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Abstract: It is now a standard practice to replace missing data in longitudinal surveys with imputed

values, but there is still much uncertainty about the best approach to adopt. Using data from a real survey,

we compared different strategies combining multiple imputation and the chained equations method, the

two main objectives being 1) to explore the impact of the explanatory variables in the chained regression

equations, 2) to study the effect of imputation on causality between successive waves of the survey. Results

were very stable from one simulation to another, and no systematic bias did appear. The critical points

of the method lied in the proper choice of covariates and in the respect of the temporal relation between

variables.
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1 Introduction

This article was motivated by a practical issue encountered during the analysis of the TREE (Tran-

sitions from Education to Employment) survey on adolescents. TREE is a longitudinal Swiss study

surveying the post-compulsory educational pathways of young people and their entry into the labor

market (TREE, 2008). It is based on an initial sample of 6343 youths who participated in the PISA

survey in 2000 (Program for International Student Assessment; OECD (1999); Buschor, Gilomen &

McCluskey (2003)) and who where then followed up yearly from 2001 (wave 1, T1) to 2007 (wave 7,

T7). As in many surveys, there are missing data in the TREE database: Only 63% of the original

2001 sample was still in the study in 2007. Missing data are known to be a problem for all statistical

analyses, but this was especially true in our case, since we wanted to track cannabis and tobacco

consumption trajectories using statistical tools such as Markov chains. For that purpose, we needed

to work on complete trajectories. In practice, however, only 1131 subjects did answer to questions

regarding substance use continuously from 2001 to 2007, what was too few for our purpose.

The TREE project being inscribed in a longitudinal framework, data are certainly not inde-

pendent one wave to another. It was then necessary to take the possible inter-wave relations into

account in order to provide estimated values of missing data coherent not only with respect to other

variables of the same wave (some of them also including missing data), but also from one wave to

another. Moreover, the collection of the TREE data being not finished at the time of this study, at

least two additional waves being planned in 2010 and 2014, the mechanism used to estimate missing

data on waves 2001 to 2007 should ideally be usable again with the new waves, without having to

reestimate the value of missing data in the preceding waves.

Using TREE as an example, we describe in detail an imputation method adapted to the longi-

tudinal context. We chose to rely on multiple imputation, the different completed datasets being

generated by the chained equations method. We describe first the base imputation method designed

for our analyses, then we discuss six alternative methods differing by the number of covariates and

by the importance given to the respect of causality between successive waves. The whole method is

evaluated through a series of numerical experiments using simulated missing data from the TREE

database. The chained equation method has been already studied in detail in the past (White,

Royston & Wood, 2011) and its usefulness is well established, so our main objectives are to com-

pare alternate specifications of the regression equations used during the imputation process, and to

explore the influence of the imputation process upon causal models.
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2 Missing data and the imputation process

2.1 Missing data

According to Little & Rubin (2002), there are three kinds of missing data: Missing Completely At

Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). We speak

of MCAR when the missing data are a random sample of the entire dataset, a very rare situation.

MAR means that the probability for a particular data to be missing does not depend on the missing

data, but only on other variables of the dataset. For instance, girls could refuse to report their

weight more often than boys, the fact of reporting or not reporting the weight being independent

from the weight itself. MNAR means that the probability of missing is influenced by the real non-

observed value of the data. For instance, the probability of not reporting income could be positively

correlated with the income level. Diagnostics exist to assess the missing data mechanism (Hedeker

& Gibbons, 1997). When missing data are MCAR, unbiased estimates of the parameters of interest

can be obtained by simply removing the missing data. When the general mechanism of missing data

is MAR, then it is possible to build statistical models for the relation between several variables, and

to use these models to obtain unbiased estimations of the missing data.

In the remaining of this paper, we will work with MCAR simulated missing data. This is

certainly not the most frequently assumed missing data mechanism, but since our main goal was to

explore particular elements of imputation rather than the whole chained equation process, using a

simple missing mechanism suppressed the risk of adding useless noise to the discussion. Moreover,

as noted e.g. by Rubright, Nandakumar & Glutting (2014), MCAR data are not always easier to

impute than MAR data. Notice also than even the MAR hypothesis can be difficult to justify in a

longitudinal framework, some subjects maybe leaving the survey at some point because of the value

taken by a variable of interest (Schafer & Graham, 2002), so we implemented the two following

mechanisms: First, when several successive values were missing for a subject, only the first of them

was imputed, the other ones being kept as missing. Second, we relied on the multiple imputation

approach. This approach is known to work well with MCAR and MAR data, but correct results can

be achieved even in the MNAR case (Collins, Schafer & Kam, 2001; Demirtas, 2004). Moreover,

as noted by Graham (2009), if the MAR assumption is violated, not only the multiple imputation

method will be affected, but the majority of missing data treatments. Since we cannot test for the

MNAR mechanism, it is then difficult to decide when methods able to handle MNAR data, such as

likelihood based methods, should be used in place of multiple imputation.

3



2.2 Multiple imputation

Many approaches for handling missing data are described in the literature, starting from very simple

ones (listwise deletion of all cases with at least one missing data, replacement of the missing data by

the mean of observed values) to modern model-based methods (Allison, 2001; Little & Rubin, 2002;

Graham, 2009). A distinction must be made between single- and multiple-imputation: In the first

case, each missing data is replaced by a single imputed value, the result being a new dataset without

missing data called the completed dataset. A classical method is to use the value maximizing the

log-likelihood of a statistical model, and the well-known Expectation-Maximization (EM) algorithm

(McLachlan & Krishnan, 1996) can therefore be used. The objective of this paper is not to review

the different options which can be used to deal with missing data, but the interested reader will

find much information in e.g. Graham (2012); McKnight et al. (2007) and Van Buuren (2012)

When each missing data is replaced by a single estimated value, the variance of statistical

parameters computed from the completed dataset are generally underestimated, what leads to

incorrect confidence intervals and p-values. Regardless of the imputation method, the cause of this

problem, as noted by Schafer & Olsen (1998), is that replacing missing data by only one particular

estimated value does not take into account the inherent variability of missing data. One of the

best approaches to overcome this issue is now the multiple imputation (MI) procedure proposed by

Rubin (1987). Its principle is to generate not one, but m > 1 estimations of each missing value and

to constitute then m different sets of completed data called replications. The main advantage of

this method is to preserve the variability of the missing information. Of course, the algorithm used

to create the m replications has to be able to create different imputed values for each missing data.

In practice, accurate results can be achieved with m as low as 3 or 5, but we chose here to work in

a conservative framework and to use m = 10.

During the statistical analysis of the data, each model is computed separately on the m replica-

tions and results are then combined into a single final statistic using the rules defined by Rubin: Let

θ be the parameter to be estimated; from each of the m replicated datasets, we obtain an estimation

θ̂i. The MI estimator of θ is then

θ̂MI =

∑m
i=1 θ̂i
m

The variance of the MI estimator is obtained as a combination of the variance of each θ̂i and the

variance between the θ̂i. If V̂i is the variance of θ̂i, then

V̂MI =

∑m
i=1 V̂i
m

+

(
1 +

1

m

)
1

m− 1

m∑
i=1

(θ̂i − θ̂MI)
2
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2.3 Chained equations

In the context of multiple imputation, different alternative methods can be used for the estimation

of the missing values. A possibility is to use bootstrap (Efron, 1982), but two much more usual

methods are now the so-called data augmentation (Tanner & Wong, 1987) and chained equations

(Van Buuren, Boshuizen & Knook, 1999) approaches. Similarly to the EM algorithm, these methods

rely on an iterative algorithm, but on the contrary of EM, they converge in distribution, so that

even after convergence values obtained from a given iteration can differ from the ones of the previous

iterations. This feature makes them perfect choices for the generation of as many replications as

necessary of the missing data values.

The principle of multivariate imputation by Chained Equations (CE) was proposed by Van

Buuren, Boshuizen & Knook (1999). It can be seen as a variant of predictive mean matching

(Rubin, 1986; Little, 1988), but it is much more general. Compared to alternative approaches such

as EM, propensity scores and standard data augmentation, CE seems best suited to longitudinal

data in the context of multiple imputation. EM cannot be used here, since it generally always

converges to the same solution, except when multiple local optima do exist in the solution space

(Berchtold, 2002). Propensity scores do not follow some of the basic hypotheses regarding multiple

imputation, leading sometimes to biased results (Allison, 2000). Finally, by relaxing the assumptions

made in data augmentation about the distribution of error terms, chained equations can be applied

to a wider range of situations (Durrant, 2005).

Chained equations work as follows:

1. Regression models are defined for each variable containing missing data. Continuous and/or

categorical dependent variables can be treated simultaneously; for instance, some of the regres-

sions can be linear, while others are binary logistic. Explanatory variables are independently

chosen for each regression among the other dependent variables. Covariates which do not

appear as dependent variables in a regression can also be used as explanatory variables.

2. Each missing data is first replaced by a random value.

3. Each regression model is estimated and used to provide an imputation of the missing data.

4. The algorithm iterates several times through all the regression models, missing values being

each time replaced by the values imputed during the preceding iteration.

5. The imputed values obtained during the last iteration are replaced by the closest values really

observed in the dataset in a way similar to hot deck imputation.
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Step 5 above could be replaced by other approaches, such as drawings from the normal distribu-

tion for instance, but since we considered only categorical variables here, our method presents the

advantage of generating only possible values. There are no real guidelines concerning the number

of iterations to be used, but 10 is generally considered as a good choice (Van Buuren, Boshuizen

& Knook, 1999) and we used this value here. Repeating the whole process m times leads to m

different datasets which can then be used for multiple imputation.

3 Simulation study

We concentrate here on a categorical variable representing the average tobacco consumption level

during the 30 days preceding the survey. This multinomial variable takes five modalities (never, 1-3

times a month, 1-2 times a week, 3-5 times a week, daily). The number of available values ranges

from 5335 in 2001 to 3150 in 2007, but only 1999 complete trajectories are available.

Simulations have been conducted in order to compare the quality of the imputations produced

by different forms of chained regression equations. Before imputation, we first looked at the relation

existing a) between the successive waves of the variable to be imputed, b) between covariates and

the variables to be imputed. Results are reported as Spearman’s ρ when comparing the successive

observations of tobacco level consumption, as Cramer’s V for the relation between tobacco con-

sumption level and nominal covariates, and as η2 for the relation between tobacco consumption

level and continuous covariates.

3.1 The base chained equation imputation method

Many differences exist between cross-sectional and longitudinal data, among them the fact that

longitudinal data can be used to assess causality between events. Theoretically, causality can

be established if and only if the three following rules are verified (Hill, 1965; Schneider, Carnoy,

Kilpatrick, Schmidt & Shavelson, 2007): 1) the cause precedes the effect; 2) there is a strong

association between the cause and the effect; 3) all other possible causes have been removed or

controlled for. During the imputation process of missing data, it is crucial not to modify the

link between possible causes and effects, either in the sense of an attenuation or of an increase of

causality. We do not want to produce spurious causalities by reinforcing the association between a

possible cause and its expected effect, nor do we want to diminish causality by breaking the temporal

link between the cause and the effect. To preserve the possibility to later establish causality, we

considered the following rules for the imputation of time dependent variables:

• A regression model is defined for each variable with missing data.
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• For each wave, the predictors are composed of i) the lags of the variable to be imputed and

ii) a set of covariates, either invariant in time or taken from the previous waves of the survey.

• No imputation is made for the missing data of the first wave, because no previous observations

of the same variable are available, so imputation would be based on covariates only, what we

consider as too imprecise.

• The observation preceding an imputed value cannot be itself missing. When two or more than

two successive observations are missing, only the first one is imputed.

This approach was used to impute missing values for the consumption level of tobacco each

year. Even if this variable is ordinal rather than nominal, with five modalities ranging from never

to daily, we chose to use multinomial rather than ordinal regressions, the parallelism assumption

required for ordinal regression being rejected here. In addition to the consumption level of tobacco

the preceding years, the following variables taken from the 2000 PISA survey, one year before the

first wave of the TREE study, were used as time-invariant covariates: Gender, age in months, swiss

language area (French / German / Italian), country of birth (Switzerland / other), family wealth

(scale), school track (pre-gymnasial / extended requirements / basic requirements / no selection).

Consider for instance the following four subjects for which we simply indicate whether the

tobacco consumption level variable is observed (O) or missing (.) on each wave:

Wave 1 2 3 4 5 6 7

Subject A O O O O O O O

Subject B O O O O O . O

Subject C O O . O . . .

Subject D . O O O O O O

Subject A has all data, so imputation is useless. Subject B has only one missing data on wave

6 and it can be imputed using our method. Subject C has four missing data on waves 3, 5, 6 and 7.

The first two can be imputed using our method, but not the last two, because these missing data

are themselves preceded by another missing data. Finally, no imputation is possible for the missing

data of subject D, because it occured in the first wave. From this example, the rules we fixed for

imputation can be seen as very restrictive, but they should ensure a minimal impact on the possible

causality between events. Moreover, the importance of these rules will be checked through the use

of the six alternative regression shemes defined in the next section.
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3.2 Alternative methods

One of our major concerns is the role and the influence of the predictors in the regression models.

To evaluate this influence, we defined the six following alternative sets of regression models:

1. Similar to the base method, but without the covariates Gender, Age and Language area.

2. Similar to the base method, but without the covariates Country of birth, Family wealth and

School track.

3. Similar to the base method, but with four additional covariates taken from the PISA sur-

vey: Level of literacy competence (low / high), family structure (nuclear / other), index of

possession of culture items (scale), index of family educational support (scale).

4. Similar to the base method, but the tobacco consumption level of wave t+1 is also used to

impute the tobacco consumption level of wave t, except for wave 1.

5. Similar to the base method, but the tobacco consumption level of wave t+1 is also used to

impute the tobacco consumption level of wave t, including wave 1.

6. Similar to the base method, but the tobacco consumption level of any wave is explained by

the tobacco consumption level of the six other available waves.

Methods 1-3 were defined to investigate the importance of the choice of covariates upon the

results, while methods 4-6 were defined to evaluate the importance of keeping a strict temporal

relation between waves. For the purpose of comparability with the base method, the rule defined

above specifying that when two or more than two successive observations are missing only the first

one is imputed was also used.

3.3 Simulation procedure

The first point to be examined when speaking about imputation is the quality of the imputation

as can be measured by the difference between values obtained from the imputation and the corre-

sponding truly observed values. The difficulty of course lies in the fact that in real situations, where

imputation would typically be used, we do not know the true values! It is then very important

to investigate this aspect of the imputation process by the mean of simulated data. The following

procedure was adopted:

1. The TREE observations for which the level of tobacco consumption was continuously available

from wave 1 to wave 7 were selected (n=1999).
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2. Fifty datasets were created with 10% of missing data randomly generated on each wave.

3. The missing data of each of the 50 datasets were imputed using the base method and the six

alternative methods described before.

4. The distribution of the tobacco consumption level was computed for each wave using i) only

the 10% of imputed data; ii) the whole variable including the 10% of imputed data and the

90% of observed data.

5. Each distribution was compared to the corresponding fully observed distribution. Comparisons

were made for both the overall difference between observed and imputed distributions, and

for the relative difference defined as the percentage of over or under estimation of the imputed

distribution compared to the observed one.

6. To study the impact on causality of the different imputation methods, we used the consump-

tion level of tobacco during waves 1 to 6 (either the six waves or only one of them) to explain

the same consumption level on wave 7 through a multinomial regression model. The difference

of fit between the model computed on the whole observed dataset and the models computed

on data including imputed values was then investigated through the analysis of the adjusted

Nagelkerke’s pseudo R2.

The whole process was also repeated using 50 datasets with 20% of missing data on each wave.

Results are reported as boxplots showing the distribution of the difference between really observed

and imputed data. It may be important to recall that since we are working within the general

framework of multiple imputation, the result for each dataset is an average using Rubin’s rule of

the results computed separately on each of the m=10 replications.

As with most surveys, sampling weights are provided for the TREE data in order to work with

a truly representative sample of the population. Nevertheless, since our goal here is not to produce

results valid for the Swiss adolescent population, but to investigate the properties of an imputation

approach, we chose not to use weights. In that way, inherent issues related to the computation of

weights and to their adjustment to accomodate for longitudinal frameworks and for missing data

cannot impact our results. On the other hand, it must be remembered throughout the lecture of

the Results section that proportions related to tobacco consumption are just given here as examples

and that they do not directly apply to the Swiss adolescent population.

All computations were performed using Stata version 10 (StataCorp., 2007) and the ICE im-

plementation of CE developed for Stata 9 and later by Royston (2004), but since the release of

version 12, ICE has become a standard feature of the multiple imputation procedure implemented
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in Stata. Similar results can also be achieved for instance in R with the MICE library (Van Buuren

& Groothuis-Oudshoorn, 2011).

4 Results

We summarize hereafter the main findings of our study. More complete results can be found in

Berchtold & Surís (2012).

4.1 Association between variables

Table 1 summarizes the association between the seven waves of the tobacco consumption level

variable. The consumption level of any wave is highly positively and significantly correlated with

the consumption level of any other wave. As expected, the association decreases as the lapse of

time between two waves increases. On the other hand, the correlation tends to be larger between

the last waves, as compared to the first ones.

TABLE 1 ABOUT HERE.

Similarly, Table 2 gives the relation between each wave of tobacco consumption level and the

different covariates used during the imputation process. The level of significance is very variable,

ranging from highly significant to non-significant associations. All covariates are significantly associ-

ated at the 95% level with tobacco consumption in at least one wave. Family structure is associated

with all seven waves and two other covariates (Literacy competence, Family wealth) are associated

with six waves. Even when significant, the level of association stays always low.

TABLE 2 ABOUT HERE.

4.2 Base method

Figures 1 to 4 report the main findings for the simulations conducted with the base method on

the tobacco consumption level. Figures 1 and 3 report results computed on the 10% or 20% of

simulated missing data only, while Figures 2 and 4 report results computed on the n=1999 available

data points, including a large majority of non-missing data.

The distribution of the 50 differences for any wave and any category of consumption is always

approximatively Gaussian, as indicated by a Kolmogorov-Smirnov test of normality at the 95% level

(results not shown). The mean is always very close to zero, indicating that the imputation is not

biaised toward a systematic over- or under-estimation of some of the categories.
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As could have been expected, the magnitude of the error is related to the magnitude of the

proportion to be estimated. In absolute value, the error is generally larger for the “Never” modality,

which is the most frequent one as indicated by the observed data, but the relation is not strictly

observed and the magnitude of the error is sometimes similar for quite different proportions. On the

other hand, when looking at the relative rather than the absolute difference between observed and

imputed values, the error becomes logically larger for rare modalities. A few number of imputations

are outliers, the most extreme case being a relative over-estimation of more than ten times encoun-

tered for the “3-5 times a week” modality at T4 with 10% of missings. Fortunately, considering the

whole set of simulations, such situations are very unusual.

In practice only a small percentage of data are missings. When considering the distribution not

only of the imputed data, but of all available data (Figures 2 and 4), the importance of outliers

decreases even more. More generally, these two figures show that even in term of relative difference

and with 20% of missing data, the impact of outlier imputations stays always smaller than ±0.2 for

the most extreme cases, more than 50% of the simulations presenting errors smaller than ±0.05.

Finally, in terms of absolute difference and considering the 10% or 20% of imputed data, the

variability represented by the full range of the boxplots (Figures 1 and 3) is smaller with 20% rather

than 10% of missing data. This is an indication of the quality of the imputation process. Even with

a doubled rate of missing data, the quality of the imputation is only slightly reduced: if a larger

number of missing data implies an increase of the variability between imputed values, this effect is

more than counterbalanced by the doubling of the number of data points, resulting in a decrease

of the standard deviation. When considering the boxplots computed from the whole set of 1999

observations (Figures 2 and 4), the distributions with 10% of missing data are less variable than

the distributions with 20% of missing data, because the sample size is equal in both cases, the only

difference being the increase of the variability in the 20% situation as compared to the 10% one.

FIGURES 1 TO 4 ABOUT HERE.

4.3 Alternative methods

Figure 5 summarizes results from the simulations comparing the base method (method 0) with the

six alternative methods (methods 1 to 6 as described before). Boxplots for the absolute difference

between observed and imputed data are provided for waves T2, T4 and T7 and for datasets with

10% of missing values. Results with 20% of missing values are not provided here, since they do not

really differ from the ones with 10% of missing values, but more complete results can be found in

Berchtold & Surís (2012). Results are shown for the “Never” category, which is the most frequent
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one, and the “3-5 times/week” category which is one of the two least frequent categories.

FIGURE 5 ABOUT HERE.

Overall, no method does systematically achieve the best results and the level of over- or under-

estimation is comparable for all methods. The range of the distribution computed over the 50

simulations is not related to the particular method used. Depending on the category, the wave, and

the percentage of missing data, each method can provide a larger or smaller range of results than

alternatives. Moreover, even if outliers remain rare, they can also appear with any method.

This lack of difference between the seven methods can be due to at least two causes: First, the

covariates used during the imputation process are insufficiently predictive of the level of tobacco

consumption, so adding or removing covariates has only a marginal effect. Second, the high corre-

lation observed among successive values of the tobacco consumption level implies that without any

other covariate, the results achieved by all the methods are similar. Using posterior waves during

the imputation process does not have a visible impact on the results in terms of distribution.

4.4 Causality

Longitudinal data can be used to assess causality between successive events. It is then crucial to

ensure that the imputation process remains neutral regarding the relationship between waves. More

specifically, we checked whether the use of one or several posterior waves for the estimation of wave

t does impact the temporal relation between waves. A multinomial regression model was computed

for the level of tobacco consumption on wave 7 using the level of tobacco consumption on waves 2

to 6 as explanatory factors. Wave 1 was not used here, since most of the alternative imputation

methods do not impute missing data on this particular wave. The quality of fit of each model is

assessed by Nagelkerke’s pseudo-R2. For the purpose of comparison, we also computed the same

models on the 1999 original data without missing values. The model using explanatory waves 2 to 6

achieved a pseudo-R2 of 0.4935, while the models using only one explanatory wave achieved 0.4294

and 0.3663 for the explanatory wave 6 and 5 respectively. Figure 6 summarizes the results.

Results show a very clear difference between methods 0-3 based on a strict respect of the tem-

porality, and methods 4-6 breaking this relationship. This difference tends to be larger when 20%

of the data are missing. The average results of methods 4-6 are always better than the results of

methods 0-3, method 6 showing generally the highest values. In many cases, methods 4-6 even

obtain a pseudo-R2 better than the one computed on the original data without missing values. On

the other hand, such a situation is never observed when using methods 0 to 3. These results clearly
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demonstrate that not respecting the temporality between waves during the imputation process has

a direct impact on statistical models trying to identify a possible causal mechanism between waves.

FIGURE 6 ABOUT HERE.

5 Conclusion

The imputation method described in this paper leads to accurate results in a longitudinal context.

Longer sequences of non-interrupted data can be obtained at a relatively small computational cost,

implying the possibility of analysing more complete datasets, and to put more easily into evidence

causal effects. The use of the chained equation approach presents the advantage of seamlessly com-

bining variables of different kinds (for instance continuous and categorical) into a same imputation

procedure. This approach is perfectly suited for the needs of multiple imputation, since convergence

in probability lets obtain different reliable imputed values for a same missing observation.

The success of the whole imputation process is directly related to both the selection of a thoret-

ically sound method regarding the missing data, and the use of enough information to apply this

method reliably. Since the chained equation methods relies on regression models to explain the

missing values, covariates must be correlated with the dependent variable, as for any traditional

regression. We conjecture that the use of covariates much more associated to the level of tobacco

consumption would have helped improve the quality of imputation, but such covariates were either

not available in the dataset, or they themselves contained too many missing data to be useful in

the context of a simulation study.

Accurate imputations at the individual level are very difficult to achieve, but fortunately the

distributional level is generally sufficient, since statistical studies are rarely concerned by each case

taken separately. It follows that the distributional properties of imputations are of great interest.

In this paper, and even if this was already known since it is a consequence of the method itself, we

can see that imputations obtained through the chained equation method are generally Gaussian-

distributed around the true value. There is no systematic bias towards an over- or under-estimation

of some particular categories of the variable, so the method can be considered as reliable.

Another crucial point lies in the relation between the imputed data themselves and the statistical

use of these data. When the study design is purely cross-sectional, any method aiming at improving

the quality of the imputations could be used. In particular, we have seen in Section 4.3 that

the use of posterior waves during the imputation process does not have a visible impact on the

resulting distributions. On the other hand, the situation is completely different when the research

design is longitudinal and when causality is of interest. As clearly stated by Hill (1965), one of the
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crucial points to be respected when speaking about causality is the temporality: the cause always

precedes the consequence. It follows that any intervention related to the temporal order can have

consequences, and that the temporal relationship between waves should be strictly respected during

the imputation process. Even if it could be tempting to improve the accuracy of point imputations

by using not only past, but also future information, this approach can potentially modify the

possible causal link between waves, leading to the impossibility to later demonstrate a causality,

or inversely to lead to a spurious causality. This point is very important as we have shown that

the consequences of the non-respect of the temporality are not always visible. For instance, results

obtained by methods 4 to 6 do not appear as really different from the ones of methods 0 to 3, the

problem appearing only when the same data are used in a longitudinal context (Figure 6).

The correct handling of missing information is a key point in the proper use of longitudinal data

like the TREE survey, the final goal being to obtain more useful statistical results. In that sense,

the results presented here should prove interesting to any user of longitudinal datasets including

missing information. Even if imputation cannot provide exact replacement values for individual

subjects, this methodology is able to provide larger data files to be analyzed at the aggregated

level without systematic bias. It can in particular be recommended to anyone needing to analyze

long uninterrupted sequences of longitudinal data with the purpose of identifying specific types of

trajectories.
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Table 1: Association between the seven waves of the tobacco consumption level variable. Only
observations for which the level of tobacco consumption is continuously available from T1 to T7
are used (n=1999). We provide for each comparison the value of the Spearman correlation. All
correlations are significant at the 99.9% level.

Wave
Wave T1 T2 T3 T4 T5 T6 T7
T1 1

T2 0.724 1

T3 0.678 0.793 1

T4 0.619 0.729 0.791 1

T5 0.595 0.683 0.726 0.801 1

T6 0.566 0.659 0.700 0.789 0.829 1

T7 0.553 0.621 0.667 0.728 0.774 0.818 1
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Table 2: Relation between the seven waves of the tobacco consumption level variable and covariates
used during the imputation process. Only observations for which the level of tobacco consumption is
continuously available from T1 to T7 are used (n=1999). For categorical covariates, we provide the
value of the Cramer’s V association coefficient and its associate p-value (in italic). For continuous
covariates, we provide the η2 association measure and the p-value of the corresponding one-way
ANOVA.

Wave
Covariates T1 T2 T3 T4 T5 T6 T7
Categorical:

Gender 0.0812 0.0854 0.0735 0.0675 0.0640 0.0929 0.0492
0.010 0.006 0.029 0.058 0.085 0.002 0.304

Language area 0.0715 0.0475 0.0643 0.0344 0.0665 0.0399 0.0435
0.009 0.341 0.036 0.786 0.024 0.608 0.477

Country of birth 0.0510 0.0553 0.0602 0.0547 0.0829 0.0703 0.0718
0.270 0.191 0.125 0.201 0.008 0.043 0.036

School track 0.0756 0.0638 0.0861 0.0624 0.0572 0.0466 0.0471
0.001 0.018 0.006 0.025 0.075 0.370 0.348

Literacy competence 0.0651 0.0752 0.0929 0.0893 0.0984 0.1137 0.0983
0.076 0.024 0.002 0.003 0.001 <0.001 0.001

Family structure 0.1076 0.1155 0.1197 0.0995 0.1088 0.1137 0.0767
<0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.020

Continuous:
Age 0.0069 0.0013 0.0034 0.0028 0.0021 0.0021 0.0024

0.008 0.619 0.142 0.227 0.392 0.375 0.316
Family wealth 0.0068 0.0059 0.0084 0.0068 0.0042 0.0034 0.0076

0.009 0.016 0.003 0.007 0.062 0.0166 0.005
Cultural possessions 0.0030 0.0030 0.0045 0.0075 0.0045 0.0040 0.0075

0.179 0.231 0.052 0.004 0.065 0.094 0.004
Educational support 0.0065 0.0041 0.0059 0.0024 0.0041 0.0036 0.0000

0.009 0.080 0.022 0.259 0.074 0.144 0.970
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Figure 1: Simulated tobacco data with 10% of missing data on each wave. Boxplots for the difference
between the proportions computed on the imputed and observed data. Only the 10% of imputed
data points are taken into account. The left column shows the absolute difference between the
proportions computed on the imputed and observed values for waves T2, T4 and T7, while the
right column provides their relative difference.
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Figure 2: Simulated tobacco data with 10% of missing data on each wave. Boxplots for the difference
between the proportions computed on the imputed and observed data. All the n=1999 data points,
both imputed or not imputed, are taken into account. The left column shows the absolute difference
between the proportions computed on the imputed and observed values for waves T2, T4 and T7,
while the right column provides their relative difference.
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Figure 3: Simulated tobacco data with 20% of missing data on each wave. Boxplots for the difference
between the proportions computed on the imputed and observed data. Only the 20% of imputed
data points are taken into account. The left column shows the absolute difference between the
proportions computed on the imputed and observed values for waves T2, T4 and T7, while the
right column provides their relative difference.
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Figure 4: Simulated tobacco data with 20% of missing data on each wave. Boxplots for the difference
between the proportions computed on the imputed and observed data. All the n=1999 data points,
both imputed or not imputed, are taken into account. The left column shows the absolute difference
between the proportions computed on the imputed and observed values for waves T2, T4 and T7,
while the right column provides their relative difference.
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Figure 5: Simulated tobacco data with 10% of missing data on each wave. Boxplots for the absolute
difference between the proportions computed on the imputed and observed data of the “Never” (left
column) and “3-5 times/week” categories in waves T2, T4 and T7. Only the 10% of imputed data
points are taken into account.
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Figure 6: Nagelkerke’s pseudo-R2 for the regressions explaining the tobacco consumption level at
T7 with data from T2 to T6 (up), T6 only (middle) and T5 only (down). Figures on the left report
results with 10% of missing data and figures on the right report results with 20% of missing data.
The dashed line represents the value of Nagelkerke’s pseudo-R2 when computed on the original
dataset without missing data (0.4935 for the model using explanatory waves 2 to 6, 0.4294 for the
model using only explanatory wave 6, and 0.3663 for the model using only explanatory wave 5).
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