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Abstract: This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s, t) for a large class of non-homogeneous

Gaussian random fields X on a bounded convex set E ⊂ R2, with variance function that attains its maximum on a

segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random

fields with unique maximum point of the variance. Applications of our result include the derivation of the exact tail

asymptotics of the Shepp statistics for stationary Gaussian processes, Brownian bridge and fractional Brownian motion

as well as the exact tail asymptotic expansion for the maximum loss and span of stationary Gaussian processes.
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1. Introduction

Consider the fractional Brownian motion (fBm) incremental random field

Xα(s, t) = Bα(s+ t)−Bα(s), (s, t) ∈ [0,∞)2,

where {Bα(t), t ∈ R} is a standard fBm with Hurst index α/2 ∈ (0, 1] which is a centered self-similar Gaussian process

with stationary increments and covariance function

Cov(Bα(t), Bα(s)) =
1

2
(|t|α + |s|α− | t− s |α), s, t ∈ R.

For the case α = 1 both Xα(s, t) and its standardised version X∗α(s, t) = Xα(s, t)/tα/2 appear naturally as limit models,

see e.g., [8]. In the literature

Yα(t) = sup
s∈[0,S]

Xα(s, t)

is referred to as the Shepp statistics of fBm, whereas Y ∗α (t) = sups∈[0,S]X
∗
α(s, t) as the standardised Shepp statistics.

Distributional results for Y ∗1 are derived in [28], see also [27] and Theorem 3.2 in [8]. Other important results for the

Shepp statistics of Brownian motion and related quantities are presented in [11, 14, 29]. The first known result for the

extremes of the Shepp statistics of Brownian motion goes back to [32], which is complemented in [17] for the case of fBm

with α ∈ (0, 1). In view of the aforementioned papers for any α ∈ (0, 1]

P

(
sup

(s,t)∈[0,1]2
Xα(s, t) > u

)
= Cαu

4/α−2Ψ(u)(1 + o(1)), u→∞(1)

holds with Cα a positive constant and Ψ(·) the survival function of an N(0, 1) random variable. There is no result for

the case α ∈ (1, 2) in the literature; we shall cover this gap in Proposition 3.5.

Date: December 9, 2014.

1
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Results for the tail asymptotics of supremum of the standardised Shepp statistics can be derived using the findings of [7]

and [20], see also [18, 19]. However, this is not the case for the tail asymptotics of the supremum of the Shepp statistics

Yα; no theoretical results in the literature can be applied for this case. This is due to the fact that on [0, 1]2 the variance

of Xα attains its maximum at an infinite number of points, i.e., its maximal value is attained for any s ∈ [0, 1] and t = 1.

In the asymptotic theory of Gaussian random fields, if the random field has a non-constant variance function, which

attains its maximum at a unique (or finite) number of points, then under the so-called Piterbarg conditions, the exact tail

asymptotics of supremum of Gaussian random fields with certain (E,α) structures for the variance and the correlation

functions are derived by relying on the Double-Sum method, see e.g., the standard monograph [24].

The principle aim of this contribution is to extend Piterbarg’s asymptotic theory for Gaussian random fields to the case

where the maximum of the variance function on a bounded convex set E is attained on finite number of disjoint segments

on E. In particular, we assume that {X(s, t), (s, t) ∈ E}, E = [0, S] × [0, T ], S, T > 0, is a centered Gaussian random

field with variance function σ2(s, t) = Var(X(s, t)) that satisfies the following assumption.

Assumption A1. There exists some positive function σ(t) which attains its unique maximum on [0, T ] at T , and further

σ(s, t) = σ(t), ∀(s, t) ∈ E, σ(t) = 1− b(T − t)β(1 + o(1)), t ↑ T(2)

hold for some β, b > 0.

We shall impose the following assumption on the correlation function r(s, t, s′, t′) = E
(
X(s, t)X(s′, t′)

)
where X(s, t) =

X(s, t)/σ(s, t):

Assumption A2. There exist constants a1 > 0, a2 > 0, a3 6= 0 and α1, α2 ∈ (0, 2] such that

r(s, t, s′, t′) = 1−
(
|a1(s− s′)|α1 + |a2(t− t′) + a3(s− s′)|α2

)
(1 + o(1))(3)

holds uniformly with respect to s, s′ ∈ [0, S], as |s− s′| → 0, t, t′ ↑ T , and further, there exists some constant δ0 ∈ (0, T )

such that

r(s, t, s′, t′) < 1(4)

holds for any s, s′ ∈ [0, S] satisfying s 6= s′, and t, t′ ∈ [δ0, T ].

Note that in A2 we assume that a3 6= 0, which includes a large class of correlation functions with (E,α) structure dealt

with in [24]; the classical case a3 = 0 is discussed in Remark 2.3.

Our main result, presented in Theorem 2.2 (and stated in higher generality in Remarks 2.4), derives the exact tail asymp-

totic behaviour of supremum of non-homogeneous Gaussian random fields X satisfying A1-A2 and a Hölder condition

formulated below in Assumption A3.

As an illustration to the derived theory, we analyze exact asymptotics of the tail distribution of extremes of Shepp sta-

tistics, the maximum loss and the span for a large class of Gaussian processes.

Organization of the paper: Our principal findings are presented in Section 2 followed by two sections dedicated to

applications and examples. All the proofs are relegated to Section 5 and Appendix.
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2. Main Results

In this section we are concerned with the asymptotics of

P

(
sup

(s,t)∈E
X(s, t) > u

)
, u→∞

discussing first the case that E = [0, S]× [0, T ].

Pickands and Piterbarg Lemmas (cf. [24]) are fundamental in the analysis of the tail asymptotic behaviour of supremum of

non-smooth centered Gaussian processes and Gaussian random fields. Restricting ourselves to the case that {X(t), t ≥ 0}

is a centered stationary Gaussian process with a.s. continuous sample paths and correlation function r(t), such that

r(t) = 1− tα(1 + o(1)) as t→ 0, with α ∈ (0, 2], and r(t) < 1 for all t > 0, in view of the seminal papers by J. Pickands

III (see [21, 22]), for any T ∈ (0,∞)

P

(
sup
t∈[0,T ]

X(t) > u

)
= HαTu

2
αΨ(u)(1 + o(1)), u→∞.(5)

Here Hα is the Pickands constant defined by

Hα = lim
T→∞

1

T
Hα[0, T ] ∈ (0,∞), with Hα[0, T ] = E

(
exp

(
sup
t∈[0,T ]

(√
2Bα(t)− tα

)))
.

The derivation of (5) is based on Pickands Lemma which states that

P

 sup
t∈[0,u−

2
α T ]

X(t) > u

 = Hα[0, T ]Ψ(u)(1 + o(1)), u→∞.(6)

In [23] V.I. Piterbarg rigorously proved Pickands theorem and further derived a crucial extension of (6) which we shall

refer to as Piterbarg Lemma; it states that

P

 sup
t∈[0,u−

2
α T ]

X(t)

1 + btα
> u

 = Pbα[0, T ]Ψ(u)(1 + o(1)), u→∞(7)

holds for any b > 0 with

Pbα[0, T ] = E

(
exp

(
sup
t∈[0,T ]

(√
2Bα(t)− (1 + b)tα

)))
∈ (0,∞).

The positive constant (referred to as Piterbarg constant) given by

Pbα = lim
T→∞

Pbα[0, T ] ∈ (0,∞)

appears naturally when dealing with the extremes of non-stationary Gaussian processes or Gaussian random fields, see

e.g., [24] and our main result below. It is known that H1 = 1, H2 = 1/
√
π, and

Pb1 = 1 +
1

b
, Pb2 =

1

2

(
1 +

√
1 +

1

b

)
, b > 0(8)

see e.g., [2, 10, 12, 16, 15, 13].

We note in passing that for stationary Gaussian processes [3] and [5] presented new elegant proofs of (5) without using

Pickands Lemma. The following extension of Pickands and Piterbarg Lemmas plays an important role in our analysis.

Hereafter we denote by B̃α and Bα two independent fBm’s defined on R with Hurst index α/2 ∈ (0, 1]. Recall that Ψ(·)

denotes the survival function of an N(0, 1) random variable; we write below Γ(·) for the Euler Gamma function.
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Lemma 2.1. Let {η(s, t), (s, t) ∈ [0,∞)2} be a centered homogeneous Gaussian random field with covariance function

rη(s, t) = exp
(
− |a1s|α1 − |a2t− a3s|α2

)
, (s, t) ∈ [0,∞)2,

where constants αi ∈ (0, 2], i = 1, 2, a1 > 0, a2 > 0, a3 ∈ R. Let further b, S, T be three positive constants. If β ≥ α2 ≥ α1,

then for any positive measurable function g(u), u > 0 satisfying limu→∞ g(u)/u = 1

P

 sup

(s,t)∈[0,Su
− 2
α1 ]×[0,Tu

− 2
α2 ]

η(s, t)

1 + btβ
> g(u)

 = HbY [S, T ]Ψ(g(u))(1 + o(1)), u→∞,(9)

where

HdY [S, T ] = E

(
exp

(
sup

(s,t)∈[0,S]×[0,T ]

(√
2Y (s, t)− σ2

Y (s, t)− d(t)
)))

∈ (0,∞),(10)

with σ2
Y (s, t) = Var(Y (s, t)) and

Y (s, t) =

 Y1(s, t) := B̃α1
(a1s) +Bα2

(a2t− a3s), α1 = α2,

Y2(s, t) := B̃α1
(a1s) +Bα2

(a2t), α1 < α2,
d(t) =

 0, β > α2,

btβ , β = α2,
(s, t) ∈ [0,∞)2.(11)

Using the definition of Y1 and Y2 appearing in (11) we shall determine, for given ai’s, αi’s and b, β as above, the following

constants (referred to as generalized Pickands-Piterbarg constants)

Mb
Y,β = lim

T→∞
lim
S→∞

1

S
HbY [S, T ] ∈ (0,∞),

and

M̃b
Y,β = lim

T→∞
lim
S→∞

1

S
E

(
exp

(
sup

(s,t)∈[0,S]×[−T,T ]

(√
2Y (s, t)− σ2

Y (s, t)− btβ
)))

∈ (0,∞).

Here Mb
Y,β and M̃b

Y,β are defined only for β = α2. Note that we suppress ai’s and αi’s in the definition of Mb
Y,β and

M̃b
Y,β since they appear directly in the definition of Y .

Additional to A1 and A2 we shall impose the following Hölder condition, which in the literature is called regularity; see

[24].

Assumption A3. There exist positive constants ρ1, ρ2, γ,Q such that

E
(
(X(s, t)−X(s′, t′))2

)
≤ Q

(
|t− t′|γ + |s− s′|γ

)
holds for all t, t′ ∈ [ρ1, T ], s, s′ ∈ [0, S] satisfying |s− s′| < ρ2.

We present next our main result.

Theorem 2.2. Let {X(s, t), (s, t) ∈ E},E = [0, S] × [0, T ] be a centered Gaussian random field with a.s. continuous

sample paths. Suppose that assumptions A1-A3 are satisfied with the parameters mentioned therein. Then, as u→∞,

i) if β > max(α1, α2)

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S Γ (1/β + 1)

2∏
k=1

(akHαk)b−
1
β u

2
α2

+ 2
α1
− 2
β Ψ(u)(1 + o(1));(12)

ii) if β = α2 = α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= SMb

Y1,α1
u

2
α1 Ψ(u)(1 + o(1));(13)
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iii) if β = α2 > α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1a2P

ba
−α2
2

α2 Hα1
u

2
α1 Ψ(u)(1 + o(1));(14)

iv) if β < α2 = α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S(aα1

1 + |a3|α1)
1
α1Hα1u

2
α1 Ψ(u)(1 + o(1));(15)

v) if β < α2 and α1 < α2

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1Hα1u

2
α1 Ψ(u)(1 + o(1));(16)

vi) if β = α1 > α2

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1P

b
(
|a3|
a1a2

)α1

α1 Hα2
u

2
α2 Ψ(u)(1 + o(1));(17)

vii) if β < α1 and α2 < α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S |a3|Hα2

u
2
α2 Ψ(u)(1 + o(1)).

Remark 2.3. If a3 = 0, then there are only three scenarios to be considered. In particular if β > α2, then (12) holds. If

β = α2, then (14) holds, whereas if β < α2, then (16) is valid.

Remarks 2.4. a) Let E be any bounded convex subset of R2. Assume that on E the maximum of the standard deviation

σ(s, t) is attained only on a segment L which is inside of E, parallel to s-axis and of length `. Then the claims of Theorem

2.2 are still vilad, by replacing S with ` in Cases i)-vii), Γ(·) with 2Γ(·) in Case i), Mb
Y1,α1

with M̃b
Y1,α1

in Cases ii),

Pba
−α2
2

α2 with P̃ba
−α2
2

α2 in Case iii), and Pb(|a3|/(a1a2))α1

α1 with P̃b(|a3|/(a1a2))α1

α1 in Case vi), respectively. Here P̃bα, with b > 0

and α ∈ (0, 2] is the Piterbarg constant defined on the real line, i.e.,

P̃bα = lim
T→∞

E

(
exp

(
sup

t∈[−T,T ]

(√
2Bα(t)− (1 + b)tα

)))
∈ (0,∞).

b) Assume that on E the maximum of the standard deviation σ(s, t) is attained only on n segments {Li}ni=1 which are

inside or on the boundary of E, and parallel to s-axis. By the convexity of E, we can always find n non-adjacent convex

sets {Ei}ni=1 such that Li ⊂ Ei ⊂ E, i = 1, · · · , n. If further for any i 6= j

sup
(s,t)∈Ei,(s′,t′)∈Ej

r(s, t, s′, t′) < 1(18)

holds, then

P

(
sup

(s,t)∈E
X(s, t) > u

)
=

n∑
i=1

P

(
sup

(s,t)∈Ei
X(s, t) > u

)
(1 + o(1)), u→∞.(19)

Additionally, suppose that on each {Ei}ni=1 the assumptions A1-A3 are satisfied. Then an explicit expression for (19)

can be established by applying the results in Theorem 2.2 and Remark a) above.

c) Similar results can also be obtained when the segments {Li}ni=1, where the maximum of σ(s, t) is attained, are non-

parallel and disjoint. Specifically, we see from Remark b) that it is sufficient to consider the asymptotics of

P

(
sup

(s,t)∈Ei
X(s, t) > u

)
, u→∞, i = 1, · · · , n,
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respectively. Let (s, t)> be the transpose of (s, t). Then, for any i = 1, · · · , n, there is a non-degenerate lower triangular

(rotation) matrix Ai ∈ R2×2 such that the maximum of the variance of X((Ai(s, t)
>)>) on A−1

i Ei = {(s̃, t̃) : (s̃, t̃)> =

A−1
i (s, t)>, (s, t) ∈ Ei} is attained on a line parallel to s-axis or t-axis. Consequently, similar results as in Theorem 2.2

can be obtained if certain assumptions as A1-A3 are satisfied by each {X((Ai(s, t)
>)>), (s, t) ∈ A−1

i Ei}.

We conclude this section with an example, which illustrates the existence of all the cases discussed in Theorem 2.2.

Example 2.5. Consider a Gaussian random field defined as

Z(s, t) =
1√
2

(Y (s+ t)−X(s))(1− b(T − t)β), (s, t) ∈ [0, S]× [0, T ],

where b, β are two positive constants, and X,Y are two independent centered stationary Gaussian processes with covariance

functions rX , rY satisfying as t→ 0

rX(t) = 1− a1t
α1(1 + o(1)), rY (t) = 1− a2t

α2(1 + o(1))

for some constants ai > 0, αi ∈ (0, 2], i = 1, 2. Further, assume that

rX(s) < 1, ∀ s ∈ (0, S], rY (t) < 1, ∀ t ∈ (0, S + T ].

It follows that the assumptions of Theorem 2.2 are satisfied by {Z(s, t), (s, t) ∈ [0, S]× [0, T ]}.

3. Extremes of Shepp Statistics

For a given centered Gaussian process {X(t), t ≥ 0} we shall define the incremental random field Z by

Z(s, t) = X(s+ t)−X(s), (s, t) ∈ [0, S]× [0, T ].(20)

The asymptotic analysis of the supremum of the Shepp statistics

Y (t) = sup
s∈[0,S]

Z(s, t), t ∈ [0, T ]

boils down to the study of the tail asymptotics of the double-supremum sup(s,t)∈[0,S]×[0,T ] Z(s, t). In this section we shall

consider several important examples which can be analysed utilising the theory developed in Section 2.

3.1. Stationary Gaussian processes. Consider the Gaussian random field Z as in (20) where X is a centered stationary

Gaussian process with covariance function rX satisfying the following conditions:

S1: rX(t) attains its minimum on [0, T ] at the unique point t = T ;

S2: there exist positive constants α1, a1, a2 and α2 ∈ (0, 2) such that

rX(t) = rX(T ) + a1(T − t)α1(1 + o(1)), t→ T, rX(t) = 1− a2t
α2(1 + o(1)), t→ 0;

S3: rX(s) < 1 for any s ∈ (0, S + T ].

Proposition 3.1. Let {Z(s, t), (s, t) ∈ [0, S]× [0, T ]} be an incremental random field given as in (20) with rX satisfying

S1-S3. Suppose that rX is twice continuously differentiable on [µ, T ] for some µ ∈ (0, T ),
∣∣∣r′′X(T )

∣∣∣ ∈ (0,∞), and let
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bi = ai/ρ
2
T , i = 1, 2 with ρT =

√
2(1− rX(T )). Then, as u→∞,

(i) if α1 > α2

P

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t) > u

)
= SΓ(1/α1 + 1)H2

α2
b

2
α2
2 b
− 1
α1

1

(
u

ρT

) 4
α2
− 2
α1

Ψ

(
u

ρT

)
(1 + o(1));

(ii) if α1 = α2

P

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t) > u

)
= SMb1

Y,α1

(
u

ρT

) 2
α2

Ψ

(
u

ρT

)
(1 + o(1)),

where

Y (s, t) := B̃α2

(
b

1
α2
2 s

)
+Bα2

(
b

1
α2
2 t− b

1
α2
2 s

)
, (s, t) ∈ [0,∞)2;

(iii) if α1 < α2

P

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t) > u

)
= S(2b2)

1
α2Hα2

(
u

ρT

) 2
α2

Ψ

(
u

ρT

)
(1 + o(1)).

We present two important examples that illustrate Proposition 3.1.

Example 3.2. (Slepian process) Consider X to be the Slepian process, i.e.,

X(t) = B1(t+ 1)−B1(t), t ∈ [0,∞),

with B1 the standard Brownian motion.It follows that the assumptions of Proposition 3.1 are satisfied, hence as u→∞

P

(
sup

(s,t)∈[0,1]×[0, 12 ]

Z(s, t) > u

)
= M1

Y,1u
2Ψ(u)(1 + o(1))

holds with Y (s, t) := B̃1 (s) +B1 (t− s) , (s, t) ∈ (0,∞)2.

Example 3.3. (Ornstein-Uhlenbeck process) Consider a centered stationary Gaussian process X with covariance function

r(t) = e−t, t ≥ 0. Then following Proposition 3.1

P

(
sup

(s,t)∈[0,1]2
Z(s, t) > u

)
= Mb1

Y,1b1u
2Ψ(

√
b1u)(1 + o(1)), u→∞,

with b1 = e−1/(2(1− e−1)), b2 = 1/(2(1− e−1)) and Y (s, t) := B̃1 (b2s) +B1 (b2t− b2s) , (s, t) ∈ (0,∞)2.

3.2. Brownian bridge. In this section we analyze

Z(s, t) = X(s+ t)−X(s), s, s+ t ∈ [0, 1],(21)

where X(s) := B1(s) − sB1(1), s ∈ [0, 1] is a Brownian bridge (recall B1 is a standard Brownian motion). Clearly, X is

non-stationary and therefore we cannot apply Proposition 3.1 for this case.

Proposition 3.4. If {Z(s, t), (s, t) ∈ [0, 1/2]2} is given by (21), then

P

(
sup

(s,t)∈[0, 12 ]2
Z(s, t) > u

)
= 2

5
2
√
πu3Ψ(2u)(1 + o(1)), u→∞.(22)
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3.3. Fractional Brownian motion. Consider the fBm incremental random field

Z(s, t) = Bα(s+ t)−Bα(s), (s, t) ∈ [0, S]× [0, 1],(23)

where Bα is the fBm with Hurst index α/2 ∈ (0, 1).

The following proposition extends the main result of [17] to the whole range of α ∈ (0, 2).

Proposition 3.5. Let {Z(s, t), (s, t) ∈ [0, S]× [0, 1]} be given as in (23). We have, as u→∞,

(i) if α ∈ (0, 1)

P

(
sup

(s,t)∈[0,S]×[0,1]

Z(s, t) > u

)
= S21−2/αα−1H2

αu
4
α−2Ψ(u)(1 + o(1));(24)

(ii) if α = 1

P

(
sup

(s,t)∈[0,S]×[0,1]

Z(s, t) > u

)
= SM

1
2

Y,1u
2Ψ(u)(1 + o(1)),(25)

with

Y (s, t) := B̃1

(
2−1s

)
+B1

(
2−1(t− s)

)
, (s, t) ∈ [0,∞)2;

(iii) if α ∈ (1, 2)

P

(
sup

(s,t)∈[0,S]×[0,1]

Z(s, t) > u

)
= SHαu

2
αΨ(u)(1 + o(1)).(26)

4. Extremes of maximum loss and span of Gaussian processes

Let {ξ(t), t ∈ [0, 1]} be a Gaussian process with a.s. continuous sample paths. The maximum loss of the process ξ is given

by

χ1(ξ) = max
0≤s≤t≤1

(ξ(s)− ξ(t)),

and its span is defined as

χ2(ξ) = max
t∈[0,1]

ξ(t)− min
t∈[0,1]

ξ(t).

The notion of the maximum loss of certain Gaussian processes (e.g., Brownian motion and fBm, etc.) plays an important

role in finance and insurance modelling, see e.g., [30], [31] and references therein.

In this section, as an application of Theorem 2.2 and Remarks 2.4, we derive exact tail asymptotics of the maximum loss

for both stationary Gaussian process (in Proposition 4.1) and for Brownian bridge (in Proposition 4.2). The exact tail

asymptotics of the span χ2(ξ) when ξ is a centered stationary Gaussian process with covariance function that satisfies

certain regular conditions is obtained in [26]. The same result should be retrieved, using first a time scaling and then

resorting to Remarks 2.4. This observation is confirmed in Proposition 4.1 below.

Hereafter assume that {ξ(t), t ∈ [0, 1]} is a centered stationary Gaussian process with covariance function rξ(s) satisfying

the following conditions:

S1’: rξ(t) attains its minimum on [0, 1] at unique point tm ∈ (0, 1);

S2’: there exist positive constants a1, a2, α1 and α2 ∈ (0, 2) such that

rξ(t) = rξ(tm) + a1 |t− tm|α1 (1 + o(1)), t→ tm
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and

rξ(t) = 1− a2t
α2(1 + o(1)), t→ 0;

S3’: rξ(t) < 1 for any t ∈ (0, 1].

Proposition 4.1. Let {ξ(t), t ∈ [0, 1]} be a centered stationary Gaussian process with covariance function rξ(t) satisfying

S1’-S3’. If rξ(t) is twice continuously differentiable on interval [tm − µ, tm + µ] for some positive small constant µ, then

P (χ2(ξ) > u) = 2P (χ1(ξ) > u)

= 22− 4
α2

+ 2
α1 (1− tm)H2

α2
a

2
α2
2 (1− rξ(tm))2− 4

α2
+ 2
α1 u

4
α2
− 2
α1 Ψ

(
u√

2(1− rξ(tm))

)
(1 + o(1))(27)

as u→∞.

Proposition 4.2. If {X(t), t ∈ [0, 1]} is the Brownian bridge given in (21), then as u→∞

P (χ2(X) > u) = 2P (χ1(X) > u) = 2
9
2
√
πu3Ψ(2u)(1 + o(1)).(28)

Remarks 4.3. a) The claim in (27) is consistent with Theorem 2.1 in [26].

b) Let Bα be a standard fBm and consider its maximum loss χ1(Bα) and span χ2(Bα). The variance function of the

random field X1(s, t) := Bα(t)−Bα(s) is given by

σ2
X1

(s, t) = |t− s|α , (s, t) ∈ [0, 1]2

and attains its maximum only at points (0, 1) and (1, 0). Therefore, Theorem 8.2 in [24] yields that, as u→∞,

(i) if α ∈ (0, 1)

P (χ2(Bα) > u) = 2P (χ1(Bα) > u) = 23−2/αα−2H2
αu

4
α−4Ψ(u)(1 + o(1));

(ii) if α = 1

P (χ2(Bα) > u) = 2P (χ1(Bα) > u) = 8Ψ(u)(1 + o(1));

(iii) if α ∈ (1, 2)

P (χ2(Bα) > u) = 2P (χ1(Bα) > u) = 2Ψ(u)(1 + o(1)).

5. Proofs

Proof of Lemma 2.1: The claim follows by a direct application of Lemma 6.1 given in Appendix. �

Proof of Theorem 2.2: As it will be seen at the end of the proof, by symmetry, Cases vi) and vii) follow from the

claims of Cases iii) and v), respectively. Thus, we shall first focus on the proof of Cases i)-v). In view of assumption A1

there exist some θ ∈ (0, 1) and ρ0 ≥ ρ1 (ρ1 is as in A3) such that

sup
(s,t)∈[0,S]×[0,ρ0]

σ(s, t) < θ.
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For δ(u) = (lnu/u)2/β , u > 0 we may write

P

(
sup

(s,t)∈[0,S]×[T−δ(u),T ]

X(s, t) > u

)
≤ P

(
sup

(s,t)∈[0,S]×[0,T ]

X(s, t) > u

)

≤ P

(
sup

(s,t)∈[0,S]×[T−δ(u),T ]

X(s, t) > u

)
+ π1(u) + π2(u),

where

π1(u) := P

(
sup

(s,t)∈[0,S]×[0,ρ0]

X(s, t) > u

)
, π2(u) := P

(
sup

(s,t)∈[0,S]×[ρ0,T−δ(u)]

X(s, t) > u

)
.

We shall mainly focus on the analysis of

π(u) := P

(
sup

(s,t)∈[0,S]×[T−δ(u),T ]

X(s, t) > u

)
, u→∞(29)

and show that for i = 1, 2

πi(u) = o(π(u)), u→∞,(30)

which then implies

P

(
sup

(s,t)∈[0,S]×[0,T ]

X(s, t) > u

)
= π(u)(1 + o(1)), u→∞.

The asymptotics of (29) will be investigated for the Cases i)-v) separately by using a case-specific approach.

Case i) β > max(α1, α2): For space saving we consider only the case that α1 = α2 =: α; the other cases can be shown

with similar arguments. Following the idea of [25] choose first a constant α0 ∈ (α, β), and denote

4ij = 4i ×4j , 4Tij = 4i × (T −4j), with 4i = [iu−
2
α0 , (i+ 1)u−

2
α0 ], i = 0, 1, · · · .

Set further

Ñ1(u) =
⌊
Su

2
α0

⌋
+ 1, Ñ2(u) =

⌊
(lnu)

2
β u

2
α0
− 2
β

⌋
+ 1,

where b·c stands for the ceiling function. By Bonferroni’s inequality we have that

Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
≥ π(u)

≥
Ñ1(u)−1∑
i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
− Σ1(u),(31)

with

Σ1(u) =
∑∑

0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

(i,j)6=(i′,j′)

P

 sup
(s,t)∈4Tij

X(s, t) > u, sup
(s,t)∈4T

i′j′

X(s, t) > u

 .

For any ε ∈ (0, 1) and all u large (set b±ε := b(1± ε))

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
≤ P

(
sup

(s,t)∈4ij

X(s, T − t)
σ(s, T − t)

> uj−

)
, uj− = u(1 + b−ε(ju

− 2
α0 )β),

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
≥ P

(
sup

(s,t)∈4ij

X(s, T − t)
σ(s, T − t)

> uj+

)
, uj+ = u(1 + b+ε((j + 1)u−

2
α0 )β).
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Let {η±ε(s, t), (s, t) ∈ [0,∞)2} with ε as above be centered stationary Gaussian random fields with covariance functions

rη±ε(s, t) = exp

(
−(1± ε)α

(
|a1s|α + |a2t+ a3s|α

))
, (s, t) ∈ [0,∞)2,

respectively. By Slepian’s Lemma (see e.g., [6] or [4]) for all u large

P

(
sup

(s,t)∈4ij

X(s, T − t)
σ(s, T − t)

> uj−

)
≤ P

(
sup

(s,t)∈4ij
η+ε(s, T − t) > uj−

)
.

In view of Theorem 7.2 in [24] as u→∞

π(u) ≤
Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

P

(
sup

(s,t)∈4ij
η+ε(s, T − t) > uj−

)

= (1 + ε)2a1a2H2
αu
− 4
α0

Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

u
4
α
j−Ψ(uj−)(1 + o(1))

= (1 + ε)2a1a2H2
αSu

− 2
α0

+ 4
αΨ(u)

Ñ2(u)∑
j=0

exp
(
−b−ε(ju

2
β−

2
α0 )β

)
(1 + o(1))

= (1 + ε)2a1a2H2
αSu

4
α−

2
β Ψ(u)

∫ ∞
0

exp
(
−b−εxβ

)
dx(1 + o(1)).(32)

Similarly, we obtain

Ñ1(u)−1∑
i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
≥
Ñ1(u)−1∑
i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈4ij
η−ε(s, T − t) > uj+

)

≥ (1− ε)2a1a2H2
αSu

4
α−

2
β Ψ(u)

∫ ∞
0

exp
(
−b+εxβ

)
dx(1 + o(1)).(33)

Next, we deal with the double sum part Σ1(u). Denote the distance of two non-empty sets A,B ⊂ Rn by

ρ(A,B) = inf
x∈A,y∈B

||x− y|| ,

with ||·|| the Euclidean distance. We see from (3) that there exists a positive constant ρ3 such that

3

2

(
|a1(s− s′)|α + |a2(t− t′) + a3(s− s′)|α

)
≥ 1− r(s, t, s′, t′)

≥ 1

2

(
|a1(s− s′)|α + |a2(t− t′) + a3(s− s′)|α

)
(34)

for |s− s′| ≤ 2ρ3, |T − t| ≤ 2ρ3 and |T − t′| ≤ 2ρ3. It follows further from (4) that there exists some θ0 ∈ (0, 1) such that

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

ρ(4i,4i′ )>ρ3

sup
(s,t)∈4Tij

(s′,t′)∈4T
i′j′

r(s, t, s′, t′) < θ0.

Next, we divide the double sum part Σ1(u) as follows

Σ1(u) = Σ1,1(u) + Σ1,2(u) + Σ1,3(u), u ≥ 0,

where Σ1,1(u) is the sum taken on ρ(4i,4i′) > ρ3, Σ1,2(u) is the sum taken on ρ(4Tij ,4Ti′j′) = 0 and Σ1,3(u) is the

sum taken on u−2/α0 ≤ ρ(4Tij ,4Ti′j′) and ρ(4i,4i′) ≤ ρ3. We first give the estimation of Σ1,1(u). For ξ(s, t, s′, t′) :=

X(s, t) +X(s′, t′) we have

E
(
ξ2(s, t, s′, t′)

)
= 4− 2(1− r(s, t, s′, t′))(35)
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implying

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

ρ(4i,4i′ )>ρ3

sup
(s,t)∈4Tij

(s′,t′)∈4T
i′j′

E
(
ξ2(s, t, s′, t′)

)
≤ 4− 2(1− θ0) < 4.

Further we have

P

 sup
(s,t)∈4Tij

X(s, t) > u, sup
(s,t)∈4T

i′j′

X(s, t) > u

 ≤ P

 sup
(s,t)∈4Tij

X(s, t) > u, sup
(s,t)∈4T

i′j′

X(s, t) > u



≤ P

 sup
(s,t)∈4Tij

(s′,t′)∈4T
i′j′

ξ(s, t, s′, t′) > 2u

 .

By Borell-TIS inequality (see [1] or [24]), for u sufficiently large

P

 sup
(s,t)∈4Tij

X(s, t) > u, sup
(s,t)∈4T

i′j′

X(s, t) > u

 ≤ exp

(
− (u− a)2

2− (1− θ0)

)
,

where a = E
(

sup(s,t),(s′t′)∈[0,S]×[0,T ] ξ(s, t, s
′, t′)

)
<∞. Thus

lim sup
u→∞

Σ1,1(u)

u
4
α−

2
β Ψ(u)

= 0.(36)

The summand of Σ1,2(u) is equal to

P

(
sup

(s,t)∈4Tij
X(s, t) > u

)
+ P

 sup
(s,t)∈4T

i′j′

X(s, t) > u

− P

 sup
(s,t)∈4Tij∪4Ti′j′

X(s, t) > u

 .

Since ρ(4Tij ,4Ti′j′) = 0, we have for (s, t) ∈ 4Tij ∪4Ti′j′ and sufficiently large u

u(1 + b−ε((j − 1)+u
− 2
α0 )β) =: ũj− ≤

u

σ(s, t)
≤ ũj+ := u(1 + b+ε((j + 2)u−

2
α0 )β)

Using again Theorem 7.2 in [24] for the last term we have

P

 sup
(s,t)∈4Tij∪4Ti′j′

X(s, t) > u

 ≥ 2(1− ε)2a1a2H2
αu
− 4
α0 ũ

4
α
j+Ψ(ũj+)(1 + o(1))

as u → ∞. Consequently, noting that for any 4Tij there are at most 8 sets of the form 4Ti′j′ in [0, S] × [T − δ(u), T ]

adjecent with it, we conclude that

Σ1,2(u) ≤ 8

Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

(
2(1 + ε)2a1a2H2

αu
− 4
α0 ũ

4
α
j−Ψ(ũj−)− 2(1− ε)2a1a2H2

αu
− 4
α0 ũ

4
α
j+Ψ(ũj+)

)
(1 + o(1))

and thus similar arguments as in (32) yield

lim sup
ε→0

lim sup
u→∞

Σ1,2(u)

u
4
α−

2
β Ψ(u)

= 0.(37)

Finally, we estimate Σ1,3(u). Since u−2/α0 ≤ ρ(4Tij ,4Ti′j′) and ρ(4i,4i′) ≤ ρ3, it follows in view of (34) that

inf
0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

ρ(4i,4i′ )≤ρ3

inf
(s,t)∈4Tij ,(s′,t′)∈4Ti′j′

u
− 2
α0 ≤ρ(4Tij ,4Ti′j′ )

(
1− r(s, t, s′, t′)

)
≥ 1

2
νu−

2α
α0
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for some positive constant ν, and thus

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

ρ(4i,4i′ )≤ρ3

sup
(s,t)∈4Tij ,(s′,t′)∈4Ti′j′

u
− 2
α0 ≤ρ(4Tij ,4Ti′j′ )

E
(
ξ2(s, t, s′, t′)

)
≤ 4− νu−

2α
α0 .

Consequently, using Piterbarg inequality (cf. Theorem 8.1 in [24] or Theorem 8.1 in [25]) for the summand of Σ1,3(u) we

obtain

P

 sup
(s,t)∈4Tij

X(s, t) > u, sup
(s,t)∈4T

i′j′

X(s, t) > u

 ≤ P

 sup
(s,t)∈4Tij

(s′,t′)∈4Tij

ξ(s, t, s′, t′) > 2u


= o

(
exp

(
− 1

16
νu−2

α0−α
α0

))
u

4
α−

2
β Ψ(u),

which implies that

lim sup
u→∞

Σ1,3(u)

u
4
α−

2
β Ψ(u)

≤ lim sup
u→∞

∑∑
0≤i,i′≤Ñ1(u)−1,0≤j,j′≤Ñ2(u)−1

(i,j) 6=(i′,j′)

o

(
exp

(
− 1

16
νu−2

α0−α
α0

))
= 0.(38)

Hence, in view of (31-33), (36-38) and by letting ε→ 0 we conclude that

π(u) = a1a2H2
αSu

4
α−

2
β Ψ(u)

∫ ∞
0

exp
(
−bxβ

)
dx(1 + o(1)), u→∞.

Case ii) β = α1 = α2: In order to simplify notation we set α := α1 = α2. Let S1, T1 be two positive constants and define

∆̂i = [iS1u
− 2
α , (i+ 1)S1u

− 2
α ], i = 0, · · · , N1(u), ∆̃i = [iT1u

− 2
α , (i+ 1)T1u

− 2
α ], i = 0, · · · , N2(u),

4ij = ∆̂i × ∆̃j , 4Tij = ∆̂i × (T − ∆̃j),

where

N1(u) =
⌊ S
S1
u

2
α

⌋
+ 1, N2(u) =

⌊ (lnu)
2
β

T1

⌋
+ 1.

Again, Bonferroni’s inequality implies

Σ2(u) +

N1(u)∑
i=0

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)
≥ π(u)

≥
N1(u)−1∑
i=0

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)
− Σ3(u),(39)

where

Σ2(u) =

N1(u)∑
i=0

N2(u)∑
j=1

P

 sup
(s,t)∈4Tij

X(s, t) > u


Σ3(u) =

∑∑
0≤i<i′≤N1(u)−1

P

(
sup

(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈4Ti′0

X(s, t) > u

)
.
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Since our approach is of asymptotic nature, for any fixed 0 ≤ i ≤ N1(u), the local structures of the variance and correlation

of the Gaussian random field X on 4Ti0 are the only necessary properties influencing the asymptotics. Therefore,

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)
= P

(
sup

(s,t)∈4i0

η(s, t)

1 + btβ
> u

)
(1 + o(1))

as u→∞, where {η(s, t), (s, t) ∈ [0, S]× [0, T ]} is the same as in Lemma 2.1. Hence Lemma 2.1 implies

N1(u)∑
i=0

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)
=

S

S1
u

2
αHbY1

[S1, T1]Ψ(u)(1 + o(1)), u→∞.(40)

Similarly

N1(u)−1∑
i=0

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)
=

S

S1
u

2
αHbY1

[S1, T1]Ψ(u)(1 + o(1)), u→∞.(41)

Note that, for any c, d ∈ R

|c+ d|p ≤ |c|p + |d|p , if p ∈ (0, 1],

|c+ d|p ≤ 2p−1(|c|p + |d|p), if p ∈ (1,∞).

In view of Slepian’s Lemma

P

 sup
(s,t)∈4Tij

X(s, t) > u

 ≤ P

(
sup

(s,t)∈4ij

η(s, t) > u(1 + b(jT1u
− 2
α )β)

)
(1 + o(1))

≤ P

(
sup

(s,t)∈4ij

η̃(s, t) > u(1 + b(jT1u
− 2
α )β)

)
(1 + o(1))

as u→∞, where {η̃(s, t), (s, t) ∈ [0, S]×[0, T ]} is a centered homogeneous Gaussian random field with covariance function

rη̃(s, t) = exp (− |ã1s|α − |ã2t|α) , (s, t) ∈ [0, S]× [0, T ],

with ã1 = (aα1 + 2 |a3|α)1/α and ã2 = 21/αa2. It follows further, using Lemma 2.1, that

P

 sup
(s,t)∈4Tij

X(s, t) > u

 ≤ P

(
sup

(s,t)∈4ij

η̃(s, t) > u(1 + b(jT1u
− 2
α )β)

)
(1 + o(1))

= H0
Ỹ2

[S1, T1]
1√
2πu

exp

(
−u

2(1 + 2b(jT1u
− 2
α )β)

2

)
(1 + o(1))

= H0
Ỹ2

[S1, T1] exp
(
−b(jT1)β

)
Ψ(u)(1 + o(1))

as u → ∞, where H0
Ỹ2

[S1, T1] is defined in a similar way as H0
Y2

[S1, T1] with ai, i = 1, 2 replaced by ãi, i = 1, 2.

Consequently

Σ2(u) ≤
∞∑
j=1

S

S1
u

2
αH0

Ỹ2
[S1, T1] exp

(
−b(jT1)β

)
Ψ(u)(1 + o(1)).(42)

From (4) there exists some θ1 ∈ (0, 1) such that

sup
1≤i<i′≤N1(u)

ρ(∆̂i,∆̂i′ )>ρ3

sup
s∈∆̂i,s′∈∆̂i′

t,t′∈[0,T ]

r(s, t, s′, t′) < θ1,

where ρ3 is the same as in (34). Below we shall re-write Σ3(u) as

Σ3(u) = Σ3,1(u) + Σ3,2(u) + Σ3,3(u), u ≥ 0,
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where Σ3,1(u) is the sum taken on ρ(∆̂i, ∆̂i′) > ρ3, Σ3,2(u) is the sum taken on i′ = i+ 1, and Σ3,3(u) is the sum taken

on i′ > i+ 1 and ρ(∆̂i, ∆̂i′) ≤ ρ3. First note that the estimation of Σ3,1(u) can be derived similarly to that of Σ1,1(u) in

Case a) and thus for u sufficiently large

Σ3,1(u) ≤ S2

S2
1

u
4
α exp

(
− (u− a)2

2− (1− θ1)

)
,(43)

where a is the same as in (36). Next, we consider Σ3,3(u). In view of (34) and (35) it follows that for s ∈ ∆̂i, s
′ ∈

∆̂i′ , t, t
′ ∈ T − ∆̃0 and u large enough

2 ≤ E
(
ξ2(s, t, s′, t′)

)
≤ 4− |a1(i′ − i)S1|

α
u−2.(44)

Further set ξ(s, t, s′, t′) = ξ(s, t, s′, t′)/
√

Var(ξ(s, t, s′, t′)). Following similar argument as in the proof of Lemma 6.3 in

[24], we obtain that

E
(
ξ(s, t, s′, t′)− ξ(v, w, v′, w′)

)2 ≤ 4(E
(
X(s, t)−X(v, w)

)2
+ E

(
X(s′, t′)−X(v′, w′)

)2
).

Moreover, from (34) we see that, for u sufficiently large

E
(
X(s, t)−X(v, w)

)2 ≤ 3
(
|ã1(s− v)|α + |ã2(t− w)|α

)
implying thus

E
(
ξ(s, t, s′, t′)− ξ(v, w, v′, w′)

)2 ≤ 2(1− rζ(s− v, t− w, s′ − v′, t′ − w′)),(45)

where

rζ(s, t, s
′, t′) = exp

(
−7
(
|ã1s|α + |ã2t|α + |ã1s

′|α + |ã2t
′|α
))

is the covariance function of the homogeneous Gaussian random field {ζ(s, t, s′, t′), (s, t, s′, t′) ∈ (0,∞)4}. Consequently,

(44), (45) and Slepian’s Lemma imply

P

(
sup

(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈4Ti′0

X(s, t) > u

)
≤ P

 sup
(s,t)∈4Ti0

(s′,t′)∈4Ti′0

ζ(s, t, s′, t′) >
2u√

4− |a1(i′ − i)S1|α u−2

 .

We obtain further from a similar lemma as Lemma 2.1 (cf. Lemma 6.1 in [24]) that

P

 sup
(s,t)∈4Ti0

(s′,t′)∈4Ti′0

ζ(s, t, s′, t′) >
2u√

4− |a1(i′ − i)S1|α u−2

 = (H̃0
Ỹ2

[S1, T1])2 1√
2πu

× exp

(
− 4u2

2(4− |a1(i′ − i)S1|α u−2)

)
(1 + o(1)),

where H̃0
Ỹ2

[S1, T1] is defined in a similar way as H0
Y2

[S1, T1] with a1, a2 replaced by 71/αã1, 7
1/αã2, respectively. Conse-

quently, for all large u

Σ3,3(u) ≤ S

S1

∑
j≥1

(H̃0
Ỹ2

[S1, T1])2 exp

(
−1

8
|a1jS1|α

)
u

2
αΨ(u)(1 + o(1)).(46)
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Next, we consider Σ3,2(u). For any u positive

P

 sup
(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈∆

T
(i+1)0

X(s, t) > u


≤ P

 sup
(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈[(i+1)S1u

− 2
α ,(i+1)S1u

− 2
α+
√
S1u
− 2
α ]×(T−∆̃0)

X(s, t) > u


+P

 sup
(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈[(i+1)S1u

− 2
α+
√
S1u
− 2
α ,(i+2)S1u

− 2
α ]×(T−∆̃0)

X(s, t) > u


and further

P

 sup
(s,t)∈4Ti0

X(s, t) > u, sup
(s,t)∈∆

T
(i+1)0

X(s, t) > u


≤ H0

Ỹ2
[
√
S1, T1]Ψ(u) + (H̃0

Ỹ2
[
√
S1, T1])2 exp

(
−1

8

∣∣∣a1

√
S1

∣∣∣α)Ψ(u)(1 + o(1)).

Therefore, for all large u

Σ3,2(u) ≤ S

S1

(
H0
Ỹ2

[
√
S1, T1] + (H̃0

Ỹ2
[
√
S1, T1])2 exp

(
−1

8

∣∣∣a1

√
S1

∣∣∣α))u 2
αΨ(u)(1 + o(1)).(47)

Consequently, from (39–43) and (46–47) we conclude that for any Si, Ti, i = 1, 2

S1
−1HbY1

[S1, T1] +

∞∑
j=1

S1
−1H0

Ỹ2
[S1, T1] exp

(
−b(jT1)β

)
≥ lim sup

u→∞

π(u)

Suα/2Ψ(u)
≥ lim inf

u→∞

π(u)

Suα/2Ψ(u)

≥ S2
−1HbY1

[S2, T2]− S2
−1(H̃0

Ỹ2
[S2, T2])2

∑
j≥1

exp

(
−1

8
|a1jS2|α

)

−S2
−1

(
H0
Ỹ2

[
√
S2, T2] + (H̃0

Ỹ2
[
√
S2, T2])2 exp

(
−1

8

∣∣∣a1

√
S2

∣∣∣α)) .
Therefore, by similar arguments as in the proof of Theorem D.2 in [24] we conclude that

0 <Mb
Y1,α1

≤ lim sup
u→∞

π(u)

Suα/2Ψ(u)
≤ lim inf

u→∞

π(u)

Suα/2Ψ(u)
≤Mb

Y1,α1
<∞

establishing the claim.

Case iii) β = α2 > α1: Note that Mb
Y2,β

can be given in terms of Piterbarg and Pickands constants as

Mb
Y2,β = lim

T→∞
lim
S→∞

1

S
HbY2

[S, T ] = a1a2P
ba
−α2
2

α2 Hα1
.

The proof for this case can be established using step-by-step the same arguments as in Case ii).

Case iv) β < α2 = α1: In order to make use of the notation introduced in Case ii) we set α := α1 = α2. First note that

δ(u) < T1u
−2/α, which implies

π(u) ≤ P

(
sup

(s,t)∈[0,S]×(T−∆̃0)

X(s, t) > u

)

≤
N1(u)∑
i=0

P

(
sup

(s,t)∈4Ti0

X(s, t) > u

)

≤ S

S1
u

2
αH0

Y1
[S1, T1]Ψ(u)(1 + o(1))
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as u→∞. Further, by Assumptions A1–A2 we have that E
(
(X(s, T ))2

)
= 1,∀s ∈ [0, S] and

r(s, T, s′, T ) = 1−
(
aα1 + |a3|α

)
|s− s′|α (1 + o(1))

holds uniformly with respect to s, s′ ∈ [0, S], as |s− s′| → 0. This means that {X(s, T ), s ∈ [0, S]} is a locally stationary

Gaussian process. Therefore, in view of Theorem 7.1 in [24]

π(u) ≥ P

(
sup
s∈[0,S]

X(s, T ) > u

)
= S(aα1 + |a3|α)

1
αHαu

2
αΨ(u)(1 + o(1)), u→∞.

Letting T1 → 0, S1 →∞, we conclude that

0 < lim
u→∞

π(u)

Su
2
αΨ(u)

= (aα1 + |a3|α)
1
αHα <∞.

Case v) β < α2 and α1 < α2: The claim follows with identical arguments as in the proof of Case iv).

In order to complete the proof of Cases i)-v) we only need to show (30), for which it is sufficient to give the following

upper bounds for π1(u) and π2(u). By Borell-TIS inequality, for u large enough

π1(u) ≤ exp

−
(
u− E

(
sup(s,t)∈[0,S]×[0,ρ0]X(s, t)

))2

2θ2

 .(48)

Further, by Assumption A3 applying Piterbarg inequality we obtain, as u→∞

π2(u) ≤ Qu
4
γ−1 exp

(
− u2

2σ2(T − δ(u))

)
= Qu

4
γ−1 exp

(
−u

2

2

)
exp

(
−b(lnu)2

)
(1 + o(1)),(49)

where Q is some positive constant not depending on u. Therefore, the proof of Cases i)-v) is complete.

Next, we consider Cases vi)-vii). We introduce a time scaling of the Gaussian random field {X(s, t), (s, t) ∈ E} by matrix

B =

 a3 a2

0 a2

, i.e., let Z(s, t) := X((s− t)/a3, t/a2). By this time scaling, we have

P

(
sup

(s,t)∈E
X(s, t) > u

)
= P

(
sup

(s,t)∈K
Z(s, t) > u

)
,(50)

where K is a region on R2 with vertices at points (0, 0), (a2T, a2T ), (a3S, 0) and (a3S+a2T, a2T ). The Gaussian random

field {Z(s, t), (s, t) ∈K} has the following properties:

P1) The standard deviation function σZ(s, t) of {Z(s, t), (s, t) ∈K} satisfies

σZ(s, t) = 1− b

aβ2
(a2T − t)β (1 + o(1)), t ↑ a2T.

P2) The correlation function rZ(s, t, s′, t′) of {Z(s, t), (s, t) ∈K} satisfies

rZ(s, t, s′, t′) = 1−
(
|s− s′|α2 +

∣∣∣∣a1

a3
(t− t′)− a1

a3
(s− s′)

∣∣∣∣α1
)

(1 + o(1))

for any (s, t), (s′, t′) ∈K such that |s− s′| → 0 and t, t′ ↑ a2T , and further there exists some δ0 ∈ (0, T ) such that

r(s, t, s′, t′) < 1
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holds for any (s, t), (s′, t′) ∈ K0 satisfying s 6= s′. Here K0 is a region on R2 with vertices at points (a2δ0, a2δ0),

(a2T, a2T ), (a3S + a2δ0, a2δ0) and (a3S + a2T, a2T ).

P3) There exist positive constants Q, γ, ρ1 and ρ2 such that

E
(
(Z(s, t)− Z(s′, t′))2

)
≤ Q(|s− s′|γ + |t− t′|γ)

holds for any (s, t), (s′, t′) ∈K satisfying a2T − t < ρ1, a2T − t′ < ρ1 and |s− s′| < ρ2.

Note that in the above proof the most important structural property of the set E is that the segment L = {(s, t) ∈ E :

t = T} is on the boundary of E, which is also the case for {Z(s, t), (s, t) ∈K}. Therefore, in view of the above properties

of {Z(s, t), (s, t) ∈ K}, the claims of the Cases vi) and vii) follow by an application of the claims of Cases iii) and v).

The proof is complete. �

Proof of Proposition 3.1: The variance function of Z is given by

σ2
Z(s, t) = 2(1− rX(t))

and attains its maximum on [0, S]× {T}. Therefore, it is sufficient to consider the asymptotics of

Π(u) := P

(
sup

(s,t)∈[0,S]×[0,T ]

Z∗(s, t) > ũ

)
, u→∞,

with

ũ :=
u

ρT
, and Z∗(s, t) :=

Z(s, t)

ρT
,

where ρT =
√

2(1− rX(T )) > 0. The asymptotics of Π(u) follows from Theorem 2.2 by checking the assumptions A1-A3.

The standard deviation function of Z∗ satisfies

σZ∗(s, t) =

√
2(1− rX(t))

ρT
= 1− a1

2(1− rX(T ))
(T − t)α1(1 + o(1)), t→ T,

whereas for its correlation function we have

RZ∗(s, t, s
′, t′) =

rX(|s+ t− s′ − t′|)− rX(|s− s′ − t′|)− rX(|s+ t− s′|) + rX(|s− s′|)
2
√

(1− rX(t))(1− rX(t′))
.(51)

Since rX(t) is twice continuously differentiable in [µ, T ] and
∣∣∣r′′X(T )

∣∣∣ ∈ (0,∞) for some constant Q1 we have

|rX(t′)− rX(|s− s′ − t′|) + rX(t)− rX(|s+ t− s′|)| ≤ Q1(|t− t′ + s− s′|2 + |s− s′|2)(1 + o(1))

as t, t′ → T, |s− s′| → 0. Consequently, α2 ∈ (0, 2) implies

RZ∗(s, t, s
′, t′) = 1− a2

ρ2
T

(
|t− t′ + s− s′|α2 + |s− s′|α2

)
(1 + o(1))(52)

as t, t′ → T, |s− s′| → 0. Next, for any fixed ε0 > 0, we have from S3 that there exists some θ0 such that

rX(|s− s′|) ≤ θ0 < 1

for any s, s′ ∈ [0, S] satisfying |s− s′| > ε0. Further, from S2 we obtain that there exists some positive constant δ0 such

that

2
√

(1− rX(t))(1− rX(t′)) ≥ ρ2
T −

1− θ0

2
> 0
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for any t, t′ ∈ [δ0, T ]. Hence

RZ∗(s, t, s
′, t′) ≤ 1 + θ0 − 2rX(T )

ρ2
T −

1−θ0
2

< 1(53)

for any t, t′ ∈ [δ0, T ], s, s′ ∈ [0, S] satisfying |s− s′| > ε0 and thus both A1 and A2 are satisfied. It follows that

E (Z∗(s, t)− Z∗(s′, t′))2 ≤ 2E
(
Z(s, t)− Z(s′, t′)

)2
+

2

ρ2
T

(σZ(s, t)− σZ(s′, t′))2.

Therefore, the differentiability of rX(t), assumption S2 and (52) imply that there exist some positive constants ρ1, ρ2,Q3,Q4

such that

E (Z∗(s, t)− Z∗(s′, t′))2 ≤ Q3(|t− t′ + s− s′|α2 + |s− s′|α2 + |t− t′|2 min(α1,1)
)

≤ Q4(|t− t′|min(2α1,α2)
+ |s− s′|min(2α1,α2)

)

for all s, s′ ∈ [0, S], t, t′ ∈ [ρ1, T ] satisfying |s− s′| < ρ2, hence the proof is complete. �

Proofs of Proposition 3.4 and Proposition 3.5: Note first that the standard deviation of the incremental random

field Z of the Brownian bridge satisfies

σZ(s, t) = (t(1− t)) 1
2 =

1

2
−
(
t− 1

2

)2

(1 + o(1)), t→ 1

2
.(54)

Furthermore, for its correlation function we have

rZ(s, s′, t, t′) = 1− 2(|t− t′ + s− s′|+ |s− s′|)(1 + o(1))(55)

as t, t′ → 1/2, |s− s′| → 0.

For the fBm incremental random field Z we have for its standard deviation

σZ(s, t) = t
α
2 = 1− α

2
(1− t)(1 + o(1)), t→ 1.

As shown in [25] the correlation function rZ of Z satisfies

rZ(s, s′, t, t′) = 1− 1

2
(|t− t′ + s− s′|α + |s− s′|α)(1 + o(1))

as t, t′ → 1, |s− s′| → 0. Hence for both cases A1-A3 are fulfilled, and thus the claims follow by a direct application of

Theorem 2.2. �

Proofs of Proposition 4.1 and Proposition 4.2: By a linear time change using the matrix A ∈ R2×2 given by

A =

 1 0

−1 1


we have for any u > 0

P (χ2(ξ) > u) = P

(
sup

(s,t)∈A[0,1]2
(ξ(t+ s)− ξ(s)) > u

)
.

Here the set A[0, 1]2 = {(s̃, t̃) : (s̃, t̃)> = A(s, t)>, (s, t) ∈ [0, 1]2} is bounded and convex. The variance function of the

random field {ξ(t + s) − ξ(s), (s, t) ∈ A[0, 1]2} is 2(1 − rξ(|t|)) which attains its unique maximum on the set A[0, 1]2 on

two lines L1 = {(s, t) ∈ A[0, 1]2 : t = tm} and L2 = {(s, t) ∈ A[0, 1]2 : t = −tm}. Note that the differentiability of rξ(t)

implies α1 ≥ 2 > α2. Therefore, the claim in (27) follows from Remarks 2.4 b); the conditions therein can be established
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directly as in the proof of Proposition 3.1 except (18) for i = 1, j = 2, which can also be confirmed by a similar argument

as in (53). Further, since

P (χ2(X) > u) = P

(
sup

(s,t)∈A[0,1]2
(X(t+ s)−X(s)) > u

)
in view of (54) and (55) we conclude that the claim in (28) follows immediately from Remarks 2.4 b), and thus the proof

is complete. �

6. Appendix

Let D be a compact set in R2 such that (0, 0) ∈ D, and let {ξu(s, t), (s, t) ∈ D}, u > 0 be a family of centered Gaussian

random fields with a.s. continuous sample paths. The next lemma is proved based on the classical approach rooted in

the ideas of [21, 22], see also [9], Lemma 1; in particular, it implies the claim of Lemma 2.1.

Lemma 6.1. Let d(·) be a nonnegative continuous function on [0,∞) and let g(u), u > 0 be a positive function satisfying

limu→∞ g(u)/u = 1. Assume that the variance function σ2
ξu

of ξu satisfies the following conditions

σξu(0, 0) = 1 for all large u, lim
u→∞

sup
(s,t)∈D

∣∣u2(1− σξu(s, t))− d(t)
∣∣ = 0,

and there exist some positive constants G, ν, u0 such that, for all u > u0

u2Var(ξu(s, t)− ξu(s′, t′)) ≤ G(|s− s′|ν + |t− t′|ν)

holds uniformly with respect to (s, t), (s′, t′) ∈ D. If further there exists a centered Gaussian random field {Y (s, t), (s, t) ∈

(0,∞)2} with a.s. continuous sample paths and Y (0, 0) = 0 such that

lim
u→∞

u2Var(ξu(s, t)− ξu(s′, t′)) = 2Var(Y (s, t)− Y (s′, t′)), ∀(s, t), (s′, t′) ∈ D,

then

P

(
sup

(s,t)∈D
ξu(s, t) > g(u)

)
= HdY [D]Ψ(g(u))(1 + o(1)), u→∞,(56)

where

HdY [D] = E

(
exp

(
sup

(s,t)∈D

(√
2Y (s, t)− σ2

Y (s, t)− d(t)
)))

.

Proof of Lemma 6.1: For large u we have

P

(
sup

(s,t)∈D
ξu(s, t) > g(u)

)

=
1√

2πg(u)
exp

(
− (g(u))2

2

)∫ ∞
−∞

e
w− w2

2(g(u))2 P

(
sup

(s,t)∈D
ξu(s, t) > g(u)

∣∣∣ξu(0, 0) = g(u)− w

g(u)

)
dw.(57)

Let

Rξu(s, t, s′, t′) = E (ξu(s, t)ξu(s′, t′)) , (s, t), (s′, t′) ∈ D

be the covariance function of ξu. The conditional random field{
ξu(s, t)

∣∣∣ξu(0, 0) = g(u)− w

g(u)
, (s, t) ∈ D

}
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has the same distribution as{
ξu(s, t)−Rξu(s, t, 0, 0)ξu(0, 0) +Rξu(s, t, 0, 0)

(
g(u)− w

g(u)

)
, (s, t) ∈ D

}
.

Thus, the integrand in (57) can be rewritten as

P

(
sup

(s,t)∈D

(
ξu(s, t)−Rξu(s, t, 0, 0)ξu(0, 0) +Rξu(s, t, 0, 0)

(
g(u)− w

g(u)

))
> g(u)

)

= P

(
sup

(s,t)∈D

(
χu(s, t)− (g(u))2(1−Rξu(s, t, 0, 0)) + w(1−Rξu(s, t, 0, 0))

)
> w

)
,

where

χu(s, t) = g(u)(ξu(s, t)−Rξu(s, t, 0, 0)ξu(0, 0)).

Next, the following convergence

(g(u))2(1−Rξu(s, t, 0, 0))− w(1−Rξu(s, t, 0, 0))→ σ2
Y (s, t) + d(t), u→∞

holds, for any w ∈ R, uniformly with respect to (s, t) ∈ D. Moreover,

E
((

χu(s, t)− χu(s′, t′)
)2
)

= (g(u))2

(
E
((

ξu(s, t)− ξu(s′, t′)
)2
)
− (Rξu(s, t, 0, 0)−Rξu(s′, t′, 0, 0))

2
)

→ 2Var(Y (s, t)− Y (s′, t′)), u→∞

holds for any (s, t), (s′, t′) ∈ D. Hence the claim follows by using the same arguments as in the proof of Lemma 6.1 in

[24] or those in the proof of Lemma 1 in [9]. �
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[9] K. Dȩbicki and K. Kosiński. On the infimum attained by the reflected fractional Brownian motion. Extremes, 17:431–446, 2014.

[10] K. D
‘
ebicki and M. Mandjes. Exact overflow asymptotics for queues with many Gaussian inputs. J. Appl. Probab., 40(3):704–720, 2003.

[11] P. Deheuvels and L. Devroye. Limit laws of Erdös-Rényi-Shepp type. Ann. Probab., 15(4):1363–1386, 1987.
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