
Articles
https://doi.org/10.1038/s41588-022-01100-4

1Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 2Bioinformatics Core Facility, Swiss 
Institute of Bioinformatics, Lausanne, Switzerland. 3National Cancer Centre, Singapore, Singapore. 4Molecular Digestive Oncology, Department of 
Oncology, Katholieke Universiteit Leuven, Leuven, Belgium. 5Hôpitaux Universitaires de Genève, Geneva, Switzerland. 6University of Geneva, Geneva, 
Switzerland. 7Duke-National University of Singapore Medical School, Singapore, Singapore. 8MSD International GmbH (Singapore Branch), Singapore, 
Singapore. 9National University of Singapore, Singapore, Singapore. 10NantOmics, Rockville, MD, USA. 11Samsung Genome Institute, Samsung Medical 
Center, Seoul, Korea. 12Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore. 13EL Toh Colorectal & Minimally Invasive 
Surgery, Singapore, Singapore. 14Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National 
Cancer Centre Singapore, Singapore, Singapore. 15Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical 
Oncology, Singapore General Hospital, Singapore, Singapore. 16Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer 
Centre Singapore, Singapore, Singapore. 17SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore. 
18SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore. 19Institute of Molecular and Cell Biology, 
A*STAR Research Entities, Singapore, Singapore. 20Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.  
21These authors contributed equally: Pratyaksha Wirapati, Nancy Zhao, Zahid Nawaz. ✉e-mail: sabine.tejpar@uzleuven.be; prabhakars@gis.a-star.edu.sg; 
iain.tan.b.h@singhealth.com.sg

Colorectal cancer (CRC) is a heterogeneous disease. In 2015, 
based on gene expression profiles from bulk tumors, an 
international consortium identified four CMSs (CMS1–4)1, 

characterized respectively by enriched features of immune infiltra-
tion, canonical WNT and Myc activation, metabolic dysregulation 
and a mesenchymal fibrotic reaction. The CMS subtypes have been 

reproduced across multiple studies and are thought to represent 
four distinct subtypes2,3. The fibrotic CMS4 subtype portends poor 
relapse-free survival (RFS)1,4.

Bulk transcriptomes measure total gene expression in heteroge-
neous tissues, and hence transcriptomes of component cells, their 
proportions and tumor microenvironment interactions are obscured. 
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The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying 
epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 
epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene 
expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 
3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) 
cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H 
cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. 
We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, com-
bining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).
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Cell-type admixture confounds computational deconvolution5,6 of 
cell-type-specific gene expression. Profiling patient-derived xeno-
grafts, wherein human stromal cells are depleted, led to the CRC 
intrinsic subtypes (CRIS) classification7. However, this is limited by 
cell-type contamination, bulk expression effects and experimental 
artefacts of human tumors propagated across species.

Single-cell RNA sequencing (scRNA-seq) characterizes tran-
scriptomes at cellular resolution, enabling identification of cell types 
and their expression profiles. As a proof-of-principle, we identified 
two major cancer-associated fibroblast subtypes (CAF-A, CAF-B) 
in the first CRC scRNA-seq analysis8. We subsequently generated an 
scRNA-seq atlas of 91,103 cells from 29 patients, providing a global 
cellular landscape of CRC9.

Here, we sought to study the epithelial subtypes that underpin 
the molecular classification of CRC. Single-cell transcriptomes of 
141 tumor samples, 39 adjacent normal samples and 9 lymph node 
samples from 63 patients across five cohorts were integrated to con-
struct one of the largest single-cell CRC datasets to date (Fig. 1). Of 
the 373,058 single cells profiled, we focused primarily on the 49,155 
epithelial cells (Fig. 1). Remarkably, amongst malignant epithelial 
cells, two distinct subtypes consistently emerged after independent 

analyses of single-cell expression, regulon and inferred copy number 
profiles, suggesting a common genetic program dictating two major 
epithelial subtypes in CRC. We quantified our intrinsic epithelial 
signature in 3,614 bulk transcriptomes across 15 datasets and reca-
pitulated these two intrinsic subtypes. We observed a correspon-
dence to the CMS classification and termed the two epithelial groups 
intrinsic-consensus molecular subtypes (iCMSs), consisting of iCMS2 
(i2) and iCMS3 (i3). Amongst MSS cancers, most CMS2 and CMS3 
tumors had iCMS2 and iCMS3 epithelium, respectively. MSI-H and 
CMS1 cancers were generally classified as iCMS3. Importantly, we 
found that MSS tumors with iCMS3 epithelium (iCMS3_MSS) had 
transcriptomic, genomic and biological pathway enrichment features 
that were more similar to MSI-H cancers than to iCMS2_MSS can-
cers. The fibrotic CMS4 group comprised cancers with either iCMS2 
or iCMS3 epithelial cells, suggesting that fibrosis is orthogonal to 
the intrinsic CRC epithelial structure. Importantly, while CMS4 as 
a whole is associated with poor RFS, we identified the subclass of 
fibrotic CMS4 cancers with iCMS3 epithelial cells that had the worst 
prognosis found. With these insights, we propose a refinement of the 
classification of CRC, the IMF classification, comprising intrinsic epi-
thelial subtypes, microsatellite instability status and fibrosis.
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Fig. 1 | Study schema. For each of the five cohorts, the number of patients, anatomical locations and the number of samples profiled using scRNA-seq 
are indicated at the top. The major stages of data analysis are indicated below and to the right. For each cohort, the total number of profiled cells and the 
number of epithelial cells are indicated at the bottom. Single-cell transcriptomes from the SMC cohort and six patients from KUL3 (75,332 cells in all after 
QC) have been previously reported9.
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Results
Cell-type annotation. scRNA-seq data were filtered to discard 
low-quality cells and doublets (Supplementary Fig. 1, Extended Data 
Fig. 1 and Methods). Supervised clustering (Reference Component 
Analysis v2 (RCA2)) at low resolution grouped cells into 11 major 
cell types (Extended Data Fig. 1). To identify epithelial cell subtypes, 
we initially analyzed the largest cohort, ‘CRC-SG1’ (Singapore, 
208,367 cells, 15,920 epithelial), with multiple tumor sectors per 
patient, serving as biological replicates (Fig. 1 and Extended Data 
Fig. 1). We performed de novo clustering on CRC-SG1 epithelial 
cells using DUBStepR10 for feature selection, and then re-clustered 
the cells using differentially expressed genes (DEGs) between the 
initial clusters (Supplementary Fig. 1 and Methods). One cluster 
comprised all cells from normal samples and a minority of cells from 
tumor samples (23.4%). These represent normal cells in tumor sec-
tors. Malignant cells from tumor samples formed patient-specific 
clusters, each of which included cells from different sectors of  
the same tumor (biological replicates) (Fig. 2a and Extended Data 

Fig. 2a). All other major cell types showed minimal patient specific-
ity (Extended Data Fig. 2b). Thus, patient-specific transcriptomic 
clusters formed by tumor epithelial cells likely represent biological 
differences between patients, rather than batch effects.

Principal component analysis (PCA) demarcated two distinct 
epithelial subgroups (Fig. 2b). We used 848 DEGs (Supplementary 
Fig. 2a) between these two groups to cluster 33,235 epithelial 
single-cell transcriptomes from the four other cohorts (111 sam-
ples, 49 patients) (Supplementary Fig. 2b and Methods). In all four 
cohorts, we again observed coclustering of normal cells and numer-
ous patient-specific malignant cell clusters that formed two distinct 
groups in PCA (Supplementary Fig. 2b,c). We then combined the 
five cohorts (189 samples, 63 patients) and used the 848 DEGs to 
cluster epithelial cells, and again recovered two major tumor sub-
types (iCMS2 and iCMS3; Fig. 2c).

We noticed that genes upregulated in iCMS2 epithelial cells 
relative to iCMS3 and normal-like epithelium in CRC-SG1 were 
enriched in specific chromosomal arm gains, including 8q, 13q 
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Fig. 2 | The discovery of iCMS subtype in scRNA-seq. a, Reduced-dimensionality (UMAP) visualization of epithelial single cells (n = 15,920) in 
transcriptome space: 14 patients from CRC-SG1, colored by patient ID. b, Same dataset, PCA visualization of 14 patient-specific epithelial pseudo-bulk 
transcriptomes. c, UMAP visualization of 49,155 epithelial cells from five cohorts in transcriptomic space colored by iCMS subtype. d, Heatmap of 63 
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and 20q (Supplementary Fig. 2d). We therefore used inferCNV11 
to infer copy number variants (CNVs) from epithelial cell tran-
scriptomes of all five cohorts and observed that, despite substan-
tial patient-to-patient variability within iCMS2, 7pq, 8q, 13q and 
20pq were frequently gained and 1p, 4pq, 8p, 14q, 15q, 17p and 
18pq were frequently deleted (Fig. 2d). In contrast, iCMS3 tumors 
were diploid or showed infrequent and inconsistent copy number 
alterations. Moreover, patients were clustered by their pseudo-bulk 
copy number profiles, and we recapitulated the iCMS2–iCMS3 
dichotomy observed in epithelial single-cell transcriptomes, with 
only 2 of 63 patients (3%) showing discordant grouping (Fig. 2d). 
The separation of i2 and i3 tumors was observed even when epi-
thelial single cells from the five cohorts were visualized in inferred 
copy number space (Fig. 2e), suggesting copy number alterations 
contribute to the observed dichotomy in CRC epithelial transcrip-
tomes. We performed differential expression analysis on epithelial 
pseudo-bulk transcriptomes from the 61 consistent patients to 
define an intrinsic epithelial cancer signature comprising 715 genes 
(Fig. 2f, Supplementary Fig. 2e and Methods).

To evaluate the relationship of the two single-cell-defined intrin-
sic epithelial groups to CMS groups identified by bulk gene expres-
sion, we first identified marker genes for each CMS subtype that 
also showed epithelial-specific expression in our five scRNA-seq 
datasets. We then used these four gene sets to construct four epi-
thelial CMS metagene expression scores for each malignant cell. 
Upregulation of the CMS2 epithelial metagene was the most promi-
nent feature of iCMS2 cells. Similarly, upregulation of the CMS3 
epithelial metagene distinguished iCMS3 cells (Supplementary  
Fig. 3). Thus, our single-cell iCMS classification may represent the 
core epithelial intrinsic components of bulk CMS.

Next, we used SCENIC12 to infer single-cell activity scores for 
the regulons of 347 transcription factors and used these scores to 
cluster epithelial cells from the 61 patients. The same two intrinsic 
epithelial subtypes again self-emerged, with 90 differential regulons 
including TCF/LEF (T cell factor/lymphoid enhancer factor fam-
ily), MYC and homeobox transcription factors, suggesting a perva-
sive gene regulatory program underpinning the biology of these two 
epithelial subtypes (Fig. 2g,h and Supplementary Fig. 4).

To characterize the distribution of malignant cells as distinct 
transcriptomic states (versus a continuum), we calculated their 
i2 and i3 metagene expression scores by averaging the 715 iCMS 
marker genes (Fig. 2f) within the same iCMS group (Supplementary 
Notes). The metagene score distribution was bimodal, with one 
mode corresponding to i2-like transcriptomes and the other i3-like 
(Extended Data Fig. 3a,b and Supplementary Notes), supporting dis-
tinct i2 and i3 epithelial cell states. By cluster label, >95% of malig-
nant cells belonged to a single cluster (either i2 or i3) (Extended 
Data Fig. 3c). By i2 and i3 metagene score, >80% of cells were either 
preferentially i2 or preferentially i3 (score difference > 0.1) in 54 of 

63 tumors (86%) (Supplementary Fig. 5). Thus, in most tumors, the 
large majority of cells belong to a single iCMS type, with hybrid 
tumors being infrequent.

Transcriptomic distances. Across transcriptomic, CNV and regu-
lon spaces (Fig. 2i), a group of MSS epithelial cells comingled with 
MSI-H cells within the i3 cluster, suggesting biological programs in 
i3_MSS are more similar to MSI-H than to i2_MSS. Using the num-
ber of pseudo-bulk DEGs as a distance measure, we constructed a 
dendrogram to represent the relationships between these malignant 
cell groups. Consistently, i3_MSS has much greater similarity to 
i3-MSI-H than to i2_MSS (Fig. 2j).

Epithelial subtypes in an independent scRNA-seq dataset. We 
re-analyzed single-cell transcriptomes from a recent study of 62 
patients with CRC13, which had focused on cell-type differences 
between MSI-H and MSS tumors. Using the above-described qual-
ity control (QC) cutoffs, we identified 56,551 high-quality epithelial 
cells and clustered them using the 715 iCMS marker genes, again 
identifying three clusters: normal, i2 and i3 (Supplementary Fig. 6a).  
Once again, cells from i3_MSS and MSI-H tumors intermingled 
within the i3 cluster, while cells from i2_MSS tumors formed a dis-
tinct i2 cluster. Similarly, i2 and i3 metagene scores showed clear 
bimodality. In >90% of patients, >90% of malignant cells belonged 
to a single subtype (Supplementary Fig. 6b). These results corrobo-
rate two intrinsic transcriptomic subtypes, iCMS2 and iCMS3, with 
i3-MSS and MSI-H malignant cells being highly similar.

Classification of bulk transcriptomes. We used the 715 iCMS 
marker genes to classify 3,614 tumor bulk transcriptomes from 
15 primary tumor datasets (The Cancer Genome Atlas (TCGA), 
SG-Bulk and 13 CMS cohort datasets) and similarly observed 
two groups with either high i2 or high i3 signatures (Fig. 3a and 
Extended Data Fig. 4a). Using nearest template prediction, 47% of 
the tumors were classified as i2 and 42% as i3 at Q value < 0.05. Most 
tumors were robustly classified by nearest template prediction even 
at Q value < 0.005. i2 and i3 tumors were identified at relatively sim-
ilar proportions across multiple datasets and i2/i3 tumors from dif-
ferent datasets comingled (Fig. 3b and Extended Data Fig. 4a). This 
indicates that the intrinsic epithelial signatures can robustly identify 
the epithelial subtypes from bulk tumor transcriptomes.

Relationship with CMS and clinico-molecular characteristics. 
We examined clinical and molecular features of iCMS subtypes 
(Fig. 3a–c and Extended Data Fig. 4a–c). As before, we found that 
almost all MSI-H tumors were classified as iCMS3, together with 
the subgroup of iCMS3_MSS tumors. DNA methylation was a  
feature of the MSI-H group, although CpG island methylation  
phenotype (CIMP) status did not neatly substratify the MSS groups 

Fig. 3 | iCMS classification of bulk transcriptomes. a, Proportion of 3,614 patients classified as iCMS2, iCMS3 or indeterminate based on their bulk tumor 
transcriptome. The box on the right lists the parameters that will be correlated with iCMS, including: CMS, CRIS, CIMP, TMB and copy number variation, 
overall survival (OS), survival after relapse (SAR) and RFS. b, Heatmap of 715 iCMS marker genes used to classify the 455 TCGA and SG-Bulk tumor 
transcriptomes. Gene expression values were log-transformed, zero-centered and scaled to unit variance. Upper annotation bars show clinical, mutational 
and copy number gain/loss categorized as amplified (≥4 copies), gain (2.5–4 copies), diploid (1.5–2.5 copies) and loss (<1.5 copies), as well as TMB 
(MSI-H patients highlighted in brown). Right annotation bar shows the average scaled expression of each gene across four major cell types, based on 
scRNA-seq data from the CRC-SG1 cohort. Lower annotation track: FDR Q value of iCMS classification. c, Breakdown of iCMS2 and iCMS3 samples by 
anatomical side (top), MSI status (middle) and CMS (bottom). Statistics are based on all bulk tumor datasets, including only those for which the relevant 
annotations are available. d, Bulk tumor datasets: alluvial plot demonstrating the relationship between IMF classification and anatomical side, MSI status, 
CMS subtype and iCMS. e, Heatmap showing the coexpression pattern of 2,873 bulk tumor transcriptomes from 14 clinical cohorts. Rows are genes; 
columns are patients; ordering is by unsupervised hierarchical clustering. Gene expression values are normalized as in b. CMS, iCMS and CRIS labels are 
indicated above the map, together with selected clinical parameters. Annotation bars for four major tumor cell types are as in b. f, Kaplan–Meier plot 
of RFS of patients classified by CMS and iCMS. The table below the graph indicates the number of patients at risk for all groups at various time points, 
followed by the number of events and median survival (in months) with their confidence intervals. g, Summary table of survival analysis conducted in this 
study. P values are Cox proportional hazard models (as implemented by R survival package). FDR, False Discovery Rate.
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(Extended Data Fig. 4c). Right-sided tumors were mainly i3 (66%), 
and left-sided tumors mainly i2 (68%). Mucinous cancers of both 
MSI-H and MSS subgroups were mainly i3 (93%).

CMS1 (97%) and CMS3 (98%) tumors were mainly i3, while 
CMS2 (96%) tumors were mainly i2. However, CMS4 tumors can 
be either i2 or i3 (with an equal proportion), suggesting that fibrosis 
is decoupled from intrinsic epithelial structure (Fig. 3c,d).

We performed hierarchical clustering on 2,873 bulk tumor tran-
scriptomes from 14 clinical cohorts. For each gene, we related the 
bulk expression to its expression in our single-cell dataset, strati-
fied by major cell-type cohorts (Fig. 3e). We observed that tumors 
grouped together based on iCMS, MSI status and bulk CMS. At 
the highest level, iCMS2 and iCMS3 tumors separated, presum-
ably due to distinct epithelial transcriptomes. Within iCMS3, 
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MSI-H tumors mostly segregated as a subcluster characterized by 
high expression of immune-specific genes and minimal expression 
of fibroblast-specific genes. Within each of the major iCMS2 and 
iCMS3 groups, we observed a subset of fibrotic (CMS4) tumors 
characterized by increased expression of fibroblast, endothelial and 
some immune-specific genes. This suggests that iCMS, MSI sta-
tus and CMS jointly inform the molecular classification of CRC. 
Tumors were not organized by CRIS–epithelial subgroups (Fig. 3e 
and Extended Data Fig. 4b).

Survival analysis. Across 1,762 tumors with survival data  
(Fig. 3f,g), CMS4 showed poor Relapse Free Survival (RFS) (hazard 
ratio (HR) = 1.78, P = 1.4 × 10−10), consistent with the literature1. Poor 
RFS was a particular feature of the CMS4/iCMS3 subgroup (Fig. 3f) 
(CMS4/iCMS3 versus all others: HR = 2.12, P = 7.6 × 10−13; CMS4/
iCMS3 versus CMS4/iCMS2: HR = 1.63, P = 0.001). This effect also 
extended to inferior overall survival (Extended Data Fig. 4d; CMS4/
iCMS3 versus all others: HR = 2.08, P = 3.8 × 10−9; CMS4/iCMS3 
versus CMS4/iCMS2: HR = 1.68, P = 0.004). Survival after relapse 
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was worse for i3 cancers relative to i2 (HR = 1.72, P = 8.3 × 10−6), as 
was overall survival (HR = 1.23, P = 0.04) (Extended Data Fig. 4e).

IMF classification. Microsatellite instability marks a subset of i3 
cancers. Fibrotic CMS4 cancers were stratified by epithelial sub-
type (i2 versus i3) into two subgroups with distinct microenviron-
ment composition and distinct likelihood of survival. Putting these 
together, we propose a refinement of the four-group bulk CMS 
classification, based on the three biological layers of intrinsic epi-
thelial status (I), microsatellite status (M) and presence of fibrosis 
(F), termed ‘IMF’. IMF stratifies tumors into five commonly occur-
ring classes: iCMS2_MSS_NF, iCMS2_MSS_F, iCMS3_MSS_NF, 
iCMS3_MSS_F and iCMS3_MSI.

Genomic features and functional associations. We examined 
the copy number architecture of iCMS3_MSI, iCMS3_MSS and 
iCMS2_MSS tumors based on 659 tumors from the TCGA and 
SG-Bulk cohorts (Fig. 4a). i2 tumors were driven by copy number 
changes in specific chromosomes commonly altered in CRC14,15. 
Gains in 7pq, 8q, 13q and 20pq and losses of 1p, 4pq, 8p, 14q, 15q, 
17p and 18pq characterized i2 tumors. i3 tumors were either MSI-H 
and diploid or MSS tumors with fewer copy number changes than 
i2 (Fig. 4a and Extended Data Fig. 5a). TP53 mutations were more 
prevalent in i2 MSS tumors than in i3, perhaps contributing to over-
all genomic instability in the former group (Fig. 4a,c). This pattern 
of CNV enrichment is consistent with our inferCNV11 analysis of 
single cells from i2 and i3 tumors (Fig. 2d).

Tumor mutation burden (TMB) was higher among i3_MSI 
tumors (median: 1,353) and similar between i3 and i2 MSS tumors 
(median: 98 and 105 for i2_MSS and i3_MSS, respectively) (Fig. 4b).  
Higher TMB entailed more mutated genes in MSI-H cancers 
(Extended Data Fig. 5b). Even with similar TMB, within the MSS 
group, i3 cancers were enriched for KRAS and PIK3CA mutations 
while i2 tumors were enriched in APC and TP53 mutations (Fig. 4c).

Some of the expression differences between i2 and i3 epithelial 
cells may be directly attributable to differences in DNA copy num-
ber. Of the 715 DEGs, 382 coincided with the above-mentioned 
chromosomal arms commonly amplified or deleted in i2 tumors. 
For the majority (91%) of these 382 genes, expression fold-change 
direction was concordant with the difference in average copy num-
ber between i2 and i3, suggesting that their differential expres-
sion could be a direct consequence of DNA gain or loss (Fig. 4d). 
Genes upregulated in i2 tumors were enriched for MYC and E2F 
targets, perhaps reflecting i2-specific amplification of the chromo-
somal arms in which MYC (8q) and E2F1 (20q) reside (Fig. 4a,e and 
Supplementary Fig. 7). Consistently, the MYC regulon defined by 
SCENIC showed higher expression in i2 epithelial cells (Fig. 2h).  
Genes upregulated in i3 cells were associated with Epithelial 
Mesenchymal Transition (EMT), inflammatory pathways and met-
abolic derangements (Fig. 4e, Extended Data Fig. 9, Supplementary 
Fig. 10 and Supplementary Tables 1–10).

DNA methylation. Most MSI-H tumors showed a global CIMP. At 
the other extreme, none of the iCMS2_MSS tumors were hyper-
methylated. The CIMP status of iCMS3_MSS tumors was variable 

across patients, with a minority displaying DNA hypermethylation. 
Overall, we did not detect consistent epigenetic differences between 
iCMS2 and iCMS3 (Extended Data Fig. 5d).

Cancer pathways. We analyzed signaling pathways commonly dys-
regulated in CRC: WNT16,17, MAPK18 and TGF-beta19 (Fig. 5a–c and 
Supplementary Fig. 11). Genes within the WNT pathway tended to 
be upregulated in i2 bulk tumors, presumably due to their upregula-
tion in i2 epithelial cells (Fig. 4e), which could in turn be attributable 
to increased activity of transcription factors mediating WNT signal-
ing (TCF7, ASCL2)20 (Fig. 2h). Intriguingly, the i2-upregulated set 
included genes such as NOTUM, AXIN2 and NKD1 that suppress 
WNT signaling via negative feedback during normal tissue homeo-
stasis21 (Fig. 5a and Extended Data Fig. 6a). Upregulation of these 
negative feedback regulators is presumably a consequence of WNT 
hyperactivity in i2 tumors22,23. Finally, protein beta-catenin abun-
dance was significantly higher in i2 compared with i3 in the TCGA 
reverse-phase protein arrays data (Extended Data Fig. 6b).

We next examined somatic mutations in the WNT pathway 
(Extended Data Fig. 6c–g). While i3 tumors displayed diverse WNT 
mutations, i2 tumors were primarily characterized by inactivating 
APC mutations. In particular, APC mutations were significantly 
more proximal in i2_MSS than i3_MSS (P = 8 × 10−07; Extended 
Data Fig. 6c). More proximal APC mutations result in shorter, trun-
cated proteins, associated with higher beta-catenin signaling24,25. 
The variant allele frequency of APC mutations was higher in i2_MSS 
than in i3_MSS (Extended Data Fig. 6e). In contrast, i3 tumors were 
enriched for other WNT mutations, including ligand-independent 
CTNNB1 mutations, as well as ligand-dependent RNF43 and 
ZNRF3 mutations targeting the R-spondin 1 (RSPO1)-associated 
negative feedback loop21, especially in iCMS3_MSI (Extended  
Data Fig. 6f,g).

We next evaluated alterations associated with MAPK path-
way upregulation in cancer. i3 cancers had more frequent KRAS, 
PIK3CA and BRAF mutations (Figs. 4c and 5b), including muta-
tions known to be associated with more prominent MAPK pathway 
upregulation26,27. BRAF V600 class 1 mutations were only observed 
in i3 cancers and KRAS exon 3 mutations were enriched amongst i3 
cancers (Fig. 5d,e and Extended Data Fig. 7a,b). i3 cancers showed 
higher expression of downstream MAPK components (DUSP4 and 
ETV5) and i2 cancers had overexpression of EGFR ligands, AREG 
and EREG (Fig. 5b and Extended Data Fig. 7c). In i3 tumor cells, 
published gene signatures related to MAPK activity and KRAS 
and BRAF activating mutations28–32 were more highly expressed 
(Supplementary Fig. 12).

Upregulation of TGF-beta signaling was more prominent in 
i3 cancers. Genes in the TGF-beta signaling pathway, including 
SMAD4, were more frequently mutated in i3 cancers (Fig. 5c and 
Extended Data Fig. 7d). Expression of SMAD2/3/4 is increased in 
i3 cancers (Extended Data Fig. 7e) but gene signatures related to 
TGF-beta activity1,33–37 were not consistently different in i3 and i2 
tumor cells (Supplementary Fig. 11).

Composition of tumor microenvironment. To compare cell-type 
abundance across tumor types, we identified marker genes for nine 

Fig. 5 | Relationship of iCMS and IMF to common cancer pathways. a–c, Heatmaps of mutation landscape (top), methylation (middle; a only) and 
bulk expression (bottom) of selected genes in the WNT (a), MAPK (b) and TGF-beta (c) pathways, across TCGA samples (n = 209). In the mutation 
Oncoprint, colors depict the type of mutation; a barplot of the cumulative frequency of each mutation is shown to the right, and the total frequency 
of mutations in each gene is shown to the left. The methylation heatmap is colored by beta-value, the gene expression heatmap is colored by scaled 
expression and the right annotation bar shows the average scaled expression of each gene across four major cell types (epithelial, immune, fibroblast, 
endothelial) from CRC-SG1 scRNA-seq data. In a, beta-catenin protein expression by reverse-phase protein arrays (RPPA) is displayed below the gene 
expression heatmap. d, Proportion of BRAF mutation classes in iCMS3_MSI (n = 48), iCMS3_MSS (n = 14) and iCMS2_MSS (n = 4) samples with BRAF 
mutations, in TCGA and SG-Bulk. e, Proportion of mutations in KRAS exons in iCMS3_MSI (n = 31), iCMS3_MSS (n = 88) and iCMS2_MSS (n = 87) 
samples with KRAS mutations, in TCGA and SG-Bulk. Number of samples in each group is labeled.
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major fibroblast, immune and endothelial cell types (Extended Data 
Fig. 2b) from CRC-SG1 single-cell data, and calculated the metagene 
expression score for each cell type by averaging its markers in bulk 
transcriptomes (Supplementary Notes). Consistent with previous  

reports, we observed higher T/natural killer (NK) cell scores in 
MSI-H tumors, and elevated fibroblast, endothelial and monocyte/
classical dendritic cell (McDC) scores in fibrotic (CMS4) tumors 
(Fig. 6a and Extended Data Fig. 8a)38. However, within fibrotic 
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tumors, we observed higher T/NK, McDC and neutrophil metagene  
scores in iCMS3_MSS_F than in iCMS2_MSS_F (Fig. 6a and 
Extended Data Fig. 8a). EPIC cell-type deconvolution39 pro-
duced similar results (Extended Data Fig. 8b). We used matched 
exome sequencing data to estimate sample tumor purity. While 
fibrotic tumors had lower tumor purity, iCMS3_MSS_F still had 
decreased tumor purity compared with iCMS2_MSS_F (Extended  
Data Fig. 8c).

Next, we performed bulk tumor DEG analysis of iCMS3_
MSS_F compared with iCMS2_MSS_F. Genes upregulated in 
iCMS3_MSS_F were specific to McDC and endothelial cells in 
our single-cell data (Extended Data Fig. 8d). Thus, in the fibrotic 
context, iCMS3 tumors are associated with increased fibroblast, 
myeloid and endothelial cell signatures and decreased tumor purity, 
suggesting that, when fibrosis develops, iCMS3 tumors have a larger 
fibrotic reaction than iCMS2 tumors. In addition, in the nonfibrotic 
context, iCMS3 tumors show increased immune cell signatures (T/
NK, plasma-B cell, McDC and granulocyte) compared with iCMS2 
(Fig. 6a and Extended Data Fig. 8a).

Cell signaling interactions. We examined tumor epithelial cell 
signaling with immune cells, endothelial cells and fibroblasts8 
(Extended Data Fig. 2 and Fig. 6c) using NATMI40 and Nichenet41 
(Fig. 6d and Supplementary Fig. 8a). Signaling pathway target genes 
with the highest regulatory potential scores and top ligands priori-
tized by NicheNet included key regulons previously identified in our 
regulon analysis, such as CEBPB, ARID3A and MYC in i2. For i3, 
top ligands included FGF2 and IL1B, reported to promote invasive-
ness in CRC42,43. Using NATMI, we ranked signaling interactions 
and inspected top ligand–receptor combinations (Supplementary  
Fig. 8b and Supplementary Table 11). Differential interactions stron-
ger in i2 included EREG-to-EGFR signaling from epithelial tumor 
cells to epithelial tumor cells (autocrine) and fibroblasts (paracrine) 
(Supplementary Fig. 8c). Multiple immune–epithelial interactions 
involving T/NK cells and McDCs with tumor epithelial cells were 
predicted in i3 cancers (for example, IL1B in McDCs to IL1R2 in i3 
tumor cells) (Supplementary Fig. 8c).

Immune response. Our signaling analyses suggested pro- 
inflammatory interactions in i3 tumors. The NFKB1 regulon, 
associated with inflammation, was upregulated in i3 (Fig. 2h). We 
observed an increase in immune cell signatures, including T/NK 
cells, McDCs and neutrophils, in iCMS3_MSS tumors, in both the 
fibrotic and nonfibrotic settings (Fig. 6a).

Epithelial gene set enrichment analysis (GSEA) identified 
multiple immune pathways amongst the top pathways upregu-
lated in i3 cells, including ‘INTERFERON GAMMA RESPONSE’, 
‘INFLAMMATORY RESPONSE’ and ‘INTERFERON ALPHA 
RESPONSE’. We calculated metagene scores using the GSEA  

leading edge genes for these three top inflammation-related path-
ways in our bulk dataset (Fig. 6e). MSI-H and fibrotic (CMS4) 
tumors had higher expression of inflammation-related pathways38. 
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Fig. 7 | Association of iCMS markers with polyp subtypes and normal 
tissues. a,b, Heatmaps of tubular adenoma (AD) (a) and SSL (b) 
marker genes obtained from Chen et al. 44, colored by the average of 
scaled (z-transformed) expression values of epithelial single cells from 
five-cohort scRNA-seq data (patients = 61). c, Barplots quantify enrichment 
of tissue-specific genes in each of the four DEG sets, calculated using 
the TissueEnrich package (iCMS2 Up: 308; iCMS2 Down: 279; iCMS3 
Up: 74; iCMS3 down: 54; total: 715). Red line, P = 0.1. The heatmaps 
show expression levels of the seven iCMS3-Up DEGs defined as 
stomach-specific in the TissueEnrich database. Left, scaled expression 
in diverse tissues. Right, scaled epithelial pseudo-bulk expression in 61 
patients. d, Heatmap of gastric metaplasia signature genes, similar to a 
and b. e, Heatmap of GSEA leading edge genes within crypt top and crypt 
bottom gene sets, showing scaled epithelial pseudo-bulk expression levels 
across 61 patients from five scRNA-seq cohorts.
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Notably, in both the fibrotic and nonfibrotic settings, i3 tumors 
had higher expression of inflammation-related pathways than  
i2 tumors.

A recent single-cell CRC study13 identified T cell program activ-
ity scores that were different between MSI-H and MSS CRCs. We 
hypothesized that iCMS would provide a further substratification 
of increased immune activity within MSS tumors. In TCGA bulk 
transcriptomes, we quantified the expression of two T cell programs 
of anti-tumor reactivity and effector function (‘CXCL13 T cell’ 
and ‘Cytotoxicity’ programs) that this study had identified as dif-
ferentially active between MSI-H and MSS CRCs (Fig. 6f). In both 
fibrotic and nonfibrotic contexts, iCMS3_MSS tumors were asso-
ciated with a more inflammatory, immune-activated environment 
than iCMS2_MSS tumors, with levels in the iCMS3_MSS_F group 
similar to iCMS3_MSI tumors. Our single-cell and bulk analy-
ses point to iCMS3_MSS as a unique subset of MSS CRCs, with 
similarities to MSI-H tumors, increased immune activation, and 
higher signatures of T and myeloid cell infiltration and anti-tumor 
cytotoxicity.

Pre-invasive and cell lineage gene sets. Recently, a pre-cancer atlas 
study identified two cell types44, one attributable to adenomatous 
polyps and one to sessile serrated lesions (SSLs). In our single-cell 
data, most adenomatous polyp markers showed higher expression  

in iCMS2 patients, whereas SSL markers were upregulated in 
iCMS3 (Fig. 7a,b and Extended Data Fig. 10a). The previous 
study noted that SSLs were highly enriched for genes not normally 
expressed in the colon, and suggested that gastric metaplasia may 
underlie their etiology44. We therefore hypothesized that iCMS3 
tumors may also show the same trend. Indeed, TissueEnrich45 
analysis indicated that the genes upregulated in iCMS3 epithelial 
cells (iCMS3 Up) were significantly enriched for stomach-specific 
expression, and also for expression in other foregut tissues such 
as esophagus and duodenum (Fig. 7c). Similarly, genes related 
to gastric metaplasia were upregulated in iCMS3 epithelial cells  
(Fig. 7d and Extended Data Fig. 10a), suggesting that this process 
might be active within i3 cancers. Genes specific to normal colon 
were preferentially downregulated in both i2 and i3 tumors, sug-
gesting loss of differentiation in oncogenesis (Fig. 7c and Extended 
Data Fig. 10a). Furthermore, inspecting the expression of the lead-
ing edge genes in our GSEA, we also observed upregulation of crypt 
top genes in i3 cancers and crypt bottom genes in i2 cancers (Fig. 7e 
and Extended Data Fig. 10a). These results suggest that i3 tumors 
show gastric metaplasia and may arise from malignant transforma-
tion of SSLs, which in turn could originate from cells resembling 
crypt top. Conversely, i2 tumors may arise from cells resembling 
crypt bottom, progressing via adenomatous polyps before becom-
ing full-blown cancers.
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Drug response of iCMS classes. We classified iCMS status of cell 
lines from the CTRPv2 dataset46 and observed that i2 and i3 cell lines 
showed differential sensitivity to numerous drugs (Supplementary 
Fig. 9a,b). However, the difference in sensitivity to standard-of-care 
chemotherapeutics such as Fluorouracil (5-FU), oxaliplatin and 
7-ethyl-10-hydroxycamptothecin (SN-38) was not significant. We 
then evaluated two sets of genes whose expression was correlated 
with drug response (drug response signatures)47–50. For Folinic acid, 
fluorouracil and oxaliplatin (FOLFOX), 5-FU, avastin, cetuximab, 
afatinib and AZD8931, gene sets positively correlated with drug 
sensitivity were upregulated in iCMS2 cells and genes correlated 
with drug resistance were downregulated. Similarly, iCMS3 cells 
showed patterns of up- and downregulation suggesting respon-
siveness to FOLFIRI, gefitinib and vandefanib (Extended Data  
Fig. 10b). This prompts investigation of potentially differential drug 
responses based on iCMS status in retrospective analyses of tumor 
samples from completed clinical trials.

Discussion
The CMS subtypes were discovered using bulk transcriptomics, 
leaving the underlying cellular phenotypes unresolved. We identi-
fied a central epithelial backbone of CRC, iCMS2 and iCMS3, each 
characterized by distinct copy number genetics, transcriptional 
profiles and gene regulatory units. Based on this, we refined the 
CMS classification with five functional units of CRC through the 
IMF classification, a sequential layered structure comprising intrin-
sic epithelial subtype, microsatellite status and presence of fibrosis  
(Fig. 8). We have summarized the key biological and clinical char-
acteristics of the five IMF tumor classes in Supplementary Table 12.

Only MSI-H CRCs respond to anti-PD1 immunotherapy13,51. 
Immunotherapy response is influenced by neoantigen quality and 
quantity52, epithelial cell intrinsic properties53 and immunological 
nodes54 within the tumor–immune microenvironment. MSI-H can-
cers have a high TMB, including frameshift mutations. Despite a 
lower TMB, iCMS3_MSS tumors are more similar transcriptomi-
cally and in gene regulatory networks to MSI-H colon cancers than 
to iCMS2_MSS. Characterizing their distinct immunology could 
enable prioritization of customized immunotherapy combinations 
for clinical development55 in i2_MSS and i3_MSS cancers.

Fibrotic CMS4 CRCs, previously assumed to be a coherent 
group, actually comprise two epithelial subtypes. Amongst fibrotic 
tumors, iCMS3_MSS_F has the greatest propensity to metastasize. 
Fibroblast, myeloid and endothelial cells appear to be enriched in 
such tumors. Mechanistic analysis of iCMS3_MSS_F could enable 
biologically directed therapies to prevent metastases in this sub-
group with the worst RFS. Our results also indicate that intrinsic 
epithelial subtype and fibrosis are decoupled56, and prompt future 
studies to characterize drivers of the ‘switch’ to fibrosis in i2 and i3 
epithelial contexts.

We have focused on neoplasms that ‘successfully’ progressed to 
established cancers. The dichotomous biology of i2 and i3 cancers 
might have resulted from distinct developmental origins and trajec-
tories57. Gene set analysis suggests distinct preneoplastic polyps of 
origin, with i2 cancers potentially arising from adenomatous polyps 
and i3 from serrated polyps44. This connects intrinsic subtypes to 
the classical and serrated pathways of tumorigenesis58, with some 
biological features retained in established tumors. i2 cancers dis-
played a crypt bottom signature while i3 cancers exhibited crypt 
top and gastric metaplasia signatures. i2 cancers likely developed 
through initial expansion from an LGR5+ crypt bottom stem cell, 
acquiring copy number alterations and aneuploidy accelerated by 
TP53 mutations and characterized by prominent WNT pathway 
activation from an early loss-of-function APC mutation. The origin 
of i3 cancers is less clear. A committed crypt top progenitor cell, 
perhaps due to repeated mucosal injury57, may have undergone 
dedifferentiation, with disordered gastric metaplasia, accompanied 

by increasing inflammation contributing to the development of an 
i3 cancer. Experimental studies could elucidate the oncogenic tra-
jectories of i2 and i3 tumors, and would have implications for cancer 
prevention, screening and detection.
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Methods
Patient and tissue sample collection. The study was approved by the institutional 
review boards of Singhealth (2018-2795 and 2018-2376) for CRC-SG1 and 
CRC-SG2, Samsung Medical Center (approval no. SMC2017-07-131) for the 
SMC and Commissie Medische Ethiek UZ KU Leuven/Onderzoek (approval no. 
S50887-ML4707) for the KUL3 and KUL5 datasets, respectively. All mentioned 
datasets/studies were carried out in accordance with ethical guidelines and all 
patients provided written, informed consent. The study involves 26 Singaporean,  
23 Korean and 14 Belgian patients diagnosed with CRC who underwent  
surgery (Supplementary Table 13). For CRC-SG1, KUL3 and KUL5 cohorts, 
additional samples per patient were obtained from multiple sites. After resection, 
samples from both tumor and nonmalignant colon tissues were collected 
and immediately transferred for tissue preparation. Tissues were subjected to 
single-cell isolation, AllPrep DNA/RNA Mini Kit (QIAGEN) for DNA analysis and 
transcriptome sequencing.

scRNA-seq sample preparation. For both CRC-SG1 and CRC-SG2 samples, tissue 
specimens almost 10 mm3 in dimensions were processed similarly to the KUL 
samples. The transportation medium (RPMI with 10% FBS) was decanted out 
and the tissue specimens were weighed and placed on ice in petri dishes. Tissues 
were then subjected to fine mincing in 5 ml of RPMI solution (with 10% FBS) 
using sharp and sterile scalpel blades to make a fine slurry. The minced tissue was 
resuspended in pre-warmed Dissociation buffer 2X, comprising Collagenase-P 
(4 mg ml−1, Roche) and DNase-I (0.4 mg ml−1, Roche) in a total of 5 ml of RPMI 
medium containing 10% FBS (Gibco, Life Technologies). The tissue suspension 
was subjected to two rounds of shaking incubation of 6 min each with 1 min of 
vigorous vortexing in between. The enzymatic digestion step was followed by one 
more round of physical homogenization by pipetting the tissue suspension through 
the 10-ml and 5-ml pipette bores for at least 1 min. The resulting suspension 
was then washed with ice-cold Buffer I (BSA 1%/DPBS/EDTA (2 mM)) and the 
contents were passed through a 70-µm strainer to get rid of the un-dissociated 
mass. The filtrate (single-cell suspension) was centrifuged at 500g for 5 min at 4 °C. 
The supernatant was decanted and the cell pellet subjected to red blood cell lysis 
using the ACK lysis buffer (Gibco, Life Technologies) for 5 min on ice. The cell 
pellet was again washed with Buffer I and re-filtered through a 40-µm strainer and 
centrifuged at 300g for 5 min at 4 °C. Later, the supernatant was decanted without 
disturbing the pellet and resuspended in 3–5 ml of RPMI depending upon pellet 
size. Cells were subsequently assessed for viability and concentration using trypan 
blue on a disposable cell calculator (C-Chip, Countess chip, Digital Bio).

For KUL5, samples were rinsed with PBS, minced on ice to pieces of 
<1 mm3 and transferred to 10 ml of digestion medium containing Collagenase-P 
(2 mg ml−1, ThermoFisher Scientific) and DNAse-I (10 U µl−1, Sigma) in DMEM 
(ThermoFisher Scientific). Samples were incubated for 15 min at 37 °C, with 
manual shaking every 5 min. Samples were then vortexed for 10 s and pipetted 
up and down for 1 min using pipettes of descending sizes (25, 10 and 5 ml). Next, 
10 ml of ice-cold PBS containing 2% FBS was added and samples were filtered 
using a 40-µm nylon mesh (ThermoFisher Scientific). Following centrifugation 
at 500g and 4 °C for 5 min, the supernatant was decanted and discarded, and 
the cell pellet was resuspended in red blood cell lysis buffer. Following a 5-min 
incubation at room temperature, samples were centrifuged (500g, 4 °C, 5 min) and 
resuspended in 1 ml of PBS containing 8 µl of UltraPure BSA (50 mg ml−1; AM2616, 
ThermoFisher Scientific) and filtered over Flowmi 40-µm cell strainers (VWR) 
using wide-bore 1-ml low-retention filter tips (Mettler-Toledo). Next, 10 µl of this 
cell suspension was counted using an automated cell counter (Luna) to determine 
the concentration of live cells.

scRNA-seq library preparation and data processing. For CRC-SG1, CRC-SG2, 
KUL3 and KUL5 datasets, fresh single-cell suspensions were loaded into the 
Chromium system (10X Genomics) targeting 5,000 cells per well. For the SMC 
dataset, the cryopreserved single-cell dissociate was rapidly thawed, washed and 
loaded in the same fashion. Barcoded sequencing libraries were generated using 
the Chromium Single Cell 3′ v2 Reagent Kit (SMC, KUL3), 3′ v3 Reagent Kit 
(CRC-SG2) or 5′ Reagent Kit (CRC-SG1, KUL5). All libraries were sequenced on 
an Illumina NextSeq 500, HiSeq 4000 or NovoSeq 6000 until sufficient saturation 
was reached. After QC, raw sequencing reads were aligned to the human reference 
genome, GRCh38, and processed using CellRanger v.3.1.

MSI status determination for CRC-SG1, CRC-SG2, KUL3, KUL5 and SMC. 
For the SG-CRC1 and SG-CRC2 datasets, MSI status was determined by 
immunohistochemistry for MLH1, MSH2, MSH6 and PMS2. For KUL3, SMC and 
KUL5 datasets, MSI status was determined using the MSI Analysis System v.1.2 
(Promega Corporation).

SG-Bulk cohort: DNA/RNA extraction and sequencing, mutational and 
transcriptome analyses. We performed DNA and RNA sequencing on 151 
patients with CRC from Singapore (SG-Bulk). The study was approved by the 
institutional review board of Singhealth (2018-2795). Ten 5-µm tissue sections 
were cut using standard microtomy techniques. Each collected cell population was 
then extracted using the Allprep kit. Extracted material was then quantified using 

a Qubit fluorometer. DNA-sequencing libraries were captured to exome regions 
using xGen Exome Research Panel v.1.0 (IDT), and libraries were prepared using 
the KAPA HyperPrep Kit. DNA libraries were sequenced to a target depth of ×200 
for tumor samples and ×100 for normal samples on the Illumina HiSeq platform. 
RNA-sequencing libraries were prepared using the KAPA Stranded RNA-Seq Kit 
with RiboErase (Kapa Biosystems) and sequenced to a target depth of 200 million 
reads on the Illumina HiSeq platform (Illumina). RNA samples were aligned to 
the RefSeq build 73 transcriptome using Bowtie2 v.2.2.6 and quantified using 
RSEM v.1.2.2528. Gene expression was quantified using Salmon v.0.9.1 with hg19 
reference from Ensembl v.75.

Mutation. Sequencing data were processed by the bcbio-nextgen pipeline. Briefly, 
sequencing reads were aligned to the human genome (hg19) using the Burrows–
Wheeler Aligner (v.0.7.17) and preprocessed using the Genome Analysis Toolkit 
4 (GATK4, v.4.0.2.1). Somatic mutations were first called by four independent 
mutation callers: VarScan59, MuTect60, VarDict61 and FreeBayes62, using default 
parameters of the bcbio-nextgen pipeline. The final list of high-confidence 
mutations were called using a random forest-based ensemble mutation caller, 
SMuRF63, from the output of the four mutation callers. Copy numbers were 
estimated by CNVKit64 using default parameters of the bcbio-nextgen pipeline. 
Tumor purities were estimated using PurBayes65, ASCAT66, ESTIMATE67 and 
AbsCN-seq68, and consensus tumor purities were calculated using the mean of the 
tumor purity estimates69 available. Purity-adjusted copy numbers were calculated 
with the consensus tumor purity estimates.

TCGA and TCGA CNV data were obtained from: https://gdc.cancer.gov/
about-data/publications/pancanatlas.

Loss of heterozygosity data for TCGA70 were obtained from 
the ‘ABSOLUTE-annotated seg file’: https://api.gdc.cancer.gov/
data/0f4f5701-7b61-41ae-bda9-2805d1ca9781.

APC variant allele frequency was determined as VAF = t_alt_count/(t_ref_
count + t_alt_count); t_ref_count: read depth supporting the reference allele in 
tumor; t_alt_count: read depth supporting the variant allele in tumor.

TCGA RNA-sequencing data were obtained from TCGA-COAD and 
TCGA-READ, workflow HTSeq-FPKM from https://portal.gdc.cancer.gov/
repository. Thirteen Robust Multichip Average/Frozen robust multiarray analysis 
(RMA/FRMA) normalized microarray datasets1 were obtained from https://www.
synapse.org/#!Synapse:syn2634742.

TCGA Illumina 450K methylation data were obtained from TCGA-COAD 
and TCGA-READ, data category ‘dna methylation’, platform ‘illumina human 
methylation 450’ from https://portal.gdc.cancer.gov/repository.

scRNA-seq data: QC and defining major cell types. Raw scRNA-seq reads were 
assigned to cells (barcoded droplets) using CellRanger v.3.1 to generate the raw 
expression matrix of unique molecular identifier counts (UMI counts; indicative 
of number of unique RNA molecules detected) for each gene in each cell (droplet). 
Droplets with number of detected genes (NODG) < 300 were discarded as empty 
droplets. UMI counts were then normalized so that each cell had a total of 10,000 
UMIs across all genes and these normalized counts were log-transformed with a 
pseudocount of 1 using the LogNormalize function in the Seurat package. Each 
log-transformed single-cell transcriptome was then projected using Pearson 
correlation onto the reference transcriptomes in the Global Panel of the RCA2 
supervised clustering algorithm8. Cells were then clustered by RCA2 in this 
projection space using Seurat graph-based clustering. To identify cell clusters, 
we used ‘estimateCellTypeFromProjectionPerCluster’ from RCA2 with default 
parameter settings. This procedure was performed individually on the cells from 
each cohort to identify the following major cell types: B, endothelial, entericglial, 
epithelial, fibroblast, mast, McDC, neutrophil, Plasmacytoid dendritic cells (pDC), 
plasma-B and T/NK cells.

In a second round of QC, we calculated the median NODG across cells. For 
each major cell type, we then calculated the median of these medians across all 
samples and defined this as the reference NODG for that cell type. If a sample’s 
cell-type-specific median NODG deviated by more than a factor of 2 from the 
reference NODG for that cell type, this was counted as a substantial deviation in 
data quality. If a sample showed substantial deviations for more than half of the 
cell types (that is, six or more cell types), it was defined as a low-quality sample 
and discarded from the dataset. In the end, 22 samples from nine patients were 
discarded (Extended Data Fig. 1).

After that, we removed all doublets in each sample by running DoubletFinder 
v.2.0.3 (ref. 71). In a nutshell, DoubletFinder can be broken up into four steps: 
generate artificial doublets, pre-process merged real–artificial data, perform PCA 
and use the principal component distance matrix to find each cell’s proportion 
of artificial k-nearest neighbors (pANN), and finally rank order and threshold 
pANN values according to the expected number of doublets. Here, we followed 
the suggested workflow written in the author’s tutorial pages, with doublet rates of 
0.8% per 1,000 recovered cells (following 10X Genomics protocol).

In the last round of QC, we finally applied a stringent set of major 
cell-type-specific QC cutoffs to NODG and the percentage of mitochondrial 
reads72 to define the final set of 49,155 epithelial cells from five cohorts  
(Extended Data Fig. 1b).
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Unsupervised (de novo) subclustering of epithelial cells in CRC-SG1 cohort. 
To cluster the 15,920 high-quality epithelial cells described above, we first used 
DUBStepR, a correlation-based feature selection algorithm that outperforms 
existing methods across diverse clustering benchmarks, to identify an informative 
set of genes10 (Supplementary Fig. 1). Here, we used num.pcs = 15 and min.
cells = 160 (1% of all cells), while other parameters were left at default values. 
Since samples from 3 of the 14 patients (CRC2783, CRC2786 and CRC2787) were 
processed in a separate batch, we ran DUBStepR twice, once on datasets from the 
latter three and once on the remaining datasets, and then used the union of the  
two sets of feature genes for downstream de novo graph-based Louvain clustering 
using Seurat73 at resolution 0.2. To further refine cluster assignment, we identified 
the set of DEGs between all possible pairs of cell clusters (pairwise-DEGs). To 
identify pairwise-DEGs, we ran a modified version of the Findmarkers function in 
Seurat by changing the multiple testing correction method to Benjamini–Hochberg 
and applying a minimum average expression threshold of 0.1 for the upregulated 
group. We also set logfc.threshold = 0.4055 (corresponding to a fold-change  
of 1.5), min.pct = 0.25 and p_val_adj < 0.05. We then defined pairwise-DEGs as  
the union of the 30 most significant upregulated DEGs and the 30 most significant 
downregulated genes for each pairwise comparison. Using this new feature set,  
we re-clustered the cells using Seurat with resolution 0.5 (Fig. 2a and Extended 
Data Fig. 2a).

Inter-patient transcriptomic heterogeneity in epithelial cells from CRC-SG1 
cohort. Based on the above refined set of epithelial cell subclusters in the CRC-SG1 
cohort, we used pairwise-DEG analysis once again to identify 823 DEGs. We 
then discarded the six clusters representing normal-like epithelial cells: clusters 
2, 4, 7, 8, 16 and 17 (Extended Data Fig. 2a) and averaged the transcriptomes of 
all remaining tumor-like epithelial cells within each patient (all sectors) to define 
14 patient-specific ‘pseudo-bulk’ tumor transcriptomes. We visualized these 14 
pseudo-bulk transcriptomes by performing PCA on the 823 pairwise-DEGs and 
plotting the first two principal components. As in all PCA and clustering analyses 
in this study, we zero-centered and scaled each gene to unit variance before PCA. 
This revealed two major epithelial cell subtypes, which we defined as intrinsic CMS 
subtypes 2 and 3 (i2 and i3; Fig. 2b).

We then constructed up to three sample origin-specific pseudo-bulk 
transcriptomes for each patient: normal, primary tumor, lymph node. These 
were then grouped by epithelial subtype into i2 (primary, lymph), i3 (primary, 
lymph) and normal-like (primary, lymph, normal) pseudo-bulk transcriptomes, 
followed by pairwise-DEG analysis as before between the three subtypes: i2, i3, 
normal-like. Markers for each subtype were defined as genes that were significantly 
upregulated relative to both of the other subtypes. This resulted in 848 epithelial 
subtype-specific markers in total for CRC-SG1 i2, i3 and normal-like cells 
(CRC-SG1_iCMS2_Up: 368 genes; CRC-SG1_iCMS3_Up: 141 genes; CRC-SG1_
normal_Up: 339 genes; Supplementary Fig. 2a).

Clustering and visualization of epithelial cell transcriptomes from four 
additional cohorts. We used the 848 epithelial subtype-specific markers from 
CRC-SG1 to cluster each cohort individually using Seurat (Supplementary Fig. 2b). 
We also visualized epithelial transcriptomes from each of the four cohorts using 
PCA of patient-specific epithelial pseudo-bulk transcriptomes (Supplementary  
Fig. 2c). To reduce cohort-specific batch effects in joint analysis of single-cell data 
from the five cohorts, we zero-centered and scaled each gene to unit variance 
(epithelial cells only) within each cohort before combining epithelial cells across 
the five cohorts. We then used Louvain graph-based clustering as implemented in 
Seurat to identify epithelial cell subtypes in the merged dataset (Fig. 2c).

Association between iCMS classification of epithelial cells and CMS subtypes 
based on bulk transcriptomes. We obtained 693 CMS marker genes from the 
previously developed1 CMSclassifier tool (https://github.com/Sage-Bionetworks/
CMSclassifier), of which 666 were expressed (nonzero in at least one cell) in our 
five-cohort epithelial scRNA-seq dataset. Each of the 666 genes was defined as a 
marker of the CMS subtype in which it showed highest expression (CMSclassifier: 
centroids.RData). In this manner, we obtained 215, 122, 135 and 194 marker genes 
for CMS1, CMS2, CMS3 and CMS4, respectively (Supplementary Fig. 3). We then 
analyzed tumor scRNA-seq data to assign these bulk CMS markers to specific cell 
types. For each patient, we first averaged across single cells from tumor samples 
to define the patient-specific pseudo-bulk transcriptomes of B cells, endothelial, 
entericglial, epithelial, fibroblast, mast, McDC, neutrophils, Plasmacytoid 
dendritic cells (pDCs), plasma-B cells and T/NK cells. We then averaged across 
all patients from the five cohorts to define the final pseudo-bulk transcriptomes 
of these 11 major cell types. Epithelial-specific CMS (eCMS) marker genes were 
defined as CMS marker genes whose expression was higher in the above-defined 
epithelial pseudo-bulk transcriptome than in any of the other ten pseudo-bulk 
transcriptomes. In this manner, we defined 100 eCMS1, 97 eCMS2, 92 eCMS3 
and 4 eCMS4 genes. To quantify the expression of eCMS metagenes in epithelial 
single cells, we zero-centered and scaled each gene (epithelial cells only) in each 
cohort as before, and then averaged across genes within the same eCMS group to 
calculate the corresponding eCMS metagene score for each cell. The distributions 
of single-cell eCMS metagene scores were then calculated for i2 and i3 epithelial 
cells (Supplementary Fig. 3).

Enrichment of i2 and i3 markers in chromosomal arms. To quantify enrichment 
of i2 and i3 markers in specific chromosomal arms, we first defined the set of 
expressed genes on each arm as those with nonzero expression in at least 5% 
of cells. We then divided the number of i2 or i3 marker genes by the number 
of expressed genes. We first performed this analysis on marker genes from the 
CRC-SG1 cohort (Supplementary Fig. 2d). Subsequently, once epithelial subtypes 
were defined based on single-cell data from all five cohorts (Fig. 2f), we repeated 
this chromosomal enrichment analysis (Supplementary Fig. 2e).

Inferring CNVs from single-cell transcriptomes. We used inferCNV v.1.7.1 to 
infer CNVs from epithelial single-cell transcriptomes (inferCNV of theTrinity 
CTAT Project; https://github.com/broadinstitute/inferCNV). The software was 
provided with raw UMI count data and used at the recommended parameter 
settings. Thus, we used a cutoff of 0.1 for the minimum average read counts per 
gene among reference cells, clustered each group of cells separately and denoised 
our output. For each cohort, normal-like cells were identified as described above 
(Fig. 2c) and used as the reference for detecting CNVs in tumor cells. The per-gene 
copy number scores calculated for each cell of each cohort by inferCNV were 
visualized using v.2.6.2 of the complex heatmap package (Fig. 2d).

Pseudo-bulk differential expression analysis on epithelial subtypes in 
five cohorts. To identify the final set of epithelial subtype markers, we used 
DESeq2 v.1.30.1 to perform differential expression analysis on patient-specific 
epithelial pseudo-bulk transcriptomes from the five cohorts74. In this case, 
pseudo-bulk transcriptomes were calculated by summing UMI counts across 
cells, as recommended by DESeq2. For identifying marker genes, we only used 
primary tumor and adjacent normal data from the 61 of 63 patients whose 
iCMS classifications based on single-cell transcriptome and copy number profile 
were consistent. Genes that were detected in fewer than 5% of individuals were 
discarded and cohort label was defined as a confounding factor. Shrunken log2 
fold-changes and standard error were estimated using the ‘ashr’ algorithm. Genes 
with an absolute log2 fold-change ≥log2(1.5), sequencing depth-normalized mean 
UMI count ≥75% and adjusted P value (Benjamini–Hochberg Q value) ≤0.05 
were defined as DEGs. DEG analysis was performed in a pairwise manner between 
each of the three epithelial cell-type pairs (i2 versus i3, i3 versus normal-like, 
normal-like versus i2). A DEG was defined as ‘Up’ or ‘Down’ in an epithelial cell 
type only if it was consistently upregulated or downregulated relative to both of 
the other two cell types. Based on this, we obtained 308 DEGs for i2_Up, 279 for 
i2_Down, 74 for i3_Up and 54 for i3_Down, totaling 715 iCMS marker genes 
(Supplementary Table 14).

Statistics and reproducibility. Since this was an observational study, the 
experiments were not randomized. We did not use any statistical method to 
predetermine cohort size. The researchers were blind to the clinical annotations 
when they were defining cell and tumor types. Data were only excluded from the 
analyses if they failed the QC criteria described.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw scRNA-seq data are available in the European Genome-phenome Archive 
(EGA) database with accession codes EGAD00001008555 (CRC-SG1 cohort), 
EGAD00001008584 (new KUL3 cohort) and EGAD00001008585 (KUL5 cohort). 
The raw bulk RNA-seq, whole-exome sequencing (WES) and whole-genome 
sequencing (WGS) data of Singaporean colorectal cancer patients (SG-BULK) 
are available in the EGA database with accession codes EGAD00001008512 
(bulk RNA-seq); EGAD00001008543 (WES); and EGAD00001008566, 
EGAD00001008574, EGAD00001008592, EGAD00001008625 and 
EGAD00001008637 (WGS). Processed TPM (SG-BULK) and count expression 
matrices (scRNA-seq from five cohorts) are available through Synapse under the 
accession codes syn26720761 (https://www.synapse.org/#!Synapse:syn26720761/) 
and syn26844071 (https://www.synapse.org/#!Synapse:syn26844071/), respectively. 
Published raw scRNA-seq data referenced in the study are available from EGA 
under the accession codes EGAS00001003779 and EGAS00001003769 (SMC 
cohort) and from ArrayExpress under the accession codes E-MTAB-8410 and 
E-MTAB-8412 (KUL3 cohort).

Code availability
All software used in this study is published and cited either in the main text or 
Methods. No custom code was used for any aspect of data processing or analysis. 
Data analysis approaches using published software packages are described in the 
Methods and Supplementary Notes.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | QC cut off for all cells in 5 cohorts. Violin plot showing number of detected genes (NODG) distribution of each sample in their 
respective cell types. Solid red lines indicate median NODG across 211 samples in each respective cell type, while dashed blue lines indicate 2 or 0.5 times 
the red line. Magenta box highlight samples with median NODG consistently higher or lower than the dashed blue lines in more than half of the cell types, 
which were discarded from this study (22 samples from 9 patients). b. Density plot and numeric table for all cell types in 5 cohorts before and after quality 
control (QC). Red lines in the density plots indicate the QC parameter that was used. The 11 major cell types are: B cells (B), Endothelial cells, Epithelial 
cells, Fibroblast cells, Granulocyte cells, monocyte conventional dendritic cell (McDC), Plasma-B cells, T and NK cells (T_NK).
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Extended Data Fig. 2 | Sub-clustering of all major cell type in CRC-SG1 cohorts. a. (Left) UMAP visualization of clusters representing major cell types 
in CRC-SG1 (n = 208,367), (Right) Epithelial sub-cluster colored by cluster ID, tumor sectors, and sample ID (n = 15,920). b. UMAP visualization of B 
(n = 19,088 cells), Plasma-B (n = 26,710 cells), Endothelial (n = 6,875 cells), monocyte conventional dendritic cell (McDC) (n = 26,127 cells), Fibroblast 
(n = 31,415 cells), and T and NK (T_NK) (n = 76,812 cells) subclusters from 14 patients in CRC-SG1 dataset, colored by tumor sectors (upper panel), 
patient ID (middle panel), and sample ID (lower panel).
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Extended Data Fig. 3 | The bimodality of iCMS subtypes. a. Density plot of 42,010 tumor epithelial cells from 5 cohorts in iCMS metagene space. The 
mode at the bottom right of the scatterplot corresponds to iCMS2 cells, while the opposite mode corresponds to iCMS3. b. UMAP visualization of 42,010 
tumor epithelial cells from 5 cohorts in transcriptomic space colored by iCMS score for each individual cell, defined as (iCMS2 metagene expression 
score) - (iCMS3 metagene expression score). c. UMAP visualization of tumor epithelial cells from 5 cohorts in transcriptomic space, grouped by patients, 
and colored by iCMS label. The numbers next to patient ID in each plot indicates the total number of tumor epithelial cells for that particular patient. The 
percentage on the bottom right of the UMAP indicates the number of cells that were clustered in i2 clusters (purple color) or i3 clusters (orange color).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | iCMS classification in 15 bulk datasets. a. Heatmap of 715 iCMS genes used to classify 3,614 samples across 15 datasets by NTP, 
colored by scaled gene expression, arranged by sum of expression of signature genes. Top annotation bars show clinical information for each sample 
(dataset, gender, side, stage, MSI status, CMS, iCMS). Bottom annotation shows the FDR of NTP classification. b. Proportions of gender, stage, histological 
type and CRIS subgroup from 15 bulk datasets; number of samples in each group is labelled. For each analysis, only samples with information available 
were used. c. Proportions of methylation subtype (n = 182, top, as defined in the original paper1), expression subtype (n = 169, middle) and TCGA subtype 
(n = 419, bottom) in iCMS2_MSS, iCMS3_MSS and iCMS3_MSI from TCGA; number of samples in each group is labelled. (d,e) Kaplan-Meier plot of 
overall survival (d) and survival after relapse (e) for all patients classified by CMS and iCMS.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNATurE GEnETICS

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Genomic features in iCMS, MSI, and CIMP status. a. Log2 copy-number ratios for each chromosome arm in iCMS2_MSS 
(n = 363), iCMS3_MSS (n = 189) and iCMS3_MSI (n = 107) from TCGA and SG-Bulk datasets. P-values for pairwise comparisons are by two-sided 
Wilcoxon rank-sum test; overall p-value is by Kruskal-Wallis test. Scatterplot of proportion of TCGA and SG-Bulk samples with mutations in 333 CRC-
associated genes, in b. MSS (n = 519) vs MSI (n = 101) and c. iCMS3_MSS (n = 181) vs iCMS3_MSI (n = 99) (right). Dot size corresponds to q-value 
by Fisher’s exact test with Benjamini-Hochberg correction. Only genes with q-value <0.05 and proportion mutated > 0.5 are labelled. (d) Heatmap of 
differentially methylated CpG sites (n = 978) between iCMS2 and iCMS3 subtypes in 176 TCGA samples.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Wnt pathway alterations in iCMS. a. Scaled gene expression of selected Wnt pathway genes in iCMS2_MSS (n = 389), iCMS3_
MSS (n = 195) and iCMS3_MSI (n = 116), from TCGA and SG-Bulk datasets. b. Beta-catenin protein levels, by RPPA, in iCMS2_MSS (n = 216), iCMS3_MSS 
(n = 117) and iCMS3_MSI (n = 67) from TCGA data. P-values for pairwise comparisons are by two-sided Wilcoxon rank-sum test with no correction; 
overall p-value is by Kruskal-Wallis test. c. Cumulative frequencies of truncating (nonsense and frameshift) APC mutations by position from TCGA and 
SG-Bulk patients with APC mutations (n = 342), in iCMS2 and iCMS3 (left), iCMS2-MSS vs iCMS3-MSS vs iCMS3-MSI (middle), as well as IMF 5 groups 
(right). P-value is by two-sided Kolmogorov–Smirnov test. d. Proportion of APC mutation types (left) and regions (right) in samples with APC mutations 
from TCGA and SG-Bulk data (n = 574). Comparisons are between iCMS2/iCMS3 (top), and iCMS2_MSS/iCMS3_MSS/iCMS3_MSI (bottom). e. APC 
variant allele frequency (VAF) in iCMS2_MSS (n = 343), iCMS3_MSS (n = 172) and iCMS3_MSI (n = 46) from TCGA data. P-values are by two-sided 
Wilcoxon rank-sum test with no correction f. Mutational landscape of selected Wnt pathway genes in iCMS2 (left, n = 344) and iCMS3 (right, n = 281) 
samples in TCGA and SG-Bulk datasets. g. Proportion of samples in TCGA and SG-Bulk datasets (n = 626) with wild type (wt) or mutations (mut) in 
RNF43 (top) and ZNRF32 (bottom); number of samples in each group is labelled.
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Extended Data Fig. 7 | MAPK and TGF-beta pathways in iCMS. Proportion of mutation types and locations in a. KRAS (n = 206) and b. NRAS (n = 27) 
in samples with KRAS/NRAS mutations from TCGA and SG-Bulk data; number of samples in each group is labelled. Comparisons are between iCMS2/
iCMS3 (top), and iCMS2_MSS/iCMS3_MSS/iCMS3_MSI (bottom). c. Scaled gene expression of selected MAPK pathway genes in iCMS2 (n = 396) 
and iCMS3 (n = 312), from TCGA and SG-Bulk datasets. P-values shown are by two-sided Wilcoxon rank-sum test without correction. d. Mutational 
landscape of selected TGF-beta pathway genes in iCMS2 (top, n = 344) and iCMS3 (bottom, n = 281) samples in TCGA and SG-Bulk datasets. e. Scaled 
gene expression of selected TGF-beta pathway genes iCMS2 (n = 396) and iCMS3 (n = 312) (left) and across the IMF 5 categories: i2_MSS (n = 240), 
i2_fibrotic (n = 82), i3_MSS (n = 92), i3_fibrotic (n = 58), i3_MSI (n = 105) (right). P-values are calculated using two-sided Wilcoxon rank-sum test without 
correction.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Tumor microenvironment in IMF classes. a. Boxplot of the average scaled gene expression of cell type-specific signatures of the 
9 major cell types in 577 bulk samples from TCGA and SG-Bulk datasets, split by IMF. Center line indicate the median, and box edges indicate the 25th 
(Q1) and 75th (Q3) percentiles. Whiskers are plotted at 1.5xIQR and data beyond the end of the whisker are outliers. b. Heatmap of the EPIC cell fractions 
across the major cell types in TCGA and SG-Bulk datasets (n = 577). EPIC was performed on these datasets using the in-house cell type categories and 
reference panel2. EPIC scores were log-transformed, zero-centered and scaled to unit variance. Columns are patients ordered by IMF, and rows are cell 
types ordered by unsupervised hierarchical clustering. c. Tumor purity estimate of samples from TCGA (left), SG-Bulk (middle) and TCGA + SG-Bulk 
(right), split by IMF. TCGA: iCMS2_MSS (n = 96), iCMS2_fibrotic (n = 44), iCMS3_MSS (n = 42), iCMS3_fibrotic (n = 33), iCMS3_MSI (n = 49). SG-
Bulk: iCMS2_MSS (n = 51), iCMS2_fibrotic (n = 11), iCMS3_MSS (n = 18), iCMS3_fibrotic (n = 10), iCMS3_MSI (n = 25). TCGA + SG-Bulk: iCMS2_MSS 
(n = 147), iCMS2_fibrotic (n = 55), iCMS3_MSS (n = 60), iCMS3_fibrotic (n = 43), iCMS3_MSI (n = 74). P-values are by two-sided Wilcoxon rank-sum test 
without correction. Center line indicate the median, and box edges indicate the 25th (Q1) and 75th (Q3) percentiles. Whiskers are plotted at 1.5xIQR and 
data beyond the end of the whisker are outliers. d. Mapping of differentially expressed genes between iCMS2_MSS_F and iCMS3_MSS_F onto CRC-SG1 
pseudobulk expression matrix by cell type. The heatmap on the left shows genes upregulated in iCMS2_MSS_F compared to iCMS3_MSS_F, while the 
heatmap on the right shows genes upregulated in iCMS3_MSS_F compared to iCMS2_MSS_F.
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Extended Data Fig. 9 | Comparison of metagene signature of selected GSEA-Hallmark pathway in single cell epithelial cells across iCMS classes. Box 
plots of metagene scores comparing iCMS2 (n = 35) versus iCMS3 (n = 23) in patient-specific pseudo-bulk. Within the iCMS3 group, i3-MSI (n = 10) 
samples are labelled by red jitter points and i3-MSS samples are labelled by orange jitter points. The metagene scores for each patient pseudo-bulk was 
calculated by averaging the scaled expressions of all genes in the geneset in the given patient. P-values were calculated by two-sided Wilcoxon rank-sum 
test. Center line indicate the median, and box edges indicate the 25th (Q1) and 75th (Q3) percentiles. Whiskers are plotted at 1.5xIQR and data beyond the 
end of the whisker are outliers.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of metagene signature of selected histology, cell types & states of the colon (A) and drug response signatures 
(B) in single cell epithelial cells across iCMS classes. Box plots of metagene scores comparing iCMS2 (n = 35) versus iCMS3 (n = 23) in patient-specific 
pseudo-bulk. Within the iCMS3 group, i3-MSI (n = 10) samples are labelled by red jitter points and i3-MSS samples are labelled by orange jitter points. 
The metagene scores for each patient pseudo-bulk was calculated by averaging the scaled expressions of all genes in the geneset in the given patient. 
P-values were calculated by two-sided Wilcoxon rank-sum test. Center line indicate the median, and box edges indicate the 25th (Q1) and 75th (Q3) 
percentiles. Whiskers are plotted at 1.5xIQR and data beyond the end of the whisker are outliers.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No specialized software was used for data acquisition

Data analysis All software used in this study are published and cited either in the main text or Online method. Here is the list of software used in this study: 
Burrows–Wheeler Aligner (v.0.7.17), Genome Analysis Toolkit 4 (GATK4, v.4.0.2.1), CellRanger version 3.1, RCAv2 (2.0.0), DoubletFinder 
version (2.0.3), DUBStepR (1.2.0), Seurat (4.0.4), CMSclassifier (1.0.0), inferCNV (1.7.1), DESeq2 (1.30), pySCENIC (0.10.3), GRNboost2 
(arboreto 0.1.5), CMScaller (2.0.1), nclust  (2.2.3), survival (3.2-7), GSEA software (4.1.0), Complexheatmap (2.6.2), NicheNet (1.0.0), NATMI 
(git commit: 3ef1f05), TissueEnrich (1.10.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw scRNA-seq data are available in the European Genome-phenome Archive (EGA) database with accession of EGAD00001008555 (CRC-SG1 cohort), 
EGAD00001008584 (new KUL3 cohort), and EGAD00001008585 (KUL5 cohort). The raw bulk RNA-seq, whole exome sequencing (WES), and whole genome 
sequencing (WGS) of Singapore colorectal cancer patients (SG-BULK) are available in EGA database with accession codes: EGAD00001008512 (bulk RNA-seq); 
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EGAD00001008543 (exome sequencing); EGAD00001008566, EGAD00001008574, EGAD00001008592, EGAD00001008625, and EGAD00001008637 (whole-
genome sequencing). Processed TPM (SG-BULK) and count expression matrices (scRNA-seq from 5 cohorts) are available through Synapse under the accession 
codes syn26720761 and syn26844071, respectively. Published raw scRNA-seq data referenced in the study are available from EGA under the accession codes 
EGAS00001003779 and EGAS00001003769 (SMC cohort) and from ArrayExpress under the accession codes E-MTAB-8410 and E-MTAB-8412 (KUL3 cohort).
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size of 63 represents 1 of the largest single cell datasets to date and was the largest, that we were aware of at the point of study 
conception. We secured budget to be able to perform analyses that represent a 10 fold increase in cell numbers compared to other colorectal 
cancer studies at the point of study data generation. This study design would enable a diversity of cells comparable in scale to current studies 
being published in leading journals.

Data exclusions There is no specific data exclusion. 

Replication Our study has findings that have been replicated across 5 cohorts internally with 63 patients and nearly half a million cells. We then replicated 
our study in a recent study of 62 patients also with around half a million cells.

Randomization Randomization is not applicable as this is not a therapeutic trial.

Blinding The researchers were blind to the clinical annotations at the point of biologic discovery.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Patients with colorectal cancer undergoing primary surgery for colorectal cancer at National Cancer Centre Singapore, 
Singapore General Hospital, Samsung cancer centre, University Leuven. We have provided individual level data of the gender 
and age and other clinical metadata in the supplementary tables that accompany the manuscript 

Recruitment Patients undergoing primary surgery for colorectal cancer at National Cancer Centre Singapore, Singapore General Hospital, 
Samsung cancer centre, University Leuven were approached for consent to donate research tissue for research. Patients had 
to have sufficient tumor volume to be able to support collection of extra tissue beyond what would be required for 
pathologic diagnosis. At surgical removal, a research pathologist evaluates if there is sufficient tissue that can be collected for 
research use without compromising diagnostic staging.  
 
We recruited patients whose tumors were of sufficient size to enable sufficient collection of tumor aliquots that are to be 
dissociated for single cell analyses. This may have led to a selection bias towards tumors that are of sufficient size to enable 
analyses. This is inherent in single cell studies. The mapping of the data to bulk transcriptomics data as validation, where this 
effect of tumor size is no longer there, suggest our findings are unlikely to be affected by this minimum (2cm) size 
requirement. 
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Ethics oversight The study was approved by the institutional review boards of Singhealth (2018-2795 and 2018-2376) for CRC-SG1 & CRC-

SG2, Samsung Medical Center (approval no. SMC2017-07-131) for the SMC and Commissie Medische Ethiek UZ KU Leuven/
Onderzoek (approval no. S50887-ML4707) for the KUL3 and KUL5 datasets, respectively. All mentioned datasets/studies were 
carried out in accordance with ethical guidelines and all patients provided written informed consent. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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