scenarios (Sironi et al., 2018b), when 205 

the age interval is chosen based on the available knowledge (Sironi et al., 2018b, Konigsberg et al., 2019). Other choices 206 

of probability distributions over the chronological age are clearly possible. For instance, in case of forensic age estimation 207 

of a young adult, a probability distribution centered around the legal threshold may be preferred. Asymmetrical 208 

distribution has been proposed in the scientific literature (Sironi et al., 2016), nonetheless Konigsberg et al. (2019) argued 209 

that it would be more beneficial to rather  assign a symmetrical one, as the normal or the Laplace distribution, located 210 

around the mentioned legal threshold, which leads to an equal support of the competing intervals under consideration 211 

(here named 𝜃3	– a given person is aged 18 years or older; and 𝜃L – a given person is younger than 18 years) (Konigsberg 212 

et al., 2019). 213 

Examiner may be concerned about the sensitivity of the posterior distribution to alternative prior distributions that fit just 214 

as well the prior beliefs. The sensitivity analysis is a powerful tool for investigating the robustness of the posterior 215 

inference on prior assignments (Sironi and Taroni, 2015, Sironi et al., 2015, Sironi et al., 2018a, Sironi et al., 2018b, 216 

Konigsberg et al., 2019). 217 

4.3. Likelihood function 218 

The likelihood function models the relationship between the age-related evidence (i.e., the biological age) and the 219 

chronological age. The choice of standard statistical models (such as classical regression models) is generally unfeasible. 220 

It must be acknowledged that in the age estimation scenario, there are generally multiple items of evidence available to 221 

authorities, and that the quantified variables do not necessarily have identical scales of measurement. A statistical model 222 

must clearly provide a coherent assessment of the uncertainty about the relationship between the biological and the 223 

chronological age, but must also be capable of dealing with multiple items of evidence. 224 
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Several statistical methods have been proposed in the literature for age estimation purposes, although, they generally 225 

present some drawbacks, such as the unsuitability of being employed for the evaluation of multiple items of evidence 226 

having different scales of measurement (Thevissen et al., 2010, Hillewig et al., 2013, Sironi et al., 2018a) or operational 227 

limitations (Braga et al., 2005).  228 

The assumption of conditional independence between pieces of evidence given the age has often been retained (Corradi 229 

et al., 2013a, Corradi et al., 2013b, Gelbrich et al., 2015, Fieuws et al., 2015, Tangmose et al., 2015, Bleka et al., 2018). 230 

If this assumption were reliable, the likelihood function could be obtained as the product of individual likelihoods for 231 

each considered item of evidence, when 𝑛 items of evidence are evaluated: 232 

 233 

𝑃𝑟(𝑬|𝑎, 𝐼) = 	N𝑃𝑟(𝐸P|𝑎, 𝐼)
1

P23

. 
(3) 

 234 
However, this assumption does not seem to meet the biological reality, since the development of a single part of the body 235 

is rarely independent from the others (Boldsen et al., 2002). The consequence may be that the estimated posterior density 236 

is too narrow compared to what it should be (Fieuws et al., 2015). In this perspective, Boldsen et al. (2002) have suggested 237 

a statistical procedure for correcting the posterior interval estimates, and Fieuws et al. (2015) have extended the procedure 238 

in order to allow one to correct directly the posterior density. The assumption of conditional independence may be 239 

strengthened by considering other pieces of information provided by the examined person. Examples of such information 240 

may be the knowledge of diseases or lower socio-economic status of the examined person during development, which 241 

may affect the skeletal and dental development to a different degree (Schmeling et al., 2005, Schmeling et al., 2006b). 242 

When considering a single item of evidence, the use of regression models specifically developed for the treatment of 243 

categorical dependent variables is beneficial. Notably, models from both probit and logit families have been used 244 

(Konigsberg (2015) and references therein). Specifically, unrestricted cumulative models (Sironi and Taroni, 2015, Sironi 245 

et al., 2015, Sironi et al., 2018a, Konigsberg et al., 2019) and continuation ratio models (Fieuws et al., 2015, Tangmose 246 

et al., 2015, Sironi and Taroni, 2015, Sironi et al., 2016, Bleka et al., 2018) have been proposed. Note that the models 247 

employed by Sironi and Taroni (2015), Sironi et al. (2016) and Bleka et al. (2018) are sometimes also referred to as 248 

stopping ratio models (Konigsberg et al., 2019). Proportional-odds (or restricted cumulative) models have also been 249 

employed (Bleka et al., 2018). These models are based on assumptions that do not meet the biological reality of the 250 

developmental process, thus they are not appropriate in this field (Boldsen et al., 2002). As pointed out by Konigsberg et 251 

al. (2019), there is little practical difference between the logit or probit models: traditionally logit models were preferred 252 

because of computational ease compared to the probit, but nowadays this is no longer a rational argument, considering 253 

the availability of statistical software (Konigsberg, 2015). Moreover, it may be felt that models from the probit family 254 

may be easier to implement for practitioners, since they refer to normal distribution rather than to logistic distribution, 255 
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which may be less intuitive (Myers et al., 2002). According to Konigsberg et al. (2019), this aspect is particularly relevant 256 

in the forensic field, since scientific results originating from the selected models should be presented to an audience with 257 

a limited scientific background. Furthermore, Konigsberg (2015) highlighted that univariate probit models can be 258 

extended to consider multiple variables by using a multivariate normal distribution, whilst this task would be more 259 

complex with logistic distribution. 260 

An attractive feature of the cumulative models is that some consecutive stages can be collapsed into a single one without 261 

affecting the estimation of the parameters of the curves of the other stages (Konigsberg et al., 2008). This is particularly 262 

interesting in case of age estimation from physical attributes for which development is described by means of several 263 

categorical steps. However, these models may generate overlapping regression curves that may lead to inconsistencies 264 

associated with a generic developmental stage (Konigsberg and Herrmann, 2002). Sironi and Taroni (2015) showed that 265 

different regression models may lead to different quantifications of the posterior probabilities on a given age cohort (such 266 

as 𝜃3 or 𝜃L). Bleka et al. (2018) adopted the regression model that provided the best fit with the available data. Note that 267 

in order to avoid inconsistencies on the value of age, the variable ‘age’ can be transformed into a logarithmic (Konigsberg 268 

et al., 2008) or exponential scale (Bleka et al., 2018). Non-parametric models (such as those based on the Kernel 269 

distribution) may also be employed (Lucy et al., 2002).  270 

The main drawback affecting the above models, is that for their operational implementation, there is an urgent need for 271 

structured data samples, that unfortunately are unlikely to be available (Konigsberg, 2015). Nonetheless, the lack of 272 

adequate data should not be considered as an insurmountable impasse. For instance, the guidelines for evaluative reporting 273 

in forensic science published by the European Network of Forensic Science Institutes (ENFSI, 2015) states that: 274 

“[…] Relevant and appropriate published data will be used wherever possible. If appropriate 275 

published data are not available then data from unpublished sources may be used. Regardless of the 276 

existence of sources (published or not) of numerical data, personal data such as experience in similar 277 

cases and peer consultations may be used, provided that the forensic practitioner can justify the use 278 

of such data. […]” (ENFSI, 2015, p. 15). 279 

Furthermore,  280 

“[…] likelihood […] can be informed by subjective probabilities using expert knowledge. […] Such 281 

personal probability assignment is not arbitrary or speculative, but is based on a body of knowledge 282 

that should be available for auditing and disclosure.” (ENFSI, 2015, p. 16) 283 

Note that the guidelines focus on the assignment of the probabilities that represent the ingredients of the likelihood ratio 284 

(i.e., the ratio between the probability of the evidence given two competing propositions), but these statements can be 285 

extended in order to choose an appropriate statistical model that is capable of taking into account in a coherent way the 286 

uncertain relationship between biological and chronological age. An extensive discussion about the role of the subjectivist 287 
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approach to the elicitation of probabilities in forensic science can be found in Taroni et al. (2001), Berger et al. (2011), 288 

Biedermann et al. (2017b), Taroni et al. (2018).  289 

5. Bayesian inference from an operational perspective 290 

The regression models discussed above represent the ideal approach to forensic age estimation. However, because of the 291 

lack of reference data, their application in practice may be problematic. In case of lacking data (see above), forensic 292 

practitioners may feel more comfortable in assigning probabilities in the form of relative frequencies rather than 293 

probability distributions. The use of relative frequencies to inform subjective probabilities has recently been discussed by 294 

Taroni et al. (2018). However, such frequencies cannot logically be assigned for each age of a continuous scale. Since the 295 

mandating authority usually asks whether or not an age threshold was exceeded, it may be sensible to consider two 296 

alternative propositions in the form: 297 

• 𝜃3: the examined person is aged 18 years or older; 298 

• 𝜃L: the examined person is younger than 18 years of age; 299 

Note that in this paper the notation 𝜃# is used in two different meanings. In Section 4, 𝜃3 and 𝜃L represent a subset of the 300 

support of the continuous variable “age”, whilst in the current one it represents a discrete event. Note also that the age 301 

limits considered as reasonable in the case at hand should be expressed directly in the propositions, whilst in the 302 

framework discussed in section 4, these limits are implicitly defined by the choice of the probability distributions of 303 

interest. The Bayes’ theorem can therefore be formulated as follows: 304 

 305 

𝑃𝑟4𝜃#R𝑬, 𝐼5 =
𝑃𝑟4𝑬R𝜃#, 𝐼	5 × 𝑃𝑟	(𝜃#|𝐼)

∑ 𝑃𝑟4𝑬R𝜃#, 𝐼	5 × 𝑃𝑟	(𝜃#|𝐼)L
#23

 
(4) 

 306 
It is worth emphasizing that not only the evidence, but also the chronological age is categorized as a discrete variable. 307 

This formulation is rarely addressed in the literature (Lucy, 2010). However, from an operational perspective, the task of 308 

the forensic expert is potentially simplified, since it will be limited to the assessment of a probability of discrete events 309 

(the exceeding or vice versa of an age threshold). These probabilities can be assigned relying on available relative 310 

frequencies of the developmental evidence in the given cohort. Such relative frequencies can sometimes be extrapolated 311 

from reference studies, or from unpublished data (ENFSI, 2015).  312 

It must be clarified that this does not amount to equating a conditional probability that according to our view represents a 313 

degree of belief, with relative frequency that represents a normalized count of a given quantity. From a frequentist point 314 

of view, the probability can indeed be defined as a limiting value of relative frequency, assuming a large repetition of the 315 

event under identical conditions is feasible. This is generally not the case for forensic evidence (Lucy, 2010, Curran, 316 

2013), and a subjectivist approach is strongly encouraged (Lindley, 1991). Nevertheless, a personal degree of belief can 317 

be informed by relative frequencies, which is even recommended, when data are available (Taroni et al., 2018). 318 



11 
 

Notably, while the expert needs to assign the probability of the evidence 𝑬 based on the observation of multiple age 319 

indicators, data collected simultaneously from multiple age indicators are infrequently available in forensic literature 320 

(Schmeling et al., 2016). However, if the assumption of conditional independence between different pieces of evidence 321 

is feasible, the conditional probability 𝑃𝑟	(𝑬|𝜃#, 𝐼) can be simplified as follows: 322 

 323 

𝑃𝑟4𝑬R𝜃#, 𝐼5 = 	N𝑃𝑟4𝐸PR𝜃#, 𝐼5
1

P23

 
(5) 

 324 
Then, conditional probabilities for each type of evidence Ek, 𝑃𝑟4𝐸PR𝜃#, 𝐼5, can be derived from relative frequencies 325 

accessed from available databases or published reference studies. 326 

Two aspects of the use of relative frequencies to elicit conditional probabilities in Eq. (5) need to be considered. Firstly, 327 

the frequency of a specific complex developmental pattern is very low, since the number of observable patterns can be 328 

very large. Thus, the posterior inference may be highly sensitive to such assignment. Secondly, the relative frequencies 329 

are logically influenced by the structure of the reference sample.  330 

Several studies report the probability of being at least 18 years old given the observed developmental stage (Liversidge 331 

and Marsden, 2010, Mincer et al., 1993). However, such probabilities refer to the proposition given the evidence (i.e., 332 

𝑃𝑟(𝜃3|𝑬, 𝐼)), and not to the evidence given the proposition (i.e., 𝑃𝑟(𝑬|𝜃3, 𝐼)). Equating these two probabilities would 333 

amount to a transposition of conditionals (Evett, 1995). Note that the probability 𝑃𝑟(𝜃3|𝑬, 𝐼), whenever available, does 334 

not incorporate the prior knowledge about age.  335 

6. Normative approach to decision in age estimation 336 

The problem of evidence interpretation concerns both inference and decision. The importance of a rational approach to 337 

decision-making for questions by the different actors of the legal process has gained an increasing attention in forensic 338 

literature (Taroni et al., 2005, Taroni et al., 2010, Gittelson, 2013, Biedermann et al., 2016, Biedermann et al., 2018). In 339 

age estimation, the expert is asked to make several decisions, including the choice of an appropriate method for assessing 340 

the developmental process, or the identification of the developmental status reached by a physical attribute. Nonetheless, 341 

the more relevant decision in age estimation concerns indubitably the fact that a person is adult or minor. 342 

Note that a clear distinction is to be made between deciding that an individual being evaluated is younger or older than 343 

18 years of age, and the decision to declare him or her minor or adult within the meaning of the law. Such decision in age 344 

estimation will be taken, at a given moment, by one of the participants of the legal or administrative procedure 345 

(Biedermann et al., 2017a). The decision maker may be either the scientist or the mandating authority, depending on the 346 

framework of the circumstances of a specific case. However, the main focus of this paper is not a discussion about who 347 

is entitled to make this kind of decision in forensic age estimation framework, but rather how such a decision problem 348 

should be tackled (see Biedermann et al. (2008) for a wide discussion on this aspect in forensic science). Therefore, the 349 
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current discussion focuses on the general aspects of the normative approach to making decision in forensic age estimation. 350 

From a general point of view, this decision problem can be resumed on evaluating “what is the minimum degree of 351 

probability 𝑃𝑟(𝜃3|𝑬, 𝐼) to be required for accepting that the adulthood of the examined person is established?” 352 

(Biedermann et al., 2017a). A study conducted by Polo Grillo et al. (2002) on 47 judicial cases involving immigrants 353 

lacking valid ID documents illustrated how decision-makers expressed appreciation for the quantification of uncertainty 354 

in terms of probability in age estimation cases. The study pointed out that the judges felt “confident” in declaring an 355 

individual to be an adult if the reported probability that he or she is 18 years or older was greater than 0.70. However, the 356 

empirical nature of this study must be emphasized, because it is generated by the observation of the behavior of the 357 

decision-maker not using a specific decisional criterion. For this reason, it cannot serve as a framework to support a 358 

rational decision in specific casework. For this reason, we endorse a normative approach to decision-making, which can 359 

be integrated into the Bayesian framework. The normative approach to decision-making has only recently been explored 360 

in forensic sciences (Taroni et al., 2005, Biedermann et al., 2008, Gittelson et al., 2013, Gittelson et al., 2014, Biedermann 361 

et al., 2016, Gittelson et al., 2016, Biedermann et al., 2017a). More details about the decision theory and its application 362 

can be found, among others, in DeGroot (1970), Lindley (2006) and Berger (2010). 363 

A problem of decision can be described in terms of three principal components (Table 1): 364 

• A collection of states of nature, denoted 𝜃3, 𝜃L,…, 𝜃1, that represent the events of interest in the decision-making 365 

process and about which the decision-maker is uncertain. Assuming that probability is the standard measure of 366 

uncertainty, the uncertainty about these events can be quantified in a collection of probabilities 𝑃𝑟(𝜃3| ·), 367 

𝑃𝑟(𝜃L| ·), …, 𝑃𝑟(𝜃1| ·) which are conditioned by all available knowledge in the given as ∑ 𝑃𝑟4𝜃#R ·5 = 11
#23 .  368 

In age estimation, the events of interest can be stated as the two competing propositions 𝜃3 and 𝜃L. To each state 369 

of nature a probability will be assigned, namely 𝑃𝑟(𝜃3|𝑬, 𝐼) and 𝑃𝑟(𝜃L|𝑬, 𝐼) as in Eqs 2 and 4 (see section 4 370 

and 5). 371 

• A collection of decisions (or actions), denoted 𝑑3, 𝑑L,…, 𝑑T. Decisions must be exhaustive and mutually 372 

exclusive, that is, the collection must cover all possible decisions and the decision-maker can choose one, and 373 

only one, decision among all the available ones. In the scenario discussed in this Chapter, the available decisions 374 

are 𝑑3	: to declare the examined person as adult, and 𝑑L	: to declare the examined person as minor. 375 

• A collection of consequences that result from the combination of the states of nature and the available decisions: 376 

the choice of a decision 𝑑" when 𝜃# is the true state of nature leads to a consequence 𝐶4𝑑"; 𝜃#5, denoted as 𝐶"#.  377 

Table 1 
Decision matrix for the given age estimation scenario. 𝑑" with 𝑖 = 1,2 denotes the available decisions, 
𝜃# with 𝑗 = 1,2 denotes the events of interests, and 𝐶"# denotes the possible decision consequences. 
Decision States of nature  

 𝜃3	: aged 18 years or  older  𝜃L	: younger than 18 years of age 
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𝑑3	: adult 𝐶33	: correct declaration as adult 𝐶3L	: false declaration as adult 

𝑑L	: minor 𝐶L3	: false declaration as minor 𝐶LL	: correct declaration as minor 

 378 

Decision consequences are characterized by a different level of desirability or undesirability. In the age estimation 379 

scenario, the more favorable consequence is when the examined person is correctly declared as being adult or minor (𝐶33 380 

and 𝐶LL), whilst the worst consequence is when a person who is actually younger than 18 years of age, is declared an 381 

adult (𝐶3L). This type of error is generally referred to as ethically unacceptable (Garamendi et al., 2005). The consequence 382 

of declaring a person who actually is older than 18 years of age (𝐶L3) to be a minor is generally favorable to the individual, 383 

but adverse to the society, because of the additional social expenses that could have been avoided. For this reason, the 384 

undesirability of consequence 𝐶L3 can be considered to be intermediary between those referred to the best and the worst 385 

consequence. This amounts to the following preference ordering: 386 

𝐶33~𝐶LL ≻ 𝐶L3 ≻ 𝐶3L 387 
where ≻ denotes the preference of the decision-maker for one consequence over another, whilst ~ denotes the indifference 388 

on the desirability of two or more consequences. 389 

The desirability of a given consequence 𝐶"# can be measured by a numerical value, by means of a function called utility 390 

function, denoted as	𝑢(𝑑"; 𝜃#) = 𝑢(𝐶"#). Analogously, it is possible to express preferences among decision consequences 391 

by means of a loss function, denoted as 𝑙(𝑑"; 𝜃#) = 𝑙(𝐶"#), that quantifies on a numerical scale the undesirability of 392 

decision consequences. Note that utilities and losses are conceptually and mathematically connected (Berger, 2010), 393 

though in the current scenario the more intuitive reasoning would be in terms of losses. 394 

Various strategies can be implemented to build an appropriate loss function (Lindley, 1985, Koller and Friedman, 2009, 395 

Berger, 2010), with the sole constraint being that the loss function must correctly reflect the preference ordering. This 396 

implies that if 𝑙(⋅) is a loss function and one consequence is felt as less desirable than another one, i.e., 𝐶3L ≺ 𝐶LL, then 397 

𝑙(𝐶L3) < 𝑙(𝐶3L). The highest loss value, according to the unit scale, will be assigned to the more adverse outcome (i.e., 398 

𝐶3L), while the smallest will be assigned to the less adverse or more favorable outcome (i.e., 𝐶33 and 𝐶LL).  399 

As far as the practical and controversial issue of building the loss function is concerned, both the utility and the loss 400 

functions are invariant to linear transformations, so that any particular choice of the unit scale is theoretically allowed 401 

(Berger, 2010). A convenient choice is the ‘0-1’ scale, where the minimum and the maximum of the loss scale are fixed 402 

at 0 and 1, respectively (Table 2). This implies that a loss equal to 0 is assigned to 𝐶33 and 𝐶LL (the most favored outcomes), 403 

that is 	𝑙(𝐶L3) = 𝑙(𝐶3L) = 0, and a loss equal to 1 is assigned to 𝐶3L (the worst outcome), that is 𝑙(𝐶3L) = 1. In this way 404 

the construction of a loss function for the age estimation scenario is greatly simplified as the only remaining value that 405 

needs to be assigned is the loss associated with the intermediate consequence 𝐶L3.  406 
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A feasible strategy to assign the loss associated with 𝐶L3 refers to a context where one player (i.e., the decision-maker) is 407 

asked to choose between a sure event (in this case, the outcome corresponding to the intermediate consequence whose 408 

loss needs to be assigned), and a gamble where the worst outcome takes place with probability 𝑝 and the best outcome 409 

takes place with probability 1 − 𝑝 (see Lindley (1985) or (Berger, 2010) for a formal approach). The loss of the 410 

intermediate consequence 𝐶L3 can be set to be equal to the probability 𝑝 that makes one indifferent between the sure event 411 

and the gamble. Note that this assignment has to be made under the constraint imposed by the personal scale of desirability 412 

of the possible consequence: if 𝐶33~𝐶LL ≻ 𝐶L3 ≻ 𝐶3L, then 𝑙(𝐶33) = 𝑙(𝐶LL) > 𝑙(𝐶L3) > 𝑙(𝐶3L), thus 𝑙(𝐶L3) has to take a 413 

value between 0 and 1 (excluded).  414 

 415 

Table 2 
The ‘0-1’ loss function for the age estimation scenario, where 𝑑3 and 𝑑L denote the 
available decisions, 𝜃3 and 𝜃L denote the events of interest (as illustrated in Table 1), and 
𝑙(𝐶L3) denotes the loss associated with the intermediate consequence 𝐶L3. 
 𝜃3	: aged 18 years or older 𝜃L	: younger than 18 years of age 
𝑑3	: adult 0 1 
𝑑L	: minor 𝑙(𝐶L3) 0 

 416 

The undesirability of available decisions can be measured by their corresponding (posterior) expected losses: 417 

 418 

𝑙(𝑑"| ·) =a𝑙
1

#23

4𝐶"#5 × 𝑃𝑟4𝜃#R𝑬, 𝐼5 
(6) 

 419 
where 𝑃𝑟4𝜃#R𝑬, 𝐼5 are the posterior probabilities of the states of nature and 𝑙(𝐶"#) the losses for the consequences of 420 

interest. The optimal decision, also called Bayes decision, is the decision that minimizes the Bayesian expected losses, 421 

formally: 422 

 423 

𝑎𝑟𝑔𝑚𝑖𝑛
"

	𝑙(𝑑"| ·) = 𝑎𝑟𝑔𝑚𝑖𝑛
"

	a 𝑙
1

#23

4𝐶"#5 × 𝑃𝑟4𝜃#R ·5 
(7) 

 424 
In this way both the undesirability of the consequences (in terms of losses) and the uncertainty of the state of nature (in 425 

terms of probabilities) are considered related to the decision. 426 

It is thus possible to quantify the expected loss for the two available decisions in the age estimation scenario. The 427 

(posterior) expected loss for the decision 𝑑3 (i.e., to formally declare the person an adult) can be quantified as 428 

 429 
𝑙(𝑑3|𝑬, 𝐼) =	∑ 𝑙L

#23 4𝐶3#5 × 𝑃𝑟4𝜃#R𝑬, 𝐼5 = 𝑙(𝐶33)cde
f

× 𝑃𝑟(𝜃3|𝑬, 𝐼) + 𝑙(𝐶3L)cde
3

× 𝑃𝑟(𝜃L|𝑬, 𝐼), (8) 
 

 430 
while the (posterior) expected loss of decision 𝑑L (i.e., to formally declare the person a minor) can be quantified 431 

analogously as 432 

 433 
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𝑙(𝑑L|𝑬, 𝐼) =	∑ 𝑙L
#23 4𝐶L#5 × 𝑃𝑟4𝜃#R𝑬, 𝐼5 = 𝑙(𝐶L3) × 𝑃𝑟(𝜃3|𝑬, 𝐼) + 𝑙(𝐶LL)cde

f

× 𝑃𝑟(𝜃L|𝑬, 𝐼), (9) 
 

 434 
According to the Bayesian decision criterion in Eq. (7), that prescribes making the decision having the lower expected 435 

loss, the decision 𝑑3 is therefore preferable to the decision 𝑑L when 𝑙(𝑑3|𝑬, 𝐼) < 𝑙(𝑑L|𝑬, 𝐼). Writing expected losses 436 

𝑙(𝑑"|𝑬, 𝐼) in full length, and eliminating the terms in Eqs. (8) and (9) involving zero losses, leads to the following 437 

expression 438 

 439 
𝑙(𝐶3L) × 𝑃𝑟(𝜃L|𝑬, 𝐼) < 𝑙(𝐶L3) × 𝑃𝑟(𝜃3|𝑬, 𝐼), (10) 

 
 440 
or equivalently to  441 
 442 

𝑃𝑟(𝜃L|𝑬, 𝐼)
𝑃𝑟(𝜃3|𝑬, 𝐼)

<
𝑙(𝐶L3)
𝑙(𝐶3L)

. 
(11) 

 443 
Eq. (11) states that the decision 𝑑3 to declare the examined individual an adult is preferable if, and only if, the posterior 444 

odds in favor of 𝜃L are smaller than the loss associated to 𝐶L3, which corresponds to wrongly declaring an individual who 445 

has effectively exceeded the age of 18 years as a minor. Note that 𝑙(𝐶3L) = 1 and 𝑃𝑟(𝜃L|𝑬, 𝐼) = 1 − 𝑃𝑟(𝜃3|𝑬, 𝐼), thus, 446 

the Eq. (11) can be rearranged as follow: 447 

 448 
𝑃𝑟(𝜃3|𝑬, 𝐼) >

1
1 + 𝑙(𝐶L3)

. (12) 

 449 
That is, the minimum degree of probability 𝑃𝑟(𝜃3|𝑬, 𝐼) that is required to decide about the adulthood of the examined 450 

person is given by the ratio 1 [1 + 𝑙(𝐶L3)]⁄ . A more intuitive way to interpret the principle of minimizing the expected 451 

loss in the current scenario is provided in Figure 1, that shows the (posterior) expected losses in Eqs. (8) and (9) as a 452 

function of the posterior probability of 𝜃3, 𝑃𝑟(𝜃3|𝑬, 𝐼), with 𝑙(𝐶L3) = 0.50 (Figure 1a) and 𝑙(𝐶L3) = 0.10 (Figure 1b). 453 

 454 
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 455 

Fig. 1: Expected losses 𝒍(𝒅𝒊|𝑬, 𝑰), with 𝒊 = 𝟏, 𝟐, for different values of 𝑷𝒓(𝜽𝟏|𝑬, 𝑰) with 𝒍(𝑪𝟐𝟏) = 𝟎. 𝟓𝟎 (a) and 456 
𝒍(𝑪𝟐𝟏) = 𝟎. 𝟏𝟎 (b). The dotted vertical line indicates the threshold value of 𝑷𝒓(𝜽𝟏|𝑬, 𝑰) that inverses the preferability 457 
of the decision, in this case 𝑷𝒓(𝜽𝟏|𝑬, 𝑰) = 𝟎. 𝟔𝟔//// (a) and 𝑷𝒓(𝜽𝟏|𝑬, 𝑰) = 𝟎. 𝟗𝟎//// 458 

 459 

In Figure 1, the optimal decision is the one for which the values of the corresponding expected losses attain the minimum: 460 

these values are highlighted in bold. Given 𝑙(𝐶L3) = 0.50,	Figure 1a shows that the optimal choice is 𝑑3 if, and only if, 461 

𝑃𝑟(𝜃3|𝑬, 𝐼) > 1 [1 + 0.50] = 0. 66////⁄ , otherwise it is 𝑑L. In the second case (Figure 1b), given 𝑙(𝐶L3) = 0.01, the optimal 462 

choice is is 𝑑3 if, and only if, 𝑃𝑟(𝜃3|𝑬, 𝐼) > 1 [1 + 0.01] = 0. 90////⁄  463 

Let us now consider the problem of choosing a loss function. In the current scenario, the problem is confined to the choice 464 

of a meaningful value for 𝑙(𝐶L3). Note that, as pointed out by Biedermann et al. (2016, p. 34), the necessary comparison 465 

implied by Eq. (11) “ […] is essentially qualitative and reduces to a single factor, call it 𝑥 for simplicity, that states how 466 

much greater one loss value is compared to the other.” Given the actual preference ordering, one can define  467 

 468 
𝑙(𝐶3L) = 𝑥𝑙(𝐶L3)	, for	𝑥 > 1 (13) 

 
 469 
The practitioner needs to specify how much worse he considers it to wrongly declare an individual who has not effectively 470 

exceeded the age of 18 years an adult, with respect to the opposite, that is, to wrongly declare an individual who is 471 

effectively older than 18 years a minor. Then, being 𝑙(𝐶3L) set equal to 1 because of the choice of a ‘0-1’ unit scale, the 472 

loss associated with 𝐶L3	can be immediately obtained as	𝑙(𝐶L3) = 1 𝑥� . 473 

For instance if the decision-maker feels that an erroneous declaration about a person being an adult is two times worse 474 

than an erroneous declaration of the person being a minor, then, 𝑥 = 2 and 𝑙L3=0.50; in case the former would be 475 

considered 10 times worse than the latter, then 𝑥 = 10 and 𝑙L3=0.10. Recalls the example provided by the study of Polo 476 

Grillo et al. (2002) and suppose that the evidence evaluation lead to a value of the posterior probability on 𝜃3 of 0.70, i.e., 477 
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𝑃𝑟(𝜃3|𝑬, 𝐼) = 0.70. In this case, from Eq. (12), the rational decision is 𝑑3 (declare the examined person as adult) if and 478 

only if 𝑙(𝐶L3) > 0.42 (approximately). Thus, if the decision-maker beliefs that a “false adult” is only two time worse than 479 

a “false minor”, then the rational decision is to declare the examined person as adult (𝑑3). If instead, he or she feels that 480 

it is 10 times worse, then the rational decision is to declare the examined person as minor (𝑑L). Note that the choice of 481 

the value of 𝑥 (as well as any quantifications of the loss value) is subjective and it is based on the personal belief and the 482 

personal knowledge of the decision-maker. Elements that can support such choice are the framework of the case (criminal 483 

versus asylum cases) or the law system in force in a given country. Analogously to the assignment of subjective 484 

probability, these subjective losses are a formalization of the personal belief of the decision-maker, which is informed by 485 

all the pieces of information available by the decision-maker. Subjective losses are thus perfectly compatible with the 486 

forensic and legal framework, provided that the choice made is coherent and can be justified (Taroni et al., 2010, 487 

Biedermann et al., 2016).  488 

A sensitivity analysis is strongly suggested also in this case. Different loss assignments, as well as different prior 489 

assignments, will give rise to different expected losses. This must not be considered to be a weakness of the endorsed 490 

Bayesian criterion for making decisions. Different prior probabilities, as well as different losses, might fit as well a given 491 

degree of belief or a given preference structure, and therefore different expected losses might be entirely justifiable. 492 

7. Discussion and conclusion 493 

The interpretation of scientific evidence is an inferential (inductive) task and thus naturally involves uncertainty. The 494 

specific case of age-related evidence in the forensic age estimation framework does not represent an exception to this 495 

statement. Assuming that probability is the measure of quantifying uncertainty and that the Bayesian approach provides 496 

a logical framework to the problem of induction, the expert plays a central role in the choice of (i) the prior probability 497 

distribution on the chronological age, (ii) the statistical model to handle uncertainty about the evidence, and (iii) the 498 

relevant database to inform the likelihood function.  499 

It has already been pointed out that the expert must often deal with the absence of adequate databases. This is not 500 

surprising, as the collection of the biological age from multiple age indicators for the same individual is extremely 501 

difficult, especially in populations generally involved in age estimation procedures. However, the lack of information 502 

must not be equated with the impossibility of implementing a probabilistic model. The lack of background data is a 503 

common problem shared in various forensic disciplines, at the point that the ENFSI (2015) considers this possibility in 504 

its guidelines. In such a context, the role of the expert becomes even more relevant, since the probabilities of the events 505 

of interest (i.e., the probability of dental or skeletal evidence given the chronological age) can reasonably be assigned 506 

based on a personal (and justified) body of knowledge, by using unpublished data or data published in reference studies 507 

(ENFSI, 2015). In this perspective, reference studies including the parameters estimated through regression models 508 
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applied to unpublished datasets can be extremely useful: such data can be implemented by the expert to quantify likelihood 509 

function (Konigsberg, 2015, Konigsberg et al., 2019).  510 

As far as the uncertainty about the chronological age is concerned, an operationally valid alternative to the introduction 511 

of a probability density function over a continuous random variable (i.e., age) would be to consider specific age cohorts 512 

in the form of competing propositions. This allows us to facilitate the quantification of uncertainty regarding the age in 513 

the likely situation of scarce information, as probabilities must be assigned to two discrete events rather than over the 514 

entire span of the continuous age range. In this particular case, Taroni et al. (2018) recommend to gather available 515 

information (e.g., from the literature) in the form of relative frequencies to inform one’s personal beliefs. 516 

In recent years,  the normative decisional approach has been promoted in forensic sciences (Taroni et al., 2005, Taroni et 517 

al., 2010, Gittelson, 2013, Biedermann et al., 2016, Biedermann et al., 2018), since it offers a structured way of thinking 518 

taking advantage of quantitative data, knowledge and experience. This paper illustrates how to use this approach for 519 

forensic age estimation in living persons. 520 
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