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Abstract: This contribution establishes exact tail asymptotics of sup(, g X (s,1) for a large class of non-homogeneous
Gaussian random fields X on a bounded convex set E C R2, with variance function that attains its maximum on a
segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random
fields with unique maximum point of the variance. Applications of our result include the derivation of the exact tail
asymptotics of the Shepp statistics for stationary Gaussian processes, Brownian bridge and fractional Brownian motion

as well as the exact tail asymptotic expansion for the maximum loss and span of stationary Gaussian processes.
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1. INTRODUCTION

Consider the fractional Brownian motion (fBm) incremental random field
Xo(s,t) = Ba(s +1t) — Ba(s), (s,t) €[0,00)2,

where {B,(t),t € R} is a standard {Bm with Hurst index a/2 € (0, 1] which is a centered self-similar Gaussian process

with stationary increments and covariance function
1
Cov(Bu(t), Ba(s)) = §(|t\a +1s|“=t—s1%), s,teR.

For the case a = 1 both X,(s,t) and its standardised version X (s,t) = X(s,t)/t*/? appear naturally as limit models,

see e.g., [8]. In the literature

Yo(t) = sup Xa(s,t)
s€l0,5]

is referred to as the Shepp statistics of fBm, whereas Y () = sup,cjo,s) Xa(s,t) as the standardised Shepp statistics.
Distributional results for Y;* are derived in [28], see also [27] and Theorem 3.2 in [8]. Other important results for the
Shepp statistics of Brownian motion and related quantities are presented in [11, 14, 29]. The first known result for the
extremes of the Shepp statistics of Brownian motion goes back to [32], which is complemented in [17] for the case of {fBm
with « € (0,1). In view of the aforementioned papers for any a € (0, 1]

(1) P ( sup  Xa(s,t) > u) = Cou® 72U (u)(1 4 0o(1)), u— 00

(s,t)€[0,1]2
holds with C,, a positive constant and ¥(-) the survival function of an N(0,1) random variable. There is no result for

the case o € (1,2) in the literature; we shall cover this gap in Proposition 3.5.
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Results for the tail asymptotics of supremum of the standardised Shepp statistics can be derived using the findings of [7]
and [20], see also [18, 19]. However, this is not the case for the tail asymptotics of the supremum of the Shepp statistics
Y,; no theoretical results in the literature can be applied for this case. This is due to the fact that on [0, 1]? the variance
of X, attains its maximum at an infinite number of points, i.e., its maximal value is attained for any s € [0, 1] and ¢ = 1.
In the asymptotic theory of Gaussian random fields, if the random field has a non-constant variance function, which
attains its maximum at a unique (or finite) number of points, then under the so-called Piterbarg conditions, the exact tail
asymptotics of supremum of Gaussian random fields with certain (F, «) structures for the variance and the correlation
functions are derived by relying on the Double-Sum method, see e.g., the standard monograph [24].

The principle aim of this contribution is to extend Piterbarg’s asymptotic theory for Gaussian random fields to the case
where the maximum of the variance function on a bounded convex set F is attained on finite number of disjoint segments
on E. In particular, we assume that {X(s,?),(s,t) € E}, E =10,5] x[0,T],S,T > 0, is a centered Gaussian random

field with variance function 02(s,t) = Var(X(s,t)) that satisfies the following assumption.

Assumption A1l. There exists some positive function o(t) which attains its unique maximum on [0, 7] at T, and further
(2) o(s,t) =o(t), VY(s,t)eE, ot)=1-bT—-t)’(14+0(1)), t1T

hold for some 3,b > 0.
We shall impose the following assumption on the correlation function r(s,t,s',t') = E (X (s,t)X(s',t')) where X(s,t) =
X(s,t)/o(s,t):

Assumption A2. There exist constants a; > 0,a3 > 0,a3 # 0 and a1, as € (0,2] such that
(3) Pty t) = 1= (laa(s = &)™ +laa(t = ') + az(s — )] ) (1 + 0(1))

holds uniformly with respect to s,s" € [0, 5], as |s — s'| = 0,¢,¢' 1 T, and further, there exists some constant §y € (0,7)

such that
(4) r(s,t,s',t') <1

holds for any s, s’ € [0, S] satisfying s # s', and ¢,t' € [do, T

Note that in A2 we assume that ag # 0, which includes a large class of correlation functions with (E, «) structure dealt
with in [24]; the classical case az = 0 is discussed in Remark 2.3.

Our main result, presented in Theorem 2.2 (and stated in higher generality in Remarks 2.4), derives the exact tail asymp-
totic behaviour of supremum of non-homogeneous Gaussian random fields X satisfying A1-A2 and a Holder condition
formulated below in Assumption A3.

As an illustration to the derived theory, we analyze exact asymptotics of the tail distribution of extremes of Shepp sta-

tistics, the maximum loss and the span for a large class of Gaussian processes.

Organization of the paper: Our principal findings are presented in Section 2 followed by two sections dedicated to

applications and examples. All the proofs are relegated to Section 5 and Appendix.
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2. MAIN RESULTS

In this section we are concerned with the asymptotics of
P(sup X(s,t)>u>, U — 00
(s,t)eEE
discussing first the case that E = [0, 5] x [0,T].
Pickands and Piterbarg Lemmas (cf. [24]) are fundamental in the analysis of the tail asymptotic behaviour of supremum of
non-smooth centered Gaussian processes and Gaussian random fields. Restricting ourselves to the case that {X (¢),t > 0}
is a centered stationary Gaussian process with a.s. continuous sample paths and correlation function 7(¢), such that
r(t) =1—1t*(1+o0(1)) as t — 0, with a € (0,2], and r(¢t) < 1 for all ¢ > 0, in view of the seminal papers by J. Pickands
IIT (see [21, 22]), for any T € (0, c0)
(5) P ( sup X(¢t) > u) = HQTU%\I/(u)(l +o(1)), u— oo.
tel0,T)
Here H, is the Pickands constant defined by
Ho = lim l’HQ[(LT] € (0,00), with H,[0,7]=E (exp( sup (\/iBa(t) — t“))) .
T—oo T te[0,T]

The derivation of (5) is based on Pickands Lemma which states that

(6) P sup_ X)) >u | =Ha[0,T)T(u)(14+0(1), u— 0.
te[0,u” & T

In [23] V.I. Piterbarg rigorously proved Pickands theorem and further derived a crucial extension of (6) which we shall

refer to as Piterbarg Lemma; it states that

X(1)
]P) 3
@ P + bte

aT]

>u | =P0,T)¥(u)(1+0(1)), u— oo

te0,u

holds for any b > 0 with

te[0,T)

PO, T]=E (exp( sup (\/EBa(t) -1+ b)t“))) € (0,00).
The positive constant (referred to as Piterbarg constant) given by
P = lim P.[0,T] € (0,00)
T—o0

appears naturally when dealing with the extremes of non-stationary Gaussian processes or Gaussian random fields, see

e.g., [24] and our main result below. It is known that H; = 1, Hy = 1/4/7, and

1 1 1
b_ 1 bt 2
(8) Pl=1+y. P 2<1+\/1+b>, b>0

see e.g., [2, 10, 12, 16, 15, 13].

We note in passing that for stationary Gaussian processes [3] and [5] presented new elegant proofs of (5) without using
Pickands Lemma. The following extension of Pickands and Piterbarg Lemmas plays an important role in our analysis.
Hereafter we denote by B, and B,, two independent fBm’s defined on R with Hurst index a/2 € (0,1]. Recall that ¥(-)

denotes the survival function of an N(0,1) random variable; we write below I'(+) for the Euler Gamma function.
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Lemma 2.1. Let {n(s,t),(s,t) € [0,00)?} be a centered homogeneous Gaussian random field with covariance function
ry(s,t) = exp(f lais|™ — |agt — a3s\a2>, (s,t) € [0,00)?,

where constants a; € (0,2],1=1,2, a3 > 0,as > 0,a3 € R. Let further b, S,T be three positive constants. If 8 > as > oy,

then for any positive measurable function g(u),u > 0 satisfying limy, o g(u)/u =1

(9) P sup WD > o) | = M1 TN (g)(1 +01)),  w o

_ 2 _ 2
(s,t)€[0,Su 1 ]x[0,Tu <2]
where
(10) HL[S,T| =E <exp ( sup (\/§Y(s,t) — o2 (s,t) — d(t)))) € (0,00),
(s,t)€[0,8]x[0,T]

with 0% (s,t) = Var(Y (s,t)) and

Ys,t:zBlas—FBQat—as,a:a, 0, > o,
(A1) Y(sp={ 0T Inlaslr Baletmas), o Ty, 77 (e oo
Ya2(s,t) := Ba,(a18) + Ba,(ast), a) < ag, btl, B = o,

Using the definition of Y; and Y3 appearing in (11) we shall determine, for given a;’s, a;’s and b, 8 as above, the following

constants (referred to as generalized Pickands-Piterbarg constants)

Myﬂ = hm lim —HY[S T] € (0,00),

T—00 S—00 S

and

T—o0 S—o0 (s,£)€[0,8] X [~T,T)

MYB = hm lim %E <exp ( sup (\/§Y(s,t) —oi(s,t) — btﬁ)>> € (0, 00).

Here /\/ll)’/ﬁ and Mli)/,ﬁ are defined only for 8 = as. Note that we suppress a;’s and «;’s in the definition of Mg,”@ and
le{/ 5 since they appear directly in the definition of V.

Additional to A1 and A2 we shall impose the following Hélder condition, which in the literature is called regularity; see
[24].

Assumption A3. There exist positive constants p1, p2, 7y, @ such that
E((X(s,t) = X(s/,t0)) < Qit =" +1]s ")

holds for all ¢,¢' € [p1,T],s,s" € [0, 5] satisfying |s — s'| < pa.

We present next our main result.

Theorem 2.2. Let {X(s,t),(s,t) € E},E = [0,5] x [0,T] be a centered Gaussian random field with a.s. continuous
sample paths. Suppose that assumptions A1-A3 are satisfied with the parameters mentioned therein. Then, as u — oo,

i) if B > max(a, as)

2

(12) 1P>< sup X(s,t) >u> = STA/B+1) [](axHa, )b Fuz T35 W(u)(1 + o(1);
(s,t)eE 1

lZ) ifﬁzagzal

(13) P ( sup X(s,t) > u) = SMY ., u%\II(u)(l +o(1));

(s,t)eE
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’LH) ’Lfﬂ =9 > Q1

(14) P sup X(s,6)>u| = Sa1aeP  Hausr U(u)(1+ o(1));
(s,t)eE
w) if f<as=a
(15) P ( sup X(s,t) > u) = S(a* + |a3|a1)i7-lalua%\ll(u)(l +0(1));
(s,t)eEE
v) if B<as and a; < as
(16) P| sup X(s,t)>u]| = S’al?{alua%\ll(u)(l +o(1));
(s,t)eEE
vi) if = a1 > as
(587,
(17) P sup X(s,t)>u]| = Sa1Pa;™™ Ha,uo2¥(u)(1+0(1));
(s,t)eEE
vit) if B < a1 and ay < o
P sup X(s,t)>u]| = Sasg] Ha2u°%2\11(u)(1 + o(1)).
(s,t)eEE

Remark 2.3. If ag = 0, then there are only three scenarios to be considered. In particular if § > «q, then (12) holds. If
B = ag, then (14) holds, whereas if B < aq, then (16) is valid.

Remarks 2.4. a) Let E be any bounded convex subset of R2. Assume that on E the mazimum of the standard deviation
o(s,t) is attained only on a segment L which is inside of E, parallel to s-azis and of length €. Then the claims of Theorem
2.2 are still vilad, by replacing S with ¢ in Cases i)-vii), I'(-) with 2I'(:) in Case i), MY, ay with /\/l o
Pfi‘;;” with 753‘;?2 in Case iii), and Po\ (lasl/(ara2))™ gy PYLlaal/araD)™ 4y Case vi), respectively. Here Pb, with b > 0

in Cases ii),

and « € (0,2] is the Piterbarg constant defined on the real line, i.e.,
Pb = lim E exp( sup (\@Ba(t) -1+ b)ta>> € (0,00).
T—o0 te[—T,T]

b) Assume that on E the mazimum of the standard deviation o(s,t) is attained only on n segments {L;}?, which are
inside or on the boundary of E, and parallel to s-axis. By the convexity of E, we can always find n non-adjacent convex
sets {E;}" , such that L; C E; C E, i=1,--- ,n. If further for any i # j

(18) sup r(s,t,s,t') <1

(s,t)EE;,(s',t")EE;

holds, then

(19) P( sup X(s,t) ZIP’ sup X(s,t) >u | (1+0(1)), u— oo
(s,t)EE (s,t)EE;

Additionally, suppose that on each {E;}!_, the assumptions A1-A3 are satisfied. Then an explicit expression for (19)

can be established by applying the results in Theorem 2.2 and Remark a) above.

¢) Similar results can also be obtained when the segments {L;}_,, where the mazimum of o(s,t) is attained, are non-

parallel and disjoint. Specifically, we see from Remark b) that it is sufficient to consider the asymptotics of

P({ sup X(s,t)>u], u—o00, i=1,---,n,
(s,t)EE;
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respectively. Let (s,t)"
(rotation) matriz A; € R**? such that the mazimum of the variance of X((Ai(s,t)")T) on A;'E; = {(5,1) : (5,1)T =

be the transpose of (s,t). Then, for any i =1,--- ,n, there is a non-degenerate lower triangular

A7l (s, )T, (s,t) € E;} is attained on a line parallel to s-axis or t-axis. Consequently, similar results as in Theorem 2.2

can be obtained if certain assumptions as A1-A3 are satisfied by each {X((Ai(s,t)")7), (s,t) € A7 E,}.

We conclude this section with an example, which illustrates the existence of all the cases discussed in Theorem 2.2.

Example 2.5. Consider a Gaussian random field defined as

Z(s,t) = %(Y(s F1) = X(s)(A = b(T —)%), (s,t) € [0,5] x [0, 7],

where b, B are two positive constants, and X,Y are two independent centered stationary Gaussian processes with covariance

functions rx,ry satisfying ast — 0

rx(t) =1—a1t** (1 +0(1)), ry(t)=1-—axt*?(1+0(1))
for some constants a; > 0,a; € (0,2],i = 1,2. Further, assume that

rx(s) <1, Vse(0,5], ry(t)<1l, Vte(0,S+T].
It follows that the assumptions of Theorem 2.2 are satisfied by {Z(s,t), (s,t) € [0,5] x [0,T]}.

3. EXTREMES OF SHEPP STATISTICS
For a given centered Gaussian process {X (t),t > 0} we shall define the incremental random field Z by
(20) Z(s,t) =X(s+t)— X(s), (s,t)€]0,5]x]0,T].
The asymptotic analysis of the supremum of the Shepp statistics
Y(t) = sup Z(s,t),t€0,T]
s€(0,S]

boils down to the study of the tail asymptotics of the double-supremum sup , 40,570,771 Z (8, t). In this section we shall

consider several important examples which can be analysed utilising the theory developed in Section 2.

3.1. Stationary Gaussian processes. Consider the Gaussian random field Z as in (20) where X is a centered stationary
Gaussian process with covariance function rx satisfying the following conditions:
S1: rx(t) attains its minimum on [0, 7] at the unique point ¢t = T,

S2: there exist positive constants ay, a1, a2 and as € (0,2) such that
rx(t)=rx(T)+ a1 (T —t)*(1+0(1)), t—=T, rx(t)=1—axt**(1+0(1)), t—0;
S3: rx(s) <1 for any s € (0,5 + T7.

Proposition 3.1. Let {Z(s,t),(s,t) € [0,5] x [0,T]} be an incremental random field given as in (20) with rx satisfying

S1-S3. Suppose that rx is twice continuously differentiable on [, T] for some u € (0,T), ‘r;((T)‘ € (0,00), and let
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bi = a;/p%,i = 1,2 with pr = \/2(1 —rx(T)). Then, as u — o,

(1) if oq > ag

P( up Z(s,t>>u> = st(u/an+ 02,0550 ()7 T () oy
T

(s,t)€[0,5]%[0,T]

(i4) if a1 = o
P < sup Z(s,t) > u> =SMY,, ( - )(32 4 (u> (1+0(1)),

(s,£)€]0,5]%[0,T] pr pT

where

1 1 1
Y (s,t) := By, <b;2 5) + Ba, (b;"‘t by s) , (s,t) €10,00)%

(ZZZ) Zf o < Qg

i ((S i Z(s,t) > u) = S(2b2) 72 Ha, < “ ) v <“) (1+ o(1)).

0,5]1x[0,T] or

We present two important examples that illustrate Proposition 3.1.
Example 3.2. (Slepian process) Consider X to be the Slepian process, i.e.,
X(t)=Bi(t+1)— Bi(t), te][0,00),

with By the standard Brownian motion. It follows that the assumptions of Proposition 3.1 are satisfied, hence as u — oo

P <( ) sup Z(s,t) > u) = My u*¥(u)(1+0(1))

[0,1]%[0, 3]

holds with Y (s,t) := By (s) + By (t — s), (s,t) € (0,00)2.

Example 3.3. (Ornstein-Uhlenbeck process) Consider a centered stationary Gaussian process X with covariance function

r(t) = et t > 0. Then following Proposition 3.1

P ( sup  Z(s,t) > u) = le}lbluzlll(\/au)(l +o(1)), u— o0,
(s,t)€[0,1]2 ’

with by = e 1 /(2(1 —e™1)), by = 1/(2(1 — e 1)) and Y (s,t) := By (bys) + By (bat — bas), (s,t) € (0,00)2.

3.2. Brownian bridge. In this section we analyze

(21) Z(s,t) =X(s+1t)—X(s), s,s+te]0,1],

where X(s) := Bi(s) — sB1(1),s € [0,1] is a Brownian bridge (recall B; is a standard Brownian motion). Clearly, X is

non-stationary and therefore we cannot apply Proposition 3.1 for this case.
Proposition 3.4. If {Z(s,t),(s,t) € [0,1/2]} is given by (21), then

(22) P ( sup  Z(s,t) > u) = 2%\/Eu3\11(2u)(1 +o(1)), u— oo
(s,t)€[0,3]2
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3.3. Fractional Brownian motion. Consider the fBm incremental random field
(23) Z(s,t) = Ba(s+t) — Ba(s), (s,t) €10,85] x[0,1],

where B, is the fBm with Hurst index a/2 € (0, 1).

The following proposition extends the main result of [17] to the whole range of a € (0,2).

Proposition 3.5. Let {Z(s,t),(s,t) € [0,5] x [0,1]} be given as in (23). We have, as u — o0,
(i) if o € (0,1)

(24) P sup Z(s,t)>u| = 521*2/0‘a717{iu§72‘1/(u)(1 +o(1));
(s,t)€[0,5]x[0,1]
(id) if a = 1
(25) i sup Z(s,t)>u| = SMEu2U(w)(1+o(1),
(s,t)€[0,8]%[0,1] '
with

Y(s,t) = By (27's)+ B (27t —s)), (s,t) €[0,00)%

(iid) if o € (1,2)

(26) P sup Z(s,t) >u| = SHousW(u)(1+o(1)).
(s,t)€[0,5]x[0,1]

4. EXTREMES OF MAXIMUM LOSS AND SPAN OF (GAUSSIAN PROCESSES

Let {£(t),t € [0,1]} be a Gaussian process with a.s. continuous sample paths. The maximum loss of the process ¢ is given

by
x1(§) = max (£(s) —£(1)),

0<s<t<1

and its span is defined as

x2(§) = Jnax () — tlgﬁiﬁ] £(t).

The notion of the maximum loss of certain Gaussian processes (e.g., Brownian motion and fBm, etc.) plays an important
role in finance and insurance modelling, see e.g., [30], [31] and references therein.

In this section, as an application of Theorem 2.2 and Remarks 2.4, we derive exact tail asymptotics of the maximum loss
for both stationary Gaussian process (in Proposition 4.1) and for Brownian bridge (in Proposition 4.2). The exact tail
asymptotics of the span x2(£) when £ is a centered stationary Gaussian process with covariance function that satisfies
certain regular conditions is obtained in [26]. The same result should be retrieved, using first a time scaling and then
resorting to Remarks 2.4. This observation is confirmed in Proposition 4.1 below.

Hereafter assume that {£(¢),t € [0, 1]} is a centered stationary Gaussian process with covariance function re(s) satisfying
the following conditions:

S1’: 7¢(t) attains its minimum on [0, 1] at unique point ¢,, € (0,1);

S2: there exist positive constants aj, as,@; and ay € (0,2) such that

re(t) = 1e(tm) + a1 [t — 6™ (L+0(1)), t =t
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and
re(t) =1 —agt®(1 +o(1)), t— 0;
S3%: re(t) < 1 for any t € (0,1].

Proposition 4.1. Let {{(t),t € [0,1]} be a centered stationary Gaussian process with covariance function re(t) satisfying

S1°-S3’. If re(t) is twice continuously differentiable on interval [tn, — p,tm + p] for some positive small constant i, then

P(x2(8) >u) = 2P(x1(§) > u)

(27) = R (L ) HE 4l (1 — re(tn))? R R 0 O <“> (14 0(1))
as u — 0o.

Proposition 4.2. If {X(t),t € [0,1]} is the Brownian bridge given in (21), then as u — 0o

(28) P(xa(X) > ) = 2P(xa(X) > u) =22 Vmu' ¥ (2u)(1 + o(1)).

Remarks 4.3. a) The claim in (27) is consistent with Theorem 2.1 in [26].
b) Let B, be a standard fBm and consider its mazimum loss x1(Ba) and span x2(Ba). The variance function of the

random field X1(s,t) := By (t) — Ba($) is given by
2 _ a 2
UXl(sat) - |t_5| ) (Sat) € [07 1}

and attains its maximum only at points (0,1) and (1,0). Therefore, Theorem 8.2 in [24] yields that, as u — oo,

(i) if a € (0,1)
P (x2(Ba) > u) = 2P (x1(Ba) > u) = 2°7*/*a*HZux " W(u)(1 + o(1));
(ii) if a =1
P (x2(Ba) > u) = 2P (x1(Ba) > u) = 89(u)(1 + o(1));
(iii) if a € (1,2)
P(x2(Ba) > u) = 2P (x1(Bs) > u) = 2% (u)(1 + o(1)).

5. PROOFS

Proof of Lemma 2.1: The claim follows by a direct application of Lemma 6.1 given in Appendix. (]
Proof of Theorem 2.2: As it will be seen at the end of the proof, by symmetry, Cases vi) and vii) follow from the
claims of Cases i) and v), respectively. Thus, we shall first focus on the proof of Cases )-v). In view of assumption A1l
there exist some 6 € (0,1) and pg > p1 (p1 is as in A3) such that

sup o(s,t) <.
(s,t)€[0,5]%[0,p0]
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For §(u) = (Inu/u)?#,u > 0 we may write

P < sup X(s,t) > u)
(s,t)€[0,S1X[T—6(u),T)

IN

P sup X(s,t) >u
(s,)€[0,5]x[0,T]

P sup X(s,t) >u | +m1(u) + m2(u),
(s,t)€[0,S]x[T—6(u),T]

IN

where

mi(u) =P < sup X(s,t) > u) , mo(u):=P ( sup X(s,t) > u) .

(s,t)€[0,51%[0,p0] (s,t)€[0,5]x [po,T—6(u)]

We shall mainly focus on the analysis of

(29) w(u) =P sup X(s,t) >u ], U — 00
(s,t)€[0,S]X[T—6(u),T]
and show that for ¢ = 1,2

(30) mi(u) = o(mw(u)), U — 00,

which then implies
P sup X(s,t) >u | =7(u)(14o0(1)), U — 00.
(s,t)€[0,5]x[0,T]

The asymptotics of (29) will be investigated for the Cases 7)-v) separately by using a case-specific approach.

Case 1) 8 > max(aq, as): For space saving we consider only the case that a; = as =: a; the other cases can be shown

with similar arguments. Following the idea of [25] choose first a constant g € («, ), and denote
Nig =Dy x Dy, DL =Ny x (T = 1;), with &; = [iu” 0, (i + 1)u"%), i =0,1,--- .
Set further
2

Ni(u) = LSU%OJ +1,  No(u) = [(lnu)%ua*ofﬂ +1,

where |-| stands for the ceiling function. By Bonferroni’s inequality we have that

1(u) Na(u)
Z ]P’( sup X(s,t)>u> > w(u)
i (

Ni(u)—1 Na(u)—1 (

—~
w
—

N~—

vV

sup X (s,t) >u | —Xq(u),
(s;t)enT;

¥ (u) = Z Z P sup X(s,t) >u, sup X(s,t)>u
0<i,i' <Ny (u) = 1,0<,5/ <Na(u)—1 \(FDEAT (D)€L
(4,9)# @ ,5")

For any € € (0,1) and all u large (set by. :=b(1 +¢))

X(s,T—t .
P sup X(s,t)>u| <P sup (577) >uio |, uj— =u(l+b_c(ju - )8,
(s;t)eAT (s,) €Ny O'(S,T — t)

2

X(s, T —t s
P sup X(s,t)>u | >P sup (577) >ujy |, wjip =u(l+bi((f+1u 2o )6)
(s;t)eAT (s,) €Ny 0'(57T—t)
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Let {n+c(s,t),(s,t) € [0,00)%} with € as above be centered stationary Gaussian random fields with covariance functions

ro,. (5,8) = exp (-(1 + s)a<|als|a +Jast + ags|“)>, (s,) € [0,00)2,

respectively. By Slepian’s Lemma (see e.g., [6] or [4]) for all u large

X (s, T —1t)
P sup 7>u'_ < P sup  Nie(s, T —t) >u;— | .
<(S PN o(s, T —t) ! ) ((s,t)eAij el ) !

In view of Theorem 7.2 in [24] as u — o0

Nl(u)NQ(u)
m(u) < Z Z]P’( sup n+€(s,T—t)>uj>

i=0 §=0 (s,t)eD;
Nl(u) Nz(u
= (1+¢)ajaaH? w0 Z Z u * W(uj—)(1+o0(1))
=0 4=0
Na(w) 2_ 2
= (1+e)araaH2Su~ o “\IJ Z exp( ub” 070)5> (1+0(1))
(32) = (l—l—e)zalag?—[iSu%*%\P(u)/ exp (—b_ea:ﬂ) dz(1+ o(1)).
0

Similarly, we obtain

Nl(u)—l 1\~/'2(u)—1 (

(33) >(1- E)Qalag”ﬂiSu%_%\I}(u) /000 exp (—b+5:13ﬁ) dz(1+o(1)).

N1 u) 1N2('u.)
sup  X(s,t) > Z Z ]P’( sup  n—e(s, T —1t) > uj+>

(s,t)enl (s;t)€A;

Next, we deal with the double sum part 3;(u). Denote the distance of two non-empty sets A, B C R" by
A,B)= inf -
pAB) = inf flz—yll,

with ||-|| the Euclidean distance. We see from (3) that there exists a positive constant ps such that
3 ANTeS / ANESS !yl
§<|a1(s—s)| +az(t —t') +as(s — §')| ) > 1—r(s,t,s,t)
1 @ [e3%
(34) > 5 (lar(s =" + lax(t = ) + as(s = )]%)

for |s — 8’| < 2p3, |T —t| < 2p3 and |T — t'| < 2p3. It follows further from (4) that there exists some 6y € (0,1) such that

sup sup (s, t,s',t') < bp.
0<i, i’ <Ny (u)—1,0<5,/ <Na(u) =1 (s,t)EAT,
p(Di A1) >ps (s't)enT;

Next, we divide the double sum part ¥ (u) as follows
El(u) = Elyl(u) + Elvg(u) + Zlﬁg(u), Uu Z 0,

where ¥ 1(u) is the sum taken on p(A;, Ay) > ps, ¥q2(u) is the sum taken on p(Al],A /) = 0 and ¥ 3(u) is the

sum taken on u~2/®0 < p(A%,AT ) and p(A;, Ay) < ps. We first give the estimation of ¥y 1(u). For &(s,t,s',t) =

X(s,t) + X (s',t') we have

(35) E (52(5,t, s ) =4—2(1—r(s,t,5,t))
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implying
sup sup  E (&%(s,t,s,t')) <4—2(1—6) < 4.
0<4,i’ <N1(u)—1,0<5,7/ <Na(u)—1 (s,t)€AT
p(Di, A1) >ps (s":t)EAT

Further we have

P sup  X(s,t) >u, sup X(s,t)>u < P sup X(s,t)>u, sup X(s,t)>u
(s,t)EAg} (s,t)GAz;j, (s,t)eAz} (s,t)GAz;j,
< P sup  &(s,t, 8, t) > 2u
(s,t)eA;.l;

(s’,t’)GAgjj,

By Borell-TIS inequality (see [1] or [24]), for u sufficiently large

(u—a)?
P sup X(s,t)>wu, sup X(s,t)>u| <exp|-——7"]),
(s;)eAT; (st)eAT , 2—(1—6y)

where a = E (SUp(s,t),(s/t')e[o,s]><[0,T] &(s,t, 8, t’)) < 0. Thus

b
(36) lim sup 412& =0.
uU—00 u37§W(u)
The summand of ¥4 5(u) is equal to
P sup X(s,t)>u]|+P sup X(s,t)>u| —P sup X(s,t) >u
(s;tyenl; (s,t)eAiT,j, (s,t)eAg;.uAiT,j,

Since p(AZ;-, AiT/j,) = 0, we have for (s,t) € Az;- U AiT/j, and sufficiently large u

w1+ b_o((f — 1)su=50)P) = @y < o S =ull +bae((F + 2)u" 7))
Using again Theorem 7.2 in [24] for the last term we have
P sup X(s,t)>u | >2(1— 5)2a1a27-liu7%0ﬂ§+\1!(ﬂj+)(1 +0(1))

(s,t)eAiTjuAEj,

as u — oo. Consequently, noting that for any AJ; there are at most 8 sets of the form AZ-T,J./ in [0,5] x [T — 6(u),T)

adjecent with it, we conclude that

1 (u) N (u) . 4 s 4
Sia(u) < 8 ) (2(1+5)2a1az7{§u‘%a;\Il(aj_)—2(1—e)2a1a27{§u‘aoa;+qf(aj+)>(1+o(1))
i=0 =0

and thus similar arguments as in (32) yield

P
(37) lim sup lim sup LA =0.

e—0 u—00 Yo B\Il(u)

Finally, we estimate ¥ 3(u). Since u=2/@0 < p(AT, AT ) and p(A;, Ay) < ps, it follows in view of (34) that

i ’L/j/

. . 1 _2a
) inf ) inf (1 - r(&t,s’,t’)) > —pu 2o
0<i,i' <N (u)—1,0<7,§/ <Na(u)—1 (s,) AT (s t)eEAT 2

(A, A1) <ps _2

(Bt WE <p(ah,AL )
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for some positive constant v, and thus

_ 2a
i sup i sup E (&(s,t, 8", 1)) <4 —vu 20,
0<i, i’ <N (u)— 1,05,/ <Na(u)—1 (s,))EAT, (s 1)EAT,
p(Di )< p3

_ 2
u @0 <p(AF,

Al
Consequently, using Piterbarg inequality (cf. Theorem 8.1 in [24] or Theorem 8.1 in [25]) for the summand of ¥4 3(u) we

obtain

P| sup X(s,t)>u, sup X(s,t)>u P sup  &(s,t, 8, t") > 2u
(s,t)en]; (s,t)EDT, (s,t)eAT;
(s’,t’)EAz;.

1 _ o) —a
= o<exp (161/” ST )>u§_/2%\11(u),

IN

which implies that

5 1 _jap-a
(38) limsupij’z& < limsup ZZ 0 <exp <—16yu 275 )) =0.

oo ue TEW() Um0 ()10 <N (w)—1
(4,9)#(i",37)
Hence, in view of (31-33), (36-38) and by letting ¢ — 0 we conclude that

m(u) = alagHiSuéf%\P(u)/ exp (—bxﬁ) dz(1+0(1)), U — 00.
0

Case i1) 8 = a1 = ao: In order to simplify notation we set « := a3 = «a. Let S1, T be two positive constants and define

~ 2

Ai:[isluigv(i+1)sluiz]ﬂ 2:03 7N1(u)a Az:[15,1111147%7(7’<F1)T’1ui%]a 1:07 7N2(u)7
J— ~ ~ 7T o~ ~
Aij:AiXAJ‘, Aij:AiX(T—Aj),

where

Again, Bonferroni’s inequality implies

Ny (u)
Yo(u) + Z P ( sup  X(s,t) > u) > m(u)

i=0 (s,t)eZiT0
Ni(u)—1
(39) > Z ]P’( sup  X(s,t) > u) = X3(u),
i=0 (s,t)eZ%
where

N1 (u) Na(u)
Yo(u) = Z ZHD sup  X(s,t) >u

i=0 j=1 (s,t)GZ?j

Ya(u) = ZZ IP’( sup X(s,t) >wu, sup X(s,t)>u>.
)—1 (

=T ~T
0<i<i’ <Ny (u s,t)€EAN (s,;t)€ED1g
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Since our approach is of asymptotic nature, for any fixed 0 < ¢ < Nj(u), the local structures of the variance and correlation
—T
of the Gaussian random field X on A, are the only necessary properties influencing the asymptotics. Therefore,

IP’( sup X(s,t)>u> = ]P’( sup (s,1) >u> (1+0(1))

()BT (s)ez,, L+ 0t

as u — oo, where {n(s,t), (s,t) € [0,5] x [0,T]} is the same as in Lemma 2.1. Hence Lemma 2.1 implies

Ni(u)
(40) IF’( sup X(s,t) >u> = Sﬁua’H [S1, T1]¥(u)(1 4+ o(1)), u— oo.
i=0 (s,t)ED 1
Similarly
Ni(u)—1
(41) Z P ( sup_ X(s,t) > u> = S%u%?{’g [S1, T1]®(u)(1+ o(1)), u— oo.
(s,t)ED;q

Note that, for any ¢,d € R
le+df” <lef” +1d”, if pe (0,1,
le+df” <27 (|efP + [d"), if pe(1,00).

In view of Slepian’s Lemma,

P sup  X(s,t) >u
(s,t)EDT,

IN

P < sup (s, t) > u(l+ b(jTlui)B)> (1+0(1))
(s,t)€N,;

< P ( sup (s, t) > u(l + b(jT1u_i)5)> (14 0(1))
(s,t)eD

as u — 0o, where {7(s,t), (s,t) € [0,S5]x[0,T]} is a centered homogeneous Gaussian random field with covariance function
ri(s,t) = exp (= |ais|™ — |azt|”), (s,t) €[0,5] x [0,T7,
with @, = (af + 2|as|*)"/® and ay = 2'/%ay. It follows further, using Lemma 2.1, that
P sup X(s,t)>u| < P ( sup  7i(s,t) > u(l+ b(jTlu_i)*B)) (14 0(1))
(s,t)eZZ; (Sft)ezij

u2(1 + 2b(jTyu=a)P)
\ﬁu 2
= H% [S1, Ti] exp (—=b(T1)") T(u)(1 + o(1))

My, [S1, 1] —— )(1+0(1))

as u — 00, where 7—[ [Sl,Tl] is defined in a similar way as ’HY [S1,T1] with a;,i = 1,2 replaced by a;,71 = 1,2.

Consequently

(42) Z

From (4) there exists some 6; € (0,1) such that

O)‘CQ
Q

@ 517T1] exp (— b(jTl)B) U(u)(1+o(1)).

sup sup  r(s,t,s',t) < by,
1<i<i!<N1(u) sely,s’eA,
p(Ai,Ry)>ps  t,t€[0,T]

where ps is the same as in (34). Below we shall re-write X3(u) as

Eg(u) = Egyl(u) + 23,2(U) + Egﬁg(u), U 2 0,
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where Y3 1(u) is the sum taken on p(ﬁi, 31/) > p3, Yg2(u) is the sum taken on ¢’ =i+ 1, and X3 3(u) is the sum taken
on i’ >i+1and p(A;, Ay) < ps. First note that the estimation of Y3.1(u) can be derived similarly to that of ¥ 1 (u) in

Case a) and thus for u sufficiently large

(43) Ys1(u) < §2Uﬂ exp (—m) ,

where a is the same as in (36). Next, we consider ¥33(u). In view of (34) and (35) it follows that for s € A, s €

Ay, t,t' € T — Ay and u large enough
(44) 2 <E(E(s,t,8,t) <4—|ai(i' —i)S:|"u?

Further set (s, t,8',t') = &(s,t,8',t')//Var(£(s, t, 8/, t')). Following similar argument as in the proof of Lemma 6.3 in
[24], we obtain that

E (E(S, tv S/a t/) - E(va w, ’U/, w/))2 S 4(]E (Y(Sv t) - Y(Uv w))2 +E (y(slv t/) - y(vlv wl))Q)'
Moreover, from (34) we see that, for u sufficiently large
S — 2 ~ « ~ @
E(X(s,0) - X(v,0)” < 3(Jar(s = 0)|* + faa(t - w)|")
implying thus
(45) E (E(S,ta Sl,t/) - g(va w,v’, w/))2 < 2(1 - 7‘((8 —v,t—w, S/ - ’U/,t/ - w/))v

where
re(s, t, s, t") = exp (—7(\dls|a + |aot]|® + |ays’|” + |&2t’|a)>

is the covariance function of the homogeneous Gaussian random field {((s,t,s',t'), (s,t,s',t') € (0,00)*}. Consequently,

(44), (45) and Slepian’s Lemma imply

2
P( sup X (s,t) >u, sup X(s,t)>u> < P sup  ((s,t, 8, t') > ./u ——
(s,)en’ (s,)eR’, (s,t)enn VA= ay(i" — 1) " u~
(s' )€,

We obtain further from a similar lemma as Lemma 2.1 (cf. Lemma 6.1 in [24]) that

2u 5 1
P sup (s, t, 8", t) — (L (81, 7))
(s,t)EZg; \/4 ‘al i — Z Sl| —2 Y2 \/ﬂu

(s' 1) €D,
42

<o (s - g 0 o)

where 7—20{/2 [S1,T1] is defined in a similar way as M9, [S1,T1] with ay, as replaced by 7Veq,, 7V ay, respectively. Conse-

quently, for all large u

(46) Baalu) < 5 S0, (50, T exp (— faagil” ) w1 + o).

Jj=21
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Next, we consider X3 o(u). For any u positive

P sup  X(s,t) > u, sup  X(s,t) >u

(s,t)eDy (s.)€X (110
<P sup  X(s,t) > u, sup X(s,t) >u
(s,t)€DT (s,8)€[(i+1)S1u" o ,(i4+1)S1u" 5 +v/Bru" = |x(T—Ao)
+P sup  X(s,t) > u, sup X(s,t) > u
(s.t)E€DT, (s, €[(i+1)S1u" & +vBru"a ,(i42)S1u"a | (T—Ao)

and further

P sup X(s,t)>u, sup X(s,t)>u
(5:)€D5 (5:)€B (410

< H%Q[\/ST’ 7]V (u) + (7'20{/2[\/5717 T1])? exp <— ‘

Therefore, for all large u

(47) Y32(u) ( [V/S1, Ty + ~(1;2[\/5»1715} exp<_‘

Consequently, from (39-43) and (46-47) we conclude that for any S;,T;,i = 1,2

) )1+ o(1)).

")) ut e + o)

Sy HY, [S1, T +Zs;17¢ [S1, T1] exp (—b(jT1)P)

j=1
: m(u) 7 (u)
R TR )
—1qb —1,470 2 1, e
> SQ HY1 [SQ,TQ] — SQ ('H{,2 [SQ7T2D Zexp <_8 |a1]52| )

Jjz1

_52*1 (H%JVSQ,TQ] +(7:[%2[V 527T2} exp ( 3 a1y/ S
Therefore, by similar arguments as in the proof of Theorem D.2 in [24] we conclude that

ORI | )
e e TR S T

)

< MYl,Otl o0

establishing the claim.

Case 1i1) 8 = ag > a;: Note that /\/lll’/zﬁ can be given in terms of Piterbarg and Pickands constants as

a2

MY, 5= hm lim Hy2 [S,T] = alagpa2 He, -

—00 S—o0 S
The proof for this case can be established using step-by-step the same arguments as in Case 7).

Case iv) 8 < as = ay: In order to make use of the notation introduced in Case i) we set o := @1 = ap. First note that

§(u) < Thu~2/*, which implies

m(u) < P ( sup X(s,t) > u)
(5,t)€[0,S]x (T—Ap)
Nl(u
< Z IP’( sup X(s,t)>u>
i=0 (s,t)ERn
S
< cusH [S1, TR (w)(1+ o(1))

S
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as u — co. Further, by Assumptions A1-A2 we have that E ((X(s,7))%) = 1,Vs € [0, 5] and
r(s, 7,8/, T) = 1= (af + Jag|*) s = /1" (1 + o(1)

holds uniformly with respect to s,s" € [0, 5], as |s — s'| — 0. This means that {X(s,T), s € [0, 5]} is a locally stationary

Gaussian process. Therefore, in view of Theorem 7.1 in [24]

m(u) > P(sup X(s,T)>u>

s€[0,5]
= 5(a$ + |as|®) " Hous U(u)(1 4+ 0(1)),  u— oo.
Letting 77 — 0,57 — oo, we conclude that

0 < lim m(u)

1
im ——— = (a% + |as|™)*H, < 00.
tin, S )

Case v) f < ag and a3 < az: The claim follows with identical arguments as in the proof of Case iv).

In order to complete the proof of Cases i)-v) we only need to show (30), for which it is sufficient to give the following

upper bounds for 71 (u) and my(u). By Borell-TIS inequality, for u large enough

2
(U -E (SUP(s,t)e[o,S]x[o,po] X(s, t)))

(48) m(u) < exp | - 202

Further, by Assumption A3 applying Piterbarg inequality we obtain, as u — oo

m(u) < Quilexp ( 2a<Tuja<u>> )

2

(49) Ou’ lexp (-“2> exp (=b(Inw)?) (1+ o(1)),

where Q is some positive constant not depending on u. Therefore, the proof of Cases i)-v) is complete.

Next, we consider Cases vi)-vii). We introduce a time scaling of the Gaussian random field {X (s, ), (s,t) € E} by matrix

B= : ,1.e., let Z(s,t) := X((s —t)/as,t/az). By this time scaling, we have

(50) ]P’( sup X(s7t)>u> = IP’( sup Z(s,t)>u>7
(

(s,t)eE s,t)EK
where K is a region on R? with vertices at points (0,0), (a2T, a2T), (a3S,0) and (a3S + a2T, asT). The Gaussian random
field {Z(s,t), (s,t) € K} has the following properties:

P1) The standard deviation function oz(s,t) of {Z(s,t), (s,t) € K} satisfies
b
oz(s,t) = 1= — (T = )" (1 +0(1)), t1asT.
a2
P2) The correlation function rz(s,t,s',t’) of {Z(s,t), (s,t) € K} satisfies
(t—1) = (s =)

rz(s,t, s, t')=1— (|s — |+ “
as as

o
) (1+o0(1))
for any (s,t),(s’,t') € K such that |s — s'| — 0 and ¢,t' 1 a2T, and further there exists some dy € (0,7 such that

r(s,t, s, t') <1
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holds for any (s,t),(s',t') € K satisfying s # s’. Here K is a region on R? with vertices at points (a2dg,a2d),
(a2T7 CLQT), (agS + a250, agdo) and (a35 + (IQT, CLQT).

P3) There exist positive constants Q,~, p; and ps such that
E((Z(s,t) = Z(s',1))%) < Qs = s'[" + [t = [")

holds for any (s,t), (s',t') € K satisfying asT —t < p1, asT —t' < py and |s — §'| < pa.

Note that in the above proof the most important structural property of the set E is that the segment L = {(s,t) € E :
t =T} is on the boundary of E, which is also the case for {Z(s, 1), (s,t) € K}. Therefore, in view of the above properties
of {Z(s,t),(s,t) € K}, the claims of the Cases vi) and vii) follow by an application of the claims of Cases iii) and v).
The proof is complete. |

Proof of Proposition 3.1: The variance function of Z is given by
o%(s,t) = 2(1 - rx (1))

and attains its maximum on [0, S] X {T'}. Therefore, it is sufficient to consider the asymptotics of

M(u) =P sup Z*(s,t) > a |, u — 00,
(s,t)€[0,5]%1[0,T]

with

Z(s,t
U= i, and Z*(s,t) := (s, ),

PT 1%

where pr = 1/2(1 — rx(T)) > 0. The asymptotics of IT(u) follows from Theorem 2.2 by checking the assumptions A1-A3.

The standard deviation function of Z* satisfies

2(1—Tx(t))_ _ a1 YT o
e 72(1_TX(T))(T H*(1+0(1), t—T,

whereas for its correlation function we have

Oz* (Svt) =

rx(ls+t—s —t))—rx(s—s =) —rx(s+t—451) +rx(|s— )

2y/(1—rx (1)1 —rx(t))

(51) Rz (s,t,s',t') =

Since rx (t) is twice continuously differentiable in [u, T and

rg((T)‘ € (0,00) for some constant Q; we have
Irx () =rx(s = 8" = #']) 4 rx(t) = rx(ls +1 = 5D < Qult = ¢ 5 = "+ ]s = )1+ 0(1))
as t,t' = T, |s —s'| = 0. Consequently, as € (0,2) implies
(52) Ry-(s,t,s',t') =1— ;L;(u s — s s — s’|“2)(1 +o(1))
T
as t,t' = T, |s —s'| = 0. Next, for any fixed g9 > 0, we have from S3 that there exists some 6y such that
rx(]s—s'[) <0 <1

for any s, s’ € [0, 5] satisfying |s — s’| > €¢. Further, from S2 we obtain that there exists some positive constant dy such

that

1- 6,
2

2V/(1—rx (D) (1 —rx(t) 2 p7 — >0



EXTREMES OF GAUSSIAN FIELDS 19

for any t,t' € [09,T]. Hence

1+ 00 - 27”)((T)

1—69

(53) RZ* (S,t,5/7t/) < 2
PT— 3

<1
for any t,t' € [0, T, s, s € [0, 5] satisfying |s — s’| > ¢ and thus both A1l and A2 are satisfied. It follows that

;T(UZ(SJ) (s ).

E(Z*(s,t) — Z°(s,t)* < 2E(Z(s,t) — Z(s,¥)) +

Therefore, the differentiability of rx (¢), assumption S2 and (52) imply that there exist some positive constants p1, p2, Qz, Q4

such that
E(Z7(s.0) = Z°(s. )" < Qallt =t s =" s — /| 4 [r - PO
< Q4(‘t . t/‘min(Zal,ag) + |S . S/‘min(Qal,ozg))
for all s,s" €[0,5],t,t" € [p1,T] satisfying |s — 8’| < p2, hence the proof is complete. O

Proofs of Proposition 3.4 and Proposition 3.5: Note first that the standard deviation of the incremental random

field Z of the Brownian bridge satisfies

(54) s2ot) = (- 0) =g = (1=3) o), 123

Furthermore, for its correlation function we have
(55) rz(s, s t,t") = 1=2(t—t' +s—5|+]s—5])(1+0(1))

as t,t' = 1/2, |s—§'| = 0.

For the fBm incremental random field Z we have for its standard deviation

oz(s,t)=t% =1—

N

(1—t)(14o0(1)), t—1.
As shown in [25] the correlation function rz of Z satisfies
/ ! 1 / VAL YARes
rz(s, s, t,t) = 1—§(|t—t +s—5|"+]s—=51")1+0(1))

as t,t' — 1, |s — s'| = 0. Hence for both cases A1-A3 are fulfilled, and thus the claims follow by a direct application of
Theorem 2.2. O

Proofs of Proposition 4.1 and Proposition 4.2: By a linear time change using the matrix A € R?*? given by

1 0
A:
-1 1

we have for any u > 0

mms)mw@( sup <s<t+s>5<s>>>u>.

(s,t)€A[0,1]2

Here the set A[0,1]2 = {(5,%) : (5,£)T = A(s,t)7,(s,t) € [0,1]?} is bounded and convex. The variance function of the
random field {£(t + s) — &(s), (s,t) € A[0,1]?} is 2(1 — r¢(|t])) which attains its unique maximum on the set A[0,1]? on
two lines Ly = {(s,t) € A[0,1]® : t = t,,,} and Lo = {(s,t) € A[0,1]? : t = —t,,}. Note that the differentiability of r¢(t)

implies a3 > 2 > ag. Therefore, the claim in (27) follows from Remarks 2.4 b); the conditions therein can be established
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directly as in the proof of Proposition 3.1 except (18) for ¢ = 1, j = 2, which can also be confirmed by a similar argument

as in (53). Further, since

P(XQ(X)>U):P< sup (X(t+s)—X(s))>u>
(s,t)€A[0,1]2

in view of (54) and (55) we conclude that the claim in (28) follows immediately from Remarks 2.4 b), and thus the proof

is complete. O

6. APPENDIX

Let D be a compact set in R? such that (0,0) € D, and let {£,(s,t),(s,t) € D}, u > 0 be a family of centered Gaussian
random fields with a.s. continuous sample paths. The next lemma is proved based on the classical approach rooted in

the ideas of [21, 22], see also [9], Lemma 1; in particular, it implies the claim of Lemma 2.1.

Lemma 6.1. Let d(-) be a nonnegative continuous function on [0,00) and let g(u),u > 0 be a positive function satisfying

limy 00 g(u)/u = 1. Assume that the variance function O'gu of &, satisfies the following conditions

0¢,(0,0) =1 for all large u, uan;o( Stl)lgD |u*(1 = o¢,(s,t)) —d(t)| =0,

and there exist some positive constants G, v, ug such that, for all u > ug
u? Var(€u(s, t) = &u(s', 1) < G(ls = s'[" + [t = t'|")

holds uniformly with respect to (s,t),(s',t') € D. If further there exists a centered Gaussian random field {Y (s,t), (s,t) €

(0,00)%} with a.s. continuous sample paths and Y (0,0) = 0 such that

lim w? Var(&,(s,t) — &u(s', 1)) = 2Var(Y (s, t) — Y (s',t")), V(s,t),(s',t') € D,

then
(56) P (( sup Euls,t) > 9(“)) = Y DIV (g(u))(1 4+ 0(1)), u— o0,
where

HL[D] =E <exp < sup (ﬁY(s,t) — 02 (s,t) — d(t)))) .

(s,t)eD

Proof of Lemma 6.1: For large u we have

P (( sup &u(s,t) > 9(“))

s,t)ED
—;ex —M Ooew_zgw% su s U — g(u) — 2 ) dw
(57) - o (-U55) [ u»P((sﬁgDsu(,twg(>fu<o,o> o(u) g<u>>d-

Let

R&u (S’ t) 8/7 tl) = E (5“(57 t)gu(8/7 t/)) ’ (57 t)’ (8,7 t,) e D

be the covariance function of §,. The conditional random field

{ms,t) £(0,0) = glu) — —(s,1) € D}

g(u)
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has the same distribution as

{fu(&t) — Re, (5,1,0,0)£,(0,0) + Re, (s,1,0,0) <g(u) - w) (s,t) € D} .

Thus, the integrand in (57) can be rewritten as

sup | €u(s,t) — Re, (5,£,0,0)£,(0,0) + Re, (s,,0,0) <g(u) _ g“’) > g(u)
(s,t)eD

IP Sup XU(S t) ( (u))2(1 - Rfu (S7t70’ 0)) + w(]' - Rgu,(s?t? O) 0)) >w Y
(s,t)eD

where
Xu(87 t) = g(u)(fu(sa t) - R&u (57 t,0, 0)§u(0a O))

Next, the following convergence
(9(w))*(1 = Re,(5,,0,0)) —w(l — Re,(5,4,0,0)) = o3 (s,1) +d(t), u — o0

holds, for any w € R, uniformly with respect to (s,t) € D. Moreover,

B ( (o) =) ) = (00 (B ( (6650 - 660) ) = (Reu(s.0:0.0) = Re.(5.¢.0,0)°)

— 2Var(Y(s,t) = Y (s,t)), u—

holds for any (s,t),(s’,t') € D. Hence the claim follows by using the same arguments as in the proof of Lemma 6.1 in

[24] or those in the proof of Lemma 1 in [9]. O
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